xref: /llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (revision 6292a808b3524d9ba6f4ce55bc5b9e547b088dd8)
1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp function
11 /// calls to use Emscripten's library functions. The pass uses JavaScript's try
12 /// and catch mechanism in case of Emscripten EH/SjLj and Wasm EH intrinsics in
13 /// case of Emscripten SjLJ.
14 ///
15 /// * Emscripten exception handling
16 /// This pass lowers invokes and landingpads into library functions in JS glue
17 /// code. Invokes are lowered into function wrappers called invoke wrappers that
18 /// exist in JS side, which wraps the original function call with JS try-catch.
19 /// If an exception occurred, cxa_throw() function in JS side sets some
20 /// variables (see below) so we can check whether an exception occurred from
21 /// wasm code and handle it appropriately.
22 ///
23 /// * Emscripten setjmp-longjmp handling
24 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
25 /// The idea is that each block with a setjmp is broken up into two parts: the
26 /// part containing setjmp and the part right after the setjmp. The latter part
27 /// is either reached from the setjmp, or later from a longjmp. To handle the
28 /// longjmp, all calls that might longjmp are also called using invoke wrappers
29 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
30 /// we can check / whether a longjmp occurred from wasm code. Each block with a
31 /// function call that might longjmp is also split up after the longjmp call.
32 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
33 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
34 /// We assume setjmp-longjmp handling always run after EH handling, which means
35 /// we don't expect any exception-related instructions when SjLj runs.
36 /// FIXME Currently this scheme does not support indirect call of setjmp,
37 /// because of the limitation of the scheme itself. fastcomp does not support it
38 /// either.
39 ///
40 /// In detail, this pass does following things:
41 ///
42 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
43 ///    __THREW__ and __threwValue are defined in compiler-rt in Emscripten.
44 ///    These variables are used for both exceptions and setjmp/longjmps.
45 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
46 ///    means nothing occurred, 1 means an exception occurred, and other numbers
47 ///    mean a longjmp occurred. In the case of longjmp, __THREW__ variable
48 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
49 ///    __threwValue is 0 for exceptions, and the argument to longjmp in case of
50 ///    longjmp.
51 ///
52 /// * Emscripten exception handling
53 ///
54 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
55 ///    at link time. setThrew exists in Emscripten's compiler-rt:
56 ///
57 ///    void setThrew(uintptr_t threw, int value) {
58 ///      if (__THREW__ == 0) {
59 ///        __THREW__ = threw;
60 ///        __threwValue = value;
61 ///      }
62 ///    }
63 //
64 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
65 ///    In exception handling, getTempRet0 indicates the type of an exception
66 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
67 ///    function.
68 ///
69 /// 3) Lower
70 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
71 ///    into
72 ///      __THREW__ = 0;
73 ///      call @__invoke_SIG(func, arg1, arg2)
74 ///      %__THREW__.val = __THREW__;
75 ///      __THREW__ = 0;
76 ///      if (%__THREW__.val == 1)
77 ///        goto %lpad
78 ///      else
79 ///         goto %invoke.cont
80 ///    SIG is a mangled string generated based on the LLVM IR-level function
81 ///    signature. After LLVM IR types are lowered to the target wasm types,
82 ///    the names for these wrappers will change based on wasm types as well,
83 ///    as in invoke_vi (function takes an int and returns void). The bodies of
84 ///    these wrappers will be generated in JS glue code, and inside those
85 ///    wrappers we use JS try-catch to generate actual exception effects. It
86 ///    also calls the original callee function. An example wrapper in JS code
87 ///    would look like this:
88 ///      function invoke_vi(index,a1) {
89 ///        try {
90 ///          Module["dynCall_vi"](index,a1); // This calls original callee
91 ///        } catch(e) {
92 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
93 ///          _setThrew(1, 0); // setThrew is called here
94 ///        }
95 ///      }
96 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
97 ///    so we can jump to the right BB based on this value.
98 ///
99 /// 4) Lower
100 ///      %val = landingpad catch c1 catch c2 catch c3 ...
101 ///      ... use %val ...
102 ///    into
103 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
104 ///      %val = {%fmc, getTempRet0()}
105 ///      ... use %val ...
106 ///    Here N is a number calculated based on the number of clauses.
107 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
108 ///
109 /// 5) Lower
110 ///      resume {%a, %b}
111 ///    into
112 ///      call @__resumeException(%a)
113 ///    where __resumeException() is a function in JS glue code.
114 ///
115 /// 6) Lower
116 ///      call @llvm.eh.typeid.for(type) (intrinsic)
117 ///    into
118 ///      call @llvm_eh_typeid_for(type)
119 ///    llvm_eh_typeid_for function will be generated in JS glue code.
120 ///
121 /// * Emscripten setjmp / longjmp handling
122 ///
123 /// If there are calls to longjmp()
124 ///
125 /// 1) Lower
126 ///      longjmp(env, val)
127 ///    into
128 ///      emscripten_longjmp(env, val)
129 ///
130 /// If there are calls to setjmp()
131 ///
132 /// 2) In the function entry that calls setjmp, initialize
133 ///    functionInvocationId as follows:
134 ///
135 ///    functionInvocationId = alloca(4)
136 ///
137 ///    Note: the alloca size is not important as this pointer is
138 ///    merely used for pointer comparisions.
139 ///
140 /// 3) Lower
141 ///      setjmp(env)
142 ///    into
143 ///      __wasm_setjmp(env, label, functionInvocationId)
144 ///
145 ///    __wasm_setjmp records the necessary info (the label and
146 ///    functionInvocationId) to the "env".
147 ///    A BB with setjmp is split into two after setjmp call in order to
148 ///    make the post-setjmp BB the possible destination of longjmp BB.
149 ///
150 /// 4) Lower every call that might longjmp into
151 ///      __THREW__ = 0;
152 ///      call @__invoke_SIG(func, arg1, arg2)
153 ///      %__THREW__.val = __THREW__;
154 ///      __THREW__ = 0;
155 ///      %__threwValue.val = __threwValue;
156 ///      if (%__THREW__.val != 0 & %__threwValue.val != 0) {
157 ///        %label = __wasm_setjmp_test(%__THREW__.val, functionInvocationId);
158 ///        if (%label == 0)
159 ///          emscripten_longjmp(%__THREW__.val, %__threwValue.val);
160 ///        setTempRet0(%__threwValue.val);
161 ///      } else {
162 ///        %label = -1;
163 ///      }
164 ///      longjmp_result = getTempRet0();
165 ///      switch %label {
166 ///        label 1: goto post-setjmp BB 1
167 ///        label 2: goto post-setjmp BB 2
168 ///        ...
169 ///        default: goto splitted next BB
170 ///      }
171 ///
172 ///    __wasm_setjmp_test examines the jmp buf to see if it was for a matching
173 ///    setjmp call. After calling an invoke wrapper, if a longjmp occurred,
174 ///    __THREW__ will be the address of matching jmp_buf buffer and
175 ///    __threwValue be the second argument to longjmp.
176 ///    __wasm_setjmp_test returns a setjmp label, a unique ID to each setjmp
177 ///    callsite. Label 0 means this longjmp buffer does not correspond to one
178 ///    of the setjmp callsites in this function, so in this case we just chain
179 ///    the longjmp to the caller. Label -1 means no longjmp occurred.
180 ///    Otherwise we jump to the right post-setjmp BB based on the label.
181 ///
182 /// * Wasm setjmp / longjmp handling
183 /// This mode still uses some Emscripten library functions but not JavaScript's
184 /// try-catch mechanism. It instead uses Wasm exception handling intrinsics,
185 /// which will be lowered to exception handling instructions.
186 ///
187 /// If there are calls to longjmp()
188 ///
189 /// 1) Lower
190 ///      longjmp(env, val)
191 ///    into
192 ///      __wasm_longjmp(env, val)
193 ///
194 /// If there are calls to setjmp()
195 ///
196 /// 2) and 3): The same as 2) and 3) in Emscripten SjLj.
197 /// (functionInvocationId initialization + setjmp callsite transformation)
198 ///
199 /// 4) Create a catchpad with a wasm.catch() intrinsic, which returns the value
200 /// thrown by __wasm_longjmp function. In the runtime library, we have an
201 /// equivalent of the following struct:
202 ///
203 /// struct __WasmLongjmpArgs {
204 ///   void *env;
205 ///   int val;
206 /// };
207 ///
208 /// The thrown value here is a pointer to the struct. We use this struct to
209 /// transfer two values by throwing a single value. Wasm throw and catch
210 /// instructions are capable of throwing and catching multiple values, but
211 /// it also requires multivalue support that is currently not very reliable.
212 /// TODO Switch to throwing and catching two values without using the struct
213 ///
214 /// All longjmpable function calls will be converted to an invoke that will
215 /// unwind to this catchpad in case a longjmp occurs. Within the catchpad, we
216 /// test the thrown values using __wasm_setjmp_test function as we do for
217 /// Emscripten SjLj. The main difference is, in Emscripten SjLj, we need to
218 /// transform every longjmpable callsite into a sequence of code including
219 /// __wasm_setjmp_test() call; in Wasm SjLj we do the testing in only one
220 /// place, in this catchpad.
221 ///
222 /// After testing calling __wasm_setjmp_test(), if the longjmp does not
223 /// correspond to one of the setjmps within the current function, it rethrows
224 /// the longjmp by calling __wasm_longjmp(). If it corresponds to one of
225 /// setjmps in the function, we jump to the beginning of the function, which
226 /// contains a switch to each post-setjmp BB. Again, in Emscripten SjLj, this
227 /// switch is added for every longjmpable callsite; in Wasm SjLj we do this
228 /// only once at the top of the function. (after functionInvocationId
229 /// initialization)
230 ///
231 /// The below is the pseudocode for what we have described
232 ///
233 /// entry:
234 ///   Initialize functionInvocationId
235 ///
236 /// setjmp.dispatch:
237 ///    switch %label {
238 ///      label 1: goto post-setjmp BB 1
239 ///      label 2: goto post-setjmp BB 2
240 ///      ...
241 ///      default: goto splitted next BB
242 ///    }
243 /// ...
244 ///
245 /// bb:
246 ///   invoke void @foo() ;; foo is a longjmpable function
247 ///     to label %next unwind label %catch.dispatch.longjmp
248 /// ...
249 ///
250 /// catch.dispatch.longjmp:
251 ///   %0 = catchswitch within none [label %catch.longjmp] unwind to caller
252 ///
253 /// catch.longjmp:
254 ///   %longjmp.args = wasm.catch() ;; struct __WasmLongjmpArgs
255 ///   %env = load 'env' field from __WasmLongjmpArgs
256 ///   %val = load 'val' field from __WasmLongjmpArgs
257 ///   %label = __wasm_setjmp_test(%env, functionInvocationId);
258 ///   if (%label == 0)
259 ///     __wasm_longjmp(%env, %val)
260 ///   catchret to %setjmp.dispatch
261 ///
262 ///===----------------------------------------------------------------------===//
263 
264 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
265 #include "WebAssembly.h"
266 #include "WebAssemblyTargetMachine.h"
267 #include "llvm/ADT/StringExtras.h"
268 #include "llvm/CodeGen/TargetPassConfig.h"
269 #include "llvm/CodeGen/WasmEHFuncInfo.h"
270 #include "llvm/IR/DebugInfoMetadata.h"
271 #include "llvm/IR/Dominators.h"
272 #include "llvm/IR/IRBuilder.h"
273 #include "llvm/IR/IntrinsicsWebAssembly.h"
274 #include "llvm/IR/Module.h"
275 #include "llvm/Support/CommandLine.h"
276 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
277 #include "llvm/Transforms/Utils/Local.h"
278 #include "llvm/Transforms/Utils/SSAUpdater.h"
279 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
280 #include <set>
281 
282 using namespace llvm;
283 
284 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
285 
286 static cl::list<std::string>
287     EHAllowlist("emscripten-cxx-exceptions-allowed",
288                 cl::desc("The list of function names in which Emscripten-style "
289                          "exception handling is enabled (see emscripten "
290                          "EMSCRIPTEN_CATCHING_ALLOWED options)"),
291                 cl::CommaSeparated);
292 
293 namespace {
294 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
295   bool EnableEmEH;     // Enable Emscripten exception handling
296   bool EnableEmSjLj;   // Enable Emscripten setjmp/longjmp handling
297   bool EnableWasmSjLj; // Enable Wasm setjmp/longjmp handling
298   bool DoSjLj;         // Whether we actually perform setjmp/longjmp handling
299 
300   GlobalVariable *ThrewGV = nullptr;      // __THREW__ (Emscripten)
301   GlobalVariable *ThrewValueGV = nullptr; // __threwValue (Emscripten)
302   Function *GetTempRet0F = nullptr;       // getTempRet0() (Emscripten)
303   Function *SetTempRet0F = nullptr;       // setTempRet0() (Emscripten)
304   Function *ResumeF = nullptr;            // __resumeException() (Emscripten)
305   Function *EHTypeIDF = nullptr;          // llvm.eh.typeid.for() (intrinsic)
306   Function *EmLongjmpF = nullptr;         // emscripten_longjmp() (Emscripten)
307   Function *WasmSetjmpF = nullptr;        // __wasm_setjmp() (Emscripten)
308   Function *WasmSetjmpTestF = nullptr;    // __wasm_setjmp_test() (Emscripten)
309   Function *WasmLongjmpF = nullptr;       // __wasm_longjmp() (Emscripten)
310   Function *CatchF = nullptr;             // wasm.catch() (intrinsic)
311 
312   // type of 'struct __WasmLongjmpArgs' defined in emscripten
313   Type *LongjmpArgsTy = nullptr;
314 
315   // __cxa_find_matching_catch_N functions.
316   // Indexed by the number of clauses in an original landingpad instruction.
317   DenseMap<int, Function *> FindMatchingCatches;
318   // Map of <function signature string, invoke_ wrappers>
319   StringMap<Function *> InvokeWrappers;
320   // Set of allowed function names for exception handling
321   std::set<std::string, std::less<>> EHAllowlistSet;
322   // Functions that contains calls to setjmp
323   SmallPtrSet<Function *, 8> SetjmpUsers;
324 
325   StringRef getPassName() const override {
326     return "WebAssembly Lower Emscripten Exceptions";
327   }
328 
329   using InstVector = SmallVectorImpl<Instruction *>;
330   bool runEHOnFunction(Function &F);
331   bool runSjLjOnFunction(Function &F);
332   void handleLongjmpableCallsForEmscriptenSjLj(
333       Function &F, Instruction *FunctionInvocationId,
334       SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
335   void
336   handleLongjmpableCallsForWasmSjLj(Function &F,
337                                     Instruction *FunctionInvocationId,
338                                     SmallVectorImpl<PHINode *> &SetjmpRetPHIs);
339   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
340 
341   Value *wrapInvoke(CallBase *CI);
342   void wrapTestSetjmp(BasicBlock *BB, DebugLoc DL, Value *Threw,
343                       Value *FunctionInvocationId, Value *&Label,
344                       Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
345                       PHINode *&CallEmLongjmpBBThrewPHI,
346                       PHINode *&CallEmLongjmpBBThrewValuePHI,
347                       BasicBlock *&EndBB);
348   Function *getInvokeWrapper(CallBase *CI);
349 
350   bool areAllExceptionsAllowed() const { return EHAllowlistSet.empty(); }
351   bool supportsException(const Function *F) const {
352     return EnableEmEH &&
353            (areAllExceptionsAllowed() || EHAllowlistSet.count(F->getName()));
354   }
355   void replaceLongjmpWith(Function *LongjmpF, Function *NewF);
356 
357   void rebuildSSA(Function &F);
358 
359 public:
360   static char ID;
361 
362   WebAssemblyLowerEmscriptenEHSjLj()
363       : ModulePass(ID), EnableEmEH(WebAssembly::WasmEnableEmEH),
364         EnableEmSjLj(WebAssembly::WasmEnableEmSjLj),
365         EnableWasmSjLj(WebAssembly::WasmEnableSjLj) {
366     assert(!(EnableEmSjLj && EnableWasmSjLj) &&
367            "Two SjLj modes cannot be turned on at the same time");
368     assert(!(EnableEmEH && EnableWasmSjLj) &&
369            "Wasm SjLj should be only used with Wasm EH");
370     EHAllowlistSet.insert(EHAllowlist.begin(), EHAllowlist.end());
371   }
372   bool runOnModule(Module &M) override;
373 
374   void getAnalysisUsage(AnalysisUsage &AU) const override {
375     AU.addRequired<DominatorTreeWrapperPass>();
376   }
377 };
378 } // End anonymous namespace
379 
380 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
381 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
382                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
383                 false, false)
384 
385 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj() {
386   return new WebAssemblyLowerEmscriptenEHSjLj();
387 }
388 
389 static bool canThrow(const Value *V) {
390   if (const auto *F = dyn_cast<const Function>(V)) {
391     // Intrinsics cannot throw
392     if (F->isIntrinsic())
393       return false;
394     StringRef Name = F->getName();
395     // leave setjmp and longjmp (mostly) alone, we process them properly later
396     if (Name == "setjmp" || Name == "longjmp" || Name == "emscripten_longjmp")
397       return false;
398     return !F->doesNotThrow();
399   }
400   // not a function, so an indirect call - can throw, we can't tell
401   return true;
402 }
403 
404 // Get a thread-local global variable with the given name. If it doesn't exist
405 // declare it, which will generate an import and assume that it will exist at
406 // link time.
407 static GlobalVariable *getGlobalVariable(Module &M, Type *Ty,
408                                          WebAssemblyTargetMachine &TM,
409                                          const char *Name) {
410   auto *GV = dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, Ty));
411   if (!GV)
412     report_fatal_error(Twine("unable to create global: ") + Name);
413 
414   // Variables created by this function are thread local. If the target does not
415   // support TLS, we depend on CoalesceFeaturesAndStripAtomics to downgrade it
416   // to non-thread-local ones, in which case we don't allow this object to be
417   // linked with other objects using shared memory.
418   GV->setThreadLocalMode(GlobalValue::GeneralDynamicTLSModel);
419   return GV;
420 }
421 
422 // Simple function name mangler.
423 // This function simply takes LLVM's string representation of parameter types
424 // and concatenate them with '_'. There are non-alphanumeric characters but llc
425 // is ok with it, and we need to postprocess these names after the lowering
426 // phase anyway.
427 static std::string getSignature(FunctionType *FTy) {
428   std::string Sig;
429   raw_string_ostream OS(Sig);
430   OS << *FTy->getReturnType();
431   for (Type *ParamTy : FTy->params())
432     OS << "_" << *ParamTy;
433   if (FTy->isVarArg())
434     OS << "_...";
435   Sig = OS.str();
436   erase_if(Sig, isSpace);
437   // When s2wasm parses .s file, a comma means the end of an argument. So a
438   // mangled function name can contain any character but a comma.
439   std::replace(Sig.begin(), Sig.end(), ',', '.');
440   return Sig;
441 }
442 
443 static Function *getEmscriptenFunction(FunctionType *Ty, const Twine &Name,
444                                        Module *M) {
445   Function* F = Function::Create(Ty, GlobalValue::ExternalLinkage, Name, M);
446   // Tell the linker that this function is expected to be imported from the
447   // 'env' module.
448   if (!F->hasFnAttribute("wasm-import-module")) {
449     llvm::AttrBuilder B(M->getContext());
450     B.addAttribute("wasm-import-module", "env");
451     F->addFnAttrs(B);
452   }
453   if (!F->hasFnAttribute("wasm-import-name")) {
454     llvm::AttrBuilder B(M->getContext());
455     B.addAttribute("wasm-import-name", F->getName());
456     F->addFnAttrs(B);
457   }
458   return F;
459 }
460 
461 // Returns an integer type for the target architecture's address space.
462 // i32 for wasm32 and i64 for wasm64.
463 static Type *getAddrIntType(Module *M) {
464   IRBuilder<> IRB(M->getContext());
465   return IRB.getIntNTy(M->getDataLayout().getPointerSizeInBits());
466 }
467 
468 // Returns an integer pointer type for the target architecture's address space.
469 // i32* for wasm32 and i64* for wasm64. With opaque pointers this is just a ptr
470 // in address space zero.
471 static Type *getAddrPtrType(Module *M) {
472   return PointerType::getUnqual(M->getContext());
473 }
474 
475 // Returns an integer whose type is the integer type for the target's address
476 // space. Returns (i32 C) for wasm32 and (i64 C) for wasm64, when C is the
477 // integer.
478 static Value *getAddrSizeInt(Module *M, uint64_t C) {
479   IRBuilder<> IRB(M->getContext());
480   return IRB.getIntN(M->getDataLayout().getPointerSizeInBits(), C);
481 }
482 
483 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
484 // This is because a landingpad instruction contains two more arguments, a
485 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
486 // functions are named after the number of arguments in the original landingpad
487 // instruction.
488 Function *
489 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
490                                                        unsigned NumClauses) {
491   if (FindMatchingCatches.count(NumClauses))
492     return FindMatchingCatches[NumClauses];
493   PointerType *Int8PtrTy = PointerType::getUnqual(M.getContext());
494   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
495   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
496   Function *F = getEmscriptenFunction(
497       FTy, "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
498   FindMatchingCatches[NumClauses] = F;
499   return F;
500 }
501 
502 // Generate invoke wrapper seqence with preamble and postamble
503 // Preamble:
504 // __THREW__ = 0;
505 // Postamble:
506 // %__THREW__.val = __THREW__; __THREW__ = 0;
507 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
508 // whether longjmp occurred), for future use.
509 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallBase *CI) {
510   Module *M = CI->getModule();
511   LLVMContext &C = M->getContext();
512 
513   IRBuilder<> IRB(C);
514   IRB.SetInsertPoint(CI);
515 
516   // Pre-invoke
517   // __THREW__ = 0;
518   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
519 
520   // Invoke function wrapper in JavaScript
521   SmallVector<Value *, 16> Args;
522   // Put the pointer to the callee as first argument, so it can be called
523   // within the invoke wrapper later
524   Args.push_back(CI->getCalledOperand());
525   Args.append(CI->arg_begin(), CI->arg_end());
526   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
527   NewCall->takeName(CI);
528   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
529   NewCall->setDebugLoc(CI->getDebugLoc());
530 
531   // Because we added the pointer to the callee as first argument, all
532   // argument attribute indices have to be incremented by one.
533   SmallVector<AttributeSet, 8> ArgAttributes;
534   const AttributeList &InvokeAL = CI->getAttributes();
535 
536   // No attributes for the callee pointer.
537   ArgAttributes.push_back(AttributeSet());
538   // Copy the argument attributes from the original
539   for (unsigned I = 0, E = CI->arg_size(); I < E; ++I)
540     ArgAttributes.push_back(InvokeAL.getParamAttrs(I));
541 
542   AttrBuilder FnAttrs(CI->getContext(), InvokeAL.getFnAttrs());
543   if (auto Args = FnAttrs.getAllocSizeArgs()) {
544     // The allocsize attribute (if any) referes to parameters by index and needs
545     // to be adjusted.
546     auto [SizeArg, NEltArg] = *Args;
547     SizeArg += 1;
548     if (NEltArg)
549       NEltArg = *NEltArg + 1;
550     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
551   }
552   // In case the callee has 'noreturn' attribute, We need to remove it, because
553   // we expect invoke wrappers to return.
554   FnAttrs.removeAttribute(Attribute::NoReturn);
555 
556   // Reconstruct the AttributesList based on the vector we constructed.
557   AttributeList NewCallAL = AttributeList::get(
558       C, AttributeSet::get(C, FnAttrs), InvokeAL.getRetAttrs(), ArgAttributes);
559   NewCall->setAttributes(NewCallAL);
560 
561   CI->replaceAllUsesWith(NewCall);
562 
563   // Post-invoke
564   // %__THREW__.val = __THREW__; __THREW__ = 0;
565   Value *Threw =
566       IRB.CreateLoad(getAddrIntType(M), ThrewGV, ThrewGV->getName() + ".val");
567   IRB.CreateStore(getAddrSizeInt(M, 0), ThrewGV);
568   return Threw;
569 }
570 
571 // Get matching invoke wrapper based on callee signature
572 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallBase *CI) {
573   Module *M = CI->getModule();
574   SmallVector<Type *, 16> ArgTys;
575   FunctionType *CalleeFTy = CI->getFunctionType();
576 
577   std::string Sig = getSignature(CalleeFTy);
578   auto It = InvokeWrappers.find(Sig);
579   if (It != InvokeWrappers.end())
580     return It->second;
581 
582   // Put the pointer to the callee as first argument
583   ArgTys.push_back(PointerType::getUnqual(CI->getContext()));
584   // Add argument types
585   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
586 
587   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
588                                         CalleeFTy->isVarArg());
589   Function *F = getEmscriptenFunction(FTy, "__invoke_" + Sig, M);
590   InvokeWrappers[Sig] = F;
591   return F;
592 }
593 
594 static bool canLongjmp(const Value *Callee) {
595   if (auto *CalleeF = dyn_cast<Function>(Callee))
596     if (CalleeF->isIntrinsic())
597       return false;
598 
599   // Attempting to transform inline assembly will result in something like:
600   //     call void @__invoke_void(void ()* asm ...)
601   // which is invalid because inline assembly blocks do not have addresses
602   // and can't be passed by pointer. The result is a crash with illegal IR.
603   if (isa<InlineAsm>(Callee))
604     return false;
605   StringRef CalleeName = Callee->getName();
606 
607   // TODO Include more functions or consider checking with mangled prefixes
608 
609   // The reason we include malloc/free here is to exclude the malloc/free
610   // calls generated in setjmp prep / cleanup routines.
611   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
612     return false;
613 
614   // There are functions in Emscripten's JS glue code or compiler-rt
615   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
616       CalleeName == "__wasm_setjmp" || CalleeName == "__wasm_setjmp_test" ||
617       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
618     return false;
619 
620   // __cxa_find_matching_catch_N functions cannot longjmp
621   if (Callee->getName().starts_with("__cxa_find_matching_catch_"))
622     return false;
623 
624   // Exception-catching related functions
625   //
626   // We intentionally treat __cxa_end_catch longjmpable in Wasm SjLj even though
627   // it surely cannot longjmp, in order to maintain the unwind relationship from
628   // all existing catchpads (and calls within them) to catch.dispatch.longjmp.
629   //
630   // In Wasm EH + Wasm SjLj, we
631   // 1. Make all catchswitch and cleanuppad that unwind to caller unwind to
632   //    catch.dispatch.longjmp instead
633   // 2. Convert all longjmpable calls to invokes that unwind to
634   //    catch.dispatch.longjmp
635   // But catchswitch BBs are removed in isel, so if an EH catchswitch (generated
636   // from an exception)'s catchpad does not contain any calls that are converted
637   // into invokes unwinding to catch.dispatch.longjmp, this unwind relationship
638   // (EH catchswitch BB -> catch.dispatch.longjmp BB) is lost and
639   // catch.dispatch.longjmp BB can be placed before the EH catchswitch BB in
640   // CFGSort.
641   // int ret = setjmp(buf);
642   // try {
643   //   foo(); // longjmps
644   // } catch (...) {
645   // }
646   // Then in this code, if 'foo' longjmps, it first unwinds to 'catch (...)'
647   // catchswitch, and is not caught by that catchswitch because it is a longjmp,
648   // then it should next unwind to catch.dispatch.longjmp BB. But if this 'catch
649   // (...)' catchswitch -> catch.dispatch.longjmp unwind relationship is lost,
650   // it will not unwind to catch.dispatch.longjmp, producing an incorrect
651   // result.
652   //
653   // Every catchpad generated by Wasm C++ contains __cxa_end_catch, so we
654   // intentionally treat it as longjmpable to work around this problem. This is
655   // a hacky fix but an easy one.
656   //
657   // The comment block in findWasmUnwindDestinations() in
658   // SelectionDAGBuilder.cpp is addressing a similar problem.
659   if (CalleeName == "__cxa_end_catch")
660     return WebAssembly::WasmEnableSjLj;
661   if (CalleeName == "__cxa_begin_catch" ||
662       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
663       CalleeName == "__clang_call_terminate")
664     return false;
665 
666   // std::terminate, which is generated when another exception occurs while
667   // handling an exception, cannot longjmp.
668   if (CalleeName == "_ZSt9terminatev")
669     return false;
670 
671   // Otherwise we don't know
672   return true;
673 }
674 
675 static bool isEmAsmCall(const Value *Callee) {
676   StringRef CalleeName = Callee->getName();
677   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
678   return CalleeName == "emscripten_asm_const_int" ||
679          CalleeName == "emscripten_asm_const_double" ||
680          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
681          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
682          CalleeName == "emscripten_asm_const_async_on_main_thread";
683 }
684 
685 // Generate __wasm_setjmp_test function call seqence with preamble and
686 // postamble. The code this generates is equivalent to the following
687 // JavaScript code:
688 // %__threwValue.val = __threwValue;
689 // if (%__THREW__.val != 0 & %__threwValue.val != 0) {
690 //   %label = __wasm_setjmp_test(%__THREW__.val, functionInvocationId);
691 //   if (%label == 0)
692 //     emscripten_longjmp(%__THREW__.val, %__threwValue.val);
693 //   setTempRet0(%__threwValue.val);
694 // } else {
695 //   %label = -1;
696 // }
697 // %longjmp_result = getTempRet0();
698 //
699 // As output parameters. returns %label, %longjmp_result, and the BB the last
700 // instruction (%longjmp_result = ...) is in.
701 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
702     BasicBlock *BB, DebugLoc DL, Value *Threw, Value *FunctionInvocationId,
703     Value *&Label, Value *&LongjmpResult, BasicBlock *&CallEmLongjmpBB,
704     PHINode *&CallEmLongjmpBBThrewPHI, PHINode *&CallEmLongjmpBBThrewValuePHI,
705     BasicBlock *&EndBB) {
706   Function *F = BB->getParent();
707   Module *M = F->getParent();
708   LLVMContext &C = M->getContext();
709   IRBuilder<> IRB(C);
710   IRB.SetCurrentDebugLocation(DL);
711 
712   // if (%__THREW__.val != 0 & %__threwValue.val != 0)
713   IRB.SetInsertPoint(BB);
714   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
715   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
716   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
717   Value *ThrewCmp = IRB.CreateICmpNE(Threw, getAddrSizeInt(M, 0));
718   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
719                                      ThrewValueGV->getName() + ".val");
720   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
721   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
722   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
723 
724   // Generate call.em.longjmp BB once and share it within the function
725   if (!CallEmLongjmpBB) {
726     // emscripten_longjmp(%__THREW__.val, %__threwValue.val);
727     CallEmLongjmpBB = BasicBlock::Create(C, "call.em.longjmp", F);
728     IRB.SetInsertPoint(CallEmLongjmpBB);
729     CallEmLongjmpBBThrewPHI = IRB.CreatePHI(getAddrIntType(M), 4, "threw.phi");
730     CallEmLongjmpBBThrewValuePHI =
731         IRB.CreatePHI(IRB.getInt32Ty(), 4, "threwvalue.phi");
732     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
733     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
734     IRB.CreateCall(EmLongjmpF,
735                    {CallEmLongjmpBBThrewPHI, CallEmLongjmpBBThrewValuePHI});
736     IRB.CreateUnreachable();
737   } else {
738     CallEmLongjmpBBThrewPHI->addIncoming(Threw, ThenBB1);
739     CallEmLongjmpBBThrewValuePHI->addIncoming(ThrewValue, ThenBB1);
740   }
741 
742   // %label = __wasm_setjmp_test(%__THREW__.val, functionInvocationId);
743   // if (%label == 0)
744   IRB.SetInsertPoint(ThenBB1);
745   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
746   Value *ThrewPtr =
747       IRB.CreateIntToPtr(Threw, getAddrPtrType(M), Threw->getName() + ".p");
748   Value *ThenLabel = IRB.CreateCall(WasmSetjmpTestF,
749                                     {ThrewPtr, FunctionInvocationId}, "label");
750   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
751   IRB.CreateCondBr(Cmp2, CallEmLongjmpBB, EndBB2);
752 
753   // setTempRet0(%__threwValue.val);
754   IRB.SetInsertPoint(EndBB2);
755   IRB.CreateCall(SetTempRet0F, ThrewValue);
756   IRB.CreateBr(EndBB1);
757 
758   IRB.SetInsertPoint(ElseBB1);
759   IRB.CreateBr(EndBB1);
760 
761   // longjmp_result = getTempRet0();
762   IRB.SetInsertPoint(EndBB1);
763   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
764   LabelPHI->addIncoming(ThenLabel, EndBB2);
765 
766   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
767 
768   // Output parameter assignment
769   Label = LabelPHI;
770   EndBB = EndBB1;
771   LongjmpResult = IRB.CreateCall(GetTempRet0F, {}, "longjmp_result");
772 }
773 
774 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
775   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
776   DT.recalculate(F); // CFG has been changed
777 
778   SSAUpdaterBulk SSA;
779   for (BasicBlock &BB : F) {
780     for (Instruction &I : BB) {
781       if (I.getType()->isVoidTy())
782         continue;
783       unsigned VarID = SSA.AddVariable(I.getName(), I.getType());
784       // If a value is defined by an invoke instruction, it is only available in
785       // its normal destination and not in its unwind destination.
786       if (auto *II = dyn_cast<InvokeInst>(&I))
787         SSA.AddAvailableValue(VarID, II->getNormalDest(), II);
788       else
789         SSA.AddAvailableValue(VarID, &BB, &I);
790       for (auto &U : I.uses()) {
791         auto *User = cast<Instruction>(U.getUser());
792         if (auto *UserPN = dyn_cast<PHINode>(User))
793           if (UserPN->getIncomingBlock(U) == &BB)
794             continue;
795         if (DT.dominates(&I, User))
796           continue;
797         SSA.AddUse(VarID, &U);
798       }
799     }
800   }
801   SSA.RewriteAllUses(&DT);
802 }
803 
804 // Replace uses of longjmp with a new longjmp function in Emscripten library.
805 // In Emscripten SjLj, the new function is
806 //   void emscripten_longjmp(uintptr_t, i32)
807 // In Wasm SjLj, the new function is
808 //   void __wasm_longjmp(i8*, i32)
809 // Because the original libc longjmp function takes (jmp_buf*, i32), we need a
810 // ptrtoint/bitcast instruction here to make the type match. jmp_buf* will
811 // eventually be lowered to i32/i64 in the wasm backend.
812 void WebAssemblyLowerEmscriptenEHSjLj::replaceLongjmpWith(Function *LongjmpF,
813                                                           Function *NewF) {
814   assert(NewF == EmLongjmpF || NewF == WasmLongjmpF);
815   Module *M = LongjmpF->getParent();
816   SmallVector<CallInst *, 8> ToErase;
817   LLVMContext &C = LongjmpF->getParent()->getContext();
818   IRBuilder<> IRB(C);
819 
820   // For calls to longjmp, replace it with emscripten_longjmp/__wasm_longjmp and
821   // cast its first argument (jmp_buf*) appropriately
822   for (User *U : LongjmpF->users()) {
823     auto *CI = dyn_cast<CallInst>(U);
824     if (CI && CI->getCalledFunction() == LongjmpF) {
825       IRB.SetInsertPoint(CI);
826       Value *Env = nullptr;
827       if (NewF == EmLongjmpF)
828         Env =
829             IRB.CreatePtrToInt(CI->getArgOperand(0), getAddrIntType(M), "env");
830       else // WasmLongjmpF
831         Env = IRB.CreateBitCast(CI->getArgOperand(0), IRB.getPtrTy(), "env");
832       IRB.CreateCall(NewF, {Env, CI->getArgOperand(1)});
833       ToErase.push_back(CI);
834     }
835   }
836   for (auto *I : ToErase)
837     I->eraseFromParent();
838 
839   // If we have any remaining uses of longjmp's function pointer, replace it
840   // with (void(*)(jmp_buf*, int))emscripten_longjmp / __wasm_longjmp.
841   if (!LongjmpF->uses().empty()) {
842     Value *NewLongjmp =
843         IRB.CreateBitCast(NewF, LongjmpF->getType(), "longjmp.cast");
844     LongjmpF->replaceAllUsesWith(NewLongjmp);
845   }
846 }
847 
848 static bool containsLongjmpableCalls(const Function *F) {
849   for (const auto &BB : *F)
850     for (const auto &I : BB)
851       if (const auto *CB = dyn_cast<CallBase>(&I))
852         if (canLongjmp(CB->getCalledOperand()))
853           return true;
854   return false;
855 }
856 
857 // When a function contains a setjmp call but not other calls that can longjmp,
858 // we don't do setjmp transformation for that setjmp. But we need to convert the
859 // setjmp calls into "i32 0" so they don't cause link time errors. setjmp always
860 // returns 0 when called directly.
861 static void nullifySetjmp(Function *F) {
862   Module &M = *F->getParent();
863   IRBuilder<> IRB(M.getContext());
864   Function *SetjmpF = M.getFunction("setjmp");
865   SmallVector<Instruction *, 1> ToErase;
866 
867   for (User *U : make_early_inc_range(SetjmpF->users())) {
868     auto *CB = cast<CallBase>(U);
869     BasicBlock *BB = CB->getParent();
870     if (BB->getParent() != F) // in other function
871       continue;
872     CallInst *CI = nullptr;
873     // setjmp cannot throw. So if it is an invoke, lower it to a call
874     if (auto *II = dyn_cast<InvokeInst>(CB))
875       CI = llvm::changeToCall(II);
876     else
877       CI = cast<CallInst>(CB);
878     ToErase.push_back(CI);
879     CI->replaceAllUsesWith(IRB.getInt32(0));
880   }
881   for (auto *I : ToErase)
882     I->eraseFromParent();
883 }
884 
885 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
886   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
887 
888   LLVMContext &C = M.getContext();
889   IRBuilder<> IRB(C);
890 
891   Function *SetjmpF = M.getFunction("setjmp");
892   Function *LongjmpF = M.getFunction("longjmp");
893 
894   // In some platforms _setjmp and _longjmp are used instead. Change these to
895   // use setjmp/longjmp instead, because we later detect these functions by
896   // their names.
897   Function *SetjmpF2 = M.getFunction("_setjmp");
898   Function *LongjmpF2 = M.getFunction("_longjmp");
899   if (SetjmpF2) {
900     if (SetjmpF) {
901       if (SetjmpF->getFunctionType() != SetjmpF2->getFunctionType())
902         report_fatal_error("setjmp and _setjmp have different function types");
903     } else {
904       SetjmpF = Function::Create(SetjmpF2->getFunctionType(),
905                                  GlobalValue::ExternalLinkage, "setjmp", M);
906     }
907     SetjmpF2->replaceAllUsesWith(SetjmpF);
908   }
909   if (LongjmpF2) {
910     if (LongjmpF) {
911       if (LongjmpF->getFunctionType() != LongjmpF2->getFunctionType())
912         report_fatal_error(
913             "longjmp and _longjmp have different function types");
914     } else {
915       LongjmpF = Function::Create(LongjmpF2->getFunctionType(),
916                                   GlobalValue::ExternalLinkage, "setjmp", M);
917     }
918     LongjmpF2->replaceAllUsesWith(LongjmpF);
919   }
920 
921   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
922   assert(TPC && "Expected a TargetPassConfig");
923   auto &TM = TPC->getTM<WebAssemblyTargetMachine>();
924 
925   // Declare (or get) global variables __THREW__, __threwValue, and
926   // getTempRet0/setTempRet0 function which are used in common for both
927   // exception handling and setjmp/longjmp handling
928   ThrewGV = getGlobalVariable(M, getAddrIntType(&M), TM, "__THREW__");
929   ThrewValueGV = getGlobalVariable(M, IRB.getInt32Ty(), TM, "__threwValue");
930   GetTempRet0F = getEmscriptenFunction(
931       FunctionType::get(IRB.getInt32Ty(), false), "getTempRet0", &M);
932   SetTempRet0F = getEmscriptenFunction(
933       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
934       "setTempRet0", &M);
935   GetTempRet0F->setDoesNotThrow();
936   SetTempRet0F->setDoesNotThrow();
937 
938   bool Changed = false;
939 
940   // Function registration for exception handling
941   if (EnableEmEH) {
942     // Register __resumeException function
943     FunctionType *ResumeFTy =
944         FunctionType::get(IRB.getVoidTy(), IRB.getPtrTy(), false);
945     ResumeF = getEmscriptenFunction(ResumeFTy, "__resumeException", &M);
946     ResumeF->addFnAttr(Attribute::NoReturn);
947 
948     // Register llvm_eh_typeid_for function
949     FunctionType *EHTypeIDTy =
950         FunctionType::get(IRB.getInt32Ty(), IRB.getPtrTy(), false);
951     EHTypeIDF = getEmscriptenFunction(EHTypeIDTy, "llvm_eh_typeid_for", &M);
952   }
953 
954   // Functions that contains calls to setjmp but don't have other longjmpable
955   // calls within them.
956   SmallPtrSet<Function *, 4> SetjmpUsersToNullify;
957 
958   if ((EnableEmSjLj || EnableWasmSjLj) && SetjmpF) {
959     // Precompute setjmp users
960     for (User *U : SetjmpF->users()) {
961       if (auto *CB = dyn_cast<CallBase>(U)) {
962         auto *UserF = CB->getFunction();
963         // If a function that calls setjmp does not contain any other calls that
964         // can longjmp, we don't need to do any transformation on that function,
965         // so can ignore it
966         if (containsLongjmpableCalls(UserF))
967           SetjmpUsers.insert(UserF);
968         else
969           SetjmpUsersToNullify.insert(UserF);
970       } else {
971         std::string S;
972         raw_string_ostream SS(S);
973         SS << *U;
974         report_fatal_error(Twine("Indirect use of setjmp is not supported: ") +
975                            SS.str());
976       }
977     }
978   }
979 
980   bool SetjmpUsed = SetjmpF && !SetjmpUsers.empty();
981   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
982   DoSjLj = (EnableEmSjLj | EnableWasmSjLj) && (SetjmpUsed || LongjmpUsed);
983 
984   // Function registration and data pre-gathering for setjmp/longjmp handling
985   if (DoSjLj) {
986     assert(EnableEmSjLj || EnableWasmSjLj);
987     if (EnableEmSjLj) {
988       // Register emscripten_longjmp function
989       FunctionType *FTy = FunctionType::get(
990           IRB.getVoidTy(), {getAddrIntType(&M), IRB.getInt32Ty()}, false);
991       EmLongjmpF = getEmscriptenFunction(FTy, "emscripten_longjmp", &M);
992       EmLongjmpF->addFnAttr(Attribute::NoReturn);
993     } else { // EnableWasmSjLj
994       Type *Int8PtrTy = IRB.getPtrTy();
995       // Register __wasm_longjmp function, which calls __builtin_wasm_longjmp.
996       FunctionType *FTy = FunctionType::get(
997           IRB.getVoidTy(), {Int8PtrTy, IRB.getInt32Ty()}, false);
998       WasmLongjmpF = getEmscriptenFunction(FTy, "__wasm_longjmp", &M);
999       WasmLongjmpF->addFnAttr(Attribute::NoReturn);
1000     }
1001 
1002     if (SetjmpF) {
1003       Type *Int8PtrTy = IRB.getPtrTy();
1004       Type *Int32PtrTy = IRB.getPtrTy();
1005       Type *Int32Ty = IRB.getInt32Ty();
1006 
1007       // Register __wasm_setjmp function
1008       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
1009       FunctionType *FTy = FunctionType::get(
1010           IRB.getVoidTy(), {SetjmpFTy->getParamType(0), Int32Ty, Int32PtrTy},
1011           false);
1012       WasmSetjmpF = getEmscriptenFunction(FTy, "__wasm_setjmp", &M);
1013 
1014       // Register __wasm_setjmp_test function
1015       FTy = FunctionType::get(Int32Ty, {Int32PtrTy, Int32PtrTy}, false);
1016       WasmSetjmpTestF = getEmscriptenFunction(FTy, "__wasm_setjmp_test", &M);
1017 
1018       // wasm.catch() will be lowered down to wasm 'catch' instruction in
1019       // instruction selection.
1020       CatchF = Intrinsic::getOrInsertDeclaration(&M, Intrinsic::wasm_catch);
1021       // Type for struct __WasmLongjmpArgs
1022       LongjmpArgsTy = StructType::get(Int8PtrTy, // env
1023                                       Int32Ty    // val
1024       );
1025     }
1026   }
1027 
1028   // Exception handling transformation
1029   if (EnableEmEH) {
1030     for (Function &F : M) {
1031       if (F.isDeclaration())
1032         continue;
1033       Changed |= runEHOnFunction(F);
1034     }
1035   }
1036 
1037   // Setjmp/longjmp handling transformation
1038   if (DoSjLj) {
1039     Changed = true; // We have setjmp or longjmp somewhere
1040     if (LongjmpF)
1041       replaceLongjmpWith(LongjmpF, EnableEmSjLj ? EmLongjmpF : WasmLongjmpF);
1042     // Only traverse functions that uses setjmp in order not to insert
1043     // unnecessary prep / cleanup code in every function
1044     if (SetjmpF)
1045       for (Function *F : SetjmpUsers)
1046         runSjLjOnFunction(*F);
1047   }
1048 
1049   // Replace unnecessary setjmp calls with 0
1050   if ((EnableEmSjLj || EnableWasmSjLj) && !SetjmpUsersToNullify.empty()) {
1051     Changed = true;
1052     assert(SetjmpF);
1053     for (Function *F : SetjmpUsersToNullify)
1054       nullifySetjmp(F);
1055   }
1056 
1057   // Delete unused global variables and functions
1058   for (auto *V : {ThrewGV, ThrewValueGV})
1059     if (V && V->use_empty())
1060       V->eraseFromParent();
1061   for (auto *V : {GetTempRet0F, SetTempRet0F, ResumeF, EHTypeIDF, EmLongjmpF,
1062                   WasmSetjmpF, WasmSetjmpTestF, WasmLongjmpF, CatchF})
1063     if (V && V->use_empty())
1064       V->eraseFromParent();
1065 
1066   return Changed;
1067 }
1068 
1069 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
1070   Module &M = *F.getParent();
1071   LLVMContext &C = F.getContext();
1072   IRBuilder<> IRB(C);
1073   bool Changed = false;
1074   SmallVector<Instruction *, 64> ToErase;
1075   SmallPtrSet<LandingPadInst *, 32> LandingPads;
1076 
1077   // rethrow.longjmp BB that will be shared within the function.
1078   BasicBlock *RethrowLongjmpBB = nullptr;
1079   // PHI node for the loaded value of __THREW__ global variable in
1080   // rethrow.longjmp BB
1081   PHINode *RethrowLongjmpBBThrewPHI = nullptr;
1082 
1083   for (BasicBlock &BB : F) {
1084     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
1085     if (!II)
1086       continue;
1087     Changed = true;
1088     LandingPads.insert(II->getLandingPadInst());
1089     IRB.SetInsertPoint(II);
1090 
1091     const Value *Callee = II->getCalledOperand();
1092     bool NeedInvoke = supportsException(&F) && canThrow(Callee);
1093     if (NeedInvoke) {
1094       // Wrap invoke with invoke wrapper and generate preamble/postamble
1095       Value *Threw = wrapInvoke(II);
1096       ToErase.push_back(II);
1097 
1098       // If setjmp/longjmp handling is enabled, the thrown value can be not an
1099       // exception but a longjmp. If the current function contains calls to
1100       // setjmp, it will be appropriately handled in runSjLjOnFunction. But even
1101       // if the function does not contain setjmp calls, we shouldn't silently
1102       // ignore longjmps; we should rethrow them so they can be correctly
1103       // handled in somewhere up the call chain where setjmp is. __THREW__'s
1104       // value is 0 when nothing happened, 1 when an exception is thrown, and
1105       // other values when longjmp is thrown.
1106       //
1107       // if (%__THREW__.val == 0 || %__THREW__.val == 1)
1108       //   goto %tail
1109       // else
1110       //   goto %longjmp.rethrow
1111       //
1112       // rethrow.longjmp: ;; This is longjmp. Rethrow it
1113       //   %__threwValue.val = __threwValue
1114       //   emscripten_longjmp(%__THREW__.val, %__threwValue.val);
1115       //
1116       // tail: ;; Nothing happened or an exception is thrown
1117       //   ... Continue exception handling ...
1118       if (DoSjLj && EnableEmSjLj && !SetjmpUsers.count(&F) &&
1119           canLongjmp(Callee)) {
1120         // Create longjmp.rethrow BB once and share it within the function
1121         if (!RethrowLongjmpBB) {
1122           RethrowLongjmpBB = BasicBlock::Create(C, "rethrow.longjmp", &F);
1123           IRB.SetInsertPoint(RethrowLongjmpBB);
1124           RethrowLongjmpBBThrewPHI =
1125               IRB.CreatePHI(getAddrIntType(&M), 4, "threw.phi");
1126           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1127           Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
1128                                              ThrewValueGV->getName() + ".val");
1129           IRB.CreateCall(EmLongjmpF, {RethrowLongjmpBBThrewPHI, ThrewValue});
1130           IRB.CreateUnreachable();
1131         } else {
1132           RethrowLongjmpBBThrewPHI->addIncoming(Threw, &BB);
1133         }
1134 
1135         IRB.SetInsertPoint(II); // Restore the insert point back
1136         BasicBlock *Tail = BasicBlock::Create(C, "tail", &F);
1137         Value *CmpEqOne =
1138             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1139         Value *CmpEqZero =
1140             IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 0), "cmp.eq.zero");
1141         Value *Or = IRB.CreateOr(CmpEqZero, CmpEqOne, "or");
1142         IRB.CreateCondBr(Or, Tail, RethrowLongjmpBB);
1143         IRB.SetInsertPoint(Tail);
1144         BB.replaceSuccessorsPhiUsesWith(&BB, Tail);
1145       }
1146 
1147       // Insert a branch based on __THREW__ variable
1148       Value *Cmp = IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp");
1149       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
1150 
1151     } else {
1152       // This can't throw, and we don't need this invoke, just replace it with a
1153       // call+branch
1154       changeToCall(II);
1155     }
1156   }
1157 
1158   // Process resume instructions
1159   for (BasicBlock &BB : F) {
1160     // Scan the body of the basic block for resumes
1161     for (Instruction &I : BB) {
1162       auto *RI = dyn_cast<ResumeInst>(&I);
1163       if (!RI)
1164         continue;
1165       Changed = true;
1166 
1167       // Split the input into legal values
1168       Value *Input = RI->getValue();
1169       IRB.SetInsertPoint(RI);
1170       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
1171       // Create a call to __resumeException function
1172       IRB.CreateCall(ResumeF, {Low});
1173       // Add a terminator to the block
1174       IRB.CreateUnreachable();
1175       ToErase.push_back(RI);
1176     }
1177   }
1178 
1179   // Process llvm.eh.typeid.for intrinsics
1180   for (BasicBlock &BB : F) {
1181     for (Instruction &I : BB) {
1182       auto *CI = dyn_cast<CallInst>(&I);
1183       if (!CI)
1184         continue;
1185       const Function *Callee = CI->getCalledFunction();
1186       if (!Callee)
1187         continue;
1188       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
1189         continue;
1190       Changed = true;
1191 
1192       IRB.SetInsertPoint(CI);
1193       CallInst *NewCI =
1194           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
1195       CI->replaceAllUsesWith(NewCI);
1196       ToErase.push_back(CI);
1197     }
1198   }
1199 
1200   // Look for orphan landingpads, can occur in blocks with no predecessors
1201   for (BasicBlock &BB : F) {
1202     BasicBlock::iterator I = BB.getFirstNonPHIIt();
1203     if (auto *LPI = dyn_cast<LandingPadInst>(I))
1204       LandingPads.insert(LPI);
1205   }
1206   Changed |= !LandingPads.empty();
1207 
1208   // Handle all the landingpad for this function together, as multiple invokes
1209   // may share a single lp
1210   for (LandingPadInst *LPI : LandingPads) {
1211     IRB.SetInsertPoint(LPI);
1212     SmallVector<Value *, 16> FMCArgs;
1213     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
1214       Constant *Clause = LPI->getClause(I);
1215       // TODO Handle filters (= exception specifications).
1216       // https://github.com/llvm/llvm-project/issues/49740
1217       if (LPI->isCatch(I))
1218         FMCArgs.push_back(Clause);
1219     }
1220 
1221     // Create a call to __cxa_find_matching_catch_N function
1222     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
1223     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
1224     Value *Poison = PoisonValue::get(LPI->getType());
1225     Value *Pair0 = IRB.CreateInsertValue(Poison, FMCI, 0, "pair0");
1226     Value *TempRet0 = IRB.CreateCall(GetTempRet0F, {}, "tempret0");
1227     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
1228 
1229     LPI->replaceAllUsesWith(Pair1);
1230     ToErase.push_back(LPI);
1231   }
1232 
1233   // Erase everything we no longer need in this function
1234   for (Instruction *I : ToErase)
1235     I->eraseFromParent();
1236 
1237   return Changed;
1238 }
1239 
1240 // This tries to get debug info from the instruction before which a new
1241 // instruction will be inserted, and if there's no debug info in that
1242 // instruction, tries to get the info instead from the previous instruction (if
1243 // any). If none of these has debug info and a DISubprogram is provided, it
1244 // creates a dummy debug info with the first line of the function, because IR
1245 // verifier requires all inlinable callsites should have debug info when both a
1246 // caller and callee have DISubprogram. If none of these conditions are met,
1247 // returns empty info.
1248 static DebugLoc getOrCreateDebugLoc(const Instruction *InsertBefore,
1249                                     DISubprogram *SP) {
1250   assert(InsertBefore);
1251   if (InsertBefore->getDebugLoc())
1252     return InsertBefore->getDebugLoc();
1253   const Instruction *Prev = InsertBefore->getPrevNode();
1254   if (Prev && Prev->getDebugLoc())
1255     return Prev->getDebugLoc();
1256   if (SP)
1257     return DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
1258   return DebugLoc();
1259 }
1260 
1261 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
1262   assert(EnableEmSjLj || EnableWasmSjLj);
1263   Module &M = *F.getParent();
1264   LLVMContext &C = F.getContext();
1265   IRBuilder<> IRB(C);
1266   SmallVector<Instruction *, 64> ToErase;
1267 
1268   // Setjmp preparation
1269 
1270   BasicBlock *Entry = &F.getEntryBlock();
1271   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1272   SplitBlock(Entry, &*Entry->getFirstInsertionPt());
1273 
1274   IRB.SetInsertPoint(Entry->getTerminator()->getIterator());
1275   // This alloca'ed pointer is used by the runtime to identify function
1276   // invocations. It's just for pointer comparisons. It will never be
1277   // dereferenced.
1278   Instruction *FunctionInvocationId =
1279       IRB.CreateAlloca(IRB.getInt32Ty(), nullptr, "functionInvocationId");
1280   FunctionInvocationId->setDebugLoc(FirstDL);
1281 
1282   // Setjmp transformation
1283   SmallVector<PHINode *, 4> SetjmpRetPHIs;
1284   Function *SetjmpF = M.getFunction("setjmp");
1285   for (auto *U : make_early_inc_range(SetjmpF->users())) {
1286     auto *CB = cast<CallBase>(U);
1287     BasicBlock *BB = CB->getParent();
1288     if (BB->getParent() != &F) // in other function
1289       continue;
1290     if (CB->getOperandBundle(LLVMContext::OB_funclet)) {
1291       std::string S;
1292       raw_string_ostream SS(S);
1293       SS << "In function " + F.getName() +
1294                 ": setjmp within a catch clause is not supported in Wasm EH:\n";
1295       SS << *CB;
1296       report_fatal_error(StringRef(SS.str()));
1297     }
1298 
1299     CallInst *CI = nullptr;
1300     // setjmp cannot throw. So if it is an invoke, lower it to a call
1301     if (auto *II = dyn_cast<InvokeInst>(CB))
1302       CI = llvm::changeToCall(II);
1303     else
1304       CI = cast<CallInst>(CB);
1305 
1306     // The tail is everything right after the call, and will be reached once
1307     // when setjmp is called, and later when longjmp returns to the setjmp
1308     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
1309     // Add a phi to the tail, which will be the output of setjmp, which
1310     // indicates if this is the first call or a longjmp back. The phi directly
1311     // uses the right value based on where we arrive from
1312     IRB.SetInsertPoint(Tail, Tail->getFirstNonPHIIt());
1313     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
1314 
1315     // setjmp initial call returns 0
1316     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
1317     // The proper output is now this, not the setjmp call itself
1318     CI->replaceAllUsesWith(SetjmpRet);
1319     // longjmp returns to the setjmp will add themselves to this phi
1320     SetjmpRetPHIs.push_back(SetjmpRet);
1321 
1322     // Fix call target
1323     // Our index in the function is our place in the array + 1 to avoid index
1324     // 0, because index 0 means the longjmp is not ours to handle.
1325     IRB.SetInsertPoint(CI);
1326     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
1327                      FunctionInvocationId};
1328     IRB.CreateCall(WasmSetjmpF, Args);
1329     ToErase.push_back(CI);
1330   }
1331 
1332   // Handle longjmpable calls.
1333   if (EnableEmSjLj)
1334     handleLongjmpableCallsForEmscriptenSjLj(F, FunctionInvocationId,
1335                                             SetjmpRetPHIs);
1336   else // EnableWasmSjLj
1337     handleLongjmpableCallsForWasmSjLj(F, FunctionInvocationId, SetjmpRetPHIs);
1338 
1339   // Erase everything we no longer need in this function
1340   for (Instruction *I : ToErase)
1341     I->eraseFromParent();
1342 
1343   // Finally, our modifications to the cfg can break dominance of SSA variables.
1344   // For example, in this code,
1345   // if (x()) { .. setjmp() .. }
1346   // if (y()) { .. longjmp() .. }
1347   // We must split the longjmp block, and it can jump into the block splitted
1348   // from setjmp one. But that means that when we split the setjmp block, it's
1349   // first part no longer dominates its second part - there is a theoretically
1350   // possible control flow path where x() is false, then y() is true and we
1351   // reach the second part of the setjmp block, without ever reaching the first
1352   // part. So, we rebuild SSA form here.
1353   rebuildSSA(F);
1354   return true;
1355 }
1356 
1357 // Update each call that can longjmp so it can return to the corresponding
1358 // setjmp. Refer to 4) of "Emscripten setjmp/longjmp handling" section in the
1359 // comments at top of the file for details.
1360 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForEmscriptenSjLj(
1361     Function &F, Instruction *FunctionInvocationId,
1362     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1363   Module &M = *F.getParent();
1364   LLVMContext &C = F.getContext();
1365   IRBuilder<> IRB(C);
1366   SmallVector<Instruction *, 64> ToErase;
1367 
1368   // call.em.longjmp BB that will be shared within the function.
1369   BasicBlock *CallEmLongjmpBB = nullptr;
1370   // PHI node for the loaded value of __THREW__ global variable in
1371   // call.em.longjmp BB
1372   PHINode *CallEmLongjmpBBThrewPHI = nullptr;
1373   // PHI node for the loaded value of __threwValue global variable in
1374   // call.em.longjmp BB
1375   PHINode *CallEmLongjmpBBThrewValuePHI = nullptr;
1376   // rethrow.exn BB that will be shared within the function.
1377   BasicBlock *RethrowExnBB = nullptr;
1378 
1379   // Because we are creating new BBs while processing and don't want to make
1380   // all these newly created BBs candidates again for longjmp processing, we
1381   // first make the vector of candidate BBs.
1382   std::vector<BasicBlock *> BBs;
1383   for (BasicBlock &BB : F)
1384     BBs.push_back(&BB);
1385 
1386   // BBs.size() will change within the loop, so we query it every time
1387   for (unsigned I = 0; I < BBs.size(); I++) {
1388     BasicBlock *BB = BBs[I];
1389     for (Instruction &I : *BB) {
1390       if (isa<InvokeInst>(&I)) {
1391         std::string S;
1392         raw_string_ostream SS(S);
1393         SS << "In function " << F.getName()
1394            << ": When using Wasm EH with Emscripten SjLj, there is a "
1395               "restriction that `setjmp` function call and exception cannot be "
1396               "used within the same function:\n";
1397         SS << I;
1398         report_fatal_error(StringRef(SS.str()));
1399       }
1400       auto *CI = dyn_cast<CallInst>(&I);
1401       if (!CI)
1402         continue;
1403 
1404       const Value *Callee = CI->getCalledOperand();
1405       if (!canLongjmp(Callee))
1406         continue;
1407       if (isEmAsmCall(Callee))
1408         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1409                                F.getName() +
1410                                ". Please consider using EM_JS, or move the "
1411                                "EM_ASM into another function.",
1412                            false);
1413 
1414       Value *Threw = nullptr;
1415       BasicBlock *Tail;
1416       if (Callee->getName().starts_with("__invoke_")) {
1417         // If invoke wrapper has already been generated for this call in
1418         // previous EH phase, search for the load instruction
1419         // %__THREW__.val = __THREW__;
1420         // in postamble after the invoke wrapper call
1421         LoadInst *ThrewLI = nullptr;
1422         StoreInst *ThrewResetSI = nullptr;
1423         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1424              I != IE; ++I) {
1425           if (auto *LI = dyn_cast<LoadInst>(I))
1426             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1427               if (GV == ThrewGV) {
1428                 Threw = ThrewLI = LI;
1429                 break;
1430               }
1431         }
1432         // Search for the store instruction after the load above
1433         // __THREW__ = 0;
1434         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1435              I != IE; ++I) {
1436           if (auto *SI = dyn_cast<StoreInst>(I)) {
1437             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) {
1438               if (GV == ThrewGV &&
1439                   SI->getValueOperand() == getAddrSizeInt(&M, 0)) {
1440                 ThrewResetSI = SI;
1441                 break;
1442               }
1443             }
1444           }
1445         }
1446         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1447         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1448         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1449 
1450       } else {
1451         // Wrap call with invoke wrapper and generate preamble/postamble
1452         Threw = wrapInvoke(CI);
1453         ToErase.push_back(CI);
1454         Tail = SplitBlock(BB, CI->getNextNode());
1455 
1456         // If exception handling is enabled, the thrown value can be not a
1457         // longjmp but an exception, in which case we shouldn't silently ignore
1458         // exceptions; we should rethrow them.
1459         // __THREW__'s value is 0 when nothing happened, 1 when an exception is
1460         // thrown, other values when longjmp is thrown.
1461         //
1462         // if (%__THREW__.val == 1)
1463         //   goto %eh.rethrow
1464         // else
1465         //   goto %normal
1466         //
1467         // eh.rethrow: ;; Rethrow exception
1468         //   %exn = call @__cxa_find_matching_catch_2() ;; Retrieve thrown ptr
1469         //   __resumeException(%exn)
1470         //
1471         // normal:
1472         //   <-- Insertion point. Will insert sjlj handling code from here
1473         //   goto %tail
1474         //
1475         // tail:
1476         //   ...
1477         if (supportsException(&F) && canThrow(Callee)) {
1478           // We will add a new conditional branch. So remove the branch created
1479           // when we split the BB
1480           ToErase.push_back(BB->getTerminator());
1481 
1482           // Generate rethrow.exn BB once and share it within the function
1483           if (!RethrowExnBB) {
1484             RethrowExnBB = BasicBlock::Create(C, "rethrow.exn", &F);
1485             IRB.SetInsertPoint(RethrowExnBB);
1486             CallInst *Exn =
1487                 IRB.CreateCall(getFindMatchingCatch(M, 0), {}, "exn");
1488             IRB.CreateCall(ResumeF, {Exn});
1489             IRB.CreateUnreachable();
1490           }
1491 
1492           IRB.SetInsertPoint(CI);
1493           BasicBlock *NormalBB = BasicBlock::Create(C, "normal", &F);
1494           Value *CmpEqOne =
1495               IRB.CreateICmpEQ(Threw, getAddrSizeInt(&M, 1), "cmp.eq.one");
1496           IRB.CreateCondBr(CmpEqOne, RethrowExnBB, NormalBB);
1497 
1498           IRB.SetInsertPoint(NormalBB);
1499           IRB.CreateBr(Tail);
1500           BB = NormalBB; // New insertion point to insert __wasm_setjmp_test()
1501         }
1502       }
1503 
1504       // We need to replace the terminator in Tail - SplitBlock makes BB go
1505       // straight to Tail, we need to check if a longjmp occurred, and go to the
1506       // right setjmp-tail if so
1507       ToErase.push_back(BB->getTerminator());
1508 
1509       // Generate a function call to __wasm_setjmp_test function and
1510       // preamble/postamble code to figure out (1) whether longjmp
1511       // occurred (2) if longjmp occurred, which setjmp it corresponds to
1512       Value *Label = nullptr;
1513       Value *LongjmpResult = nullptr;
1514       BasicBlock *EndBB = nullptr;
1515       wrapTestSetjmp(BB, CI->getDebugLoc(), Threw, FunctionInvocationId, Label,
1516                      LongjmpResult, CallEmLongjmpBB, CallEmLongjmpBBThrewPHI,
1517                      CallEmLongjmpBBThrewValuePHI, EndBB);
1518       assert(Label && LongjmpResult && EndBB);
1519 
1520       // Create switch instruction
1521       IRB.SetInsertPoint(EndBB);
1522       IRB.SetCurrentDebugLocation(EndBB->back().getDebugLoc());
1523       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1524       // -1 means no longjmp happened, continue normally (will hit the default
1525       // switch case). 0 means a longjmp that is not ours to handle, needs a
1526       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1527       // 0).
1528       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1529         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1530         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1531       }
1532 
1533       // We are splitting the block here, and must continue to find other calls
1534       // in the block - which is now split. so continue to traverse in the Tail
1535       BBs.push_back(Tail);
1536     }
1537   }
1538 
1539   for (Instruction *I : ToErase)
1540     I->eraseFromParent();
1541 }
1542 
1543 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CPI) {
1544   for (const User *U : CPI->users())
1545     if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
1546       return CRI->getUnwindDest();
1547   return nullptr;
1548 }
1549 
1550 // Create a catchpad in which we catch a longjmp's env and val arguments, test
1551 // if the longjmp corresponds to one of setjmps in the current function, and if
1552 // so, jump to the setjmp dispatch BB from which we go to one of post-setjmp
1553 // BBs. Refer to 4) of "Wasm setjmp/longjmp handling" section in the comments at
1554 // top of the file for details.
1555 void WebAssemblyLowerEmscriptenEHSjLj::handleLongjmpableCallsForWasmSjLj(
1556     Function &F, Instruction *FunctionInvocationId,
1557     SmallVectorImpl<PHINode *> &SetjmpRetPHIs) {
1558   Module &M = *F.getParent();
1559   LLVMContext &C = F.getContext();
1560   IRBuilder<> IRB(C);
1561 
1562   // A function with catchswitch/catchpad instruction should have a personality
1563   // function attached to it. Search for the wasm personality function, and if
1564   // it exists, use it, and if it doesn't, create a dummy personality function.
1565   // (SjLj is not going to call it anyway.)
1566   if (!F.hasPersonalityFn()) {
1567     StringRef PersName = getEHPersonalityName(EHPersonality::Wasm_CXX);
1568     FunctionType *PersType =
1569         FunctionType::get(IRB.getInt32Ty(), /* isVarArg */ true);
1570     Value *PersF = M.getOrInsertFunction(PersName, PersType).getCallee();
1571     F.setPersonalityFn(
1572         cast<Constant>(IRB.CreateBitCast(PersF, IRB.getPtrTy())));
1573   }
1574 
1575   // Use the entry BB's debugloc as a fallback
1576   BasicBlock *Entry = &F.getEntryBlock();
1577   DebugLoc FirstDL = getOrCreateDebugLoc(&*Entry->begin(), F.getSubprogram());
1578   IRB.SetCurrentDebugLocation(FirstDL);
1579 
1580   // Add setjmp.dispatch BB right after the entry block. Because we have
1581   // initialized functionInvocationId in the entry block and split the
1582   // rest into another BB, here 'OrigEntry' is the function's original entry
1583   // block before the transformation.
1584   //
1585   // entry:
1586   //   functionInvocationId initialization
1587   // setjmp.dispatch:
1588   //   switch will be inserted here later
1589   // entry.split: (OrigEntry)
1590   //   the original function starts here
1591   BasicBlock *OrigEntry = Entry->getNextNode();
1592   BasicBlock *SetjmpDispatchBB =
1593       BasicBlock::Create(C, "setjmp.dispatch", &F, OrigEntry);
1594   cast<BranchInst>(Entry->getTerminator())->setSuccessor(0, SetjmpDispatchBB);
1595 
1596   // Create catch.dispatch.longjmp BB and a catchswitch instruction
1597   BasicBlock *CatchDispatchLongjmpBB =
1598       BasicBlock::Create(C, "catch.dispatch.longjmp", &F);
1599   IRB.SetInsertPoint(CatchDispatchLongjmpBB);
1600   CatchSwitchInst *CatchSwitchLongjmp =
1601       IRB.CreateCatchSwitch(ConstantTokenNone::get(C), nullptr, 1);
1602 
1603   // Create catch.longjmp BB and a catchpad instruction
1604   BasicBlock *CatchLongjmpBB = BasicBlock::Create(C, "catch.longjmp", &F);
1605   CatchSwitchLongjmp->addHandler(CatchLongjmpBB);
1606   IRB.SetInsertPoint(CatchLongjmpBB);
1607   CatchPadInst *CatchPad = IRB.CreateCatchPad(CatchSwitchLongjmp, {});
1608 
1609   // Wasm throw and catch instructions can throw and catch multiple values, but
1610   // that requires multivalue support in the toolchain, which is currently not
1611   // very reliable. We instead throw and catch a pointer to a struct value of
1612   // type 'struct __WasmLongjmpArgs', which is defined in Emscripten.
1613   Instruction *LongjmpArgs =
1614       IRB.CreateCall(CatchF, {IRB.getInt32(WebAssembly::C_LONGJMP)}, "thrown");
1615   Value *EnvField =
1616       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 0, "env_gep");
1617   Value *ValField =
1618       IRB.CreateConstGEP2_32(LongjmpArgsTy, LongjmpArgs, 0, 1, "val_gep");
1619   // void *env = __wasm_longjmp_args.env;
1620   Instruction *Env = IRB.CreateLoad(IRB.getPtrTy(), EnvField, "env");
1621   // int val = __wasm_longjmp_args.val;
1622   Instruction *Val = IRB.CreateLoad(IRB.getInt32Ty(), ValField, "val");
1623 
1624   // %label = __wasm_setjmp_test(%env, functionInvocatinoId);
1625   // if (%label == 0)
1626   //   __wasm_longjmp(%env, %val)
1627   // catchret to %setjmp.dispatch
1628   BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", &F);
1629   BasicBlock *EndBB = BasicBlock::Create(C, "if.end", &F);
1630   Value *EnvP = IRB.CreateBitCast(Env, getAddrPtrType(&M), "env.p");
1631   Value *Label = IRB.CreateCall(WasmSetjmpTestF, {EnvP, FunctionInvocationId},
1632                                 OperandBundleDef("funclet", CatchPad), "label");
1633   Value *Cmp = IRB.CreateICmpEQ(Label, IRB.getInt32(0));
1634   IRB.CreateCondBr(Cmp, ThenBB, EndBB);
1635 
1636   IRB.SetInsertPoint(ThenBB);
1637   CallInst *WasmLongjmpCI = IRB.CreateCall(
1638       WasmLongjmpF, {Env, Val}, OperandBundleDef("funclet", CatchPad));
1639   IRB.CreateUnreachable();
1640 
1641   IRB.SetInsertPoint(EndBB);
1642   // Jump to setjmp.dispatch block
1643   IRB.CreateCatchRet(CatchPad, SetjmpDispatchBB);
1644 
1645   // Go back to setjmp.dispatch BB
1646   // setjmp.dispatch:
1647   //   switch %label {
1648   //     label 1: goto post-setjmp BB 1
1649   //     label 2: goto post-setjmp BB 2
1650   //     ...
1651   //     default: goto splitted next BB
1652   //   }
1653   IRB.SetInsertPoint(SetjmpDispatchBB);
1654   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label.phi");
1655   LabelPHI->addIncoming(Label, EndBB);
1656   LabelPHI->addIncoming(IRB.getInt32(-1), Entry);
1657   SwitchInst *SI = IRB.CreateSwitch(LabelPHI, OrigEntry, SetjmpRetPHIs.size());
1658   // -1 means no longjmp happened, continue normally (will hit the default
1659   // switch case). 0 means a longjmp that is not ours to handle, needs a
1660   // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1661   // 0).
1662   for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1663     SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1664     SetjmpRetPHIs[I]->addIncoming(Val, SetjmpDispatchBB);
1665   }
1666 
1667   // Convert all longjmpable call instructions to invokes that unwind to the
1668   // newly created catch.dispatch.longjmp BB.
1669   SmallVector<CallInst *, 64> LongjmpableCalls;
1670   for (auto *BB = &*F.begin(); BB; BB = BB->getNextNode()) {
1671     for (auto &I : *BB) {
1672       auto *CI = dyn_cast<CallInst>(&I);
1673       if (!CI)
1674         continue;
1675       const Value *Callee = CI->getCalledOperand();
1676       if (!canLongjmp(Callee))
1677         continue;
1678       if (isEmAsmCall(Callee))
1679         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
1680                                F.getName() +
1681                                ". Please consider using EM_JS, or move the "
1682                                "EM_ASM into another function.",
1683                            false);
1684       // This is __wasm_longjmp() call we inserted in this function, which
1685       // rethrows the longjmp when the longjmp does not correspond to one of
1686       // setjmps in this function. We should not convert this call to an invoke.
1687       if (CI == WasmLongjmpCI)
1688         continue;
1689       LongjmpableCalls.push_back(CI);
1690     }
1691   }
1692 
1693   SmallDenseMap<BasicBlock *, SmallSetVector<BasicBlock *, 4>, 4>
1694       UnwindDestToNewPreds;
1695   for (auto *CI : LongjmpableCalls) {
1696     // Even if the callee function has attribute 'nounwind', which is true for
1697     // all C functions, it can longjmp, which means it can throw a Wasm
1698     // exception now.
1699     CI->removeFnAttr(Attribute::NoUnwind);
1700     if (Function *CalleeF = CI->getCalledFunction())
1701       CalleeF->removeFnAttr(Attribute::NoUnwind);
1702 
1703     // Change it to an invoke and make it unwind to the catch.dispatch.longjmp
1704     // BB. If the call is enclosed in another catchpad/cleanuppad scope, unwind
1705     // to its parent pad's unwind destination instead to preserve the scope
1706     // structure. It will eventually unwind to the catch.dispatch.longjmp.
1707     SmallVector<OperandBundleDef, 1> Bundles;
1708     BasicBlock *UnwindDest = nullptr;
1709     if (auto Bundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
1710       Instruction *FromPad = cast<Instruction>(Bundle->Inputs[0]);
1711       while (!UnwindDest) {
1712         if (auto *CPI = dyn_cast<CatchPadInst>(FromPad)) {
1713           UnwindDest = CPI->getCatchSwitch()->getUnwindDest();
1714           break;
1715         }
1716         if (auto *CPI = dyn_cast<CleanupPadInst>(FromPad)) {
1717           // getCleanupRetUnwindDest() can return nullptr when
1718           // 1. This cleanuppad's matching cleanupret uwninds to caller
1719           // 2. There is no matching cleanupret because it ends with
1720           //    unreachable.
1721           // In case of 2, we need to traverse the parent pad chain.
1722           UnwindDest = getCleanupRetUnwindDest(CPI);
1723           Value *ParentPad = CPI->getParentPad();
1724           if (isa<ConstantTokenNone>(ParentPad))
1725             break;
1726           FromPad = cast<Instruction>(ParentPad);
1727         }
1728       }
1729     }
1730     if (!UnwindDest)
1731       UnwindDest = CatchDispatchLongjmpBB;
1732     // Because we are changing a longjmpable call to an invoke, its unwind
1733     // destination can be an existing EH pad that already have phis, and the BB
1734     // with the newly created invoke will become a new predecessor of that EH
1735     // pad. In this case we need to add the new predecessor to those phis.
1736     UnwindDestToNewPreds[UnwindDest].insert(CI->getParent());
1737     changeToInvokeAndSplitBasicBlock(CI, UnwindDest);
1738   }
1739 
1740   SmallVector<Instruction *, 16> ToErase;
1741   for (auto &BB : F) {
1742     if (auto *CSI = dyn_cast<CatchSwitchInst>(BB.getFirstNonPHIIt())) {
1743       if (CSI != CatchSwitchLongjmp && CSI->unwindsToCaller()) {
1744         IRB.SetInsertPoint(CSI);
1745         ToErase.push_back(CSI);
1746         auto *NewCSI = IRB.CreateCatchSwitch(CSI->getParentPad(),
1747                                              CatchDispatchLongjmpBB, 1);
1748         NewCSI->addHandler(*CSI->handler_begin());
1749         NewCSI->takeName(CSI);
1750         CSI->replaceAllUsesWith(NewCSI);
1751       }
1752     }
1753 
1754     if (auto *CRI = dyn_cast<CleanupReturnInst>(BB.getTerminator())) {
1755       if (CRI->unwindsToCaller()) {
1756         IRB.SetInsertPoint(CRI);
1757         ToErase.push_back(CRI);
1758         IRB.CreateCleanupRet(CRI->getCleanupPad(), CatchDispatchLongjmpBB);
1759       }
1760     }
1761   }
1762 
1763   for (Instruction *I : ToErase)
1764     I->eraseFromParent();
1765 
1766   // Add entries for new predecessors to phis in unwind destinations. We use
1767   // 'undef' as a placeholder value. We should make sure the phis have a valid
1768   // set of predecessors before running SSAUpdater, because SSAUpdater
1769   // internally can use existing phis to gather predecessor info rather than
1770   // scanning the actual CFG (See FindPredecessorBlocks in SSAUpdater.cpp for
1771   // details).
1772   for (auto &[UnwindDest, NewPreds] : UnwindDestToNewPreds) {
1773     for (PHINode &PN : UnwindDest->phis()) {
1774       for (auto *NewPred : NewPreds) {
1775         assert(PN.getBasicBlockIndex(NewPred) == -1);
1776         PN.addIncoming(UndefValue::get(PN.getType()), NewPred);
1777       }
1778     }
1779   }
1780 
1781   // For unwind destinations for newly added invokes to longjmpable functions,
1782   // calculate incoming values for the newly added predecessors using
1783   // SSAUpdater. We add existing values in the phis to SSAUpdater as available
1784   // values and let it calculate what the value should be at the end of new
1785   // incoming blocks.
1786   for (auto &[UnwindDest, NewPreds] : UnwindDestToNewPreds) {
1787     for (PHINode &PN : UnwindDest->phis()) {
1788       SSAUpdater SSA;
1789       SSA.Initialize(PN.getType(), PN.getName());
1790       for (unsigned Idx = 0, E = PN.getNumIncomingValues(); Idx != E; ++Idx) {
1791         if (NewPreds.contains(PN.getIncomingBlock(Idx)))
1792           continue;
1793         Value *V = PN.getIncomingValue(Idx);
1794         if (auto *II = dyn_cast<InvokeInst>(V))
1795           SSA.AddAvailableValue(II->getNormalDest(), II);
1796         else if (auto *I = dyn_cast<Instruction>(V))
1797           SSA.AddAvailableValue(I->getParent(), I);
1798         else
1799           SSA.AddAvailableValue(PN.getIncomingBlock(Idx), V);
1800       }
1801       for (auto *NewPred : NewPreds)
1802         PN.setIncomingValueForBlock(NewPred, SSA.GetValueAtEndOfBlock(NewPred));
1803       assert(PN.isComplete());
1804     }
1805   }
1806 }
1807