1 //===-- SPIRVPrepareFunctions.cpp - modify function signatures --*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass modifies function signatures containing aggregate arguments 10 // and/or return value before IRTranslator. Information about the original 11 // signatures is stored in metadata. It is used during call lowering to 12 // restore correct SPIR-V types of function arguments and return values. 13 // This pass also substitutes some llvm intrinsic calls with calls to newly 14 // generated functions (as the Khronos LLVM/SPIR-V Translator does). 15 // 16 // NOTE: this pass is a module-level one due to the necessity to modify 17 // GVs/functions. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "SPIRV.h" 22 #include "SPIRVSubtarget.h" 23 #include "SPIRVTargetMachine.h" 24 #include "SPIRVUtils.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/CodeGen/IntrinsicLowering.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/IntrinsicsSPIRV.h" 32 #include "llvm/Transforms/Utils/Cloning.h" 33 #include "llvm/Transforms/Utils/LowerMemIntrinsics.h" 34 #include <regex> 35 36 using namespace llvm; 37 38 namespace llvm { 39 void initializeSPIRVPrepareFunctionsPass(PassRegistry &); 40 } 41 42 namespace { 43 44 class SPIRVPrepareFunctions : public ModulePass { 45 const SPIRVTargetMachine &TM; 46 bool substituteIntrinsicCalls(Function *F); 47 Function *removeAggregateTypesFromSignature(Function *F); 48 49 public: 50 static char ID; 51 SPIRVPrepareFunctions(const SPIRVTargetMachine &TM) : ModulePass(ID), TM(TM) { 52 initializeSPIRVPrepareFunctionsPass(*PassRegistry::getPassRegistry()); 53 } 54 55 bool runOnModule(Module &M) override; 56 57 StringRef getPassName() const override { return "SPIRV prepare functions"; } 58 59 void getAnalysisUsage(AnalysisUsage &AU) const override { 60 ModulePass::getAnalysisUsage(AU); 61 } 62 }; 63 64 } // namespace 65 66 char SPIRVPrepareFunctions::ID = 0; 67 68 INITIALIZE_PASS(SPIRVPrepareFunctions, "prepare-functions", 69 "SPIRV prepare functions", false, false) 70 71 std::string lowerLLVMIntrinsicName(IntrinsicInst *II) { 72 Function *IntrinsicFunc = II->getCalledFunction(); 73 assert(IntrinsicFunc && "Missing function"); 74 std::string FuncName = IntrinsicFunc->getName().str(); 75 std::replace(FuncName.begin(), FuncName.end(), '.', '_'); 76 FuncName = "spirv." + FuncName; 77 return FuncName; 78 } 79 80 static Function *getOrCreateFunction(Module *M, Type *RetTy, 81 ArrayRef<Type *> ArgTypes, 82 StringRef Name) { 83 FunctionType *FT = FunctionType::get(RetTy, ArgTypes, false); 84 Function *F = M->getFunction(Name); 85 if (F && F->getFunctionType() == FT) 86 return F; 87 Function *NewF = Function::Create(FT, GlobalValue::ExternalLinkage, Name, M); 88 if (F) 89 NewF->setDSOLocal(F->isDSOLocal()); 90 NewF->setCallingConv(CallingConv::SPIR_FUNC); 91 return NewF; 92 } 93 94 static bool lowerIntrinsicToFunction(IntrinsicInst *Intrinsic) { 95 // For @llvm.memset.* intrinsic cases with constant value and length arguments 96 // are emulated via "storing" a constant array to the destination. For other 97 // cases we wrap the intrinsic in @spirv.llvm_memset_* function and expand the 98 // intrinsic to a loop via expandMemSetAsLoop(). 99 if (auto *MSI = dyn_cast<MemSetInst>(Intrinsic)) 100 if (isa<Constant>(MSI->getValue()) && isa<ConstantInt>(MSI->getLength())) 101 return false; // It is handled later using OpCopyMemorySized. 102 103 Module *M = Intrinsic->getModule(); 104 std::string FuncName = lowerLLVMIntrinsicName(Intrinsic); 105 if (Intrinsic->isVolatile()) 106 FuncName += ".volatile"; 107 // Redirect @llvm.intrinsic.* call to @spirv.llvm_intrinsic_* 108 Function *F = M->getFunction(FuncName); 109 if (F) { 110 Intrinsic->setCalledFunction(F); 111 return true; 112 } 113 // TODO copy arguments attributes: nocapture writeonly. 114 FunctionCallee FC = 115 M->getOrInsertFunction(FuncName, Intrinsic->getFunctionType()); 116 auto IntrinsicID = Intrinsic->getIntrinsicID(); 117 Intrinsic->setCalledFunction(FC); 118 119 F = dyn_cast<Function>(FC.getCallee()); 120 assert(F && "Callee must be a function"); 121 122 switch (IntrinsicID) { 123 case Intrinsic::memset: { 124 auto *MSI = static_cast<MemSetInst *>(Intrinsic); 125 Argument *Dest = F->getArg(0); 126 Argument *Val = F->getArg(1); 127 Argument *Len = F->getArg(2); 128 Argument *IsVolatile = F->getArg(3); 129 Dest->setName("dest"); 130 Val->setName("val"); 131 Len->setName("len"); 132 IsVolatile->setName("isvolatile"); 133 BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", F); 134 IRBuilder<> IRB(EntryBB); 135 auto *MemSet = IRB.CreateMemSet(Dest, Val, Len, MSI->getDestAlign(), 136 MSI->isVolatile()); 137 IRB.CreateRetVoid(); 138 expandMemSetAsLoop(cast<MemSetInst>(MemSet)); 139 MemSet->eraseFromParent(); 140 break; 141 } 142 case Intrinsic::bswap: { 143 BasicBlock *EntryBB = BasicBlock::Create(M->getContext(), "entry", F); 144 IRBuilder<> IRB(EntryBB); 145 auto *BSwap = IRB.CreateIntrinsic(Intrinsic::bswap, Intrinsic->getType(), 146 F->getArg(0)); 147 IRB.CreateRet(BSwap); 148 IntrinsicLowering IL(M->getDataLayout()); 149 IL.LowerIntrinsicCall(BSwap); 150 break; 151 } 152 default: 153 break; 154 } 155 return true; 156 } 157 158 static std::string getAnnotation(Value *AnnoVal, Value *OptAnnoVal) { 159 if (auto *Ref = dyn_cast_or_null<GetElementPtrInst>(AnnoVal)) 160 AnnoVal = Ref->getOperand(0); 161 if (auto *Ref = dyn_cast_or_null<BitCastInst>(OptAnnoVal)) 162 OptAnnoVal = Ref->getOperand(0); 163 164 std::string Anno; 165 if (auto *C = dyn_cast_or_null<Constant>(AnnoVal)) { 166 StringRef Str; 167 if (getConstantStringInfo(C, Str)) 168 Anno = Str; 169 } 170 // handle optional annotation parameter in a way that Khronos Translator do 171 // (collect integers wrapped in a struct) 172 if (auto *C = dyn_cast_or_null<Constant>(OptAnnoVal); 173 C && C->getNumOperands()) { 174 Value *MaybeStruct = C->getOperand(0); 175 if (auto *Struct = dyn_cast<ConstantStruct>(MaybeStruct)) { 176 for (unsigned I = 0, E = Struct->getNumOperands(); I != E; ++I) { 177 if (auto *CInt = dyn_cast<ConstantInt>(Struct->getOperand(I))) 178 Anno += (I == 0 ? ": " : ", ") + 179 std::to_string(CInt->getType()->getIntegerBitWidth() == 1 180 ? CInt->getZExtValue() 181 : CInt->getSExtValue()); 182 } 183 } else if (auto *Struct = dyn_cast<ConstantAggregateZero>(MaybeStruct)) { 184 // { i32 i32 ... } zeroinitializer 185 for (unsigned I = 0, E = Struct->getType()->getStructNumElements(); 186 I != E; ++I) 187 Anno += I == 0 ? ": 0" : ", 0"; 188 } 189 } 190 return Anno; 191 } 192 193 static SmallVector<Metadata *> parseAnnotation(Value *I, 194 const std::string &Anno, 195 LLVMContext &Ctx, 196 Type *Int32Ty) { 197 // Try to parse the annotation string according to the following rules: 198 // annotation := ({kind} | {kind:value,value,...})+ 199 // kind := number 200 // value := number | string 201 static const std::regex R( 202 "\\{(\\d+)(?:[:,](\\d+|\"[^\"]*\")(?:,(\\d+|\"[^\"]*\"))*)?\\}"); 203 SmallVector<Metadata *> MDs; 204 int Pos = 0; 205 for (std::sregex_iterator 206 It = std::sregex_iterator(Anno.begin(), Anno.end(), R), 207 ItEnd = std::sregex_iterator(); 208 It != ItEnd; ++It) { 209 if (It->position() != Pos) 210 return SmallVector<Metadata *>{}; 211 Pos = It->position() + It->length(); 212 std::smatch Match = *It; 213 SmallVector<Metadata *> MDsItem; 214 for (std::size_t i = 1; i < Match.size(); ++i) { 215 std::ssub_match SMatch = Match[i]; 216 std::string Item = SMatch.str(); 217 if (Item.length() == 0) 218 break; 219 if (Item[0] == '"') { 220 Item = Item.substr(1, Item.length() - 2); 221 // Acceptable format of the string snippet is: 222 static const std::regex RStr("^(\\d+)(?:,(\\d+))*$"); 223 if (std::smatch MatchStr; std::regex_match(Item, MatchStr, RStr)) { 224 for (std::size_t SubIdx = 1; SubIdx < MatchStr.size(); ++SubIdx) 225 if (std::string SubStr = MatchStr[SubIdx].str(); SubStr.length()) 226 MDsItem.push_back(ConstantAsMetadata::get( 227 ConstantInt::get(Int32Ty, std::stoi(SubStr)))); 228 } else { 229 MDsItem.push_back(MDString::get(Ctx, Item)); 230 } 231 } else if (int32_t Num; llvm::to_integer(StringRef(Item), Num, 10)) { 232 MDsItem.push_back( 233 ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Num))); 234 } else { 235 MDsItem.push_back(MDString::get(Ctx, Item)); 236 } 237 } 238 if (MDsItem.size() == 0) 239 return SmallVector<Metadata *>{}; 240 MDs.push_back(MDNode::get(Ctx, MDsItem)); 241 } 242 return Pos == static_cast<int>(Anno.length()) ? MDs 243 : SmallVector<Metadata *>{}; 244 } 245 246 static void lowerPtrAnnotation(IntrinsicInst *II) { 247 LLVMContext &Ctx = II->getContext(); 248 Type *Int32Ty = Type::getInt32Ty(Ctx); 249 250 // Retrieve an annotation string from arguments. 251 Value *PtrArg = nullptr; 252 if (auto *BI = dyn_cast<BitCastInst>(II->getArgOperand(0))) 253 PtrArg = BI->getOperand(0); 254 else 255 PtrArg = II->getOperand(0); 256 std::string Anno = 257 getAnnotation(II->getArgOperand(1), 258 4 < II->arg_size() ? II->getArgOperand(4) : nullptr); 259 260 // Parse the annotation. 261 SmallVector<Metadata *> MDs = parseAnnotation(II, Anno, Ctx, Int32Ty); 262 263 // If the annotation string is not parsed successfully we don't know the 264 // format used and output it as a general UserSemantic decoration. 265 // Otherwise MDs is a Metadata tuple (a decoration list) in the format 266 // expected by `spirv.Decorations`. 267 if (MDs.size() == 0) { 268 auto UserSemantic = ConstantAsMetadata::get(ConstantInt::get( 269 Int32Ty, static_cast<uint32_t>(SPIRV::Decoration::UserSemantic))); 270 MDs.push_back(MDNode::get(Ctx, {UserSemantic, MDString::get(Ctx, Anno)})); 271 } 272 273 // Build the internal intrinsic function. 274 IRBuilder<> IRB(II->getParent()); 275 IRB.SetInsertPoint(II); 276 IRB.CreateIntrinsic( 277 Intrinsic::spv_assign_decoration, {PtrArg->getType()}, 278 {PtrArg, MetadataAsValue::get(Ctx, MDNode::get(Ctx, MDs))}); 279 II->replaceAllUsesWith(II->getOperand(0)); 280 } 281 282 static void lowerFunnelShifts(IntrinsicInst *FSHIntrinsic) { 283 // Get a separate function - otherwise, we'd have to rework the CFG of the 284 // current one. Then simply replace the intrinsic uses with a call to the new 285 // function. 286 // Generate LLVM IR for i* @spirv.llvm_fsh?_i* (i* %a, i* %b, i* %c) 287 Module *M = FSHIntrinsic->getModule(); 288 FunctionType *FSHFuncTy = FSHIntrinsic->getFunctionType(); 289 Type *FSHRetTy = FSHFuncTy->getReturnType(); 290 const std::string FuncName = lowerLLVMIntrinsicName(FSHIntrinsic); 291 Function *FSHFunc = 292 getOrCreateFunction(M, FSHRetTy, FSHFuncTy->params(), FuncName); 293 294 if (!FSHFunc->empty()) { 295 FSHIntrinsic->setCalledFunction(FSHFunc); 296 return; 297 } 298 BasicBlock *RotateBB = BasicBlock::Create(M->getContext(), "rotate", FSHFunc); 299 IRBuilder<> IRB(RotateBB); 300 Type *Ty = FSHFunc->getReturnType(); 301 // Build the actual funnel shift rotate logic. 302 // In the comments, "int" is used interchangeably with "vector of int 303 // elements". 304 FixedVectorType *VectorTy = dyn_cast<FixedVectorType>(Ty); 305 Type *IntTy = VectorTy ? VectorTy->getElementType() : Ty; 306 unsigned BitWidth = IntTy->getIntegerBitWidth(); 307 ConstantInt *BitWidthConstant = IRB.getInt({BitWidth, BitWidth}); 308 Value *BitWidthForInsts = 309 VectorTy 310 ? IRB.CreateVectorSplat(VectorTy->getNumElements(), BitWidthConstant) 311 : BitWidthConstant; 312 Value *RotateModVal = 313 IRB.CreateURem(/*Rotate*/ FSHFunc->getArg(2), BitWidthForInsts); 314 Value *FirstShift = nullptr, *SecShift = nullptr; 315 if (FSHIntrinsic->getIntrinsicID() == Intrinsic::fshr) { 316 // Shift the less significant number right, the "rotate" number of bits 317 // will be 0-filled on the left as a result of this regular shift. 318 FirstShift = IRB.CreateLShr(FSHFunc->getArg(1), RotateModVal); 319 } else { 320 // Shift the more significant number left, the "rotate" number of bits 321 // will be 0-filled on the right as a result of this regular shift. 322 FirstShift = IRB.CreateShl(FSHFunc->getArg(0), RotateModVal); 323 } 324 // We want the "rotate" number of the more significant int's LSBs (MSBs) to 325 // occupy the leftmost (rightmost) "0 space" left by the previous operation. 326 // Therefore, subtract the "rotate" number from the integer bitsize... 327 Value *SubRotateVal = IRB.CreateSub(BitWidthForInsts, RotateModVal); 328 if (FSHIntrinsic->getIntrinsicID() == Intrinsic::fshr) { 329 // ...and left-shift the more significant int by this number, zero-filling 330 // the LSBs. 331 SecShift = IRB.CreateShl(FSHFunc->getArg(0), SubRotateVal); 332 } else { 333 // ...and right-shift the less significant int by this number, zero-filling 334 // the MSBs. 335 SecShift = IRB.CreateLShr(FSHFunc->getArg(1), SubRotateVal); 336 } 337 // A simple binary addition of the shifted ints yields the final result. 338 IRB.CreateRet(IRB.CreateOr(FirstShift, SecShift)); 339 340 FSHIntrinsic->setCalledFunction(FSHFunc); 341 } 342 343 static void lowerExpectAssume(IntrinsicInst *II) { 344 // If we cannot use the SPV_KHR_expect_assume extension, then we need to 345 // ignore the intrinsic and move on. It should be removed later on by LLVM. 346 // Otherwise we should lower the intrinsic to the corresponding SPIR-V 347 // instruction. 348 // For @llvm.assume we have OpAssumeTrueKHR. 349 // For @llvm.expect we have OpExpectKHR. 350 // 351 // We need to lower this into a builtin and then the builtin into a SPIR-V 352 // instruction. 353 if (II->getIntrinsicID() == Intrinsic::assume) { 354 Function *F = Intrinsic::getOrInsertDeclaration( 355 II->getModule(), Intrinsic::SPVIntrinsics::spv_assume); 356 II->setCalledFunction(F); 357 } else if (II->getIntrinsicID() == Intrinsic::expect) { 358 Function *F = Intrinsic::getOrInsertDeclaration( 359 II->getModule(), Intrinsic::SPVIntrinsics::spv_expect, 360 {II->getOperand(0)->getType()}); 361 II->setCalledFunction(F); 362 } else { 363 llvm_unreachable("Unknown intrinsic"); 364 } 365 366 return; 367 } 368 369 static bool toSpvOverloadedIntrinsic(IntrinsicInst *II, Intrinsic::ID NewID, 370 ArrayRef<unsigned> OpNos) { 371 Function *F = nullptr; 372 if (OpNos.empty()) { 373 F = Intrinsic::getOrInsertDeclaration(II->getModule(), NewID); 374 } else { 375 SmallVector<Type *, 4> Tys; 376 for (unsigned OpNo : OpNos) 377 Tys.push_back(II->getOperand(OpNo)->getType()); 378 F = Intrinsic::getOrInsertDeclaration(II->getModule(), NewID, Tys); 379 } 380 II->setCalledFunction(F); 381 return true; 382 } 383 384 // Substitutes calls to LLVM intrinsics with either calls to SPIR-V intrinsics 385 // or calls to proper generated functions. Returns True if F was modified. 386 bool SPIRVPrepareFunctions::substituteIntrinsicCalls(Function *F) { 387 bool Changed = false; 388 for (BasicBlock &BB : *F) { 389 for (Instruction &I : BB) { 390 auto Call = dyn_cast<CallInst>(&I); 391 if (!Call) 392 continue; 393 Function *CF = Call->getCalledFunction(); 394 if (!CF || !CF->isIntrinsic()) 395 continue; 396 auto *II = cast<IntrinsicInst>(Call); 397 switch (II->getIntrinsicID()) { 398 case Intrinsic::memset: 399 case Intrinsic::bswap: 400 Changed |= lowerIntrinsicToFunction(II); 401 break; 402 case Intrinsic::fshl: 403 case Intrinsic::fshr: 404 lowerFunnelShifts(II); 405 Changed = true; 406 break; 407 case Intrinsic::assume: 408 case Intrinsic::expect: { 409 const SPIRVSubtarget &STI = TM.getSubtarget<SPIRVSubtarget>(*F); 410 if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) 411 lowerExpectAssume(II); 412 Changed = true; 413 } break; 414 case Intrinsic::lifetime_start: 415 Changed |= toSpvOverloadedIntrinsic( 416 II, Intrinsic::SPVIntrinsics::spv_lifetime_start, {1}); 417 break; 418 case Intrinsic::lifetime_end: 419 Changed |= toSpvOverloadedIntrinsic( 420 II, Intrinsic::SPVIntrinsics::spv_lifetime_end, {1}); 421 break; 422 case Intrinsic::ptr_annotation: 423 lowerPtrAnnotation(II); 424 Changed = true; 425 break; 426 } 427 } 428 } 429 return Changed; 430 } 431 432 // Returns F if aggregate argument/return types are not present or cloned F 433 // function with the types replaced by i32 types. The change in types is 434 // noted in 'spv.cloned_funcs' metadata for later restoration. 435 Function * 436 SPIRVPrepareFunctions::removeAggregateTypesFromSignature(Function *F) { 437 bool IsRetAggr = F->getReturnType()->isAggregateType(); 438 // Allow intrinsics with aggregate return type to reach GlobalISel 439 if (F->isIntrinsic() && IsRetAggr) 440 return F; 441 442 IRBuilder<> B(F->getContext()); 443 444 bool HasAggrArg = 445 std::any_of(F->arg_begin(), F->arg_end(), [](Argument &Arg) { 446 return Arg.getType()->isAggregateType(); 447 }); 448 bool DoClone = IsRetAggr || HasAggrArg; 449 if (!DoClone) 450 return F; 451 SmallVector<std::pair<int, Type *>, 4> ChangedTypes; 452 Type *RetType = IsRetAggr ? B.getInt32Ty() : F->getReturnType(); 453 if (IsRetAggr) 454 ChangedTypes.push_back(std::pair<int, Type *>(-1, F->getReturnType())); 455 SmallVector<Type *, 4> ArgTypes; 456 for (const auto &Arg : F->args()) { 457 if (Arg.getType()->isAggregateType()) { 458 ArgTypes.push_back(B.getInt32Ty()); 459 ChangedTypes.push_back( 460 std::pair<int, Type *>(Arg.getArgNo(), Arg.getType())); 461 } else 462 ArgTypes.push_back(Arg.getType()); 463 } 464 FunctionType *NewFTy = 465 FunctionType::get(RetType, ArgTypes, F->getFunctionType()->isVarArg()); 466 Function *NewF = 467 Function::Create(NewFTy, F->getLinkage(), F->getName(), *F->getParent()); 468 469 ValueToValueMapTy VMap; 470 auto NewFArgIt = NewF->arg_begin(); 471 for (auto &Arg : F->args()) { 472 StringRef ArgName = Arg.getName(); 473 NewFArgIt->setName(ArgName); 474 VMap[&Arg] = &(*NewFArgIt++); 475 } 476 SmallVector<ReturnInst *, 8> Returns; 477 478 CloneFunctionInto(NewF, F, VMap, CloneFunctionChangeType::LocalChangesOnly, 479 Returns); 480 NewF->takeName(F); 481 482 NamedMDNode *FuncMD = 483 F->getParent()->getOrInsertNamedMetadata("spv.cloned_funcs"); 484 SmallVector<Metadata *, 2> MDArgs; 485 MDArgs.push_back(MDString::get(B.getContext(), NewF->getName())); 486 for (auto &ChangedTyP : ChangedTypes) 487 MDArgs.push_back(MDNode::get( 488 B.getContext(), 489 {ConstantAsMetadata::get(B.getInt32(ChangedTyP.first)), 490 ValueAsMetadata::get(Constant::getNullValue(ChangedTyP.second))})); 491 MDNode *ThisFuncMD = MDNode::get(B.getContext(), MDArgs); 492 FuncMD->addOperand(ThisFuncMD); 493 494 for (auto *U : make_early_inc_range(F->users())) { 495 if (auto *CI = dyn_cast<CallInst>(U)) 496 CI->mutateFunctionType(NewF->getFunctionType()); 497 U->replaceUsesOfWith(F, NewF); 498 } 499 500 // register the mutation 501 if (RetType != F->getReturnType()) 502 TM.getSubtarget<SPIRVSubtarget>(*F).getSPIRVGlobalRegistry()->addMutated( 503 NewF, F->getReturnType()); 504 return NewF; 505 } 506 507 bool SPIRVPrepareFunctions::runOnModule(Module &M) { 508 bool Changed = false; 509 for (Function &F : M) { 510 Changed |= substituteIntrinsicCalls(&F); 511 Changed |= sortBlocks(F); 512 } 513 514 std::vector<Function *> FuncsWorklist; 515 for (auto &F : M) 516 FuncsWorklist.push_back(&F); 517 518 for (auto *F : FuncsWorklist) { 519 Function *NewF = removeAggregateTypesFromSignature(F); 520 521 if (NewF != F) { 522 F->eraseFromParent(); 523 Changed = true; 524 } 525 } 526 return Changed; 527 } 528 529 ModulePass * 530 llvm::createSPIRVPrepareFunctionsPass(const SPIRVTargetMachine &TM) { 531 return new SPIRVPrepareFunctions(TM); 532 } 533