xref: /llvm-project/llvm/lib/Target/PowerPC/PPCVSXFMAMutate.cpp (revision 806a936b36553f284c2c68e67fd60abc75b200e6)
1 //===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass mutates the form of VSX FMA instructions to avoid unnecessary
10 // copies.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "PPC.h"
15 #include "PPCInstrInfo.h"
16 #include "PPCTargetMachine.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveIntervals.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/PseudoSourceValue.h"
26 #include "llvm/CodeGen/ScheduleDAG.h"
27 #include "llvm/CodeGen/SlotIndexes.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/MC/TargetRegistry.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 
35 using namespace llvm;
36 
37 // Temporarily disable FMA mutation by default, since it doesn't handle
38 // cross-basic-block intervals well.
39 // See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html
40 //      http://reviews.llvm.org/D17087
41 static cl::opt<bool> DisableVSXFMAMutate(
42     "disable-ppc-vsx-fma-mutation",
43     cl::desc("Disable VSX FMA instruction mutation"), cl::init(true),
44     cl::Hidden);
45 
46 #define DEBUG_TYPE "ppc-vsx-fma-mutate"
47 
48 namespace llvm { namespace PPC {
49   int getAltVSXFMAOpcode(uint16_t Opcode);
50 } }
51 
52 namespace {
53   // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
54   // (Altivec and scalar floating-point registers), we need to transform the
55   // copies into subregister copies with other restrictions.
56   struct PPCVSXFMAMutate : public MachineFunctionPass {
57     static char ID;
58     PPCVSXFMAMutate() : MachineFunctionPass(ID) {
59       initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
60     }
61 
62     LiveIntervals *LIS;
63     const PPCInstrInfo *TII;
64 
65 protected:
66     bool processBlock(MachineBasicBlock &MBB) {
67       bool Changed = false;
68 
69       MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
70       const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
71       for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
72            I != IE; ++I) {
73         MachineInstr &MI = *I;
74 
75         // The default (A-type) VSX FMA form kills the addend (it is taken from
76         // the target register, which is then updated to reflect the result of
77         // the FMA). If the instruction, however, kills one of the registers
78         // used for the product, then we can use the M-form instruction (which
79         // will take that value from the to-be-defined register).
80 
81         int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
82         if (AltOpc == -1)
83           continue;
84 
85         // This pass is run after register coalescing, and so we're looking for
86         // a situation like this:
87         //   ...
88         //   %5 = COPY %9; VSLRC:%5,%9
89         //   %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
90         //                         implicit %rm; VSLRC:%5,%17,%16
91         //   ...
92         //   %9<def,tied1> = XSMADDADP %9<tied0>, %17, %19,
93         //                         implicit %rm; VSLRC:%9,%17,%19
94         //   ...
95         // Where we can eliminate the copy by changing from the A-type to the
96         // M-type instruction. Specifically, for this example, this means:
97         //   %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
98         //                         implicit %rm; VSLRC:%5,%17,%16
99         // is replaced by:
100         //   %16<def,tied1> = XSMADDMDP %16<tied0>, %18, %9,
101         //                         implicit %rm; VSLRC:%16,%18,%9
102         // and we remove: %5 = COPY %9; VSLRC:%5,%9
103 
104         SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
105 
106         VNInfo *AddendValNo =
107             LIS->getInterval(MI.getOperand(1).getReg()).Query(FMAIdx).valueIn();
108 
109         // This can be null if the register is undef.
110         if (!AddendValNo)
111           continue;
112 
113         MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
114 
115         // The addend and this instruction must be in the same block.
116 
117         if (!AddendMI || AddendMI->getParent() != MI.getParent())
118           continue;
119 
120         // The addend must be a full copy within the same register class.
121 
122         if (!AddendMI->isFullCopy())
123           continue;
124 
125         Register AddendSrcReg = AddendMI->getOperand(1).getReg();
126         if (AddendSrcReg.isVirtual()) {
127           if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
128               MRI.getRegClass(AddendSrcReg))
129             continue;
130         } else {
131           // If AddendSrcReg is a physical register, make sure the destination
132           // register class contains it.
133           if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
134                 ->contains(AddendSrcReg))
135             continue;
136         }
137 
138         // In theory, there could be other uses of the addend copy before this
139         // fma.  We could deal with this, but that would require additional
140         // logic below and I suspect it will not occur in any relevant
141         // situations.  Additionally, check whether the copy source is killed
142         // prior to the fma.  In order to replace the addend here with the
143         // source of the copy, it must still be live here.  We can't use
144         // interval testing for a physical register, so as long as we're
145         // walking the MIs we may as well test liveness here.
146         //
147         // FIXME: There is a case that occurs in practice, like this:
148         //   %9 = COPY %f1; VSSRC:%9
149         //   ...
150         //   %6 = COPY %9; VSSRC:%6,%9
151         //   %7 = COPY %9; VSSRC:%7,%9
152         //   %9<def,tied1> = XSMADDASP %9<tied0>, %1, %4; VSSRC:
153         //   %6<def,tied1> = XSMADDASP %6<tied0>, %1, %2; VSSRC:
154         //   %7<def,tied1> = XSMADDASP %7<tied0>, %1, %3; VSSRC:
155         // which prevents an otherwise-profitable transformation.
156         bool OtherUsers = false, KillsAddendSrc = false;
157         for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
158              J != JE; --J) {
159           if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
160             OtherUsers = true;
161             break;
162           }
163           if (J->modifiesRegister(AddendSrcReg, TRI) ||
164               J->killsRegister(AddendSrcReg, TRI)) {
165             KillsAddendSrc = true;
166             break;
167           }
168         }
169 
170         if (OtherUsers || KillsAddendSrc)
171           continue;
172 
173 
174         // The transformation doesn't work well with things like:
175         //    %5 = A-form-op %5, %11, %5;
176         // unless %11 is also a kill, so skip when it is not,
177         // and check operand 3 to see it is also a kill to handle the case:
178         //   %5 = A-form-op %5, %5, %11;
179         // where %5 and %11 are both kills. This case would be skipped
180         // otherwise.
181         Register OldFMAReg = MI.getOperand(0).getReg();
182 
183         // Find one of the product operands that is killed by this instruction.
184         unsigned KilledProdOp = 0, OtherProdOp = 0;
185         Register Reg2 = MI.getOperand(2).getReg();
186         Register Reg3 = MI.getOperand(3).getReg();
187         if (LIS->getInterval(Reg2).Query(FMAIdx).isKill()
188             && Reg2 != OldFMAReg) {
189           KilledProdOp = 2;
190           OtherProdOp  = 3;
191         } else if (LIS->getInterval(Reg3).Query(FMAIdx).isKill()
192             && Reg3 != OldFMAReg) {
193           KilledProdOp = 3;
194           OtherProdOp  = 2;
195         }
196 
197         // If there are no usable killed product operands, then this
198         // transformation is likely not profitable.
199         if (!KilledProdOp)
200           continue;
201 
202         // If the addend copy is used only by this MI, then the addend source
203         // register is likely not live here. This could be fixed (based on the
204         // legality checks above, the live range for the addend source register
205         // could be extended), but it seems likely that such a trivial copy can
206         // be coalesced away later, and thus is not worth the effort.
207         if (AddendSrcReg.isVirtual() &&
208             !LIS->getInterval(AddendSrcReg).liveAt(FMAIdx))
209           continue;
210 
211         // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
212 
213         Register KilledProdReg = MI.getOperand(KilledProdOp).getReg();
214         Register OtherProdReg = MI.getOperand(OtherProdOp).getReg();
215 
216         unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
217         unsigned KilledProdSubReg = MI.getOperand(KilledProdOp).getSubReg();
218         unsigned OtherProdSubReg = MI.getOperand(OtherProdOp).getSubReg();
219 
220         bool AddRegKill = AddendMI->getOperand(1).isKill();
221         bool KilledProdRegKill = MI.getOperand(KilledProdOp).isKill();
222         bool OtherProdRegKill = MI.getOperand(OtherProdOp).isKill();
223 
224         bool AddRegUndef = AddendMI->getOperand(1).isUndef();
225         bool KilledProdRegUndef = MI.getOperand(KilledProdOp).isUndef();
226         bool OtherProdRegUndef = MI.getOperand(OtherProdOp).isUndef();
227 
228         // If there isn't a class that fits, we can't perform the transform.
229         // This is needed for correctness with a mixture of VSX and Altivec
230         // instructions to make sure that a low VSX register is not assigned to
231         // the Altivec instruction.
232         if (!MRI.constrainRegClass(KilledProdReg,
233                                    MRI.getRegClass(OldFMAReg)))
234           continue;
235 
236         assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
237                "Addend copy not tied to old FMA output!");
238 
239         LLVM_DEBUG(dbgs() << "VSX FMA Mutation:\n    " << MI);
240 
241         MI.getOperand(0).setReg(KilledProdReg);
242         MI.getOperand(1).setReg(KilledProdReg);
243         MI.getOperand(3).setReg(AddendSrcReg);
244 
245         MI.getOperand(0).setSubReg(KilledProdSubReg);
246         MI.getOperand(1).setSubReg(KilledProdSubReg);
247         MI.getOperand(3).setSubReg(AddSubReg);
248 
249         MI.getOperand(1).setIsKill(KilledProdRegKill);
250         MI.getOperand(3).setIsKill(AddRegKill);
251 
252         MI.getOperand(1).setIsUndef(KilledProdRegUndef);
253         MI.getOperand(3).setIsUndef(AddRegUndef);
254 
255         MI.setDesc(TII->get(AltOpc));
256 
257         // If the addend is also a multiplicand, replace it with the addend
258         // source in both places.
259         if (OtherProdReg == AddendMI->getOperand(0).getReg()) {
260           MI.getOperand(2).setReg(AddendSrcReg);
261           MI.getOperand(2).setSubReg(AddSubReg);
262           MI.getOperand(2).setIsKill(AddRegKill);
263           MI.getOperand(2).setIsUndef(AddRegUndef);
264         } else {
265           MI.getOperand(2).setReg(OtherProdReg);
266           MI.getOperand(2).setSubReg(OtherProdSubReg);
267           MI.getOperand(2).setIsKill(OtherProdRegKill);
268           MI.getOperand(2).setIsUndef(OtherProdRegUndef);
269         }
270 
271         LLVM_DEBUG(dbgs() << " -> " << MI);
272 
273         // The killed product operand was killed here, so we can reuse it now
274         // for the result of the fma.
275 
276         LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
277         VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
278         for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
279              UI != UE;) {
280           MachineOperand &UseMO = *UI;
281           MachineInstr *UseMI = UseMO.getParent();
282           ++UI;
283 
284           // Don't replace the result register of the copy we're about to erase.
285           if (UseMI == AddendMI)
286             continue;
287 
288           UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI);
289         }
290 
291         // Recalculate the live intervals of the killed product operand.
292         LIS->removeInterval(KilledProdReg);
293         LiveInterval &NewFMAInt =
294             LIS->createAndComputeVirtRegInterval(KilledProdReg);
295 
296         LLVM_DEBUG(dbgs() << "  extended: " << NewFMAInt << '\n');
297         (void)NewFMAInt;
298 
299         // Extend the live interval of the addend source (it might end at the
300         // copy to be removed, or somewhere in between there and here). This
301         // is necessary only if it is a physical register.
302         if (!AddendSrcReg.isVirtual())
303           for (MCRegUnit Unit : TRI->regunits(AddendSrcReg.asMCReg())) {
304             LiveRange &AddendSrcRange = LIS->getRegUnit(Unit);
305             AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB),
306                                          FMAIdx.getRegSlot());
307             LLVM_DEBUG(dbgs() << "  extended: " << AddendSrcRange << '\n');
308           }
309 
310         FMAInt.removeValNo(FMAValNo);
311         LLVM_DEBUG(dbgs() << "  trimmed:  " << FMAInt << '\n');
312 
313         // Remove the (now unused) copy.
314 
315         LLVM_DEBUG(dbgs() << "  removing: " << *AddendMI << '\n');
316         LIS->RemoveMachineInstrFromMaps(*AddendMI);
317         AddendMI->eraseFromParent();
318 
319         Changed = true;
320       }
321 
322       return Changed;
323     }
324 
325 public:
326     bool runOnMachineFunction(MachineFunction &MF) override {
327       if (skipFunction(MF.getFunction()))
328         return false;
329 
330       // If we don't have VSX then go ahead and return without doing
331       // anything.
332       const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
333       if (!STI.hasVSX())
334         return false;
335 
336       LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS();
337 
338       TII = STI.getInstrInfo();
339 
340       bool Changed = false;
341 
342       if (DisableVSXFMAMutate)
343         return Changed;
344 
345       for (MachineBasicBlock &B : llvm::make_early_inc_range(MF))
346         if (processBlock(B))
347           Changed = true;
348 
349       return Changed;
350     }
351 
352     void getAnalysisUsage(AnalysisUsage &AU) const override {
353       AU.addRequired<LiveIntervalsWrapperPass>();
354       AU.addPreserved<LiveIntervalsWrapperPass>();
355       AU.addRequired<SlotIndexesWrapperPass>();
356       AU.addPreserved<SlotIndexesWrapperPass>();
357       AU.addRequired<MachineDominatorTreeWrapperPass>();
358       AU.addPreserved<MachineDominatorTreeWrapperPass>();
359       MachineFunctionPass::getAnalysisUsage(AU);
360     }
361   };
362 }
363 
364 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
365                       "PowerPC VSX FMA Mutation", false, false)
366 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
367 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
368 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
369 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
370                     "PowerPC VSX FMA Mutation", false, false)
371 
372 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
373 
374 char PPCVSXFMAMutate::ID = 0;
375 FunctionPass *llvm::createPPCVSXFMAMutatePass() {
376   return new PPCVSXFMAMutate();
377 }
378