xref: /llvm-project/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp (revision 7530e707afc60014624eb62bda9557cdc7f28dd0)
1 //===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is part of the X86 Disassembler.
10 // It contains code to translate the data produced by the decoder into
11 //  MCInsts.
12 //
13 //
14 // The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
15 // 64-bit X86 instruction sets.  The main decode sequence for an assembly
16 // instruction in this disassembler is:
17 //
18 // 1. Read the prefix bytes and determine the attributes of the instruction.
19 //    These attributes, recorded in enum attributeBits
20 //    (X86DisassemblerDecoderCommon.h), form a bitmask.  The table CONTEXTS_SYM
21 //    provides a mapping from bitmasks to contexts, which are represented by
22 //    enum InstructionContext (ibid.).
23 //
24 // 2. Read the opcode, and determine what kind of opcode it is.  The
25 //    disassembler distinguishes four kinds of opcodes, which are enumerated in
26 //    OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
27 //    (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
28 //    (0x0f 0x3a 0xnn).  Mandatory prefixes are treated as part of the context.
29 //
30 // 3. Depending on the opcode type, look in one of four ClassDecision structures
31 //    (X86DisassemblerDecoderCommon.h).  Use the opcode class to determine which
32 //    OpcodeDecision (ibid.) to look the opcode in.  Look up the opcode, to get
33 //    a ModRMDecision (ibid.).
34 //
35 // 4. Some instructions, such as escape opcodes or extended opcodes, or even
36 //    instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
37 //    ModR/M byte to complete decode.  The ModRMDecision's type is an entry from
38 //    ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
39 //    ModR/M byte is required and how to interpret it.
40 //
41 // 5. After resolving the ModRMDecision, the disassembler has a unique ID
42 //    of type InstrUID (X86DisassemblerDecoderCommon.h).  Looking this ID up in
43 //    INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
44 //    meanings of its operands.
45 //
46 // 6. For each operand, its encoding is an entry from OperandEncoding
47 //    (X86DisassemblerDecoderCommon.h) and its type is an entry from
48 //    OperandType (ibid.).  The encoding indicates how to read it from the
49 //    instruction; the type indicates how to interpret the value once it has
50 //    been read.  For example, a register operand could be stored in the R/M
51 //    field of the ModR/M byte, the REG field of the ModR/M byte, or added to
52 //    the main opcode.  This is orthogonal from its meaning (an GPR or an XMM
53 //    register, for instance).  Given this information, the operands can be
54 //    extracted and interpreted.
55 //
56 // 7. As the last step, the disassembler translates the instruction information
57 //    and operands into a format understandable by the client - in this case, an
58 //    MCInst for use by the MC infrastructure.
59 //
60 // The disassembler is broken broadly into two parts: the table emitter that
61 // emits the instruction decode tables discussed above during compilation, and
62 // the disassembler itself.  The table emitter is documented in more detail in
63 // utils/TableGen/X86DisassemblerEmitter.h.
64 //
65 // X86Disassembler.cpp contains the code responsible for step 7, and for
66 //   invoking the decoder to execute steps 1-6.
67 // X86DisassemblerDecoderCommon.h contains the definitions needed by both the
68 //   table emitter and the disassembler.
69 // X86DisassemblerDecoder.h contains the public interface of the decoder,
70 //   factored out into C for possible use by other projects.
71 // X86DisassemblerDecoder.c contains the source code of the decoder, which is
72 //   responsible for steps 1-6.
73 //
74 //===----------------------------------------------------------------------===//
75 
76 #include "MCTargetDesc/X86BaseInfo.h"
77 #include "MCTargetDesc/X86MCTargetDesc.h"
78 #include "TargetInfo/X86TargetInfo.h"
79 #include "X86DisassemblerDecoder.h"
80 #include "llvm/MC/MCContext.h"
81 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
82 #include "llvm/MC/MCExpr.h"
83 #include "llvm/MC/MCInst.h"
84 #include "llvm/MC/MCInstrInfo.h"
85 #include "llvm/MC/MCSubtargetInfo.h"
86 #include "llvm/MC/TargetRegistry.h"
87 #include "llvm/Support/Debug.h"
88 #include "llvm/Support/Format.h"
89 #include "llvm/Support/raw_ostream.h"
90 
91 using namespace llvm;
92 using namespace llvm::X86Disassembler;
93 
94 #define DEBUG_TYPE "x86-disassembler"
95 
96 #define debug(s) LLVM_DEBUG(dbgs() << __LINE__ << ": " << s);
97 
98 // Specifies whether a ModR/M byte is needed and (if so) which
99 // instruction each possible value of the ModR/M byte corresponds to.  Once
100 // this information is known, we have narrowed down to a single instruction.
101 struct ModRMDecision {
102   uint8_t modrm_type;
103   uint32_t instructionIDs;
104 };
105 
106 // Specifies which set of ModR/M->instruction tables to look at
107 // given a particular opcode.
108 struct OpcodeDecision {
109   ModRMDecision modRMDecisions[256];
110 };
111 
112 // Specifies which opcode->instruction tables to look at given
113 // a particular context (set of attributes).  Since there are many possible
114 // contexts, the decoder first uses CONTEXTS_SYM to determine which context
115 // applies given a specific set of attributes.  Hence there are only IC_max
116 // entries in this table, rather than 2^(ATTR_max).
117 struct ContextDecision {
118   OpcodeDecision opcodeDecisions[IC_max];
119 };
120 
121 #include "X86GenDisassemblerTables.inc"
122 
123 static InstrUID decode(OpcodeType type, InstructionContext insnContext,
124                        uint8_t opcode, uint8_t modRM) {
125   const struct ModRMDecision *dec;
126 
127   switch (type) {
128   case ONEBYTE:
129     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
130     break;
131   case TWOBYTE:
132     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
133     break;
134   case THREEBYTE_38:
135     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
136     break;
137   case THREEBYTE_3A:
138     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
139     break;
140   case XOP8_MAP:
141     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
142     break;
143   case XOP9_MAP:
144     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
145     break;
146   case XOPA_MAP:
147     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
148     break;
149   case THREEDNOW_MAP:
150     dec =
151         &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
152     break;
153   case MAP4:
154     dec = &MAP4_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
155     break;
156   case MAP5:
157     dec = &MAP5_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
158     break;
159   case MAP6:
160     dec = &MAP6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
161     break;
162   case MAP7:
163     dec = &MAP7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
164     break;
165   }
166 
167   switch (dec->modrm_type) {
168   default:
169     llvm_unreachable("Corrupt table!  Unknown modrm_type");
170     return 0;
171   case MODRM_ONEENTRY:
172     return modRMTable[dec->instructionIDs];
173   case MODRM_SPLITRM:
174     if (modFromModRM(modRM) == 0x3)
175       return modRMTable[dec->instructionIDs + 1];
176     return modRMTable[dec->instructionIDs];
177   case MODRM_SPLITREG:
178     if (modFromModRM(modRM) == 0x3)
179       return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3) + 8];
180     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
181   case MODRM_SPLITMISC:
182     if (modFromModRM(modRM) == 0x3)
183       return modRMTable[dec->instructionIDs + (modRM & 0x3f) + 8];
184     return modRMTable[dec->instructionIDs + ((modRM & 0x38) >> 3)];
185   case MODRM_FULL:
186     return modRMTable[dec->instructionIDs + modRM];
187   }
188 }
189 
190 static bool peek(struct InternalInstruction *insn, uint8_t &byte) {
191   uint64_t offset = insn->readerCursor - insn->startLocation;
192   if (offset >= insn->bytes.size())
193     return true;
194   byte = insn->bytes[offset];
195   return false;
196 }
197 
198 template <typename T> static bool consume(InternalInstruction *insn, T &ptr) {
199   auto r = insn->bytes;
200   uint64_t offset = insn->readerCursor - insn->startLocation;
201   if (offset + sizeof(T) > r.size())
202     return true;
203   ptr = support::endian::read<T>(&r[offset], llvm::endianness::little);
204   insn->readerCursor += sizeof(T);
205   return false;
206 }
207 
208 static bool isREX(struct InternalInstruction *insn, uint8_t prefix) {
209   return insn->mode == MODE_64BIT && prefix >= 0x40 && prefix <= 0x4f;
210 }
211 
212 static bool isREX2(struct InternalInstruction *insn, uint8_t prefix) {
213   return insn->mode == MODE_64BIT && prefix == 0xd5;
214 }
215 
216 // Consumes all of an instruction's prefix bytes, and marks the
217 // instruction as having them.  Also sets the instruction's default operand,
218 // address, and other relevant data sizes to report operands correctly.
219 //
220 // insn must not be empty.
221 static int readPrefixes(struct InternalInstruction *insn) {
222   bool isPrefix = true;
223   uint8_t byte = 0;
224   uint8_t nextByte;
225 
226   LLVM_DEBUG(dbgs() << "readPrefixes()");
227 
228   while (isPrefix) {
229     // If we fail reading prefixes, just stop here and let the opcode reader
230     // deal with it.
231     if (consume(insn, byte))
232       break;
233 
234     // If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
235     // break and let it be disassembled as a normal "instruction".
236     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK
237       break;
238 
239     if ((byte == 0xf2 || byte == 0xf3) && !peek(insn, nextByte)) {
240       // If the byte is 0xf2 or 0xf3, and any of the following conditions are
241       // met:
242       // - it is followed by a LOCK (0xf0) prefix
243       // - it is followed by an xchg instruction
244       // then it should be disassembled as a xacquire/xrelease not repne/rep.
245       if (((nextByte == 0xf0) ||
246            ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) {
247         insn->xAcquireRelease = true;
248         if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support
249           break;
250       }
251       // Also if the byte is 0xf3, and the following condition is met:
252       // - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
253       //                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
254       // then it should be disassembled as an xrelease not rep.
255       if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 ||
256                            nextByte == 0xc6 || nextByte == 0xc7)) {
257         insn->xAcquireRelease = true;
258         break;
259       }
260       if (isREX(insn, nextByte)) {
261         uint8_t nnextByte;
262         // Go to REX prefix after the current one
263         if (consume(insn, nnextByte))
264           return -1;
265         // We should be able to read next byte after REX prefix
266         if (peek(insn, nnextByte))
267           return -1;
268         --insn->readerCursor;
269       }
270     }
271 
272     switch (byte) {
273     case 0xf0: // LOCK
274       insn->hasLockPrefix = true;
275       break;
276     case 0xf2: // REPNE/REPNZ
277     case 0xf3: { // REP or REPE/REPZ
278       uint8_t nextByte;
279       if (peek(insn, nextByte))
280         break;
281       // TODO:
282       //  1. There could be several 0x66
283       //  2. if (nextByte == 0x66) and nextNextByte != 0x0f then
284       //      it's not mandatory prefix
285       //  3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need
286       //     0x0f exactly after it to be mandatory prefix
287       //  4. if (nextByte == 0xd5) it's REX2 and we need
288       //     0x0f exactly after it to be mandatory prefix
289       if (isREX(insn, nextByte) || isREX2(insn, nextByte) || nextByte == 0x0f ||
290           nextByte == 0x66)
291         // The last of 0xf2 /0xf3 is mandatory prefix
292         insn->mandatoryPrefix = byte;
293       insn->repeatPrefix = byte;
294       break;
295     }
296     case 0x2e: // CS segment override -OR- Branch not taken
297       insn->segmentOverride = SEG_OVERRIDE_CS;
298       break;
299     case 0x36: // SS segment override -OR- Branch taken
300       insn->segmentOverride = SEG_OVERRIDE_SS;
301       break;
302     case 0x3e: // DS segment override
303       insn->segmentOverride = SEG_OVERRIDE_DS;
304       break;
305     case 0x26: // ES segment override
306       insn->segmentOverride = SEG_OVERRIDE_ES;
307       break;
308     case 0x64: // FS segment override
309       insn->segmentOverride = SEG_OVERRIDE_FS;
310       break;
311     case 0x65: // GS segment override
312       insn->segmentOverride = SEG_OVERRIDE_GS;
313       break;
314     case 0x66: { // Operand-size override {
315       uint8_t nextByte;
316       insn->hasOpSize = true;
317       if (peek(insn, nextByte))
318         break;
319       // 0x66 can't overwrite existing mandatory prefix and should be ignored
320       if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte)))
321         insn->mandatoryPrefix = byte;
322       break;
323     }
324     case 0x67: // Address-size override
325       insn->hasAdSize = true;
326       break;
327     default: // Not a prefix byte
328       isPrefix = false;
329       break;
330     }
331 
332     if (isREX(insn, byte)) {
333       insn->rexPrefix = byte;
334       isPrefix = true;
335       LLVM_DEBUG(dbgs() << format("Found REX prefix 0x%hhx", byte));
336     } else if (isPrefix) {
337       insn->rexPrefix = 0;
338     }
339 
340     if (isPrefix)
341       LLVM_DEBUG(dbgs() << format("Found prefix 0x%hhx", byte));
342   }
343 
344   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
345 
346   if (byte == 0x62) {
347     uint8_t byte1, byte2;
348     if (consume(insn, byte1)) {
349       LLVM_DEBUG(dbgs() << "Couldn't read second byte of EVEX prefix");
350       return -1;
351     }
352 
353     if (peek(insn, byte2)) {
354       LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
355       return -1;
356     }
357 
358     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)) {
359       insn->vectorExtensionType = TYPE_EVEX;
360     } else {
361       --insn->readerCursor; // unconsume byte1
362       --insn->readerCursor; // unconsume byte
363     }
364 
365     if (insn->vectorExtensionType == TYPE_EVEX) {
366       insn->vectorExtensionPrefix[0] = byte;
367       insn->vectorExtensionPrefix[1] = byte1;
368       if (consume(insn, insn->vectorExtensionPrefix[2])) {
369         LLVM_DEBUG(dbgs() << "Couldn't read third byte of EVEX prefix");
370         return -1;
371       }
372       if (consume(insn, insn->vectorExtensionPrefix[3])) {
373         LLVM_DEBUG(dbgs() << "Couldn't read fourth byte of EVEX prefix");
374         return -1;
375       }
376 
377       if (insn->mode == MODE_64BIT) {
378         // We simulate the REX prefix for simplicity's sake
379         insn->rexPrefix = 0x40 |
380                           (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) |
381                           (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) |
382                           (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) |
383                           (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
384 
385         // We simulate the REX2 prefix for simplicity's sake
386         insn->rex2ExtensionPrefix[1] =
387             (r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 6) |
388             (uFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 5) |
389             (b2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4);
390       }
391 
392       LLVM_DEBUG(
393           dbgs() << format(
394               "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
395               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
396               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]));
397     }
398   } else if (byte == 0xc4) {
399     uint8_t byte1;
400     if (peek(insn, byte1)) {
401       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
402       return -1;
403     }
404 
405     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
406       insn->vectorExtensionType = TYPE_VEX_3B;
407     else
408       --insn->readerCursor;
409 
410     if (insn->vectorExtensionType == TYPE_VEX_3B) {
411       insn->vectorExtensionPrefix[0] = byte;
412       consume(insn, insn->vectorExtensionPrefix[1]);
413       consume(insn, insn->vectorExtensionPrefix[2]);
414 
415       // We simulate the REX prefix for simplicity's sake
416 
417       if (insn->mode == MODE_64BIT)
418         insn->rexPrefix = 0x40 |
419                           (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) |
420                           (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) |
421                           (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) |
422                           (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
423 
424       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
425                                   insn->vectorExtensionPrefix[0],
426                                   insn->vectorExtensionPrefix[1],
427                                   insn->vectorExtensionPrefix[2]));
428     }
429   } else if (byte == 0xc5) {
430     uint8_t byte1;
431     if (peek(insn, byte1)) {
432       LLVM_DEBUG(dbgs() << "Couldn't read second byte of VEX");
433       return -1;
434     }
435 
436     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0)
437       insn->vectorExtensionType = TYPE_VEX_2B;
438     else
439       --insn->readerCursor;
440 
441     if (insn->vectorExtensionType == TYPE_VEX_2B) {
442       insn->vectorExtensionPrefix[0] = byte;
443       consume(insn, insn->vectorExtensionPrefix[1]);
444 
445       if (insn->mode == MODE_64BIT)
446         insn->rexPrefix =
447             0x40 | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
448 
449       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
450       default:
451         break;
452       case VEX_PREFIX_66:
453         insn->hasOpSize = true;
454         break;
455       }
456 
457       LLVM_DEBUG(dbgs() << format("Found VEX prefix 0x%hhx 0x%hhx",
458                                   insn->vectorExtensionPrefix[0],
459                                   insn->vectorExtensionPrefix[1]));
460     }
461   } else if (byte == 0x8f) {
462     uint8_t byte1;
463     if (peek(insn, byte1)) {
464       LLVM_DEBUG(dbgs() << "Couldn't read second byte of XOP");
465       return -1;
466     }
467 
468     if ((byte1 & 0x38) != 0x0) // 0 in these 3 bits is a POP instruction.
469       insn->vectorExtensionType = TYPE_XOP;
470     else
471       --insn->readerCursor;
472 
473     if (insn->vectorExtensionType == TYPE_XOP) {
474       insn->vectorExtensionPrefix[0] = byte;
475       consume(insn, insn->vectorExtensionPrefix[1]);
476       consume(insn, insn->vectorExtensionPrefix[2]);
477 
478       // We simulate the REX prefix for simplicity's sake
479 
480       if (insn->mode == MODE_64BIT)
481         insn->rexPrefix = 0x40 |
482                           (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) |
483                           (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) |
484                           (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) |
485                           (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
486 
487       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
488       default:
489         break;
490       case VEX_PREFIX_66:
491         insn->hasOpSize = true;
492         break;
493       }
494 
495       LLVM_DEBUG(dbgs() << format("Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
496                                   insn->vectorExtensionPrefix[0],
497                                   insn->vectorExtensionPrefix[1],
498                                   insn->vectorExtensionPrefix[2]));
499     }
500   } else if (isREX2(insn, byte)) {
501     uint8_t byte1;
502     if (peek(insn, byte1)) {
503       LLVM_DEBUG(dbgs() << "Couldn't read second byte of REX2");
504       return -1;
505     }
506     insn->rex2ExtensionPrefix[0] = byte;
507     consume(insn, insn->rex2ExtensionPrefix[1]);
508 
509     // We simulate the REX prefix for simplicity's sake
510     insn->rexPrefix = 0x40 | (wFromREX2(insn->rex2ExtensionPrefix[1]) << 3) |
511                       (rFromREX2(insn->rex2ExtensionPrefix[1]) << 2) |
512                       (xFromREX2(insn->rex2ExtensionPrefix[1]) << 1) |
513                       (bFromREX2(insn->rex2ExtensionPrefix[1]) << 0);
514     LLVM_DEBUG(dbgs() << format("Found REX2 prefix 0x%hhx 0x%hhx",
515                                 insn->rex2ExtensionPrefix[0],
516                                 insn->rex2ExtensionPrefix[1]));
517   } else
518     --insn->readerCursor;
519 
520   if (insn->mode == MODE_16BIT) {
521     insn->registerSize = (insn->hasOpSize ? 4 : 2);
522     insn->addressSize = (insn->hasAdSize ? 4 : 2);
523     insn->displacementSize = (insn->hasAdSize ? 4 : 2);
524     insn->immediateSize = (insn->hasOpSize ? 4 : 2);
525   } else if (insn->mode == MODE_32BIT) {
526     insn->registerSize = (insn->hasOpSize ? 2 : 4);
527     insn->addressSize = (insn->hasAdSize ? 2 : 4);
528     insn->displacementSize = (insn->hasAdSize ? 2 : 4);
529     insn->immediateSize = (insn->hasOpSize ? 2 : 4);
530   } else if (insn->mode == MODE_64BIT) {
531     insn->displacementSize = 4;
532     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
533       insn->registerSize = 8;
534       insn->addressSize = (insn->hasAdSize ? 4 : 8);
535       insn->immediateSize = 4;
536       insn->hasOpSize = false;
537     } else {
538       insn->registerSize = (insn->hasOpSize ? 2 : 4);
539       insn->addressSize = (insn->hasAdSize ? 4 : 8);
540       insn->immediateSize = (insn->hasOpSize ? 2 : 4);
541     }
542   }
543 
544   return 0;
545 }
546 
547 // Consumes the SIB byte to determine addressing information.
548 static int readSIB(struct InternalInstruction *insn) {
549   SIBBase sibBaseBase = SIB_BASE_NONE;
550   uint8_t index, base;
551 
552   LLVM_DEBUG(dbgs() << "readSIB()");
553   switch (insn->addressSize) {
554   case 2:
555   default:
556     llvm_unreachable("SIB-based addressing doesn't work in 16-bit mode");
557   case 4:
558     insn->sibIndexBase = SIB_INDEX_EAX;
559     sibBaseBase = SIB_BASE_EAX;
560     break;
561   case 8:
562     insn->sibIndexBase = SIB_INDEX_RAX;
563     sibBaseBase = SIB_BASE_RAX;
564     break;
565   }
566 
567   if (consume(insn, insn->sib))
568     return -1;
569 
570   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3) |
571           (x2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
572 
573   if (index == 0x4) {
574     insn->sibIndex = SIB_INDEX_NONE;
575   } else {
576     insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index);
577   }
578 
579   insn->sibScale = 1 << scaleFromSIB(insn->sib);
580 
581   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3) |
582          (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
583 
584   switch (base) {
585   case 0x5:
586   case 0xd:
587     switch (modFromModRM(insn->modRM)) {
588     case 0x0:
589       insn->eaDisplacement = EA_DISP_32;
590       insn->sibBase = SIB_BASE_NONE;
591       break;
592     case 0x1:
593       insn->eaDisplacement = EA_DISP_8;
594       insn->sibBase = (SIBBase)(sibBaseBase + base);
595       break;
596     case 0x2:
597       insn->eaDisplacement = EA_DISP_32;
598       insn->sibBase = (SIBBase)(sibBaseBase + base);
599       break;
600     default:
601       llvm_unreachable("Cannot have Mod = 0b11 and a SIB byte");
602     }
603     break;
604   default:
605     insn->sibBase = (SIBBase)(sibBaseBase + base);
606     break;
607   }
608 
609   return 0;
610 }
611 
612 static int readDisplacement(struct InternalInstruction *insn) {
613   int8_t d8;
614   int16_t d16;
615   int32_t d32;
616   LLVM_DEBUG(dbgs() << "readDisplacement()");
617 
618   insn->displacementOffset = insn->readerCursor - insn->startLocation;
619   switch (insn->eaDisplacement) {
620   case EA_DISP_NONE:
621     break;
622   case EA_DISP_8:
623     if (consume(insn, d8))
624       return -1;
625     insn->displacement = d8;
626     break;
627   case EA_DISP_16:
628     if (consume(insn, d16))
629       return -1;
630     insn->displacement = d16;
631     break;
632   case EA_DISP_32:
633     if (consume(insn, d32))
634       return -1;
635     insn->displacement = d32;
636     break;
637   }
638 
639   return 0;
640 }
641 
642 // Consumes all addressing information (ModR/M byte, SIB byte, and displacement.
643 static int readModRM(struct InternalInstruction *insn) {
644   uint8_t mod, rm, reg;
645   LLVM_DEBUG(dbgs() << "readModRM()");
646 
647   if (insn->consumedModRM)
648     return 0;
649 
650   if (consume(insn, insn->modRM))
651     return -1;
652   insn->consumedModRM = true;
653 
654   mod = modFromModRM(insn->modRM);
655   rm = rmFromModRM(insn->modRM);
656   reg = regFromModRM(insn->modRM);
657 
658   // This goes by insn->registerSize to pick the correct register, which messes
659   // up if we're using (say) XMM or 8-bit register operands. That gets fixed in
660   // fixupReg().
661   switch (insn->registerSize) {
662   case 2:
663     insn->regBase = MODRM_REG_AX;
664     insn->eaRegBase = EA_REG_AX;
665     break;
666   case 4:
667     insn->regBase = MODRM_REG_EAX;
668     insn->eaRegBase = EA_REG_EAX;
669     break;
670   case 8:
671     insn->regBase = MODRM_REG_RAX;
672     insn->eaRegBase = EA_REG_RAX;
673     break;
674   }
675 
676   reg |= (rFromREX(insn->rexPrefix) << 3) |
677          (r2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
678   rm |= (bFromREX(insn->rexPrefix) << 3) |
679         (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4);
680 
681   if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT)
682     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
683 
684   insn->reg = (Reg)(insn->regBase + reg);
685 
686   switch (insn->addressSize) {
687   case 2: {
688     EABase eaBaseBase = EA_BASE_BX_SI;
689 
690     switch (mod) {
691     case 0x0:
692       if (rm == 0x6) {
693         insn->eaBase = EA_BASE_NONE;
694         insn->eaDisplacement = EA_DISP_16;
695         if (readDisplacement(insn))
696           return -1;
697       } else {
698         insn->eaBase = (EABase)(eaBaseBase + rm);
699         insn->eaDisplacement = EA_DISP_NONE;
700       }
701       break;
702     case 0x1:
703       insn->eaBase = (EABase)(eaBaseBase + rm);
704       insn->eaDisplacement = EA_DISP_8;
705       insn->displacementSize = 1;
706       if (readDisplacement(insn))
707         return -1;
708       break;
709     case 0x2:
710       insn->eaBase = (EABase)(eaBaseBase + rm);
711       insn->eaDisplacement = EA_DISP_16;
712       if (readDisplacement(insn))
713         return -1;
714       break;
715     case 0x3:
716       insn->eaBase = (EABase)(insn->eaRegBase + rm);
717       if (readDisplacement(insn))
718         return -1;
719       break;
720     }
721     break;
722   }
723   case 4:
724   case 8: {
725     EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
726 
727     switch (mod) {
728     case 0x0:
729       insn->eaDisplacement = EA_DISP_NONE; // readSIB may override this
730       // In determining whether RIP-relative mode is used (rm=5),
731       // or whether a SIB byte is present (rm=4),
732       // the extension bits (REX.b and EVEX.x) are ignored.
733       switch (rm & 7) {
734       case 0x4: // SIB byte is present
735         insn->eaBase = (insn->addressSize == 4 ? EA_BASE_sib : EA_BASE_sib64);
736         if (readSIB(insn) || readDisplacement(insn))
737           return -1;
738         break;
739       case 0x5: // RIP-relative
740         insn->eaBase = EA_BASE_NONE;
741         insn->eaDisplacement = EA_DISP_32;
742         if (readDisplacement(insn))
743           return -1;
744         break;
745       default:
746         insn->eaBase = (EABase)(eaBaseBase + rm);
747         break;
748       }
749       break;
750     case 0x1:
751       insn->displacementSize = 1;
752       [[fallthrough]];
753     case 0x2:
754       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
755       switch (rm & 7) {
756       case 0x4: // SIB byte is present
757         insn->eaBase = EA_BASE_sib;
758         if (readSIB(insn) || readDisplacement(insn))
759           return -1;
760         break;
761       default:
762         insn->eaBase = (EABase)(eaBaseBase + rm);
763         if (readDisplacement(insn))
764           return -1;
765         break;
766       }
767       break;
768     case 0x3:
769       insn->eaDisplacement = EA_DISP_NONE;
770       insn->eaBase = (EABase)(insn->eaRegBase + rm);
771       break;
772     }
773     break;
774   }
775   } // switch (insn->addressSize)
776 
777   return 0;
778 }
779 
780 #define GENERIC_FIXUP_FUNC(name, base, prefix)                                 \
781   static uint16_t name(struct InternalInstruction *insn, OperandType type,     \
782                        uint8_t index, uint8_t *valid) {                        \
783     *valid = 1;                                                                \
784     switch (type) {                                                            \
785     default:                                                                   \
786       debug("Unhandled register type");                                        \
787       *valid = 0;                                                              \
788       return 0;                                                                \
789     case TYPE_Rv:                                                              \
790       return base + index;                                                     \
791     case TYPE_R8:                                                              \
792       if (insn->rexPrefix && index >= 4 && index <= 7)                         \
793         return prefix##_SPL + (index - 4);                                     \
794       else                                                                     \
795         return prefix##_AL + index;                                            \
796     case TYPE_R16:                                                             \
797       return prefix##_AX + index;                                              \
798     case TYPE_R32:                                                             \
799       return prefix##_EAX + index;                                             \
800     case TYPE_R64:                                                             \
801       return prefix##_RAX + index;                                             \
802     case TYPE_ZMM:                                                             \
803       return prefix##_ZMM0 + index;                                            \
804     case TYPE_YMM:                                                             \
805       return prefix##_YMM0 + index;                                            \
806     case TYPE_XMM:                                                             \
807       return prefix##_XMM0 + index;                                            \
808     case TYPE_TMM:                                                             \
809       if (index > 7)                                                           \
810         *valid = 0;                                                            \
811       return prefix##_TMM0 + index;                                            \
812     case TYPE_TMM_PAIR:                                                        \
813       if (index > 7)                                                           \
814         *valid = 0;                                                            \
815       return prefix##_TMM0_TMM1 + (index / 2);                                 \
816     case TYPE_VK:                                                              \
817       index &= 0xf;                                                            \
818       if (index > 7)                                                           \
819         *valid = 0;                                                            \
820       return prefix##_K0 + index;                                              \
821     case TYPE_VK_PAIR:                                                         \
822       if (index > 7)                                                           \
823         *valid = 0;                                                            \
824       return prefix##_K0_K1 + (index / 2);                                     \
825     case TYPE_MM64:                                                            \
826       return prefix##_MM0 + (index & 0x7);                                     \
827     case TYPE_SEGMENTREG:                                                      \
828       if ((index & 7) > 5)                                                     \
829         *valid = 0;                                                            \
830       return prefix##_ES + (index & 7);                                        \
831     case TYPE_DEBUGREG:                                                        \
832       if (index > 15)                                                          \
833         *valid = 0;                                                            \
834       return prefix##_DR0 + index;                                             \
835     case TYPE_CONTROLREG:                                                      \
836       if (index > 15)                                                          \
837         *valid = 0;                                                            \
838       return prefix##_CR0 + index;                                             \
839     case TYPE_MVSIBX:                                                          \
840       return prefix##_XMM0 + index;                                            \
841     case TYPE_MVSIBY:                                                          \
842       return prefix##_YMM0 + index;                                            \
843     case TYPE_MVSIBZ:                                                          \
844       return prefix##_ZMM0 + index;                                            \
845     }                                                                          \
846   }
847 
848 // Consult an operand type to determine the meaning of the reg or R/M field. If
849 // the operand is an XMM operand, for example, an operand would be XMM0 instead
850 // of AX, which readModRM() would otherwise misinterpret it as.
851 //
852 // @param insn  - The instruction containing the operand.
853 // @param type  - The operand type.
854 // @param index - The existing value of the field as reported by readModRM().
855 // @param valid - The address of a uint8_t.  The target is set to 1 if the
856 //                field is valid for the register class; 0 if not.
857 // @return      - The proper value.
858 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
859 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
860 
861 // Consult an operand specifier to determine which of the fixup*Value functions
862 // to use in correcting readModRM()'ss interpretation.
863 //
864 // @param insn  - See fixup*Value().
865 // @param op    - The operand specifier.
866 // @return      - 0 if fixup was successful; -1 if the register returned was
867 //                invalid for its class.
868 static int fixupReg(struct InternalInstruction *insn,
869                     const struct OperandSpecifier *op) {
870   uint8_t valid;
871   LLVM_DEBUG(dbgs() << "fixupReg()");
872 
873   switch ((OperandEncoding)op->encoding) {
874   default:
875     debug("Expected a REG or R/M encoding in fixupReg");
876     return -1;
877   case ENCODING_VVVV:
878     insn->vvvv =
879         (Reg)fixupRegValue(insn, (OperandType)op->type, insn->vvvv, &valid);
880     if (!valid)
881       return -1;
882     break;
883   case ENCODING_REG:
884     insn->reg = (Reg)fixupRegValue(insn, (OperandType)op->type,
885                                    insn->reg - insn->regBase, &valid);
886     if (!valid)
887       return -1;
888     break;
889   CASE_ENCODING_RM:
890     if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
891         modFromModRM(insn->modRM) == 3) {
892       // EVEX_X can extend the register id to 32 for a non-GPR register that is
893       // encoded in RM.
894       // mode : MODE_64_BIT
895       //  Only 8 vector registers are available in 32 bit mode
896       // mod : 3
897       //  RM encodes a register
898       switch (op->type) {
899       case TYPE_Rv:
900       case TYPE_R8:
901       case TYPE_R16:
902       case TYPE_R32:
903       case TYPE_R64:
904         break;
905       default:
906         insn->eaBase =
907             (EABase)(insn->eaBase +
908                      (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4));
909         break;
910       }
911     }
912     [[fallthrough]];
913   case ENCODING_SIB:
914     if (insn->eaBase >= insn->eaRegBase) {
915       insn->eaBase = (EABase)fixupRMValue(
916           insn, (OperandType)op->type, insn->eaBase - insn->eaRegBase, &valid);
917       if (!valid)
918         return -1;
919     }
920     break;
921   }
922 
923   return 0;
924 }
925 
926 // Read the opcode (except the ModR/M byte in the case of extended or escape
927 // opcodes).
928 static bool readOpcode(struct InternalInstruction *insn) {
929   uint8_t current;
930   LLVM_DEBUG(dbgs() << "readOpcode()");
931 
932   insn->opcodeType = ONEBYTE;
933   if (insn->vectorExtensionType == TYPE_EVEX) {
934     switch (mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
935     default:
936       LLVM_DEBUG(
937           dbgs() << format("Unhandled mmm field for instruction (0x%hhx)",
938                            mmmFromEVEX2of4(insn->vectorExtensionPrefix[1])));
939       return true;
940     case VEX_LOB_0F:
941       insn->opcodeType = TWOBYTE;
942       return consume(insn, insn->opcode);
943     case VEX_LOB_0F38:
944       insn->opcodeType = THREEBYTE_38;
945       return consume(insn, insn->opcode);
946     case VEX_LOB_0F3A:
947       insn->opcodeType = THREEBYTE_3A;
948       return consume(insn, insn->opcode);
949     case VEX_LOB_MAP4:
950       insn->opcodeType = MAP4;
951       return consume(insn, insn->opcode);
952     case VEX_LOB_MAP5:
953       insn->opcodeType = MAP5;
954       return consume(insn, insn->opcode);
955     case VEX_LOB_MAP6:
956       insn->opcodeType = MAP6;
957       return consume(insn, insn->opcode);
958     case VEX_LOB_MAP7:
959       insn->opcodeType = MAP7;
960       return consume(insn, insn->opcode);
961     }
962   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
963     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
964     default:
965       LLVM_DEBUG(
966           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
967                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
968       return true;
969     case VEX_LOB_0F:
970       insn->opcodeType = TWOBYTE;
971       return consume(insn, insn->opcode);
972     case VEX_LOB_0F38:
973       insn->opcodeType = THREEBYTE_38;
974       return consume(insn, insn->opcode);
975     case VEX_LOB_0F3A:
976       insn->opcodeType = THREEBYTE_3A;
977       return consume(insn, insn->opcode);
978     case VEX_LOB_MAP5:
979       insn->opcodeType = MAP5;
980       return consume(insn, insn->opcode);
981     case VEX_LOB_MAP6:
982       insn->opcodeType = MAP6;
983       return consume(insn, insn->opcode);
984     case VEX_LOB_MAP7:
985       insn->opcodeType = MAP7;
986       return consume(insn, insn->opcode);
987     }
988   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
989     insn->opcodeType = TWOBYTE;
990     return consume(insn, insn->opcode);
991   } else if (insn->vectorExtensionType == TYPE_XOP) {
992     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
993     default:
994       LLVM_DEBUG(
995           dbgs() << format("Unhandled m-mmmm field for instruction (0x%hhx)",
996                            mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])));
997       return true;
998     case XOP_MAP_SELECT_8:
999       insn->opcodeType = XOP8_MAP;
1000       return consume(insn, insn->opcode);
1001     case XOP_MAP_SELECT_9:
1002       insn->opcodeType = XOP9_MAP;
1003       return consume(insn, insn->opcode);
1004     case XOP_MAP_SELECT_A:
1005       insn->opcodeType = XOPA_MAP;
1006       return consume(insn, insn->opcode);
1007     }
1008   } else if (mFromREX2(insn->rex2ExtensionPrefix[1])) {
1009     // m bit indicates opcode map 1
1010     insn->opcodeType = TWOBYTE;
1011     return consume(insn, insn->opcode);
1012   }
1013 
1014   if (consume(insn, current))
1015     return true;
1016 
1017   if (current == 0x0f) {
1018     LLVM_DEBUG(
1019         dbgs() << format("Found a two-byte escape prefix (0x%hhx)", current));
1020     if (consume(insn, current))
1021       return true;
1022 
1023     if (current == 0x38) {
1024       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1025                                   current));
1026       if (consume(insn, current))
1027         return true;
1028 
1029       insn->opcodeType = THREEBYTE_38;
1030     } else if (current == 0x3a) {
1031       LLVM_DEBUG(dbgs() << format("Found a three-byte escape prefix (0x%hhx)",
1032                                   current));
1033       if (consume(insn, current))
1034         return true;
1035 
1036       insn->opcodeType = THREEBYTE_3A;
1037     } else if (current == 0x0f) {
1038       LLVM_DEBUG(
1039           dbgs() << format("Found a 3dnow escape prefix (0x%hhx)", current));
1040 
1041       // Consume operands before the opcode to comply with the 3DNow encoding
1042       if (readModRM(insn))
1043         return true;
1044 
1045       if (consume(insn, current))
1046         return true;
1047 
1048       insn->opcodeType = THREEDNOW_MAP;
1049     } else {
1050       LLVM_DEBUG(dbgs() << "Didn't find a three-byte escape prefix");
1051       insn->opcodeType = TWOBYTE;
1052     }
1053   } else if (insn->mandatoryPrefix)
1054     // The opcode with mandatory prefix must start with opcode escape.
1055     // If not it's legacy repeat prefix
1056     insn->mandatoryPrefix = 0;
1057 
1058   // At this point we have consumed the full opcode.
1059   // Anything we consume from here on must be unconsumed.
1060   insn->opcode = current;
1061 
1062   return false;
1063 }
1064 
1065 // Determine whether equiv is the 16-bit equivalent of orig (32-bit or 64-bit).
1066 static bool is16BitEquivalent(const char *orig, const char *equiv) {
1067   for (int i = 0;; i++) {
1068     if (orig[i] == '\0' && equiv[i] == '\0')
1069       return true;
1070     if (orig[i] == '\0' || equiv[i] == '\0')
1071       return false;
1072     if (orig[i] != equiv[i]) {
1073       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
1074         continue;
1075       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
1076         continue;
1077       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
1078         continue;
1079       return false;
1080     }
1081   }
1082 }
1083 
1084 // Determine whether this instruction is a 64-bit instruction.
1085 static bool is64Bit(const char *name) {
1086   for (int i = 0;; ++i) {
1087     if (name[i] == '\0')
1088       return false;
1089     if (name[i] == '6' && name[i + 1] == '4')
1090       return true;
1091   }
1092 }
1093 
1094 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1095 // for extended and escape opcodes, and using a supplied attribute mask.
1096 static int getInstructionIDWithAttrMask(uint16_t *instructionID,
1097                                         struct InternalInstruction *insn,
1098                                         uint16_t attrMask) {
1099   auto insnCtx = InstructionContext(x86DisassemblerContexts[attrMask]);
1100   const ContextDecision *decision;
1101   switch (insn->opcodeType) {
1102   case ONEBYTE:
1103     decision = &ONEBYTE_SYM;
1104     break;
1105   case TWOBYTE:
1106     decision = &TWOBYTE_SYM;
1107     break;
1108   case THREEBYTE_38:
1109     decision = &THREEBYTE38_SYM;
1110     break;
1111   case THREEBYTE_3A:
1112     decision = &THREEBYTE3A_SYM;
1113     break;
1114   case XOP8_MAP:
1115     decision = &XOP8_MAP_SYM;
1116     break;
1117   case XOP9_MAP:
1118     decision = &XOP9_MAP_SYM;
1119     break;
1120   case XOPA_MAP:
1121     decision = &XOPA_MAP_SYM;
1122     break;
1123   case THREEDNOW_MAP:
1124     decision = &THREEDNOW_MAP_SYM;
1125     break;
1126   case MAP4:
1127     decision = &MAP4_SYM;
1128     break;
1129   case MAP5:
1130     decision = &MAP5_SYM;
1131     break;
1132   case MAP6:
1133     decision = &MAP6_SYM;
1134     break;
1135   case MAP7:
1136     decision = &MAP7_SYM;
1137     break;
1138   }
1139 
1140   if (decision->opcodeDecisions[insnCtx]
1141           .modRMDecisions[insn->opcode]
1142           .modrm_type != MODRM_ONEENTRY) {
1143     if (readModRM(insn))
1144       return -1;
1145     *instructionID =
1146         decode(insn->opcodeType, insnCtx, insn->opcode, insn->modRM);
1147   } else {
1148     *instructionID = decode(insn->opcodeType, insnCtx, insn->opcode, 0);
1149   }
1150 
1151   return 0;
1152 }
1153 
1154 static bool isCCMPOrCTEST(InternalInstruction *insn) {
1155   if (insn->opcodeType != MAP4)
1156     return false;
1157   if (insn->opcode == 0x83 && regFromModRM(insn->modRM) == 7)
1158     return true;
1159   switch (insn->opcode & 0xfe) {
1160   default:
1161     return false;
1162   case 0x38:
1163   case 0x3a:
1164   case 0x84:
1165     return true;
1166   case 0x80:
1167     return regFromModRM(insn->modRM) == 7;
1168   case 0xf6:
1169     return regFromModRM(insn->modRM) == 0;
1170   }
1171 }
1172 
1173 static bool isNF(InternalInstruction *insn) {
1174   if (!nfFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1175     return false;
1176   if (insn->opcodeType == MAP4)
1177     return true;
1178   // Below NF instructions are not in map4.
1179   if (insn->opcodeType == THREEBYTE_38 &&
1180       ppFromEVEX3of4(insn->vectorExtensionPrefix[2]) == VEX_PREFIX_NONE) {
1181     switch (insn->opcode) {
1182     case 0xf2: // ANDN
1183     case 0xf3: // BLSI, BLSR, BLSMSK
1184     case 0xf5: // BZHI
1185     case 0xf7: // BEXTR
1186       return true;
1187     default:
1188       break;
1189     }
1190   }
1191   return false;
1192 }
1193 
1194 // Determine the ID of an instruction, consuming the ModR/M byte as appropriate
1195 // for extended and escape opcodes. Determines the attributes and context for
1196 // the instruction before doing so.
1197 static int getInstructionID(struct InternalInstruction *insn,
1198                             const MCInstrInfo *mii) {
1199   uint16_t attrMask;
1200   uint16_t instructionID;
1201 
1202   LLVM_DEBUG(dbgs() << "getID()");
1203 
1204   attrMask = ATTR_NONE;
1205 
1206   if (insn->mode == MODE_64BIT)
1207     attrMask |= ATTR_64BIT;
1208 
1209   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1210     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
1211 
1212     if (insn->vectorExtensionType == TYPE_EVEX) {
1213       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
1214       case VEX_PREFIX_66:
1215         attrMask |= ATTR_OPSIZE;
1216         break;
1217       case VEX_PREFIX_F3:
1218         attrMask |= ATTR_XS;
1219         break;
1220       case VEX_PREFIX_F2:
1221         attrMask |= ATTR_XD;
1222         break;
1223       }
1224 
1225       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1226         attrMask |= ATTR_EVEXKZ;
1227       if (isNF(insn) && !readModRM(insn) &&
1228           !isCCMPOrCTEST(insn)) // NF bit is the MSB of aaa.
1229         attrMask |= ATTR_EVEXNF;
1230       // aaa is not used a opmask in MAP4
1231       else if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]) &&
1232                (insn->opcodeType != MAP4))
1233         attrMask |= ATTR_EVEXK;
1234       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) {
1235         attrMask |= ATTR_EVEXB;
1236         if (uFromEVEX3of4(insn->vectorExtensionPrefix[2]) && !readModRM(insn) &&
1237             modFromModRM(insn->modRM) == 3)
1238           attrMask |= ATTR_EVEXU;
1239       }
1240       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
1241         attrMask |= ATTR_VEXL;
1242       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1243         attrMask |= ATTR_EVEXL2;
1244     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
1245       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
1246       case VEX_PREFIX_66:
1247         attrMask |= ATTR_OPSIZE;
1248         break;
1249       case VEX_PREFIX_F3:
1250         attrMask |= ATTR_XS;
1251         break;
1252       case VEX_PREFIX_F2:
1253         attrMask |= ATTR_XD;
1254         break;
1255       }
1256 
1257       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
1258         attrMask |= ATTR_VEXL;
1259     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
1260       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
1261       case VEX_PREFIX_66:
1262         attrMask |= ATTR_OPSIZE;
1263         if (insn->hasAdSize)
1264           attrMask |= ATTR_ADSIZE;
1265         break;
1266       case VEX_PREFIX_F3:
1267         attrMask |= ATTR_XS;
1268         break;
1269       case VEX_PREFIX_F2:
1270         attrMask |= ATTR_XD;
1271         break;
1272       }
1273 
1274       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
1275         attrMask |= ATTR_VEXL;
1276     } else if (insn->vectorExtensionType == TYPE_XOP) {
1277       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
1278       case VEX_PREFIX_66:
1279         attrMask |= ATTR_OPSIZE;
1280         break;
1281       case VEX_PREFIX_F3:
1282         attrMask |= ATTR_XS;
1283         break;
1284       case VEX_PREFIX_F2:
1285         attrMask |= ATTR_XD;
1286         break;
1287       }
1288 
1289       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
1290         attrMask |= ATTR_VEXL;
1291     } else {
1292       return -1;
1293     }
1294   } else if (!insn->mandatoryPrefix) {
1295     // If we don't have mandatory prefix we should use legacy prefixes here
1296     if (insn->hasOpSize && (insn->mode != MODE_16BIT))
1297       attrMask |= ATTR_OPSIZE;
1298     if (insn->hasAdSize)
1299       attrMask |= ATTR_ADSIZE;
1300     if (insn->opcodeType == ONEBYTE) {
1301       if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90))
1302         // Special support for PAUSE
1303         attrMask |= ATTR_XS;
1304     } else {
1305       if (insn->repeatPrefix == 0xf2)
1306         attrMask |= ATTR_XD;
1307       else if (insn->repeatPrefix == 0xf3)
1308         attrMask |= ATTR_XS;
1309     }
1310   } else {
1311     switch (insn->mandatoryPrefix) {
1312     case 0xf2:
1313       attrMask |= ATTR_XD;
1314       break;
1315     case 0xf3:
1316       attrMask |= ATTR_XS;
1317       break;
1318     case 0x66:
1319       if (insn->mode != MODE_16BIT)
1320         attrMask |= ATTR_OPSIZE;
1321       if (insn->hasAdSize)
1322         attrMask |= ATTR_ADSIZE;
1323       break;
1324     case 0x67:
1325       attrMask |= ATTR_ADSIZE;
1326       break;
1327     }
1328   }
1329 
1330   if (insn->rexPrefix & 0x08) {
1331     attrMask |= ATTR_REXW;
1332     attrMask &= ~ATTR_ADSIZE;
1333   }
1334 
1335   // Absolute jump and pushp/popp need special handling
1336   if (insn->rex2ExtensionPrefix[0] == 0xd5 && insn->opcodeType == ONEBYTE &&
1337       (insn->opcode == 0xA1 || (insn->opcode & 0xf0) == 0x50))
1338     attrMask |= ATTR_REX2;
1339 
1340   if (insn->mode == MODE_16BIT) {
1341     // JCXZ/JECXZ need special handling for 16-bit mode because the meaning
1342     // of the AdSize prefix is inverted w.r.t. 32-bit mode.
1343     if (insn->opcodeType == ONEBYTE && insn->opcode == 0xE3)
1344       attrMask ^= ATTR_ADSIZE;
1345     // If we're in 16-bit mode and this is one of the relative jumps and opsize
1346     // prefix isn't present, we need to force the opsize attribute since the
1347     // prefix is inverted relative to 32-bit mode.
1348     if (!insn->hasOpSize && insn->opcodeType == ONEBYTE &&
1349         (insn->opcode == 0xE8 || insn->opcode == 0xE9))
1350       attrMask |= ATTR_OPSIZE;
1351 
1352     if (!insn->hasOpSize && insn->opcodeType == TWOBYTE &&
1353         insn->opcode >= 0x80 && insn->opcode <= 0x8F)
1354       attrMask |= ATTR_OPSIZE;
1355   }
1356 
1357 
1358   if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1359     return -1;
1360 
1361   // The following clauses compensate for limitations of the tables.
1362 
1363   if (insn->mode != MODE_64BIT &&
1364       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1365     // The tables can't distinquish between cases where the W-bit is used to
1366     // select register size and cases where its a required part of the opcode.
1367     if ((insn->vectorExtensionType == TYPE_EVEX &&
1368          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1369         (insn->vectorExtensionType == TYPE_VEX_3B &&
1370          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1371         (insn->vectorExtensionType == TYPE_XOP &&
1372          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1373 
1374       uint16_t instructionIDWithREXW;
1375       if (getInstructionIDWithAttrMask(&instructionIDWithREXW, insn,
1376                                        attrMask | ATTR_REXW)) {
1377         insn->instructionID = instructionID;
1378         insn->spec = &INSTRUCTIONS_SYM[instructionID];
1379         return 0;
1380       }
1381 
1382       auto SpecName = mii->getName(instructionIDWithREXW);
1383       // If not a 64-bit instruction. Switch the opcode.
1384       if (!is64Bit(SpecName.data())) {
1385         insn->instructionID = instructionIDWithREXW;
1386         insn->spec = &INSTRUCTIONS_SYM[instructionIDWithREXW];
1387         return 0;
1388       }
1389     }
1390   }
1391 
1392   // Absolute moves, umonitor, and movdir64b need special handling.
1393   // -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1394   //  inverted w.r.t.
1395   // -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1396   //  any position.
1397   if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) ||
1398       (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) ||
1399       (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8) ||
1400       (insn->opcodeType == MAP4 && insn->opcode == 0xF8)) {
1401     // Make sure we observed the prefixes in any position.
1402     if (insn->hasAdSize)
1403       attrMask |= ATTR_ADSIZE;
1404     if (insn->hasOpSize)
1405       attrMask |= ATTR_OPSIZE;
1406 
1407     // In 16-bit, invert the attributes.
1408     if (insn->mode == MODE_16BIT) {
1409       attrMask ^= ATTR_ADSIZE;
1410 
1411       // The OpSize attribute is only valid with the absolute moves.
1412       if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0))
1413         attrMask ^= ATTR_OPSIZE;
1414     }
1415 
1416     if (getInstructionIDWithAttrMask(&instructionID, insn, attrMask))
1417       return -1;
1418 
1419     insn->instructionID = instructionID;
1420     insn->spec = &INSTRUCTIONS_SYM[instructionID];
1421     return 0;
1422   }
1423 
1424   if ((insn->mode == MODE_16BIT || insn->hasOpSize) &&
1425       !(attrMask & ATTR_OPSIZE)) {
1426     // The instruction tables make no distinction between instructions that
1427     // allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1428     // particular spot (i.e., many MMX operations). In general we're
1429     // conservative, but in the specific case where OpSize is present but not in
1430     // the right place we check if there's a 16-bit operation.
1431     const struct InstructionSpecifier *spec;
1432     uint16_t instructionIDWithOpsize;
1433     llvm::StringRef specName, specWithOpSizeName;
1434 
1435     spec = &INSTRUCTIONS_SYM[instructionID];
1436 
1437     if (getInstructionIDWithAttrMask(&instructionIDWithOpsize, insn,
1438                                      attrMask | ATTR_OPSIZE)) {
1439       // ModRM required with OpSize but not present. Give up and return the
1440       // version without OpSize set.
1441       insn->instructionID = instructionID;
1442       insn->spec = spec;
1443       return 0;
1444     }
1445 
1446     specName = mii->getName(instructionID);
1447     specWithOpSizeName = mii->getName(instructionIDWithOpsize);
1448 
1449     if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) &&
1450         (insn->mode == MODE_16BIT) ^ insn->hasOpSize) {
1451       insn->instructionID = instructionIDWithOpsize;
1452       insn->spec = &INSTRUCTIONS_SYM[instructionIDWithOpsize];
1453     } else {
1454       insn->instructionID = instructionID;
1455       insn->spec = spec;
1456     }
1457     return 0;
1458   }
1459 
1460   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1461       insn->rexPrefix & 0x01) {
1462     // NOOP shouldn't decode as NOOP if REX.b is set. Instead it should decode
1463     // as XCHG %r8, %eax.
1464     const struct InstructionSpecifier *spec;
1465     uint16_t instructionIDWithNewOpcode;
1466     const struct InstructionSpecifier *specWithNewOpcode;
1467 
1468     spec = &INSTRUCTIONS_SYM[instructionID];
1469 
1470     // Borrow opcode from one of the other XCHGar opcodes
1471     insn->opcode = 0x91;
1472 
1473     if (getInstructionIDWithAttrMask(&instructionIDWithNewOpcode, insn,
1474                                      attrMask)) {
1475       insn->opcode = 0x90;
1476 
1477       insn->instructionID = instructionID;
1478       insn->spec = spec;
1479       return 0;
1480     }
1481 
1482     specWithNewOpcode = &INSTRUCTIONS_SYM[instructionIDWithNewOpcode];
1483 
1484     // Change back
1485     insn->opcode = 0x90;
1486 
1487     insn->instructionID = instructionIDWithNewOpcode;
1488     insn->spec = specWithNewOpcode;
1489 
1490     return 0;
1491   }
1492 
1493   insn->instructionID = instructionID;
1494   insn->spec = &INSTRUCTIONS_SYM[insn->instructionID];
1495 
1496   return 0;
1497 }
1498 
1499 // Read an operand from the opcode field of an instruction and interprets it
1500 // appropriately given the operand width. Handles AddRegFrm instructions.
1501 //
1502 // @param insn  - the instruction whose opcode field is to be read.
1503 // @param size  - The width (in bytes) of the register being specified.
1504 //                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1505 //                RAX.
1506 // @return      - 0 on success; nonzero otherwise.
1507 static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size) {
1508   LLVM_DEBUG(dbgs() << "readOpcodeRegister()");
1509 
1510   if (size == 0)
1511     size = insn->registerSize;
1512 
1513   auto setOpcodeRegister = [&](unsigned base) {
1514     insn->opcodeRegister =
1515         (Reg)(base + ((bFromREX(insn->rexPrefix) << 3) |
1516                       (b2FromREX2(insn->rex2ExtensionPrefix[1]) << 4) |
1517                       (insn->opcode & 7)));
1518   };
1519 
1520   switch (size) {
1521   case 1:
1522     setOpcodeRegister(MODRM_REG_AL);
1523     if (insn->rexPrefix && insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1524         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1525       insn->opcodeRegister =
1526           (Reg)(MODRM_REG_SPL + (insn->opcodeRegister - MODRM_REG_AL - 4));
1527     }
1528 
1529     break;
1530   case 2:
1531     setOpcodeRegister(MODRM_REG_AX);
1532     break;
1533   case 4:
1534     setOpcodeRegister(MODRM_REG_EAX);
1535     break;
1536   case 8:
1537     setOpcodeRegister(MODRM_REG_RAX);
1538     break;
1539   }
1540 
1541   return 0;
1542 }
1543 
1544 // Consume an immediate operand from an instruction, given the desired operand
1545 // size.
1546 //
1547 // @param insn  - The instruction whose operand is to be read.
1548 // @param size  - The width (in bytes) of the operand.
1549 // @return      - 0 if the immediate was successfully consumed; nonzero
1550 //                otherwise.
1551 static int readImmediate(struct InternalInstruction *insn, uint8_t size) {
1552   uint8_t imm8;
1553   uint16_t imm16;
1554   uint32_t imm32;
1555   uint64_t imm64;
1556 
1557   LLVM_DEBUG(dbgs() << "readImmediate()");
1558 
1559   assert(insn->numImmediatesConsumed < 2 && "Already consumed two immediates");
1560 
1561   insn->immediateSize = size;
1562   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1563 
1564   switch (size) {
1565   case 1:
1566     if (consume(insn, imm8))
1567       return -1;
1568     insn->immediates[insn->numImmediatesConsumed] = imm8;
1569     break;
1570   case 2:
1571     if (consume(insn, imm16))
1572       return -1;
1573     insn->immediates[insn->numImmediatesConsumed] = imm16;
1574     break;
1575   case 4:
1576     if (consume(insn, imm32))
1577       return -1;
1578     insn->immediates[insn->numImmediatesConsumed] = imm32;
1579     break;
1580   case 8:
1581     if (consume(insn, imm64))
1582       return -1;
1583     insn->immediates[insn->numImmediatesConsumed] = imm64;
1584     break;
1585   default:
1586     llvm_unreachable("invalid size");
1587   }
1588 
1589   insn->numImmediatesConsumed++;
1590 
1591   return 0;
1592 }
1593 
1594 // Consume vvvv from an instruction if it has a VEX prefix.
1595 static int readVVVV(struct InternalInstruction *insn) {
1596   LLVM_DEBUG(dbgs() << "readVVVV()");
1597 
1598   int vvvv;
1599   if (insn->vectorExtensionType == TYPE_EVEX)
1600     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1601             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1602   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1603     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1604   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1605     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1606   else if (insn->vectorExtensionType == TYPE_XOP)
1607     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1608   else
1609     return -1;
1610 
1611   if (insn->mode != MODE_64BIT)
1612     vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later.
1613 
1614   insn->vvvv = static_cast<Reg>(vvvv);
1615   return 0;
1616 }
1617 
1618 // Read an mask register from the opcode field of an instruction.
1619 //
1620 // @param insn    - The instruction whose opcode field is to be read.
1621 // @return        - 0 on success; nonzero otherwise.
1622 static int readMaskRegister(struct InternalInstruction *insn) {
1623   LLVM_DEBUG(dbgs() << "readMaskRegister()");
1624 
1625   if (insn->vectorExtensionType != TYPE_EVEX)
1626     return -1;
1627 
1628   insn->writemask =
1629       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1630   return 0;
1631 }
1632 
1633 // Consults the specifier for an instruction and consumes all
1634 // operands for that instruction, interpreting them as it goes.
1635 static int readOperands(struct InternalInstruction *insn) {
1636   int hasVVVV, needVVVV;
1637   int sawRegImm = 0;
1638 
1639   LLVM_DEBUG(dbgs() << "readOperands()");
1640 
1641   // If non-zero vvvv specified, make sure one of the operands uses it.
1642   hasVVVV = !readVVVV(insn);
1643   needVVVV = hasVVVV && (insn->vvvv != 0);
1644 
1645   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1646     switch (Op.encoding) {
1647     case ENCODING_NONE:
1648     case ENCODING_SI:
1649     case ENCODING_DI:
1650       break;
1651     CASE_ENCODING_VSIB:
1652       // VSIB can use the V2 bit so check only the other bits.
1653       if (needVVVV)
1654         needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0);
1655       if (readModRM(insn))
1656         return -1;
1657 
1658       // Reject if SIB wasn't used.
1659       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1660         return -1;
1661 
1662       // If sibIndex was set to SIB_INDEX_NONE, index offset is 4.
1663       if (insn->sibIndex == SIB_INDEX_NONE)
1664         insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4);
1665 
1666       // If EVEX.v2 is set this is one of the 16-31 registers.
1667       if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT &&
1668           v2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
1669         insn->sibIndex = (SIBIndex)(insn->sibIndex + 16);
1670 
1671       // Adjust the index register to the correct size.
1672       switch ((OperandType)Op.type) {
1673       default:
1674         debug("Unhandled VSIB index type");
1675         return -1;
1676       case TYPE_MVSIBX:
1677         insn->sibIndex =
1678             (SIBIndex)(SIB_INDEX_XMM0 + (insn->sibIndex - insn->sibIndexBase));
1679         break;
1680       case TYPE_MVSIBY:
1681         insn->sibIndex =
1682             (SIBIndex)(SIB_INDEX_YMM0 + (insn->sibIndex - insn->sibIndexBase));
1683         break;
1684       case TYPE_MVSIBZ:
1685         insn->sibIndex =
1686             (SIBIndex)(SIB_INDEX_ZMM0 + (insn->sibIndex - insn->sibIndexBase));
1687         break;
1688       }
1689 
1690       // Apply the AVX512 compressed displacement scaling factor.
1691       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1692         insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB);
1693       break;
1694     case ENCODING_SIB:
1695       // Reject if SIB wasn't used.
1696       if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64)
1697         return -1;
1698       if (readModRM(insn))
1699         return -1;
1700       if (fixupReg(insn, &Op))
1701         return -1;
1702       break;
1703     case ENCODING_REG:
1704     CASE_ENCODING_RM:
1705       if (readModRM(insn))
1706         return -1;
1707       if (fixupReg(insn, &Op))
1708         return -1;
1709       // Apply the AVX512 compressed displacement scaling factor.
1710       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1711         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1712       break;
1713     case ENCODING_IB:
1714       if (sawRegImm) {
1715         // Saw a register immediate so don't read again and instead split the
1716         // previous immediate. FIXME: This is a hack.
1717         insn->immediates[insn->numImmediatesConsumed] =
1718             insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1719         ++insn->numImmediatesConsumed;
1720         break;
1721       }
1722       if (readImmediate(insn, 1))
1723         return -1;
1724       if (Op.type == TYPE_XMM || Op.type == TYPE_YMM)
1725         sawRegImm = 1;
1726       break;
1727     case ENCODING_IW:
1728       if (readImmediate(insn, 2))
1729         return -1;
1730       break;
1731     case ENCODING_ID:
1732       if (readImmediate(insn, 4))
1733         return -1;
1734       break;
1735     case ENCODING_IO:
1736       if (readImmediate(insn, 8))
1737         return -1;
1738       break;
1739     case ENCODING_Iv:
1740       if (readImmediate(insn, insn->immediateSize))
1741         return -1;
1742       break;
1743     case ENCODING_Ia:
1744       if (readImmediate(insn, insn->addressSize))
1745         return -1;
1746       break;
1747     case ENCODING_IRC:
1748       insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) |
1749                  lFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1750       break;
1751     case ENCODING_RB:
1752       if (readOpcodeRegister(insn, 1))
1753         return -1;
1754       break;
1755     case ENCODING_RW:
1756       if (readOpcodeRegister(insn, 2))
1757         return -1;
1758       break;
1759     case ENCODING_RD:
1760       if (readOpcodeRegister(insn, 4))
1761         return -1;
1762       break;
1763     case ENCODING_RO:
1764       if (readOpcodeRegister(insn, 8))
1765         return -1;
1766       break;
1767     case ENCODING_Rv:
1768       if (readOpcodeRegister(insn, 0))
1769         return -1;
1770       break;
1771     case ENCODING_CF:
1772       insn->immediates[1] = oszcFromEVEX3of4(insn->vectorExtensionPrefix[2]);
1773       needVVVV = false; // oszc shares the same bits with VVVV
1774       break;
1775     case ENCODING_CC:
1776       if (isCCMPOrCTEST(insn))
1777         insn->immediates[2] = scFromEVEX4of4(insn->vectorExtensionPrefix[3]);
1778       else
1779         insn->immediates[1] = insn->opcode & 0xf;
1780       break;
1781     case ENCODING_FP:
1782       break;
1783     case ENCODING_VVVV:
1784       needVVVV = 0; // Mark that we have found a VVVV operand.
1785       if (!hasVVVV)
1786         return -1;
1787       if (insn->mode != MODE_64BIT)
1788         insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7);
1789       if (fixupReg(insn, &Op))
1790         return -1;
1791       break;
1792     case ENCODING_WRITEMASK:
1793       if (readMaskRegister(insn))
1794         return -1;
1795       break;
1796     case ENCODING_DUP:
1797       break;
1798     default:
1799       LLVM_DEBUG(dbgs() << "Encountered an operand with an unknown encoding.");
1800       return -1;
1801     }
1802   }
1803 
1804   // If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail
1805   if (needVVVV)
1806     return -1;
1807 
1808   return 0;
1809 }
1810 
1811 namespace llvm {
1812 
1813 // Fill-ins to make the compiler happy. These constants are never actually
1814 // assigned; they are just filler to make an automatically-generated switch
1815 // statement work.
1816 namespace X86 {
1817   enum {
1818     BX_SI = 500,
1819     BX_DI = 501,
1820     BP_SI = 502,
1821     BP_DI = 503,
1822     sib   = 504,
1823     sib64 = 505
1824   };
1825 } // namespace X86
1826 
1827 } // namespace llvm
1828 
1829 static bool translateInstruction(MCInst &target,
1830                                 InternalInstruction &source,
1831                                 const MCDisassembler *Dis);
1832 
1833 namespace {
1834 
1835 /// Generic disassembler for all X86 platforms. All each platform class should
1836 /// have to do is subclass the constructor, and provide a different
1837 /// disassemblerMode value.
1838 class X86GenericDisassembler : public MCDisassembler {
1839   std::unique_ptr<const MCInstrInfo> MII;
1840 public:
1841   X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
1842                          std::unique_ptr<const MCInstrInfo> MII);
1843 public:
1844   DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
1845                               ArrayRef<uint8_t> Bytes, uint64_t Address,
1846                               raw_ostream &cStream) const override;
1847 
1848 private:
1849   DisassemblerMode              fMode;
1850 };
1851 
1852 } // namespace
1853 
1854 X86GenericDisassembler::X86GenericDisassembler(
1855                                          const MCSubtargetInfo &STI,
1856                                          MCContext &Ctx,
1857                                          std::unique_ptr<const MCInstrInfo> MII)
1858   : MCDisassembler(STI, Ctx), MII(std::move(MII)) {
1859   const FeatureBitset &FB = STI.getFeatureBits();
1860   if (FB[X86::Is16Bit]) {
1861     fMode = MODE_16BIT;
1862     return;
1863   } else if (FB[X86::Is32Bit]) {
1864     fMode = MODE_32BIT;
1865     return;
1866   } else if (FB[X86::Is64Bit]) {
1867     fMode = MODE_64BIT;
1868     return;
1869   }
1870 
1871   llvm_unreachable("Invalid CPU mode");
1872 }
1873 
1874 MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction(
1875     MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address,
1876     raw_ostream &CStream) const {
1877   CommentStream = &CStream;
1878 
1879   InternalInstruction Insn;
1880   memset(&Insn, 0, sizeof(InternalInstruction));
1881   Insn.bytes = Bytes;
1882   Insn.startLocation = Address;
1883   Insn.readerCursor = Address;
1884   Insn.mode = fMode;
1885 
1886   if (Bytes.empty() || readPrefixes(&Insn) || readOpcode(&Insn) ||
1887       getInstructionID(&Insn, MII.get()) || Insn.instructionID == 0 ||
1888       readOperands(&Insn)) {
1889     Size = Insn.readerCursor - Address;
1890     return Fail;
1891   }
1892 
1893   Insn.operands = x86OperandSets[Insn.spec->operands];
1894   Insn.length = Insn.readerCursor - Insn.startLocation;
1895   Size = Insn.length;
1896   if (Size > 15)
1897     LLVM_DEBUG(dbgs() << "Instruction exceeds 15-byte limit");
1898 
1899   bool Ret = translateInstruction(Instr, Insn, this);
1900   if (!Ret) {
1901     unsigned Flags = X86::IP_NO_PREFIX;
1902     if (Insn.hasAdSize)
1903       Flags |= X86::IP_HAS_AD_SIZE;
1904     if (!Insn.mandatoryPrefix) {
1905       if (Insn.hasOpSize)
1906         Flags |= X86::IP_HAS_OP_SIZE;
1907       if (Insn.repeatPrefix == 0xf2)
1908         Flags |= X86::IP_HAS_REPEAT_NE;
1909       else if (Insn.repeatPrefix == 0xf3 &&
1910                // It should not be 'pause' f3 90
1911                Insn.opcode != 0x90)
1912         Flags |= X86::IP_HAS_REPEAT;
1913       if (Insn.hasLockPrefix)
1914         Flags |= X86::IP_HAS_LOCK;
1915     }
1916     Instr.setFlags(Flags);
1917   }
1918   return (!Ret) ? Success : Fail;
1919 }
1920 
1921 //
1922 // Private code that translates from struct InternalInstructions to MCInsts.
1923 //
1924 
1925 /// translateRegister - Translates an internal register to the appropriate LLVM
1926 ///   register, and appends it as an operand to an MCInst.
1927 ///
1928 /// @param mcInst     - The MCInst to append to.
1929 /// @param reg        - The Reg to append.
1930 static void translateRegister(MCInst &mcInst, Reg reg) {
1931 #define ENTRY(x) X86::x,
1932   static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS};
1933 #undef ENTRY
1934 
1935   MCPhysReg llvmRegnum = llvmRegnums[reg];
1936   mcInst.addOperand(MCOperand::createReg(llvmRegnum));
1937 }
1938 
1939 static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = {
1940   0,        // SEG_OVERRIDE_NONE
1941   X86::CS,
1942   X86::SS,
1943   X86::DS,
1944   X86::ES,
1945   X86::FS,
1946   X86::GS
1947 };
1948 
1949 /// translateSrcIndex   - Appends a source index operand to an MCInst.
1950 ///
1951 /// @param mcInst       - The MCInst to append to.
1952 /// @param insn         - The internal instruction.
1953 static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) {
1954   unsigned baseRegNo;
1955 
1956   if (insn.mode == MODE_64BIT)
1957     baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI;
1958   else if (insn.mode == MODE_32BIT)
1959     baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI;
1960   else {
1961     assert(insn.mode == MODE_16BIT);
1962     baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI;
1963   }
1964   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1965   mcInst.addOperand(baseReg);
1966 
1967   MCOperand segmentReg;
1968   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
1969   mcInst.addOperand(segmentReg);
1970   return false;
1971 }
1972 
1973 /// translateDstIndex   - Appends a destination index operand to an MCInst.
1974 ///
1975 /// @param mcInst       - The MCInst to append to.
1976 /// @param insn         - The internal instruction.
1977 
1978 static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) {
1979   unsigned baseRegNo;
1980 
1981   if (insn.mode == MODE_64BIT)
1982     baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI;
1983   else if (insn.mode == MODE_32BIT)
1984     baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI;
1985   else {
1986     assert(insn.mode == MODE_16BIT);
1987     baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI;
1988   }
1989   MCOperand baseReg = MCOperand::createReg(baseRegNo);
1990   mcInst.addOperand(baseReg);
1991   return false;
1992 }
1993 
1994 /// translateImmediate  - Appends an immediate operand to an MCInst.
1995 ///
1996 /// @param mcInst       - The MCInst to append to.
1997 /// @param immediate    - The immediate value to append.
1998 /// @param operand      - The operand, as stored in the descriptor table.
1999 /// @param insn         - The internal instruction.
2000 static void translateImmediate(MCInst &mcInst, uint64_t immediate,
2001                                const OperandSpecifier &operand,
2002                                InternalInstruction &insn,
2003                                const MCDisassembler *Dis) {
2004   // Sign-extend the immediate if necessary.
2005 
2006   OperandType type = (OperandType)operand.type;
2007 
2008   bool isBranch = false;
2009   uint64_t pcrel = 0;
2010   if (type == TYPE_REL) {
2011     isBranch = true;
2012     pcrel = insn.startLocation + insn.length;
2013     switch (operand.encoding) {
2014     default:
2015       break;
2016     case ENCODING_Iv:
2017       switch (insn.displacementSize) {
2018       default:
2019         break;
2020       case 1:
2021         if(immediate & 0x80)
2022           immediate |= ~(0xffull);
2023         break;
2024       case 2:
2025         if(immediate & 0x8000)
2026           immediate |= ~(0xffffull);
2027         break;
2028       case 4:
2029         if(immediate & 0x80000000)
2030           immediate |= ~(0xffffffffull);
2031         break;
2032       case 8:
2033         break;
2034       }
2035       break;
2036     case ENCODING_IB:
2037       if(immediate & 0x80)
2038         immediate |= ~(0xffull);
2039       break;
2040     case ENCODING_IW:
2041       if(immediate & 0x8000)
2042         immediate |= ~(0xffffull);
2043       break;
2044     case ENCODING_ID:
2045       if(immediate & 0x80000000)
2046         immediate |= ~(0xffffffffull);
2047       break;
2048     }
2049   }
2050   // By default sign-extend all X86 immediates based on their encoding.
2051   else if (type == TYPE_IMM) {
2052     switch (operand.encoding) {
2053     default:
2054       break;
2055     case ENCODING_IB:
2056       if(immediate & 0x80)
2057         immediate |= ~(0xffull);
2058       break;
2059     case ENCODING_IW:
2060       if(immediate & 0x8000)
2061         immediate |= ~(0xffffull);
2062       break;
2063     case ENCODING_ID:
2064       if(immediate & 0x80000000)
2065         immediate |= ~(0xffffffffull);
2066       break;
2067     case ENCODING_IO:
2068       break;
2069     }
2070   }
2071 
2072   switch (type) {
2073   case TYPE_XMM:
2074     mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4)));
2075     return;
2076   case TYPE_YMM:
2077     mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4)));
2078     return;
2079   case TYPE_ZMM:
2080     mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4)));
2081     return;
2082   default:
2083     // operand is 64 bits wide.  Do nothing.
2084     break;
2085   }
2086 
2087   if (!Dis->tryAddingSymbolicOperand(
2088           mcInst, immediate + pcrel, insn.startLocation, isBranch,
2089           insn.immediateOffset, insn.immediateSize, insn.length))
2090     mcInst.addOperand(MCOperand::createImm(immediate));
2091 
2092   if (type == TYPE_MOFFS) {
2093     MCOperand segmentReg;
2094     segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2095     mcInst.addOperand(segmentReg);
2096   }
2097 }
2098 
2099 /// translateRMRegister - Translates a register stored in the R/M field of the
2100 ///   ModR/M byte to its LLVM equivalent and appends it to an MCInst.
2101 /// @param mcInst       - The MCInst to append to.
2102 /// @param insn         - The internal instruction to extract the R/M field
2103 ///                       from.
2104 /// @return             - 0 on success; -1 otherwise
2105 static bool translateRMRegister(MCInst &mcInst,
2106                                 InternalInstruction &insn) {
2107   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2108     debug("A R/M register operand may not have a SIB byte");
2109     return true;
2110   }
2111 
2112   switch (insn.eaBase) {
2113   default:
2114     debug("Unexpected EA base register");
2115     return true;
2116   case EA_BASE_NONE:
2117     debug("EA_BASE_NONE for ModR/M base");
2118     return true;
2119 #define ENTRY(x) case EA_BASE_##x:
2120   ALL_EA_BASES
2121 #undef ENTRY
2122     debug("A R/M register operand may not have a base; "
2123           "the operand must be a register.");
2124     return true;
2125 #define ENTRY(x)                                                      \
2126   case EA_REG_##x:                                                    \
2127     mcInst.addOperand(MCOperand::createReg(X86::x)); break;
2128   ALL_REGS
2129 #undef ENTRY
2130   }
2131 
2132   return false;
2133 }
2134 
2135 /// translateRMMemory - Translates a memory operand stored in the Mod and R/M
2136 ///   fields of an internal instruction (and possibly its SIB byte) to a memory
2137 ///   operand in LLVM's format, and appends it to an MCInst.
2138 ///
2139 /// @param mcInst       - The MCInst to append to.
2140 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2141 ///                       from.
2142 /// @param ForceSIB     - The instruction must use SIB.
2143 /// @return             - 0 on success; nonzero otherwise
2144 static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn,
2145                               const MCDisassembler *Dis,
2146                               bool ForceSIB = false) {
2147   // Addresses in an MCInst are represented as five operands:
2148   //   1. basereg       (register)  The R/M base, or (if there is a SIB) the
2149   //                                SIB base
2150   //   2. scaleamount   (immediate) 1, or (if there is a SIB) the specified
2151   //                                scale amount
2152   //   3. indexreg      (register)  x86_registerNONE, or (if there is a SIB)
2153   //                                the index (which is multiplied by the
2154   //                                scale amount)
2155   //   4. displacement  (immediate) 0, or the displacement if there is one
2156   //   5. segmentreg    (register)  x86_registerNONE for now, but could be set
2157   //                                if we have segment overrides
2158 
2159   MCOperand baseReg;
2160   MCOperand scaleAmount;
2161   MCOperand indexReg;
2162   MCOperand displacement;
2163   MCOperand segmentReg;
2164   uint64_t pcrel = 0;
2165 
2166   if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) {
2167     if (insn.sibBase != SIB_BASE_NONE) {
2168       switch (insn.sibBase) {
2169       default:
2170         debug("Unexpected sibBase");
2171         return true;
2172 #define ENTRY(x)                                          \
2173       case SIB_BASE_##x:                                  \
2174         baseReg = MCOperand::createReg(X86::x); break;
2175       ALL_SIB_BASES
2176 #undef ENTRY
2177       }
2178     } else {
2179       baseReg = MCOperand::createReg(X86::NoRegister);
2180     }
2181 
2182     if (insn.sibIndex != SIB_INDEX_NONE) {
2183       switch (insn.sibIndex) {
2184       default:
2185         debug("Unexpected sibIndex");
2186         return true;
2187 #define ENTRY(x)                                          \
2188       case SIB_INDEX_##x:                                 \
2189         indexReg = MCOperand::createReg(X86::x); break;
2190       EA_BASES_32BIT
2191       EA_BASES_64BIT
2192       REGS_XMM
2193       REGS_YMM
2194       REGS_ZMM
2195 #undef ENTRY
2196       }
2197     } else {
2198       // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present,
2199       // but no index is used and modrm alone should have been enough.
2200       // -No base register in 32-bit mode. In 64-bit mode this is used to
2201       //  avoid rip-relative addressing.
2202       // -Any base register used other than ESP/RSP/R12D/R12. Using these as a
2203       //  base always requires a SIB byte.
2204       // -A scale other than 1 is used.
2205       if (!ForceSIB &&
2206           (insn.sibScale != 1 ||
2207            (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) ||
2208            (insn.sibBase != SIB_BASE_NONE &&
2209             insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP &&
2210             insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12))) {
2211         indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ :
2212                                                                 X86::RIZ);
2213       } else
2214         indexReg = MCOperand::createReg(X86::NoRegister);
2215     }
2216 
2217     scaleAmount = MCOperand::createImm(insn.sibScale);
2218   } else {
2219     switch (insn.eaBase) {
2220     case EA_BASE_NONE:
2221       if (insn.eaDisplacement == EA_DISP_NONE) {
2222         debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base");
2223         return true;
2224       }
2225       if (insn.mode == MODE_64BIT){
2226         pcrel = insn.startLocation + insn.length;
2227         Dis->tryAddingPcLoadReferenceComment(insn.displacement + pcrel,
2228                                              insn.startLocation +
2229                                                  insn.displacementOffset);
2230         // Section 2.2.1.6
2231         baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP :
2232                                                                X86::RIP);
2233       }
2234       else
2235         baseReg = MCOperand::createReg(X86::NoRegister);
2236 
2237       indexReg = MCOperand::createReg(X86::NoRegister);
2238       break;
2239     case EA_BASE_BX_SI:
2240       baseReg = MCOperand::createReg(X86::BX);
2241       indexReg = MCOperand::createReg(X86::SI);
2242       break;
2243     case EA_BASE_BX_DI:
2244       baseReg = MCOperand::createReg(X86::BX);
2245       indexReg = MCOperand::createReg(X86::DI);
2246       break;
2247     case EA_BASE_BP_SI:
2248       baseReg = MCOperand::createReg(X86::BP);
2249       indexReg = MCOperand::createReg(X86::SI);
2250       break;
2251     case EA_BASE_BP_DI:
2252       baseReg = MCOperand::createReg(X86::BP);
2253       indexReg = MCOperand::createReg(X86::DI);
2254       break;
2255     default:
2256       indexReg = MCOperand::createReg(X86::NoRegister);
2257       switch (insn.eaBase) {
2258       default:
2259         debug("Unexpected eaBase");
2260         return true;
2261         // Here, we will use the fill-ins defined above.  However,
2262         //   BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and
2263         //   sib and sib64 were handled in the top-level if, so they're only
2264         //   placeholders to keep the compiler happy.
2265 #define ENTRY(x)                                        \
2266       case EA_BASE_##x:                                 \
2267         baseReg = MCOperand::createReg(X86::x); break;
2268       ALL_EA_BASES
2269 #undef ENTRY
2270 #define ENTRY(x) case EA_REG_##x:
2271       ALL_REGS
2272 #undef ENTRY
2273         debug("A R/M memory operand may not be a register; "
2274               "the base field must be a base.");
2275         return true;
2276       }
2277     }
2278 
2279     scaleAmount = MCOperand::createImm(1);
2280   }
2281 
2282   displacement = MCOperand::createImm(insn.displacement);
2283 
2284   segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]);
2285 
2286   mcInst.addOperand(baseReg);
2287   mcInst.addOperand(scaleAmount);
2288   mcInst.addOperand(indexReg);
2289 
2290   const uint8_t dispSize =
2291       (insn.eaDisplacement == EA_DISP_NONE) ? 0 : insn.displacementSize;
2292 
2293   if (!Dis->tryAddingSymbolicOperand(
2294           mcInst, insn.displacement + pcrel, insn.startLocation, false,
2295           insn.displacementOffset, dispSize, insn.length))
2296     mcInst.addOperand(displacement);
2297   mcInst.addOperand(segmentReg);
2298   return false;
2299 }
2300 
2301 /// translateRM - Translates an operand stored in the R/M (and possibly SIB)
2302 ///   byte of an instruction to LLVM form, and appends it to an MCInst.
2303 ///
2304 /// @param mcInst       - The MCInst to append to.
2305 /// @param operand      - The operand, as stored in the descriptor table.
2306 /// @param insn         - The instruction to extract Mod, R/M, and SIB fields
2307 ///                       from.
2308 /// @return             - 0 on success; nonzero otherwise
2309 static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand,
2310                         InternalInstruction &insn, const MCDisassembler *Dis) {
2311   switch (operand.type) {
2312   default:
2313     debug("Unexpected type for a R/M operand");
2314     return true;
2315   case TYPE_R8:
2316   case TYPE_R16:
2317   case TYPE_R32:
2318   case TYPE_R64:
2319   case TYPE_Rv:
2320   case TYPE_MM64:
2321   case TYPE_XMM:
2322   case TYPE_YMM:
2323   case TYPE_ZMM:
2324   case TYPE_TMM:
2325   case TYPE_TMM_PAIR:
2326   case TYPE_VK_PAIR:
2327   case TYPE_VK:
2328   case TYPE_DEBUGREG:
2329   case TYPE_CONTROLREG:
2330   case TYPE_BNDR:
2331     return translateRMRegister(mcInst, insn);
2332   case TYPE_M:
2333   case TYPE_MVSIBX:
2334   case TYPE_MVSIBY:
2335   case TYPE_MVSIBZ:
2336     return translateRMMemory(mcInst, insn, Dis);
2337   case TYPE_MSIB:
2338     return translateRMMemory(mcInst, insn, Dis, true);
2339   }
2340 }
2341 
2342 /// translateFPRegister - Translates a stack position on the FPU stack to its
2343 ///   LLVM form, and appends it to an MCInst.
2344 ///
2345 /// @param mcInst       - The MCInst to append to.
2346 /// @param stackPos     - The stack position to translate.
2347 static void translateFPRegister(MCInst &mcInst,
2348                                 uint8_t stackPos) {
2349   mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos));
2350 }
2351 
2352 /// translateMaskRegister - Translates a 3-bit mask register number to
2353 ///   LLVM form, and appends it to an MCInst.
2354 ///
2355 /// @param mcInst       - The MCInst to append to.
2356 /// @param maskRegNum   - Number of mask register from 0 to 7.
2357 /// @return             - false on success; true otherwise.
2358 static bool translateMaskRegister(MCInst &mcInst,
2359                                 uint8_t maskRegNum) {
2360   if (maskRegNum >= 8) {
2361     debug("Invalid mask register number");
2362     return true;
2363   }
2364 
2365   mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum));
2366   return false;
2367 }
2368 
2369 /// translateOperand - Translates an operand stored in an internal instruction
2370 ///   to LLVM's format and appends it to an MCInst.
2371 ///
2372 /// @param mcInst       - The MCInst to append to.
2373 /// @param operand      - The operand, as stored in the descriptor table.
2374 /// @param insn         - The internal instruction.
2375 /// @return             - false on success; true otherwise.
2376 static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand,
2377                              InternalInstruction &insn,
2378                              const MCDisassembler *Dis) {
2379   switch (operand.encoding) {
2380   default:
2381     debug("Unhandled operand encoding during translation");
2382     return true;
2383   case ENCODING_REG:
2384     translateRegister(mcInst, insn.reg);
2385     return false;
2386   case ENCODING_WRITEMASK:
2387     return translateMaskRegister(mcInst, insn.writemask);
2388   case ENCODING_SIB:
2389   CASE_ENCODING_RM:
2390   CASE_ENCODING_VSIB:
2391     return translateRM(mcInst, operand, insn, Dis);
2392   case ENCODING_IB:
2393   case ENCODING_IW:
2394   case ENCODING_ID:
2395   case ENCODING_IO:
2396   case ENCODING_Iv:
2397   case ENCODING_Ia:
2398     translateImmediate(mcInst,
2399                        insn.immediates[insn.numImmediatesTranslated++],
2400                        operand,
2401                        insn,
2402                        Dis);
2403     return false;
2404   case ENCODING_IRC:
2405     mcInst.addOperand(MCOperand::createImm(insn.RC));
2406     return false;
2407   case ENCODING_SI:
2408     return translateSrcIndex(mcInst, insn);
2409   case ENCODING_DI:
2410     return translateDstIndex(mcInst, insn);
2411   case ENCODING_RB:
2412   case ENCODING_RW:
2413   case ENCODING_RD:
2414   case ENCODING_RO:
2415   case ENCODING_Rv:
2416     translateRegister(mcInst, insn.opcodeRegister);
2417     return false;
2418   case ENCODING_CF:
2419     mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2420     return false;
2421   case ENCODING_CC:
2422     if (isCCMPOrCTEST(&insn))
2423       mcInst.addOperand(MCOperand::createImm(insn.immediates[2]));
2424     else
2425       mcInst.addOperand(MCOperand::createImm(insn.immediates[1]));
2426     return false;
2427   case ENCODING_FP:
2428     translateFPRegister(mcInst, insn.modRM & 7);
2429     return false;
2430   case ENCODING_VVVV:
2431     translateRegister(mcInst, insn.vvvv);
2432     return false;
2433   case ENCODING_DUP:
2434     return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0],
2435                             insn, Dis);
2436   }
2437 }
2438 
2439 /// translateInstruction - Translates an internal instruction and all its
2440 ///   operands to an MCInst.
2441 ///
2442 /// @param mcInst       - The MCInst to populate with the instruction's data.
2443 /// @param insn         - The internal instruction.
2444 /// @return             - false on success; true otherwise.
2445 static bool translateInstruction(MCInst &mcInst,
2446                                 InternalInstruction &insn,
2447                                 const MCDisassembler *Dis) {
2448   if (!insn.spec) {
2449     debug("Instruction has no specification");
2450     return true;
2451   }
2452 
2453   mcInst.clear();
2454   mcInst.setOpcode(insn.instructionID);
2455   // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3
2456   // prefix bytes should be disassembled as xrelease and xacquire then set the
2457   // opcode to those instead of the rep and repne opcodes.
2458   if (insn.xAcquireRelease) {
2459     if(mcInst.getOpcode() == X86::REP_PREFIX)
2460       mcInst.setOpcode(X86::XRELEASE_PREFIX);
2461     else if(mcInst.getOpcode() == X86::REPNE_PREFIX)
2462       mcInst.setOpcode(X86::XACQUIRE_PREFIX);
2463   }
2464 
2465   insn.numImmediatesTranslated = 0;
2466 
2467   for (const auto &Op : insn.operands) {
2468     if (Op.encoding != ENCODING_NONE) {
2469       if (translateOperand(mcInst, Op, insn, Dis)) {
2470         return true;
2471       }
2472     }
2473   }
2474 
2475   return false;
2476 }
2477 
2478 static MCDisassembler *createX86Disassembler(const Target &T,
2479                                              const MCSubtargetInfo &STI,
2480                                              MCContext &Ctx) {
2481   std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo());
2482   return new X86GenericDisassembler(STI, Ctx, std::move(MII));
2483 }
2484 
2485 extern "C" LLVM_C_ABI void LLVMInitializeX86Disassembler() {
2486   // Register the disassembler.
2487   TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(),
2488                                          createX86Disassembler);
2489   TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(),
2490                                          createX86Disassembler);
2491 }
2492