1 //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/SystemZGNUInstPrinter.h" 10 #include "MCTargetDesc/SystemZMCAsmInfo.h" 11 #include "MCTargetDesc/SystemZMCTargetDesc.h" 12 #include "SystemZTargetStreamer.h" 13 #include "TargetInfo/SystemZTargetInfo.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/MC/MCAsmInfo.h" 19 #include "llvm/MC/MCContext.h" 20 #include "llvm/MC/MCExpr.h" 21 #include "llvm/MC/MCInst.h" 22 #include "llvm/MC/MCInstBuilder.h" 23 #include "llvm/MC/MCInstrInfo.h" 24 #include "llvm/MC/MCParser/MCAsmLexer.h" 25 #include "llvm/MC/MCParser/MCAsmParser.h" 26 #include "llvm/MC/MCParser/MCAsmParserExtension.h" 27 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 28 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 29 #include "llvm/MC/MCStreamer.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include "llvm/MC/TargetRegistry.h" 32 #include "llvm/Support/Casting.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/SMLoc.h" 35 #include <algorithm> 36 #include <cassert> 37 #include <cstddef> 38 #include <cstdint> 39 #include <iterator> 40 #include <memory> 41 #include <string> 42 43 using namespace llvm; 44 45 // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol 46 // is true any MCExpr is accepted (address displacement). 47 static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, 48 bool AllowSymbol = false) { 49 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 50 int64_t Value = CE->getValue(); 51 return Value >= MinValue && Value <= MaxValue; 52 } 53 return AllowSymbol; 54 } 55 56 namespace { 57 58 enum RegisterKind { 59 GR32Reg, 60 GRH32Reg, 61 GR64Reg, 62 GR128Reg, 63 FP32Reg, 64 FP64Reg, 65 FP128Reg, 66 VR32Reg, 67 VR64Reg, 68 VR128Reg, 69 AR32Reg, 70 CR64Reg, 71 }; 72 73 enum MemoryKind { 74 BDMem, 75 BDXMem, 76 BDLMem, 77 BDRMem, 78 BDVMem, 79 LXAMem 80 }; 81 82 class SystemZOperand : public MCParsedAsmOperand { 83 private: 84 enum OperandKind { 85 KindInvalid, 86 KindToken, 87 KindReg, 88 KindImm, 89 KindImmTLS, 90 KindMem 91 }; 92 93 OperandKind Kind; 94 SMLoc StartLoc, EndLoc; 95 96 // A string of length Length, starting at Data. 97 struct TokenOp { 98 const char *Data; 99 unsigned Length; 100 }; 101 102 // LLVM register Num, which has kind Kind. In some ways it might be 103 // easier for this class to have a register bank (general, floating-point 104 // or access) and a raw register number (0-15). This would postpone the 105 // interpretation of the operand to the add*() methods and avoid the need 106 // for context-dependent parsing. However, we do things the current way 107 // because of the virtual getReg() method, which needs to distinguish 108 // between (say) %r0 used as a single register and %r0 used as a pair. 109 // Context-dependent parsing can also give us slightly better error 110 // messages when invalid pairs like %r1 are used. 111 struct RegOp { 112 RegisterKind Kind; 113 unsigned Num; 114 }; 115 116 // Base + Disp + Index, where Base and Index are LLVM registers or 0. 117 // MemKind says what type of memory this is and RegKind says what type 118 // the base register has (GR32Reg or GR64Reg). Length is the operand 119 // length for D(L,B)-style operands, otherwise it is null. 120 struct MemOp { 121 unsigned Base : 12; 122 unsigned Index : 12; 123 unsigned MemKind : 4; 124 unsigned RegKind : 4; 125 const MCExpr *Disp; 126 union { 127 const MCExpr *Imm; 128 unsigned Reg; 129 } Length; 130 }; 131 132 // Imm is an immediate operand, and Sym is an optional TLS symbol 133 // for use with a __tls_get_offset marker relocation. 134 struct ImmTLSOp { 135 const MCExpr *Imm; 136 const MCExpr *Sym; 137 }; 138 139 union { 140 TokenOp Token; 141 RegOp Reg; 142 const MCExpr *Imm; 143 ImmTLSOp ImmTLS; 144 MemOp Mem; 145 }; 146 147 void addExpr(MCInst &Inst, const MCExpr *Expr) const { 148 // Add as immediates when possible. Null MCExpr = 0. 149 if (!Expr) 150 Inst.addOperand(MCOperand::createImm(0)); 151 else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) 152 Inst.addOperand(MCOperand::createImm(CE->getValue())); 153 else 154 Inst.addOperand(MCOperand::createExpr(Expr)); 155 } 156 157 public: 158 SystemZOperand(OperandKind Kind, SMLoc StartLoc, SMLoc EndLoc) 159 : Kind(Kind), StartLoc(StartLoc), EndLoc(EndLoc) {} 160 161 // Create particular kinds of operand. 162 static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, 163 SMLoc EndLoc) { 164 return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc); 165 } 166 167 static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { 168 auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc); 169 Op->Token.Data = Str.data(); 170 Op->Token.Length = Str.size(); 171 return Op; 172 } 173 174 static std::unique_ptr<SystemZOperand> 175 createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { 176 auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc); 177 Op->Reg.Kind = Kind; 178 Op->Reg.Num = Num; 179 return Op; 180 } 181 182 static std::unique_ptr<SystemZOperand> 183 createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { 184 auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc); 185 Op->Imm = Expr; 186 return Op; 187 } 188 189 static std::unique_ptr<SystemZOperand> 190 createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, 191 const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, 192 unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { 193 auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc); 194 Op->Mem.MemKind = MemKind; 195 Op->Mem.RegKind = RegKind; 196 Op->Mem.Base = Base; 197 Op->Mem.Index = Index; 198 Op->Mem.Disp = Disp; 199 if (MemKind == BDLMem) 200 Op->Mem.Length.Imm = LengthImm; 201 if (MemKind == BDRMem) 202 Op->Mem.Length.Reg = LengthReg; 203 return Op; 204 } 205 206 static std::unique_ptr<SystemZOperand> 207 createImmTLS(const MCExpr *Imm, const MCExpr *Sym, 208 SMLoc StartLoc, SMLoc EndLoc) { 209 auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc); 210 Op->ImmTLS.Imm = Imm; 211 Op->ImmTLS.Sym = Sym; 212 return Op; 213 } 214 215 // Token operands 216 bool isToken() const override { 217 return Kind == KindToken; 218 } 219 StringRef getToken() const { 220 assert(Kind == KindToken && "Not a token"); 221 return StringRef(Token.Data, Token.Length); 222 } 223 224 // Register operands. 225 bool isReg() const override { 226 return Kind == KindReg; 227 } 228 bool isReg(RegisterKind RegKind) const { 229 return Kind == KindReg && Reg.Kind == RegKind; 230 } 231 MCRegister getReg() const override { 232 assert(Kind == KindReg && "Not a register"); 233 return Reg.Num; 234 } 235 236 // Immediate operands. 237 bool isImm() const override { 238 return Kind == KindImm; 239 } 240 bool isImm(int64_t MinValue, int64_t MaxValue) const { 241 return Kind == KindImm && inRange(Imm, MinValue, MaxValue, true); 242 } 243 const MCExpr *getImm() const { 244 assert(Kind == KindImm && "Not an immediate"); 245 return Imm; 246 } 247 248 // Immediate operands with optional TLS symbol. 249 bool isImmTLS() const { 250 return Kind == KindImmTLS; 251 } 252 253 const ImmTLSOp getImmTLS() const { 254 assert(Kind == KindImmTLS && "Not a TLS immediate"); 255 return ImmTLS; 256 } 257 258 // Memory operands. 259 bool isMem() const override { 260 return Kind == KindMem; 261 } 262 bool isMem(MemoryKind MemKind) const { 263 return (Kind == KindMem && 264 (Mem.MemKind == MemKind || 265 // A BDMem can be treated as a BDXMem in which the index 266 // register field is 0. 267 (Mem.MemKind == BDMem && MemKind == BDXMem))); 268 } 269 bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { 270 return isMem(MemKind) && Mem.RegKind == RegKind; 271 } 272 bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { 273 return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff, true); 274 } 275 bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { 276 return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287, true); 277 } 278 bool isMemDisp12Len4(RegisterKind RegKind) const { 279 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10); 280 } 281 bool isMemDisp12Len8(RegisterKind RegKind) const { 282 return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100); 283 } 284 285 const MemOp& getMem() const { 286 assert(Kind == KindMem && "Not a Mem operand"); 287 return Mem; 288 } 289 290 // Override MCParsedAsmOperand. 291 SMLoc getStartLoc() const override { return StartLoc; } 292 SMLoc getEndLoc() const override { return EndLoc; } 293 void print(raw_ostream &OS) const override; 294 295 /// getLocRange - Get the range between the first and last token of this 296 /// operand. 297 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 298 299 // Used by the TableGen code to add particular types of operand 300 // to an instruction. 301 void addRegOperands(MCInst &Inst, unsigned N) const { 302 assert(N == 1 && "Invalid number of operands"); 303 Inst.addOperand(MCOperand::createReg(getReg())); 304 } 305 void addImmOperands(MCInst &Inst, unsigned N) const { 306 assert(N == 1 && "Invalid number of operands"); 307 addExpr(Inst, getImm()); 308 } 309 void addBDAddrOperands(MCInst &Inst, unsigned N) const { 310 assert(N == 2 && "Invalid number of operands"); 311 assert(isMem(BDMem) && "Invalid operand type"); 312 Inst.addOperand(MCOperand::createReg(Mem.Base)); 313 addExpr(Inst, Mem.Disp); 314 } 315 void addBDXAddrOperands(MCInst &Inst, unsigned N) const { 316 assert(N == 3 && "Invalid number of operands"); 317 assert(isMem(BDXMem) && "Invalid operand type"); 318 Inst.addOperand(MCOperand::createReg(Mem.Base)); 319 addExpr(Inst, Mem.Disp); 320 Inst.addOperand(MCOperand::createReg(Mem.Index)); 321 } 322 void addBDLAddrOperands(MCInst &Inst, unsigned N) const { 323 assert(N == 3 && "Invalid number of operands"); 324 assert(isMem(BDLMem) && "Invalid operand type"); 325 Inst.addOperand(MCOperand::createReg(Mem.Base)); 326 addExpr(Inst, Mem.Disp); 327 addExpr(Inst, Mem.Length.Imm); 328 } 329 void addBDRAddrOperands(MCInst &Inst, unsigned N) const { 330 assert(N == 3 && "Invalid number of operands"); 331 assert(isMem(BDRMem) && "Invalid operand type"); 332 Inst.addOperand(MCOperand::createReg(Mem.Base)); 333 addExpr(Inst, Mem.Disp); 334 Inst.addOperand(MCOperand::createReg(Mem.Length.Reg)); 335 } 336 void addBDVAddrOperands(MCInst &Inst, unsigned N) const { 337 assert(N == 3 && "Invalid number of operands"); 338 assert(isMem(BDVMem) && "Invalid operand type"); 339 Inst.addOperand(MCOperand::createReg(Mem.Base)); 340 addExpr(Inst, Mem.Disp); 341 Inst.addOperand(MCOperand::createReg(Mem.Index)); 342 } 343 void addLXAAddrOperands(MCInst &Inst, unsigned N) const { 344 assert(N == 3 && "Invalid number of operands"); 345 assert(isMem(LXAMem) && "Invalid operand type"); 346 Inst.addOperand(MCOperand::createReg(Mem.Base)); 347 addExpr(Inst, Mem.Disp); 348 Inst.addOperand(MCOperand::createReg(Mem.Index)); 349 } 350 void addImmTLSOperands(MCInst &Inst, unsigned N) const { 351 assert(N == 2 && "Invalid number of operands"); 352 assert(Kind == KindImmTLS && "Invalid operand type"); 353 addExpr(Inst, ImmTLS.Imm); 354 if (ImmTLS.Sym) 355 addExpr(Inst, ImmTLS.Sym); 356 } 357 358 // Used by the TableGen code to check for particular operand types. 359 bool isGR32() const { return isReg(GR32Reg); } 360 bool isGRH32() const { return isReg(GRH32Reg); } 361 bool isGRX32() const { return false; } 362 bool isGR64() const { return isReg(GR64Reg); } 363 bool isGR128() const { return isReg(GR128Reg); } 364 bool isADDR32() const { return isReg(GR32Reg); } 365 bool isADDR64() const { return isReg(GR64Reg); } 366 bool isADDR128() const { return false; } 367 bool isFP32() const { return isReg(FP32Reg); } 368 bool isFP64() const { return isReg(FP64Reg); } 369 bool isFP128() const { return isReg(FP128Reg); } 370 bool isVR32() const { return isReg(VR32Reg); } 371 bool isVR64() const { return isReg(VR64Reg); } 372 bool isVF128() const { return false; } 373 bool isVR128() const { return isReg(VR128Reg); } 374 bool isAR32() const { return isReg(AR32Reg); } 375 bool isCR64() const { return isReg(CR64Reg); } 376 bool isAnyReg() const { return (isReg() || isImm(0, 15)); } 377 bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); } 378 bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); } 379 bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); } 380 bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); } 381 bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); } 382 bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); } 383 bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); } 384 bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); } 385 bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); } 386 bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); } 387 bool isLXAAddr64Disp20() const { return isMemDisp20(LXAMem, GR64Reg); } 388 bool isU1Imm() const { return isImm(0, 1); } 389 bool isU2Imm() const { return isImm(0, 3); } 390 bool isU3Imm() const { return isImm(0, 7); } 391 bool isU4Imm() const { return isImm(0, 15); } 392 bool isU8Imm() const { return isImm(0, 255); } 393 bool isS8Imm() const { return isImm(-128, 127); } 394 bool isU12Imm() const { return isImm(0, 4095); } 395 bool isU16Imm() const { return isImm(0, 65535); } 396 bool isS16Imm() const { return isImm(-32768, 32767); } 397 bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); } 398 bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); } 399 bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); } 400 }; 401 402 class SystemZAsmParser : public MCTargetAsmParser { 403 #define GET_ASSEMBLER_HEADER 404 #include "SystemZGenAsmMatcher.inc" 405 406 private: 407 MCAsmParser &Parser; 408 enum RegisterGroup { 409 RegGR, 410 RegFP, 411 RegV, 412 RegAR, 413 RegCR 414 }; 415 struct Register { 416 RegisterGroup Group; 417 unsigned Num; 418 SMLoc StartLoc, EndLoc; 419 }; 420 421 SystemZTargetStreamer &getTargetStreamer() { 422 assert(getParser().getStreamer().getTargetStreamer() && 423 "do not have a target streamer"); 424 MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); 425 return static_cast<SystemZTargetStreamer &>(TS); 426 } 427 428 bool parseRegister(Register &Reg, bool RequirePercent, 429 bool RestoreOnFailure = false); 430 431 bool parseIntegerRegister(Register &Reg, RegisterGroup Group); 432 433 ParseStatus parseRegister(OperandVector &Operands, RegisterKind Kind); 434 435 ParseStatus parseAnyRegister(OperandVector &Operands); 436 437 bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, 438 Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, 439 bool HasLength = false, bool HasVectorIndex = false); 440 bool parseAddressRegister(Register &Reg); 441 442 bool ParseDirectiveInsn(SMLoc L); 443 bool ParseDirectiveMachine(SMLoc L); 444 bool ParseGNUAttribute(SMLoc L); 445 446 ParseStatus parseAddress(OperandVector &Operands, MemoryKind MemKind, 447 RegisterKind RegKind); 448 449 ParseStatus parsePCRel(OperandVector &Operands, int64_t MinVal, 450 int64_t MaxVal, bool AllowTLS); 451 452 bool parseOperand(OperandVector &Operands, StringRef Mnemonic); 453 454 // Both the hlasm and gnu variants still rely on the basic gnu asm 455 // format with respect to inputs, clobbers, outputs etc. 456 // 457 // However, calling the overriden getAssemblerDialect() method in 458 // AsmParser is problematic. It either returns the AssemblerDialect field 459 // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is 460 // unset, otherwise it returns the private AssemblerDialect field in 461 // AsmParser. 462 // 463 // The problematic part is because, we forcibly set the inline asm dialect 464 // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query 465 // to the overriden getAssemblerDialect function in AsmParser.cpp, will 466 // not return the assembler dialect set in the respective MCAsmInfo instance. 467 // 468 // For this purpose, we explicitly query the SystemZMCAsmInfo instance 469 // here, to get the "correct" assembler dialect, and use it in various 470 // functions. 471 unsigned getMAIAssemblerDialect() { 472 return Parser.getContext().getAsmInfo()->getAssemblerDialect(); 473 } 474 475 // An alphabetic character in HLASM is a letter from 'A' through 'Z', 476 // or from 'a' through 'z', or '$', '_','#', or '@'. 477 inline bool isHLASMAlpha(char C) { 478 return isAlpha(C) || llvm::is_contained("_@#$", C); 479 } 480 481 // A digit in HLASM is a number from 0 to 9. 482 inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } 483 484 // Are we parsing using the AD_HLASM dialect? 485 inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } 486 487 // Are we parsing using the AD_GNU dialect? 488 inline bool isParsingGNU() { return getMAIAssemblerDialect() == AD_GNU; } 489 490 public: 491 SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, 492 const MCInstrInfo &MII, 493 const MCTargetOptions &Options) 494 : MCTargetAsmParser(Options, sti, MII), Parser(parser) { 495 MCAsmParserExtension::Initialize(Parser); 496 497 // Alias the .word directive to .short. 498 parser.addAliasForDirective(".word", ".short"); 499 500 // Initialize the set of available features. 501 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); 502 } 503 504 // Override MCTargetAsmParser. 505 ParseStatus parseDirective(AsmToken DirectiveID) override; 506 bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; 507 bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, 508 bool RequirePercent, bool RestoreOnFailure); 509 ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, 510 SMLoc &EndLoc) override; 511 bool parseInstruction(ParseInstructionInfo &Info, StringRef Name, 512 SMLoc NameLoc, OperandVector &Operands) override; 513 bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 514 OperandVector &Operands, MCStreamer &Out, 515 uint64_t &ErrorInfo, 516 bool MatchingInlineAsm) override; 517 bool isLabel(AsmToken &Token) override; 518 519 // Used by the TableGen code to parse particular operand types. 520 ParseStatus parseGR32(OperandVector &Operands) { 521 return parseRegister(Operands, GR32Reg); 522 } 523 ParseStatus parseGRH32(OperandVector &Operands) { 524 return parseRegister(Operands, GRH32Reg); 525 } 526 ParseStatus parseGRX32(OperandVector &Operands) { 527 llvm_unreachable("GRX32 should only be used for pseudo instructions"); 528 } 529 ParseStatus parseGR64(OperandVector &Operands) { 530 return parseRegister(Operands, GR64Reg); 531 } 532 ParseStatus parseGR128(OperandVector &Operands) { 533 return parseRegister(Operands, GR128Reg); 534 } 535 ParseStatus parseADDR32(OperandVector &Operands) { 536 // For the AsmParser, we will accept %r0 for ADDR32 as well. 537 return parseRegister(Operands, GR32Reg); 538 } 539 ParseStatus parseADDR64(OperandVector &Operands) { 540 // For the AsmParser, we will accept %r0 for ADDR64 as well. 541 return parseRegister(Operands, GR64Reg); 542 } 543 ParseStatus parseADDR128(OperandVector &Operands) { 544 llvm_unreachable("Shouldn't be used as an operand"); 545 } 546 ParseStatus parseFP32(OperandVector &Operands) { 547 return parseRegister(Operands, FP32Reg); 548 } 549 ParseStatus parseFP64(OperandVector &Operands) { 550 return parseRegister(Operands, FP64Reg); 551 } 552 ParseStatus parseFP128(OperandVector &Operands) { 553 return parseRegister(Operands, FP128Reg); 554 } 555 ParseStatus parseVR32(OperandVector &Operands) { 556 return parseRegister(Operands, VR32Reg); 557 } 558 ParseStatus parseVR64(OperandVector &Operands) { 559 return parseRegister(Operands, VR64Reg); 560 } 561 ParseStatus parseVF128(OperandVector &Operands) { 562 llvm_unreachable("Shouldn't be used as an operand"); 563 } 564 ParseStatus parseVR128(OperandVector &Operands) { 565 return parseRegister(Operands, VR128Reg); 566 } 567 ParseStatus parseAR32(OperandVector &Operands) { 568 return parseRegister(Operands, AR32Reg); 569 } 570 ParseStatus parseCR64(OperandVector &Operands) { 571 return parseRegister(Operands, CR64Reg); 572 } 573 ParseStatus parseAnyReg(OperandVector &Operands) { 574 return parseAnyRegister(Operands); 575 } 576 ParseStatus parseBDAddr32(OperandVector &Operands) { 577 return parseAddress(Operands, BDMem, GR32Reg); 578 } 579 ParseStatus parseBDAddr64(OperandVector &Operands) { 580 return parseAddress(Operands, BDMem, GR64Reg); 581 } 582 ParseStatus parseBDXAddr64(OperandVector &Operands) { 583 return parseAddress(Operands, BDXMem, GR64Reg); 584 } 585 ParseStatus parseBDLAddr64(OperandVector &Operands) { 586 return parseAddress(Operands, BDLMem, GR64Reg); 587 } 588 ParseStatus parseBDRAddr64(OperandVector &Operands) { 589 return parseAddress(Operands, BDRMem, GR64Reg); 590 } 591 ParseStatus parseBDVAddr64(OperandVector &Operands) { 592 return parseAddress(Operands, BDVMem, GR64Reg); 593 } 594 ParseStatus parseLXAAddr64(OperandVector &Operands) { 595 return parseAddress(Operands, LXAMem, GR64Reg); 596 } 597 ParseStatus parsePCRel12(OperandVector &Operands) { 598 return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false); 599 } 600 ParseStatus parsePCRel16(OperandVector &Operands) { 601 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false); 602 } 603 ParseStatus parsePCRel24(OperandVector &Operands) { 604 return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false); 605 } 606 ParseStatus parsePCRel32(OperandVector &Operands) { 607 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false); 608 } 609 ParseStatus parsePCRelTLS16(OperandVector &Operands) { 610 return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true); 611 } 612 ParseStatus parsePCRelTLS32(OperandVector &Operands) { 613 return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true); 614 } 615 }; 616 617 } // end anonymous namespace 618 619 #define GET_REGISTER_MATCHER 620 #define GET_SUBTARGET_FEATURE_NAME 621 #define GET_MATCHER_IMPLEMENTATION 622 #define GET_MNEMONIC_SPELL_CHECKER 623 #include "SystemZGenAsmMatcher.inc" 624 625 // Used for the .insn directives; contains information needed to parse the 626 // operands in the directive. 627 struct InsnMatchEntry { 628 StringRef Format; 629 uint64_t Opcode; 630 int32_t NumOperands; 631 MatchClassKind OperandKinds[7]; 632 }; 633 634 // For equal_range comparison. 635 struct CompareInsn { 636 bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { 637 return LHS.Format < RHS; 638 } 639 bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { 640 return LHS < RHS.Format; 641 } 642 bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { 643 return LHS.Format < RHS.Format; 644 } 645 }; 646 647 // Table initializing information for parsing the .insn directive. 648 static struct InsnMatchEntry InsnMatchTable[] = { 649 /* Format, Opcode, NumOperands, OperandKinds */ 650 { "e", SystemZ::InsnE, 1, 651 { MCK_U16Imm } }, 652 { "ri", SystemZ::InsnRI, 3, 653 { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, 654 { "rie", SystemZ::InsnRIE, 4, 655 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 656 { "ril", SystemZ::InsnRIL, 3, 657 { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, 658 { "rilu", SystemZ::InsnRILU, 3, 659 { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, 660 { "ris", SystemZ::InsnRIS, 5, 661 { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 662 { "rr", SystemZ::InsnRR, 3, 663 { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, 664 { "rre", SystemZ::InsnRRE, 3, 665 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, 666 { "rrf", SystemZ::InsnRRF, 5, 667 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, 668 { "rrs", SystemZ::InsnRRS, 5, 669 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, 670 { "rs", SystemZ::InsnRS, 4, 671 { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 672 { "rse", SystemZ::InsnRSE, 4, 673 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, 674 { "rsi", SystemZ::InsnRSI, 4, 675 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, 676 { "rsy", SystemZ::InsnRSY, 4, 677 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, 678 { "rx", SystemZ::InsnRX, 3, 679 { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 680 { "rxe", SystemZ::InsnRXE, 3, 681 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 682 { "rxf", SystemZ::InsnRXF, 4, 683 { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, 684 { "rxy", SystemZ::InsnRXY, 3, 685 { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, 686 { "s", SystemZ::InsnS, 2, 687 { MCK_U32Imm, MCK_BDAddr64Disp12 } }, 688 { "si", SystemZ::InsnSI, 3, 689 { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, 690 { "sil", SystemZ::InsnSIL, 3, 691 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, 692 { "siy", SystemZ::InsnSIY, 3, 693 { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, 694 { "ss", SystemZ::InsnSS, 4, 695 { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 696 { "sse", SystemZ::InsnSSE, 3, 697 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, 698 { "ssf", SystemZ::InsnSSF, 4, 699 { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, 700 { "vri", SystemZ::InsnVRI, 6, 701 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, 702 { "vrr", SystemZ::InsnVRR, 7, 703 { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, 704 MCK_U4Imm } }, 705 { "vrs", SystemZ::InsnVRS, 5, 706 { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, 707 { "vrv", SystemZ::InsnVRV, 4, 708 { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, 709 { "vrx", SystemZ::InsnVRX, 4, 710 { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, 711 { "vsi", SystemZ::InsnVSI, 4, 712 { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } 713 }; 714 715 static void printMCExpr(const MCExpr *E, raw_ostream &OS) { 716 if (!E) 717 return; 718 if (auto *CE = dyn_cast<MCConstantExpr>(E)) 719 OS << *CE; 720 else if (auto *UE = dyn_cast<MCUnaryExpr>(E)) 721 OS << *UE; 722 else if (auto *BE = dyn_cast<MCBinaryExpr>(E)) 723 OS << *BE; 724 else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E)) 725 OS << *SRE; 726 else 727 OS << *E; 728 } 729 730 void SystemZOperand::print(raw_ostream &OS) const { 731 switch (Kind) { 732 case KindToken: 733 OS << "Token:" << getToken(); 734 break; 735 case KindReg: 736 OS << "Reg:" << SystemZGNUInstPrinter::getRegisterName(getReg()); 737 break; 738 case KindImm: 739 OS << "Imm:"; 740 printMCExpr(getImm(), OS); 741 break; 742 case KindImmTLS: 743 OS << "ImmTLS:"; 744 printMCExpr(getImmTLS().Imm, OS); 745 if (getImmTLS().Sym) { 746 OS << ", "; 747 printMCExpr(getImmTLS().Sym, OS); 748 } 749 break; 750 case KindMem: { 751 const MemOp &Op = getMem(); 752 OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp); 753 if (Op.Base) { 754 OS << "("; 755 if (Op.MemKind == BDLMem) 756 OS << *cast<MCConstantExpr>(Op.Length.Imm) << ","; 757 else if (Op.MemKind == BDRMem) 758 OS << SystemZGNUInstPrinter::getRegisterName(Op.Length.Reg) << ","; 759 if (Op.Index) 760 OS << SystemZGNUInstPrinter::getRegisterName(Op.Index) << ","; 761 OS << SystemZGNUInstPrinter::getRegisterName(Op.Base); 762 OS << ")"; 763 } 764 break; 765 } 766 case KindInvalid: 767 break; 768 } 769 } 770 771 // Parse one register of the form %<prefix><number>. 772 bool SystemZAsmParser::parseRegister(Register &Reg, bool RequirePercent, 773 bool RestoreOnFailure) { 774 const AsmToken &PercentTok = Parser.getTok(); 775 bool HasPercent = PercentTok.is(AsmToken::Percent); 776 777 Reg.StartLoc = PercentTok.getLoc(); 778 779 if (RequirePercent && PercentTok.isNot(AsmToken::Percent)) 780 return Error(PercentTok.getLoc(), "register expected"); 781 782 if (HasPercent) { 783 Parser.Lex(); // Eat percent token. 784 } 785 786 // Expect a register name. 787 if (Parser.getTok().isNot(AsmToken::Identifier)) { 788 if (RestoreOnFailure && HasPercent) 789 getLexer().UnLex(PercentTok); 790 return Error(Reg.StartLoc, 791 HasPercent ? "invalid register" : "register expected"); 792 } 793 794 // Check that there's a prefix. 795 StringRef Name = Parser.getTok().getString(); 796 if (Name.size() < 2) { 797 if (RestoreOnFailure && HasPercent) 798 getLexer().UnLex(PercentTok); 799 return Error(Reg.StartLoc, "invalid register"); 800 } 801 char Prefix = Name[0]; 802 803 // Treat the rest of the register name as a register number. 804 if (Name.substr(1).getAsInteger(10, Reg.Num)) { 805 if (RestoreOnFailure && HasPercent) 806 getLexer().UnLex(PercentTok); 807 return Error(Reg.StartLoc, "invalid register"); 808 } 809 810 // Look for valid combinations of prefix and number. 811 if (Prefix == 'r' && Reg.Num < 16) 812 Reg.Group = RegGR; 813 else if (Prefix == 'f' && Reg.Num < 16) 814 Reg.Group = RegFP; 815 else if (Prefix == 'v' && Reg.Num < 32) 816 Reg.Group = RegV; 817 else if (Prefix == 'a' && Reg.Num < 16) 818 Reg.Group = RegAR; 819 else if (Prefix == 'c' && Reg.Num < 16) 820 Reg.Group = RegCR; 821 else { 822 if (RestoreOnFailure && HasPercent) 823 getLexer().UnLex(PercentTok); 824 return Error(Reg.StartLoc, "invalid register"); 825 } 826 827 Reg.EndLoc = Parser.getTok().getLoc(); 828 Parser.Lex(); 829 return false; 830 } 831 832 // Parse a register of kind Kind and add it to Operands. 833 ParseStatus SystemZAsmParser::parseRegister(OperandVector &Operands, 834 RegisterKind Kind) { 835 Register Reg; 836 RegisterGroup Group; 837 switch (Kind) { 838 case GR32Reg: 839 case GRH32Reg: 840 case GR64Reg: 841 case GR128Reg: 842 Group = RegGR; 843 break; 844 case FP32Reg: 845 case FP64Reg: 846 case FP128Reg: 847 Group = RegFP; 848 break; 849 case VR32Reg: 850 case VR64Reg: 851 case VR128Reg: 852 Group = RegV; 853 break; 854 case AR32Reg: 855 Group = RegAR; 856 break; 857 case CR64Reg: 858 Group = RegCR; 859 break; 860 } 861 862 // Handle register names of the form %<prefix><number> 863 if (isParsingGNU() && Parser.getTok().is(AsmToken::Percent)) { 864 if (parseRegister(Reg, /*RequirePercent=*/true)) 865 return ParseStatus::Failure; 866 867 // Check the parsed register group "Reg.Group" with the expected "Group" 868 // Have to error out if user specified wrong prefix. 869 switch (Group) { 870 case RegGR: 871 case RegFP: 872 case RegAR: 873 case RegCR: 874 if (Group != Reg.Group) 875 return Error(Reg.StartLoc, "invalid operand for instruction"); 876 break; 877 case RegV: 878 if (Reg.Group != RegV && Reg.Group != RegFP) 879 return Error(Reg.StartLoc, "invalid operand for instruction"); 880 break; 881 } 882 } else if (Parser.getTok().is(AsmToken::Integer)) { 883 if (parseIntegerRegister(Reg, Group)) 884 return ParseStatus::Failure; 885 } 886 // Otherwise we didn't match a register operand. 887 else 888 return ParseStatus::NoMatch; 889 890 // Determine the LLVM register number according to Kind. 891 const unsigned *Regs; 892 switch (Kind) { 893 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 894 case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; 895 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 896 case GR128Reg: Regs = SystemZMC::GR128Regs; break; 897 case FP32Reg: Regs = SystemZMC::FP32Regs; break; 898 case FP64Reg: Regs = SystemZMC::FP64Regs; break; 899 case FP128Reg: Regs = SystemZMC::FP128Regs; break; 900 case VR32Reg: Regs = SystemZMC::VR32Regs; break; 901 case VR64Reg: Regs = SystemZMC::VR64Regs; break; 902 case VR128Reg: Regs = SystemZMC::VR128Regs; break; 903 case AR32Reg: Regs = SystemZMC::AR32Regs; break; 904 case CR64Reg: Regs = SystemZMC::CR64Regs; break; 905 } 906 if (Regs[Reg.Num] == 0) 907 return Error(Reg.StartLoc, "invalid register pair"); 908 909 Operands.push_back( 910 SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc)); 911 return ParseStatus::Success; 912 } 913 914 // Parse any type of register (including integers) and add it to Operands. 915 ParseStatus SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { 916 SMLoc StartLoc = Parser.getTok().getLoc(); 917 918 // Handle integer values. 919 if (Parser.getTok().is(AsmToken::Integer)) { 920 const MCExpr *Register; 921 if (Parser.parseExpression(Register)) 922 return ParseStatus::Failure; 923 924 if (auto *CE = dyn_cast<MCConstantExpr>(Register)) { 925 int64_t Value = CE->getValue(); 926 if (Value < 0 || Value > 15) 927 return Error(StartLoc, "invalid register"); 928 } 929 930 SMLoc EndLoc = 931 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 932 933 Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc)); 934 } 935 else { 936 if (isParsingHLASM()) 937 return ParseStatus::NoMatch; 938 939 Register Reg; 940 if (parseRegister(Reg, /*RequirePercent=*/true)) 941 return ParseStatus::Failure; 942 943 if (Reg.Num > 15) 944 return Error(StartLoc, "invalid register"); 945 946 // Map to the correct register kind. 947 RegisterKind Kind; 948 unsigned RegNo; 949 if (Reg.Group == RegGR) { 950 Kind = GR64Reg; 951 RegNo = SystemZMC::GR64Regs[Reg.Num]; 952 } 953 else if (Reg.Group == RegFP) { 954 Kind = FP64Reg; 955 RegNo = SystemZMC::FP64Regs[Reg.Num]; 956 } 957 else if (Reg.Group == RegV) { 958 Kind = VR128Reg; 959 RegNo = SystemZMC::VR128Regs[Reg.Num]; 960 } 961 else if (Reg.Group == RegAR) { 962 Kind = AR32Reg; 963 RegNo = SystemZMC::AR32Regs[Reg.Num]; 964 } 965 else if (Reg.Group == RegCR) { 966 Kind = CR64Reg; 967 RegNo = SystemZMC::CR64Regs[Reg.Num]; 968 } 969 else { 970 return ParseStatus::Failure; 971 } 972 973 Operands.push_back(SystemZOperand::createReg(Kind, RegNo, 974 Reg.StartLoc, Reg.EndLoc)); 975 } 976 return ParseStatus::Success; 977 } 978 979 bool SystemZAsmParser::parseIntegerRegister(Register &Reg, 980 RegisterGroup Group) { 981 Reg.StartLoc = Parser.getTok().getLoc(); 982 // We have an integer token 983 const MCExpr *Register; 984 if (Parser.parseExpression(Register)) 985 return true; 986 987 const auto *CE = dyn_cast<MCConstantExpr>(Register); 988 if (!CE) 989 return true; 990 991 int64_t MaxRegNum = (Group == RegV) ? 31 : 15; 992 int64_t Value = CE->getValue(); 993 if (Value < 0 || Value > MaxRegNum) { 994 Error(Parser.getTok().getLoc(), "invalid register"); 995 return true; 996 } 997 998 // Assign the Register Number 999 Reg.Num = (unsigned)Value; 1000 Reg.Group = Group; 1001 Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1002 1003 // At this point, successfully parsed an integer register. 1004 return false; 1005 } 1006 1007 // Parse a memory operand into Reg1, Reg2, Disp, and Length. 1008 bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, 1009 bool &HaveReg2, Register &Reg2, 1010 const MCExpr *&Disp, const MCExpr *&Length, 1011 bool HasLength, bool HasVectorIndex) { 1012 // Parse the displacement, which must always be present. 1013 if (getParser().parseExpression(Disp)) 1014 return true; 1015 1016 // Parse the optional base and index. 1017 HaveReg1 = false; 1018 HaveReg2 = false; 1019 Length = nullptr; 1020 1021 // If we have a scenario as below: 1022 // vgef %v0, 0(0), 0 1023 // This is an example of a "BDVMem" instruction type. 1024 // 1025 // So when we parse this as an integer register, the register group 1026 // needs to be tied to "RegV". Usually when the prefix is passed in 1027 // as %<prefix><reg-number> its easy to check which group it should belong to 1028 // However, if we're passing in just the integer there's no real way to 1029 // "check" what register group it should belong to. 1030 // 1031 // When the user passes in the register as an integer, the user assumes that 1032 // the compiler is responsible for substituting it as the right kind of 1033 // register. Whereas, when the user specifies a "prefix", the onus is on 1034 // the user to make sure they pass in the right kind of register. 1035 // 1036 // The restriction only applies to the first Register (i.e. Reg1). Reg2 is 1037 // always a general register. Reg1 should be of group RegV if "HasVectorIndex" 1038 // (i.e. insn is of type BDVMem) is true. 1039 RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; 1040 1041 if (getLexer().is(AsmToken::LParen)) { 1042 Parser.Lex(); 1043 1044 if (isParsingGNU() && getLexer().is(AsmToken::Percent)) { 1045 // Parse the first register. 1046 HaveReg1 = true; 1047 if (parseRegister(Reg1, /*RequirePercent=*/true)) 1048 return true; 1049 } 1050 // So if we have an integer as the first token in ([tok1], ..), it could: 1051 // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of 1052 // instructions) 1053 // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) 1054 else if (getLexer().is(AsmToken::Integer)) { 1055 if (HasLength) { 1056 // Instruction has a "Length" field, safe to parse the first token as 1057 // the "Length" field 1058 if (getParser().parseExpression(Length)) 1059 return true; 1060 } else { 1061 // Otherwise, if the instruction has no "Length" field, parse the 1062 // token as a "Register". We don't have to worry about whether the 1063 // instruction is invalid here, because the caller will take care of 1064 // error reporting. 1065 HaveReg1 = true; 1066 if (parseIntegerRegister(Reg1, RegGroup)) 1067 return true; 1068 } 1069 } else { 1070 // If its not an integer or a percent token, then if the instruction 1071 // is reported to have a "Length" then, parse it as "Length". 1072 if (HasLength) { 1073 if (getParser().parseExpression(Length)) 1074 return true; 1075 } 1076 } 1077 1078 // Check whether there's a second register. 1079 if (getLexer().is(AsmToken::Comma)) { 1080 Parser.Lex(); 1081 HaveReg2 = true; 1082 1083 if (getLexer().is(AsmToken::Integer)) { 1084 if (parseIntegerRegister(Reg2, RegGR)) 1085 return true; 1086 } else if (isParsingGNU()) { 1087 if (Parser.getTok().is(AsmToken::Percent)) { 1088 if (parseRegister(Reg2, /*RequirePercent=*/true)) 1089 return true; 1090 } else { 1091 // GAS allows ",)" to indicate a missing base register. 1092 Reg2.Num = 0; 1093 Reg2.Group = RegGR; 1094 Reg2.StartLoc = Reg2.EndLoc = Parser.getTok().getLoc(); 1095 } 1096 } 1097 } 1098 1099 // Consume the closing bracket. 1100 if (getLexer().isNot(AsmToken::RParen)) 1101 return Error(Parser.getTok().getLoc(), "unexpected token in address"); 1102 Parser.Lex(); 1103 } 1104 return false; 1105 } 1106 1107 // Verify that Reg is a valid address register (base or index). 1108 bool 1109 SystemZAsmParser::parseAddressRegister(Register &Reg) { 1110 if (Reg.Group == RegV) { 1111 Error(Reg.StartLoc, "invalid use of vector addressing"); 1112 return true; 1113 } 1114 if (Reg.Group != RegGR) { 1115 Error(Reg.StartLoc, "invalid address register"); 1116 return true; 1117 } 1118 return false; 1119 } 1120 1121 // Parse a memory operand and add it to Operands. The other arguments 1122 // are as above. 1123 ParseStatus SystemZAsmParser::parseAddress(OperandVector &Operands, 1124 MemoryKind MemKind, 1125 RegisterKind RegKind) { 1126 SMLoc StartLoc = Parser.getTok().getLoc(); 1127 unsigned Base = 0, Index = 0, LengthReg = 0; 1128 Register Reg1, Reg2; 1129 bool HaveReg1, HaveReg2; 1130 const MCExpr *Disp; 1131 const MCExpr *Length; 1132 1133 bool HasLength = (MemKind == BDLMem) ? true : false; 1134 bool HasVectorIndex = (MemKind == BDVMem) ? true : false; 1135 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, 1136 HasVectorIndex)) 1137 return ParseStatus::Failure; 1138 1139 const unsigned *Regs; 1140 switch (RegKind) { 1141 case GR32Reg: Regs = SystemZMC::GR32Regs; break; 1142 case GR64Reg: Regs = SystemZMC::GR64Regs; break; 1143 default: llvm_unreachable("invalid RegKind"); 1144 } 1145 1146 switch (MemKind) { 1147 case BDMem: 1148 // If we have Reg1, it must be an address register. 1149 if (HaveReg1) { 1150 if (parseAddressRegister(Reg1)) 1151 return ParseStatus::Failure; 1152 Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; 1153 } 1154 // There must be no Reg2. 1155 if (HaveReg2) 1156 return Error(StartLoc, "invalid use of indexed addressing"); 1157 break; 1158 case BDXMem: 1159 case LXAMem: 1160 // If we have Reg1, it must be an address register. 1161 if (HaveReg1) { 1162 const unsigned *IndexRegs = Regs; 1163 if (MemKind == LXAMem) 1164 IndexRegs = SystemZMC::GR32Regs; 1165 1166 if (parseAddressRegister(Reg1)) 1167 return ParseStatus::Failure; 1168 // If there are two registers, the first one is the index and the 1169 // second is the base. If there is only a single register, it is 1170 // used as base with GAS and as index with HLASM. 1171 if (HaveReg2 || isParsingHLASM()) 1172 Index = Reg1.Num == 0 ? 0 : IndexRegs[Reg1.Num]; 1173 else 1174 Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; 1175 } 1176 // If we have Reg2, it must be an address register. 1177 if (HaveReg2) { 1178 if (parseAddressRegister(Reg2)) 1179 return ParseStatus::Failure; 1180 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; 1181 } 1182 break; 1183 case BDLMem: 1184 // If we have Reg2, it must be an address register. 1185 if (HaveReg2) { 1186 if (parseAddressRegister(Reg2)) 1187 return ParseStatus::Failure; 1188 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; 1189 } 1190 // We cannot support base+index addressing. 1191 if (HaveReg1 && HaveReg2) 1192 return Error(StartLoc, "invalid use of indexed addressing"); 1193 // We must have a length. 1194 if (!Length) 1195 return Error(StartLoc, "missing length in address"); 1196 break; 1197 case BDRMem: 1198 // We must have Reg1, and it must be a GPR. 1199 if (!HaveReg1 || Reg1.Group != RegGR) 1200 return Error(StartLoc, "invalid operand for instruction"); 1201 LengthReg = SystemZMC::GR64Regs[Reg1.Num]; 1202 // If we have Reg2, it must be an address register. 1203 if (HaveReg2) { 1204 if (parseAddressRegister(Reg2)) 1205 return ParseStatus::Failure; 1206 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; 1207 } 1208 break; 1209 case BDVMem: 1210 // We must have Reg1, and it must be a vector register. 1211 if (!HaveReg1 || Reg1.Group != RegV) 1212 return Error(StartLoc, "vector index required in address"); 1213 Index = SystemZMC::VR128Regs[Reg1.Num]; 1214 // In GAS mode, we must have Reg2, since a single register would be 1215 // interpreted as base register, which cannot be a vector register. 1216 if (isParsingGNU() && !HaveReg2) 1217 return Error(Reg1.StartLoc, "invalid use of vector addressing"); 1218 // If we have Reg2, it must be an address register. 1219 if (HaveReg2) { 1220 if (parseAddressRegister(Reg2)) 1221 return ParseStatus::Failure; 1222 Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; 1223 } 1224 break; 1225 } 1226 1227 SMLoc EndLoc = 1228 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1229 Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp, 1230 Index, Length, LengthReg, 1231 StartLoc, EndLoc)); 1232 return ParseStatus::Success; 1233 } 1234 1235 ParseStatus SystemZAsmParser::parseDirective(AsmToken DirectiveID) { 1236 StringRef IDVal = DirectiveID.getIdentifier(); 1237 1238 if (IDVal == ".insn") 1239 return ParseDirectiveInsn(DirectiveID.getLoc()); 1240 if (IDVal == ".machine") 1241 return ParseDirectiveMachine(DirectiveID.getLoc()); 1242 if (IDVal.starts_with(".gnu_attribute")) 1243 return ParseGNUAttribute(DirectiveID.getLoc()); 1244 1245 return ParseStatus::NoMatch; 1246 } 1247 1248 /// ParseDirectiveInsn 1249 /// ::= .insn [ format, encoding, (operands (, operands)*) ] 1250 bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { 1251 MCAsmParser &Parser = getParser(); 1252 1253 // Expect instruction format as identifier. 1254 StringRef Format; 1255 SMLoc ErrorLoc = Parser.getTok().getLoc(); 1256 if (Parser.parseIdentifier(Format)) 1257 return Error(ErrorLoc, "expected instruction format"); 1258 1259 SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; 1260 1261 // Find entry for this format in InsnMatchTable. 1262 auto EntryRange = 1263 std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable), 1264 Format, CompareInsn()); 1265 1266 // If first == second, couldn't find a match in the table. 1267 if (EntryRange.first == EntryRange.second) 1268 return Error(ErrorLoc, "unrecognized format"); 1269 1270 struct InsnMatchEntry *Entry = EntryRange.first; 1271 1272 // Format should match from equal_range. 1273 assert(Entry->Format == Format); 1274 1275 // Parse the following operands using the table's information. 1276 for (int I = 0; I < Entry->NumOperands; I++) { 1277 MatchClassKind Kind = Entry->OperandKinds[I]; 1278 1279 SMLoc StartLoc = Parser.getTok().getLoc(); 1280 1281 // Always expect commas as separators for operands. 1282 if (getLexer().isNot(AsmToken::Comma)) 1283 return Error(StartLoc, "unexpected token in directive"); 1284 Lex(); 1285 1286 // Parse operands. 1287 ParseStatus ResTy; 1288 if (Kind == MCK_AnyReg) 1289 ResTy = parseAnyReg(Operands); 1290 else if (Kind == MCK_VR128) 1291 ResTy = parseVR128(Operands); 1292 else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) 1293 ResTy = parseBDXAddr64(Operands); 1294 else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) 1295 ResTy = parseBDAddr64(Operands); 1296 else if (Kind == MCK_BDVAddr64Disp12) 1297 ResTy = parseBDVAddr64(Operands); 1298 else if (Kind == MCK_LXAAddr64Disp20) 1299 ResTy = parseLXAAddr64(Operands); 1300 else if (Kind == MCK_PCRel32) 1301 ResTy = parsePCRel32(Operands); 1302 else if (Kind == MCK_PCRel16) 1303 ResTy = parsePCRel16(Operands); 1304 else { 1305 // Only remaining operand kind is an immediate. 1306 const MCExpr *Expr; 1307 SMLoc StartLoc = Parser.getTok().getLoc(); 1308 1309 // Expect immediate expression. 1310 if (Parser.parseExpression(Expr)) 1311 return Error(StartLoc, "unexpected token in directive"); 1312 1313 SMLoc EndLoc = 1314 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1315 1316 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1317 ResTy = ParseStatus::Success; 1318 } 1319 1320 if (!ResTy.isSuccess()) 1321 return true; 1322 } 1323 1324 // Build the instruction with the parsed operands. 1325 MCInst Inst = MCInstBuilder(Entry->Opcode); 1326 1327 for (size_t I = 0; I < Operands.size(); I++) { 1328 MCParsedAsmOperand &Operand = *Operands[I]; 1329 MatchClassKind Kind = Entry->OperandKinds[I]; 1330 1331 // Verify operand. 1332 unsigned Res = validateOperandClass(Operand, Kind); 1333 if (Res != Match_Success) 1334 return Error(Operand.getStartLoc(), "unexpected operand type"); 1335 1336 // Add operands to instruction. 1337 SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); 1338 if (ZOperand.isReg()) 1339 ZOperand.addRegOperands(Inst, 1); 1340 else if (ZOperand.isMem(BDMem)) 1341 ZOperand.addBDAddrOperands(Inst, 2); 1342 else if (ZOperand.isMem(BDXMem)) 1343 ZOperand.addBDXAddrOperands(Inst, 3); 1344 else if (ZOperand.isMem(BDVMem)) 1345 ZOperand.addBDVAddrOperands(Inst, 3); 1346 else if (ZOperand.isMem(LXAMem)) 1347 ZOperand.addLXAAddrOperands(Inst, 3); 1348 else if (ZOperand.isImm()) 1349 ZOperand.addImmOperands(Inst, 1); 1350 else 1351 llvm_unreachable("unexpected operand type"); 1352 } 1353 1354 // Emit as a regular instruction. 1355 Parser.getStreamer().emitInstruction(Inst, getSTI()); 1356 1357 return false; 1358 } 1359 1360 /// ParseDirectiveMachine 1361 /// ::= .machine [ mcpu ] 1362 bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) { 1363 MCAsmParser &Parser = getParser(); 1364 if (Parser.getTok().isNot(AsmToken::Identifier) && 1365 Parser.getTok().isNot(AsmToken::String)) 1366 return TokError("unexpected token in '.machine' directive"); 1367 1368 StringRef CPU = Parser.getTok().getIdentifier(); 1369 Parser.Lex(); 1370 if (parseEOL()) 1371 return true; 1372 1373 MCSubtargetInfo &STI = copySTI(); 1374 STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, ""); 1375 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 1376 1377 getTargetStreamer().emitMachine(CPU); 1378 1379 return false; 1380 } 1381 1382 bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) { 1383 int64_t Tag; 1384 int64_t IntegerValue; 1385 if (!Parser.parseGNUAttribute(L, Tag, IntegerValue)) 1386 return Error(L, "malformed .gnu_attribute directive"); 1387 1388 // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2. 1389 if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) 1390 return Error(L, "unrecognized .gnu_attribute tag/value pair."); 1391 1392 Parser.getStreamer().emitGNUAttribute(Tag, IntegerValue); 1393 1394 return parseEOL(); 1395 } 1396 1397 bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, 1398 SMLoc &EndLoc, bool RequirePercent, 1399 bool RestoreOnFailure) { 1400 Register Reg; 1401 if (parseRegister(Reg, RequirePercent, RestoreOnFailure)) 1402 return true; 1403 if (Reg.Group == RegGR) 1404 RegNo = SystemZMC::GR64Regs[Reg.Num]; 1405 else if (Reg.Group == RegFP) 1406 RegNo = SystemZMC::FP64Regs[Reg.Num]; 1407 else if (Reg.Group == RegV) 1408 RegNo = SystemZMC::VR128Regs[Reg.Num]; 1409 else if (Reg.Group == RegAR) 1410 RegNo = SystemZMC::AR32Regs[Reg.Num]; 1411 else if (Reg.Group == RegCR) 1412 RegNo = SystemZMC::CR64Regs[Reg.Num]; 1413 StartLoc = Reg.StartLoc; 1414 EndLoc = Reg.EndLoc; 1415 return false; 1416 } 1417 1418 bool SystemZAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, 1419 SMLoc &EndLoc) { 1420 return ParseRegister(Reg, StartLoc, EndLoc, /*RequirePercent=*/false, 1421 /*RestoreOnFailure=*/false); 1422 } 1423 1424 ParseStatus SystemZAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, 1425 SMLoc &EndLoc) { 1426 bool Result = ParseRegister(Reg, StartLoc, EndLoc, /*RequirePercent=*/false, 1427 /*RestoreOnFailure=*/true); 1428 bool PendingErrors = getParser().hasPendingError(); 1429 getParser().clearPendingErrors(); 1430 if (PendingErrors) 1431 return ParseStatus::Failure; 1432 if (Result) 1433 return ParseStatus::NoMatch; 1434 return ParseStatus::Success; 1435 } 1436 1437 bool SystemZAsmParser::parseInstruction(ParseInstructionInfo &Info, 1438 StringRef Name, SMLoc NameLoc, 1439 OperandVector &Operands) { 1440 1441 // Apply mnemonic aliases first, before doing anything else, in 1442 // case the target uses it. 1443 applyMnemonicAliases(Name, getAvailableFeatures(), getMAIAssemblerDialect()); 1444 1445 Operands.push_back(SystemZOperand::createToken(Name, NameLoc)); 1446 1447 // Read the remaining operands. 1448 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1449 // Read the first operand. 1450 if (parseOperand(Operands, Name)) { 1451 return true; 1452 } 1453 1454 // Read any subsequent operands. 1455 while (getLexer().is(AsmToken::Comma)) { 1456 Parser.Lex(); 1457 1458 if (isParsingHLASM() && getLexer().is(AsmToken::Space)) 1459 return Error( 1460 Parser.getTok().getLoc(), 1461 "No space allowed between comma that separates operand entries"); 1462 1463 if (parseOperand(Operands, Name)) { 1464 return true; 1465 } 1466 } 1467 1468 // Under the HLASM variant, we could have the remark field 1469 // The remark field occurs after the operation entries 1470 // There is a space that separates the operation entries and the 1471 // remark field. 1472 if (isParsingHLASM() && getTok().is(AsmToken::Space)) { 1473 // We've confirmed that there is a Remark field. 1474 StringRef Remark(getLexer().LexUntilEndOfStatement()); 1475 Parser.Lex(); 1476 1477 // If there is nothing after the space, then there is nothing to emit 1478 // We could have a situation as this: 1479 // " \n" 1480 // After lexing above, we will have 1481 // "\n" 1482 // This isn't an explicit remark field, so we don't have to output 1483 // this as a comment. 1484 if (Remark.size()) 1485 // Output the entire Remarks Field as a comment 1486 getStreamer().AddComment(Remark); 1487 } 1488 1489 if (getLexer().isNot(AsmToken::EndOfStatement)) { 1490 SMLoc Loc = getLexer().getLoc(); 1491 return Error(Loc, "unexpected token in argument list"); 1492 } 1493 } 1494 1495 // Consume the EndOfStatement. 1496 Parser.Lex(); 1497 return false; 1498 } 1499 1500 bool SystemZAsmParser::parseOperand(OperandVector &Operands, 1501 StringRef Mnemonic) { 1502 // Check if the current operand has a custom associated parser, if so, try to 1503 // custom parse the operand, or fallback to the general approach. Force all 1504 // features to be available during the operand check, or else we will fail to 1505 // find the custom parser, and then we will later get an InvalidOperand error 1506 // instead of a MissingFeature errror. 1507 FeatureBitset AvailableFeatures = getAvailableFeatures(); 1508 FeatureBitset All; 1509 All.set(); 1510 setAvailableFeatures(All); 1511 ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic); 1512 setAvailableFeatures(AvailableFeatures); 1513 if (Res.isSuccess()) 1514 return false; 1515 1516 // If there wasn't a custom match, try the generic matcher below. Otherwise, 1517 // there was a match, but an error occurred, in which case, just return that 1518 // the operand parsing failed. 1519 if (Res.isFailure()) 1520 return true; 1521 1522 // Check for a register. All real register operands should have used 1523 // a context-dependent parse routine, which gives the required register 1524 // class. The code is here to mop up other cases, like those where 1525 // the instruction isn't recognized. 1526 if (isParsingGNU() && Parser.getTok().is(AsmToken::Percent)) { 1527 Register Reg; 1528 if (parseRegister(Reg, /*RequirePercent=*/true)) 1529 return true; 1530 Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc)); 1531 return false; 1532 } 1533 1534 // The only other type of operand is an immediate or address. As above, 1535 // real address operands should have used a context-dependent parse routine, 1536 // so we treat any plain expression as an immediate. 1537 SMLoc StartLoc = Parser.getTok().getLoc(); 1538 Register Reg1, Reg2; 1539 bool HaveReg1, HaveReg2; 1540 const MCExpr *Expr; 1541 const MCExpr *Length; 1542 if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length, 1543 /*HasLength*/ true, /*HasVectorIndex*/ true)) 1544 return true; 1545 // If the register combination is not valid for any instruction, reject it. 1546 // Otherwise, fall back to reporting an unrecognized instruction. 1547 if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV 1548 && parseAddressRegister(Reg1)) 1549 return true; 1550 if (HaveReg2 && parseAddressRegister(Reg2)) 1551 return true; 1552 1553 SMLoc EndLoc = 1554 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1555 if (HaveReg1 || HaveReg2 || Length) 1556 Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc)); 1557 else 1558 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1559 return false; 1560 } 1561 1562 bool SystemZAsmParser::matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1563 OperandVector &Operands, 1564 MCStreamer &Out, 1565 uint64_t &ErrorInfo, 1566 bool MatchingInlineAsm) { 1567 MCInst Inst; 1568 unsigned MatchResult; 1569 1570 unsigned Dialect = getMAIAssemblerDialect(); 1571 1572 FeatureBitset MissingFeatures; 1573 MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, 1574 MatchingInlineAsm, Dialect); 1575 switch (MatchResult) { 1576 case Match_Success: 1577 Inst.setLoc(IDLoc); 1578 Out.emitInstruction(Inst, getSTI()); 1579 return false; 1580 1581 case Match_MissingFeature: { 1582 assert(MissingFeatures.any() && "Unknown missing feature!"); 1583 // Special case the error message for the very common case where only 1584 // a single subtarget feature is missing 1585 std::string Msg = "instruction requires:"; 1586 for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { 1587 if (MissingFeatures[I]) { 1588 Msg += " "; 1589 Msg += getSubtargetFeatureName(I); 1590 } 1591 } 1592 return Error(IDLoc, Msg); 1593 } 1594 1595 case Match_InvalidOperand: { 1596 SMLoc ErrorLoc = IDLoc; 1597 if (ErrorInfo != ~0ULL) { 1598 if (ErrorInfo >= Operands.size()) 1599 return Error(IDLoc, "too few operands for instruction"); 1600 1601 ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); 1602 if (ErrorLoc == SMLoc()) 1603 ErrorLoc = IDLoc; 1604 } 1605 return Error(ErrorLoc, "invalid operand for instruction"); 1606 } 1607 1608 case Match_MnemonicFail: { 1609 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1610 std::string Suggestion = SystemZMnemonicSpellCheck( 1611 ((SystemZOperand &)*Operands[0]).getToken(), FBS, Dialect); 1612 return Error(IDLoc, "invalid instruction" + Suggestion, 1613 ((SystemZOperand &)*Operands[0]).getLocRange()); 1614 } 1615 } 1616 1617 llvm_unreachable("Unexpected match type"); 1618 } 1619 1620 ParseStatus SystemZAsmParser::parsePCRel(OperandVector &Operands, 1621 int64_t MinVal, int64_t MaxVal, 1622 bool AllowTLS) { 1623 MCContext &Ctx = getContext(); 1624 MCStreamer &Out = getStreamer(); 1625 const MCExpr *Expr; 1626 SMLoc StartLoc = Parser.getTok().getLoc(); 1627 if (getParser().parseExpression(Expr)) 1628 return ParseStatus::NoMatch; 1629 1630 auto IsOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool { 1631 if (auto *CE = dyn_cast<MCConstantExpr>(E)) { 1632 int64_t Value = CE->getValue(); 1633 if (Negate) 1634 Value = -Value; 1635 if ((Value & 1) || Value < MinVal || Value > MaxVal) 1636 return true; 1637 } 1638 return false; 1639 }; 1640 1641 // For consistency with the GNU assembler, treat immediates as offsets 1642 // from ".". 1643 if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) { 1644 if (isParsingHLASM()) 1645 return Error(StartLoc, "Expected PC-relative expression"); 1646 if (IsOutOfRangeConstant(CE, false)) 1647 return Error(StartLoc, "offset out of range"); 1648 int64_t Value = CE->getValue(); 1649 MCSymbol *Sym = Ctx.createTempSymbol(); 1650 Out.emitLabel(Sym); 1651 const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, 1652 Ctx); 1653 Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx); 1654 } 1655 1656 // For consistency with the GNU assembler, conservatively assume that a 1657 // constant offset must by itself be within the given size range. 1658 if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr)) 1659 if (IsOutOfRangeConstant(BE->getLHS(), false) || 1660 IsOutOfRangeConstant(BE->getRHS(), 1661 BE->getOpcode() == MCBinaryExpr::Sub)) 1662 return Error(StartLoc, "offset out of range"); 1663 1664 // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. 1665 const MCExpr *Sym = nullptr; 1666 if (AllowTLS && getLexer().is(AsmToken::Colon)) { 1667 Parser.Lex(); 1668 1669 if (Parser.getTok().isNot(AsmToken::Identifier)) 1670 return Error(Parser.getTok().getLoc(), "unexpected token"); 1671 1672 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; 1673 StringRef Name = Parser.getTok().getString(); 1674 if (Name == "tls_gdcall") 1675 Kind = MCSymbolRefExpr::VK_TLSGD; 1676 else if (Name == "tls_ldcall") 1677 Kind = MCSymbolRefExpr::VK_TLSLDM; 1678 else 1679 return Error(Parser.getTok().getLoc(), "unknown TLS tag"); 1680 Parser.Lex(); 1681 1682 if (Parser.getTok().isNot(AsmToken::Colon)) 1683 return Error(Parser.getTok().getLoc(), "unexpected token"); 1684 Parser.Lex(); 1685 1686 if (Parser.getTok().isNot(AsmToken::Identifier)) 1687 return Error(Parser.getTok().getLoc(), "unexpected token"); 1688 1689 StringRef Identifier = Parser.getTok().getString(); 1690 Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier), 1691 Kind, Ctx); 1692 Parser.Lex(); 1693 } 1694 1695 SMLoc EndLoc = 1696 SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1697 1698 if (AllowTLS) 1699 Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym, 1700 StartLoc, EndLoc)); 1701 else 1702 Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc)); 1703 1704 return ParseStatus::Success; 1705 } 1706 1707 bool SystemZAsmParser::isLabel(AsmToken &Token) { 1708 if (isParsingGNU()) 1709 return true; 1710 1711 // HLASM labels are ordinary symbols. 1712 // An HLASM label always starts at column 1. 1713 // An ordinary symbol syntax is laid out as follows: 1714 // Rules: 1715 // 1. Has to start with an "alphabetic character". Can be followed by up to 1716 // 62 alphanumeric characters. An "alphabetic character", in this scenario, 1717 // is a letter from 'A' through 'Z', or from 'a' through 'z', 1718 // or '$', '_', '#', or '@' 1719 // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. 1720 // are all treated as the same symbol. However, the processing for the case 1721 // folding will not be done in this function. 1722 StringRef RawLabel = Token.getString(); 1723 SMLoc Loc = Token.getLoc(); 1724 1725 // An HLASM label cannot be empty. 1726 if (!RawLabel.size()) 1727 return !Error(Loc, "HLASM Label cannot be empty"); 1728 1729 // An HLASM label cannot exceed greater than 63 characters. 1730 if (RawLabel.size() > 63) 1731 return !Error(Loc, "Maximum length for HLASM Label is 63 characters"); 1732 1733 // A label must start with an "alphabetic character". 1734 if (!isHLASMAlpha(RawLabel[0])) 1735 return !Error(Loc, "HLASM Label has to start with an alphabetic " 1736 "character or the underscore character"); 1737 1738 // Now, we've established that the length is valid 1739 // and the first character is alphabetic. 1740 // Check whether remaining string is alphanumeric. 1741 for (unsigned I = 1; I < RawLabel.size(); ++I) 1742 if (!isHLASMAlnum(RawLabel[I])) 1743 return !Error(Loc, "HLASM Label has to be alphanumeric"); 1744 1745 return true; 1746 } 1747 1748 // Force static initialization. 1749 // NOLINTNEXTLINE(readability-identifier-naming) 1750 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { 1751 RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); 1752 } 1753