xref: /llvm-project/llvm/lib/Target/RISCV/MCTargetDesc/RISCVBaseInfo.cpp (revision 82d5dd28b4de7245088f7ed40da37f8cf80461e4)
1 //===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone enum definitions for the RISC-V target
10 // useful for the compiler back-end and the MC libraries.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RISCVBaseInfo.h"
15 #include "llvm/MC/MCInst.h"
16 #include "llvm/MC/MCRegisterInfo.h"
17 #include "llvm/MC/MCSubtargetInfo.h"
18 #include "llvm/Support/raw_ostream.h"
19 #include "llvm/TargetParser/TargetParser.h"
20 #include "llvm/TargetParser/Triple.h"
21 
22 namespace llvm {
23 
24 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
25 
26 namespace RISCVSysReg {
27 #define GET_SysRegsList_IMPL
28 #include "RISCVGenSearchableTables.inc"
29 } // namespace RISCVSysReg
30 
31 namespace RISCVInsnOpcode {
32 #define GET_RISCVOpcodesList_IMPL
33 #include "RISCVGenSearchableTables.inc"
34 } // namespace RISCVInsnOpcode
35 
36 namespace RISCVABI {
37 ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits,
38                      StringRef ABIName) {
39   auto TargetABI = getTargetABI(ABIName);
40   bool IsRV64 = TT.isArch64Bit();
41   bool IsRVE = FeatureBits[RISCV::FeatureStdExtE];
42 
43   if (!ABIName.empty() && TargetABI == ABI_Unknown) {
44     errs()
45         << "'" << ABIName
46         << "' is not a recognized ABI for this target (ignoring target-abi)\n";
47   } else if (ABIName.starts_with("ilp32") && IsRV64) {
48     errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
49               "target-abi)\n";
50     TargetABI = ABI_Unknown;
51   } else if (ABIName.starts_with("lp64") && !IsRV64) {
52     errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
53               "target-abi)\n";
54     TargetABI = ABI_Unknown;
55   } else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E &&
56              TargetABI != ABI_Unknown) {
57     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
58     errs()
59         << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
60     TargetABI = ABI_Unknown;
61   } else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E &&
62              TargetABI != ABI_Unknown) {
63     // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
64     errs()
65         << "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n";
66     TargetABI = ABI_Unknown;
67   }
68 
69   if ((TargetABI == RISCVABI::ABI::ABI_ILP32E ||
70        (TargetABI == ABI_Unknown && IsRVE && !IsRV64)) &&
71       FeatureBits[RISCV::FeatureStdExtD])
72     report_fatal_error("ILP32E cannot be used with the D ISA extension");
73 
74   if (TargetABI != ABI_Unknown)
75     return TargetABI;
76 
77   // If no explicit ABI is given, try to compute the default ABI.
78   auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits);
79   if (!ISAInfo)
80     report_fatal_error(ISAInfo.takeError());
81   return getTargetABI((*ISAInfo)->computeDefaultABI());
82 }
83 
84 ABI getTargetABI(StringRef ABIName) {
85   auto TargetABI = StringSwitch<ABI>(ABIName)
86                        .Case("ilp32", ABI_ILP32)
87                        .Case("ilp32f", ABI_ILP32F)
88                        .Case("ilp32d", ABI_ILP32D)
89                        .Case("ilp32e", ABI_ILP32E)
90                        .Case("lp64", ABI_LP64)
91                        .Case("lp64f", ABI_LP64F)
92                        .Case("lp64d", ABI_LP64D)
93                        .Case("lp64e", ABI_LP64E)
94                        .Default(ABI_Unknown);
95   return TargetABI;
96 }
97 
98 // To avoid the BP value clobbered by a function call, we need to choose a
99 // callee saved register to save the value. RV32E only has X8 and X9 as callee
100 // saved registers and X8 will be used as fp. So we choose X9 as bp.
101 MCRegister getBPReg() { return RISCV::X9; }
102 
103 // Returns the register holding shadow call stack pointer.
104 MCRegister getSCSPReg() { return RISCV::X3; }
105 
106 } // namespace RISCVABI
107 
108 namespace RISCVFeatures {
109 
110 void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
111   if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
112     report_fatal_error("RV64 target requires an RV64 CPU");
113   if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit])
114     report_fatal_error("RV32 target requires an RV32 CPU");
115   if (FeatureBits[RISCV::Feature32Bit] &&
116       FeatureBits[RISCV::Feature64Bit])
117     report_fatal_error("RV32 and RV64 can't be combined");
118 }
119 
120 llvm::Expected<std::unique_ptr<RISCVISAInfo>>
121 parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) {
122   unsigned XLen = IsRV64 ? 64 : 32;
123   std::vector<std::string> FeatureVector;
124   // Convert FeatureBitset to FeatureVector.
125   for (auto Feature : RISCVFeatureKV) {
126     if (FeatureBits[Feature.Value] &&
127         llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
128       FeatureVector.push_back(std::string("+") + Feature.Key);
129   }
130   return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector);
131 }
132 
133 } // namespace RISCVFeatures
134 
135 // Include the auto-generated portion of the compress emitter.
136 #define GEN_UNCOMPRESS_INSTR
137 #define GEN_COMPRESS_INSTR
138 #include "RISCVGenCompressInstEmitter.inc"
139 
140 bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI,
141                         const MCSubtargetInfo &STI) {
142   return compressInst(OutInst, MI, STI);
143 }
144 
145 bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI,
146                           const MCSubtargetInfo &STI) {
147   return uncompressInst(OutInst, MI, STI);
148 }
149 
150 // Lookup table for fli.s for entries 2-31.
151 static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = {
152     {0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00},
153     {0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00},
154     {0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10},
155     {0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01},
156     {0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00},
157     {0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11},
158     {0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10},
159     {0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00},
160     {0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00},
161     {0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10},
162 };
163 
164 int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) {
165   assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() ||
166           &FPImm.getSemantics() == &APFloat::IEEEdouble() ||
167           &FPImm.getSemantics() == &APFloat::IEEEhalf()) &&
168          "Unexpected semantics");
169 
170   // Handle the minimum normalized value which is different for each type.
171   if (FPImm.isSmallestNormalized() && !FPImm.isNegative())
172     return 1;
173 
174   // Convert to single precision to use its lookup table.
175   bool LosesInfo;
176   APFloat::opStatus Status = FPImm.convert(
177       APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo);
178   if (Status != APFloat::opOK || LosesInfo)
179     return -1;
180 
181   APInt Imm = FPImm.bitcastToAPInt();
182 
183   if (Imm.extractBitsAsZExtValue(21, 0) != 0)
184     return -1;
185 
186   bool Sign = Imm.extractBitsAsZExtValue(1, 31);
187   uint8_t Mantissa = Imm.extractBitsAsZExtValue(2, 21);
188   uint8_t Exp = Imm.extractBitsAsZExtValue(8, 23);
189 
190   auto EMI = llvm::lower_bound(LoadFP32ImmArr, std::make_pair(Exp, Mantissa));
191   if (EMI == std::end(LoadFP32ImmArr) || EMI->first != Exp ||
192       EMI->second != Mantissa)
193     return -1;
194 
195   // Table doesn't have entry 0 or 1.
196   int Entry = std::distance(std::begin(LoadFP32ImmArr), EMI) + 2;
197 
198   // The only legal negative value is -1.0(entry 0). 1.0 is entry 16.
199   if (Sign) {
200     if (Entry == 16)
201       return 0;
202     return -1;
203   }
204 
205   return Entry;
206 }
207 
208 float RISCVLoadFPImm::getFPImm(unsigned Imm) {
209   assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate");
210 
211   // Entry 0 is -1.0, the only negative value. Entry 16 is 1.0.
212   uint32_t Sign = 0;
213   if (Imm == 0) {
214     Sign = 0b1;
215     Imm = 16;
216   }
217 
218   uint32_t Exp = LoadFP32ImmArr[Imm - 2].first;
219   uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second;
220 
221   uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21;
222   return bit_cast<float>(I);
223 }
224 
225 void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) {
226   OS << "{ra";
227   if (SlistEncode > 4) {
228     OS << ", s0";
229     if (SlistEncode == 15)
230       OS << "-s11";
231     else if (SlistEncode > 5 && SlistEncode <= 14)
232       OS << "-s" << (SlistEncode - 5);
233   }
234   OS << "}";
235 }
236 
237 } // namespace llvm
238