1 //===------ PPCLoopInstrFormPrep.cpp - Loop Instr Form Prep Pass ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a pass to prepare loops for ppc preferred addressing 10 // modes, leveraging different instruction form. (eg: DS/DQ form, D/DS form with 11 // update) 12 // Additional PHIs are created for loop induction variables used by load/store 13 // instructions so that preferred addressing modes can be used. 14 // 15 // 1: DS/DQ form preparation, prepare the load/store instructions so that they 16 // can satisfy the DS/DQ form displacement requirements. 17 // Generically, this means transforming loops like this: 18 // for (int i = 0; i < n; ++i) { 19 // unsigned long x1 = *(unsigned long *)(p + i + 5); 20 // unsigned long x2 = *(unsigned long *)(p + i + 9); 21 // } 22 // 23 // to look like this: 24 // 25 // unsigned NewP = p + 5; 26 // for (int i = 0; i < n; ++i) { 27 // unsigned long x1 = *(unsigned long *)(i + NewP); 28 // unsigned long x2 = *(unsigned long *)(i + NewP + 4); 29 // } 30 // 31 // 2: D/DS form with update preparation, prepare the load/store instructions so 32 // that we can use update form to do pre-increment. 33 // Generically, this means transforming loops like this: 34 // for (int i = 0; i < n; ++i) 35 // array[i] = c; 36 // 37 // to look like this: 38 // 39 // T *p = array[-1]; 40 // for (int i = 0; i < n; ++i) 41 // *++p = c; 42 // 43 // 3: common multiple chains for the load/stores with same offsets in the loop, 44 // so that we can reuse the offsets and reduce the register pressure in the 45 // loop. This transformation can also increase the loop ILP as now each chain 46 // uses its own loop induction add/addi. But this will increase the number of 47 // add/addi in the loop. 48 // 49 // Generically, this means transforming loops like this: 50 // 51 // char *p; 52 // A1 = p + base1 53 // A2 = p + base1 + offset 54 // B1 = p + base2 55 // B2 = p + base2 + offset 56 // 57 // for (int i = 0; i < n; i++) 58 // unsigned long x1 = *(unsigned long *)(A1 + i); 59 // unsigned long x2 = *(unsigned long *)(A2 + i) 60 // unsigned long x3 = *(unsigned long *)(B1 + i); 61 // unsigned long x4 = *(unsigned long *)(B2 + i); 62 // } 63 // 64 // to look like this: 65 // 66 // A1_new = p + base1 // chain 1 67 // B1_new = p + base2 // chain 2, now inside the loop, common offset is 68 // // reused. 69 // 70 // for (long long i = 0; i < n; i+=count) { 71 // unsigned long x1 = *(unsigned long *)(A1_new + i); 72 // unsigned long x2 = *(unsigned long *)((A1_new + i) + offset); 73 // unsigned long x3 = *(unsigned long *)(B1_new + i); 74 // unsigned long x4 = *(unsigned long *)((B1_new + i) + offset); 75 // } 76 //===----------------------------------------------------------------------===// 77 78 #include "PPC.h" 79 #include "PPCSubtarget.h" 80 #include "PPCTargetMachine.h" 81 #include "llvm/ADT/DepthFirstIterator.h" 82 #include "llvm/ADT/SmallPtrSet.h" 83 #include "llvm/ADT/SmallSet.h" 84 #include "llvm/ADT/SmallVector.h" 85 #include "llvm/ADT/Statistic.h" 86 #include "llvm/Analysis/LoopInfo.h" 87 #include "llvm/Analysis/ScalarEvolution.h" 88 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 89 #include "llvm/IR/BasicBlock.h" 90 #include "llvm/IR/CFG.h" 91 #include "llvm/IR/Dominators.h" 92 #include "llvm/IR/Instruction.h" 93 #include "llvm/IR/Instructions.h" 94 #include "llvm/IR/IntrinsicInst.h" 95 #include "llvm/IR/IntrinsicsPowerPC.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Value.h" 98 #include "llvm/InitializePasses.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Debug.h" 103 #include "llvm/Transforms/Scalar.h" 104 #include "llvm/Transforms/Utils.h" 105 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 106 #include "llvm/Transforms/Utils/Local.h" 107 #include "llvm/Transforms/Utils/LoopUtils.h" 108 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 109 #include <cassert> 110 #include <cmath> 111 #include <utility> 112 113 #define DEBUG_TYPE "ppc-loop-instr-form-prep" 114 115 using namespace llvm; 116 117 static cl::opt<unsigned> 118 MaxVarsPrep("ppc-formprep-max-vars", cl::Hidden, cl::init(24), 119 cl::desc("Potential common base number threshold per function " 120 "for PPC loop prep")); 121 122 static cl::opt<bool> PreferUpdateForm("ppc-formprep-prefer-update", 123 cl::init(true), cl::Hidden, 124 cl::desc("prefer update form when ds form is also a update form")); 125 126 static cl::opt<bool> EnableUpdateFormForNonConstInc( 127 "ppc-formprep-update-nonconst-inc", cl::init(false), cl::Hidden, 128 cl::desc("prepare update form when the load/store increment is a loop " 129 "invariant non-const value.")); 130 131 static cl::opt<bool> EnableChainCommoning( 132 "ppc-formprep-chain-commoning", cl::init(false), cl::Hidden, 133 cl::desc("Enable chain commoning in PPC loop prepare pass.")); 134 135 // Sum of following 3 per loop thresholds for all loops can not be larger 136 // than MaxVarsPrep. 137 // now the thresholds for each kind prep are exterimental values on Power9. 138 static cl::opt<unsigned> MaxVarsUpdateForm("ppc-preinc-prep-max-vars", 139 cl::Hidden, cl::init(3), 140 cl::desc("Potential PHI threshold per loop for PPC loop prep of update " 141 "form")); 142 143 static cl::opt<unsigned> MaxVarsDSForm("ppc-dsprep-max-vars", 144 cl::Hidden, cl::init(3), 145 cl::desc("Potential PHI threshold per loop for PPC loop prep of DS form")); 146 147 static cl::opt<unsigned> MaxVarsDQForm("ppc-dqprep-max-vars", 148 cl::Hidden, cl::init(8), 149 cl::desc("Potential PHI threshold per loop for PPC loop prep of DQ form")); 150 151 // Commoning chain will reduce the register pressure, so we don't consider about 152 // the PHI nodes number. 153 // But commoning chain will increase the addi/add number in the loop and also 154 // increase loop ILP. Maximum chain number should be same with hardware 155 // IssueWidth, because we won't benefit from ILP if the parallel chains number 156 // is bigger than IssueWidth. We assume there are 2 chains in one bucket, so 157 // there would be 4 buckets at most on P9(IssueWidth is 8). 158 static cl::opt<unsigned> MaxVarsChainCommon( 159 "ppc-chaincommon-max-vars", cl::Hidden, cl::init(4), 160 cl::desc("Bucket number per loop for PPC loop chain common")); 161 162 // If would not be profitable if the common base has only one load/store, ISEL 163 // should already be able to choose best load/store form based on offset for 164 // single load/store. Set minimal profitable value default to 2 and make it as 165 // an option. 166 static cl::opt<unsigned> DispFormPrepMinThreshold("ppc-dispprep-min-threshold", 167 cl::Hidden, cl::init(2), 168 cl::desc("Minimal common base load/store instructions triggering DS/DQ form " 169 "preparation")); 170 171 static cl::opt<unsigned> ChainCommonPrepMinThreshold( 172 "ppc-chaincommon-min-threshold", cl::Hidden, cl::init(4), 173 cl::desc("Minimal common base load/store instructions triggering chain " 174 "commoning preparation. Must be not smaller than 4")); 175 176 STATISTIC(PHINodeAlreadyExistsUpdate, "PHI node already in pre-increment form"); 177 STATISTIC(PHINodeAlreadyExistsDS, "PHI node already in DS form"); 178 STATISTIC(PHINodeAlreadyExistsDQ, "PHI node already in DQ form"); 179 STATISTIC(DSFormChainRewritten, "Num of DS form chain rewritten"); 180 STATISTIC(DQFormChainRewritten, "Num of DQ form chain rewritten"); 181 STATISTIC(UpdFormChainRewritten, "Num of update form chain rewritten"); 182 STATISTIC(ChainCommoningRewritten, "Num of commoning chains"); 183 184 namespace { 185 struct BucketElement { 186 BucketElement(const SCEV *O, Instruction *I) : Offset(O), Instr(I) {} 187 BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {} 188 189 const SCEV *Offset; 190 Instruction *Instr; 191 }; 192 193 struct Bucket { 194 Bucket(const SCEV *B, Instruction *I) 195 : BaseSCEV(B), Elements(1, BucketElement(I)) { 196 ChainSize = 0; 197 } 198 199 // The base of the whole bucket. 200 const SCEV *BaseSCEV; 201 202 // All elements in the bucket. In the bucket, the element with the BaseSCEV 203 // has no offset and all other elements are stored as offsets to the 204 // BaseSCEV. 205 SmallVector<BucketElement, 16> Elements; 206 207 // The potential chains size. This is used for chain commoning only. 208 unsigned ChainSize; 209 210 // The base for each potential chain. This is used for chain commoning only. 211 SmallVector<BucketElement, 16> ChainBases; 212 }; 213 214 // "UpdateForm" is not a real PPC instruction form, it stands for dform 215 // load/store with update like ldu/stdu, or Prefetch intrinsic. 216 // For DS form instructions, their displacements must be multiple of 4. 217 // For DQ form instructions, their displacements must be multiple of 16. 218 enum PrepForm { UpdateForm = 1, DSForm = 4, DQForm = 16, ChainCommoning }; 219 220 class PPCLoopInstrFormPrep : public FunctionPass { 221 public: 222 static char ID; // Pass ID, replacement for typeid 223 224 PPCLoopInstrFormPrep() : FunctionPass(ID) { 225 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); 226 } 227 228 PPCLoopInstrFormPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { 229 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry()); 230 } 231 232 void getAnalysisUsage(AnalysisUsage &AU) const override { 233 AU.addPreserved<DominatorTreeWrapperPass>(); 234 AU.addRequired<LoopInfoWrapperPass>(); 235 AU.addPreserved<LoopInfoWrapperPass>(); 236 AU.addRequired<ScalarEvolutionWrapperPass>(); 237 } 238 239 bool runOnFunction(Function &F) override; 240 241 private: 242 PPCTargetMachine *TM = nullptr; 243 const PPCSubtarget *ST; 244 DominatorTree *DT; 245 LoopInfo *LI; 246 ScalarEvolution *SE; 247 bool PreserveLCSSA; 248 bool HasCandidateForPrepare; 249 250 /// Successful preparation number for Update/DS/DQ form in all inner most 251 /// loops. One successful preparation will put one common base out of loop, 252 /// this may leads to register presure like LICM does. 253 /// Make sure total preparation number can be controlled by option. 254 unsigned SuccPrepCount; 255 256 bool runOnLoop(Loop *L); 257 258 /// Check if required PHI node is already exist in Loop \p L. 259 bool alreadyPrepared(Loop *L, Instruction *MemI, 260 const SCEV *BasePtrStartSCEV, 261 const SCEV *BasePtrIncSCEV, PrepForm Form); 262 263 /// Get the value which defines the increment SCEV \p BasePtrIncSCEV. 264 Value *getNodeForInc(Loop *L, Instruction *MemI, 265 const SCEV *BasePtrIncSCEV); 266 267 /// Common chains to reuse offsets for a loop to reduce register pressure. 268 bool chainCommoning(Loop *L, SmallVector<Bucket, 16> &Buckets); 269 270 /// Find out the potential commoning chains and their bases. 271 bool prepareBasesForCommoningChains(Bucket &BucketChain); 272 273 /// Rewrite load/store according to the common chains. 274 bool 275 rewriteLoadStoresForCommoningChains(Loop *L, Bucket &Bucket, 276 SmallSet<BasicBlock *, 16> &BBChanged); 277 278 /// Collect condition matched(\p isValidCandidate() returns true) 279 /// candidates in Loop \p L. 280 SmallVector<Bucket, 16> collectCandidates( 281 Loop *L, 282 std::function<bool(const Instruction *, Value *, const Type *)> 283 isValidCandidate, 284 std::function<bool(const SCEV *)> isValidDiff, 285 unsigned MaxCandidateNum); 286 287 /// Add a candidate to candidates \p Buckets if diff between candidate and 288 /// one base in \p Buckets matches \p isValidDiff. 289 void addOneCandidate(Instruction *MemI, const SCEV *LSCEV, 290 SmallVector<Bucket, 16> &Buckets, 291 std::function<bool(const SCEV *)> isValidDiff, 292 unsigned MaxCandidateNum); 293 294 /// Prepare all candidates in \p Buckets for update form. 295 bool updateFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets); 296 297 /// Prepare all candidates in \p Buckets for displacement form, now for 298 /// ds/dq. 299 bool dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, PrepForm Form); 300 301 /// Prepare for one chain \p BucketChain, find the best base element and 302 /// update all other elements in \p BucketChain accordingly. 303 /// \p Form is used to find the best base element. 304 /// If success, best base element must be stored as the first element of 305 /// \p BucketChain. 306 /// Return false if no base element found, otherwise return true. 307 bool prepareBaseForDispFormChain(Bucket &BucketChain, PrepForm Form); 308 309 /// Prepare for one chain \p BucketChain, find the best base element and 310 /// update all other elements in \p BucketChain accordingly. 311 /// If success, best base element must be stored as the first element of 312 /// \p BucketChain. 313 /// Return false if no base element found, otherwise return true. 314 bool prepareBaseForUpdateFormChain(Bucket &BucketChain); 315 316 /// Rewrite load/store instructions in \p BucketChain according to 317 /// preparation. 318 bool rewriteLoadStores(Loop *L, Bucket &BucketChain, 319 SmallSet<BasicBlock *, 16> &BBChanged, 320 PrepForm Form); 321 322 /// Rewrite for the base load/store of a chain. 323 std::pair<Instruction *, Instruction *> 324 rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, 325 Instruction *BaseMemI, bool CanPreInc, PrepForm Form, 326 SCEVExpander &SCEVE, SmallPtrSet<Value *, 16> &DeletedPtrs); 327 328 /// Rewrite for the other load/stores of a chain according to the new \p 329 /// Base. 330 Instruction * 331 rewriteForBucketElement(std::pair<Instruction *, Instruction *> Base, 332 const BucketElement &Element, Value *OffToBase, 333 SmallPtrSet<Value *, 16> &DeletedPtrs); 334 }; 335 336 } // end anonymous namespace 337 338 char PPCLoopInstrFormPrep::ID = 0; 339 static const char *name = "Prepare loop for ppc preferred instruction forms"; 340 INITIALIZE_PASS_BEGIN(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) 341 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 342 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 343 INITIALIZE_PASS_END(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false) 344 345 static constexpr StringRef PHINodeNameSuffix = ".phi"; 346 static constexpr StringRef CastNodeNameSuffix = ".cast"; 347 static constexpr StringRef GEPNodeIncNameSuffix = ".inc"; 348 static constexpr StringRef GEPNodeOffNameSuffix = ".off"; 349 350 FunctionPass *llvm::createPPCLoopInstrFormPrepPass(PPCTargetMachine &TM) { 351 return new PPCLoopInstrFormPrep(TM); 352 } 353 354 static bool IsPtrInBounds(Value *BasePtr) { 355 Value *StrippedBasePtr = BasePtr; 356 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBasePtr)) 357 StrippedBasePtr = BC->getOperand(0); 358 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(StrippedBasePtr)) 359 return GEP->isInBounds(); 360 361 return false; 362 } 363 364 static std::string getInstrName(const Value *I, StringRef Suffix) { 365 assert(I && "Invalid paramater!"); 366 if (I->hasName()) 367 return (I->getName() + Suffix).str(); 368 else 369 return ""; 370 } 371 372 static Value *getPointerOperandAndType(Value *MemI, 373 Type **PtrElementType = nullptr) { 374 375 Value *PtrValue = nullptr; 376 Type *PointerElementType = nullptr; 377 378 if (LoadInst *LMemI = dyn_cast<LoadInst>(MemI)) { 379 PtrValue = LMemI->getPointerOperand(); 380 PointerElementType = LMemI->getType(); 381 } else if (StoreInst *SMemI = dyn_cast<StoreInst>(MemI)) { 382 PtrValue = SMemI->getPointerOperand(); 383 PointerElementType = SMemI->getValueOperand()->getType(); 384 } else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(MemI)) { 385 PointerElementType = Type::getInt8Ty(MemI->getContext()); 386 if (IMemI->getIntrinsicID() == Intrinsic::prefetch || 387 IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) { 388 PtrValue = IMemI->getArgOperand(0); 389 } else if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) { 390 PtrValue = IMemI->getArgOperand(1); 391 } 392 } 393 /*Get ElementType if PtrElementType is not null.*/ 394 if (PtrElementType) 395 *PtrElementType = PointerElementType; 396 397 return PtrValue; 398 } 399 400 bool PPCLoopInstrFormPrep::runOnFunction(Function &F) { 401 if (skipFunction(F)) 402 return false; 403 404 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 405 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 406 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 407 DT = DTWP ? &DTWP->getDomTree() : nullptr; 408 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); 409 ST = TM ? TM->getSubtargetImpl(F) : nullptr; 410 SuccPrepCount = 0; 411 412 bool MadeChange = false; 413 414 for (Loop *I : *LI) 415 for (Loop *L : depth_first(I)) 416 MadeChange |= runOnLoop(L); 417 418 return MadeChange; 419 } 420 421 // Finding the minimal(chain_number + reusable_offset_number) is a complicated 422 // algorithmic problem. 423 // For now, the algorithm used here is simply adjusted to handle the case for 424 // manually unrolling cases. 425 // FIXME: use a more powerful algorithm to find minimal sum of chain_number and 426 // reusable_offset_number for one base with multiple offsets. 427 bool PPCLoopInstrFormPrep::prepareBasesForCommoningChains(Bucket &CBucket) { 428 // The minimal size for profitable chain commoning: 429 // A1 = base + offset1 430 // A2 = base + offset2 (offset2 - offset1 = X) 431 // A3 = base + offset3 432 // A4 = base + offset4 (offset4 - offset3 = X) 433 // ======> 434 // base1 = base + offset1 435 // base2 = base + offset3 436 // A1 = base1 437 // A2 = base1 + X 438 // A3 = base2 439 // A4 = base2 + X 440 // 441 // There is benefit because of reuse of offest 'X'. 442 443 assert(ChainCommonPrepMinThreshold >= 4 && 444 "Thredhold can not be smaller than 4!\n"); 445 if (CBucket.Elements.size() < ChainCommonPrepMinThreshold) 446 return false; 447 448 // We simply select the FirstOffset as the first reusable offset between each 449 // chain element 1 and element 0. 450 const SCEV *FirstOffset = CBucket.Elements[1].Offset; 451 452 // Figure out how many times above FirstOffset is used in the chain. 453 // For a success commoning chain candidate, offset difference between each 454 // chain element 1 and element 0 must be also FirstOffset. 455 unsigned FirstOffsetReusedCount = 1; 456 457 // Figure out how many times above FirstOffset is used in the first chain. 458 // Chain number is FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain 459 unsigned FirstOffsetReusedCountInFirstChain = 1; 460 461 unsigned EleNum = CBucket.Elements.size(); 462 bool SawChainSeparater = false; 463 for (unsigned j = 2; j != EleNum; ++j) { 464 if (SE->getMinusSCEV(CBucket.Elements[j].Offset, 465 CBucket.Elements[j - 1].Offset) == FirstOffset) { 466 if (!SawChainSeparater) 467 FirstOffsetReusedCountInFirstChain++; 468 FirstOffsetReusedCount++; 469 } else 470 // For now, if we meet any offset which is not FirstOffset, we assume we 471 // find a new Chain. 472 // This makes us miss some opportunities. 473 // For example, we can common: 474 // 475 // {OffsetA, Offset A, OffsetB, OffsetA, OffsetA, OffsetB} 476 // 477 // as two chains: 478 // {{OffsetA, Offset A, OffsetB}, {OffsetA, OffsetA, OffsetB}} 479 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 2 480 // 481 // But we fail to common: 482 // 483 // {OffsetA, OffsetB, OffsetA, OffsetA, OffsetB, OffsetA} 484 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 1 485 486 SawChainSeparater = true; 487 } 488 489 // FirstOffset is not reused, skip this bucket. 490 if (FirstOffsetReusedCount == 1) 491 return false; 492 493 unsigned ChainNum = 494 FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain; 495 496 // All elements are increased by FirstOffset. 497 // The number of chains should be sqrt(EleNum). 498 if (!SawChainSeparater) 499 ChainNum = (unsigned)sqrt((double)EleNum); 500 501 CBucket.ChainSize = (unsigned)(EleNum / ChainNum); 502 503 // If this is not a perfect chain(eg: not all elements can be put inside 504 // commoning chains.), skip now. 505 if (CBucket.ChainSize * ChainNum != EleNum) 506 return false; 507 508 if (SawChainSeparater) { 509 // Check that the offset seqs are the same for all chains. 510 for (unsigned i = 1; i < CBucket.ChainSize; i++) 511 for (unsigned j = 1; j < ChainNum; j++) 512 if (CBucket.Elements[i].Offset != 513 SE->getMinusSCEV(CBucket.Elements[i + j * CBucket.ChainSize].Offset, 514 CBucket.Elements[j * CBucket.ChainSize].Offset)) 515 return false; 516 } 517 518 for (unsigned i = 0; i < ChainNum; i++) 519 CBucket.ChainBases.push_back(CBucket.Elements[i * CBucket.ChainSize]); 520 521 LLVM_DEBUG(dbgs() << "Bucket has " << ChainNum << " chains.\n"); 522 523 return true; 524 } 525 526 bool PPCLoopInstrFormPrep::chainCommoning(Loop *L, 527 SmallVector<Bucket, 16> &Buckets) { 528 bool MadeChange = false; 529 530 if (Buckets.empty()) 531 return MadeChange; 532 533 SmallSet<BasicBlock *, 16> BBChanged; 534 535 for (auto &Bucket : Buckets) { 536 if (prepareBasesForCommoningChains(Bucket)) 537 MadeChange |= rewriteLoadStoresForCommoningChains(L, Bucket, BBChanged); 538 } 539 540 if (MadeChange) 541 for (auto *BB : BBChanged) 542 DeleteDeadPHIs(BB); 543 return MadeChange; 544 } 545 546 bool PPCLoopInstrFormPrep::rewriteLoadStoresForCommoningChains( 547 Loop *L, Bucket &Bucket, SmallSet<BasicBlock *, 16> &BBChanged) { 548 bool MadeChange = false; 549 550 assert(Bucket.Elements.size() == 551 Bucket.ChainBases.size() * Bucket.ChainSize && 552 "invalid bucket for chain commoning!\n"); 553 SmallPtrSet<Value *, 16> DeletedPtrs; 554 555 BasicBlock *Header = L->getHeader(); 556 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 557 558 SCEVExpander SCEVE(*SE, Header->getDataLayout(), 559 "loopprepare-chaincommon"); 560 561 for (unsigned ChainIdx = 0; ChainIdx < Bucket.ChainBases.size(); ++ChainIdx) { 562 unsigned BaseElemIdx = Bucket.ChainSize * ChainIdx; 563 const SCEV *BaseSCEV = 564 ChainIdx ? SE->getAddExpr(Bucket.BaseSCEV, 565 Bucket.Elements[BaseElemIdx].Offset) 566 : Bucket.BaseSCEV; 567 const SCEVAddRecExpr *BasePtrSCEV = cast<SCEVAddRecExpr>(BaseSCEV); 568 569 // Make sure the base is able to expand. 570 if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart())) 571 return MadeChange; 572 573 assert(BasePtrSCEV->isAffine() && 574 "Invalid SCEV type for the base ptr for a candidate chain!\n"); 575 576 std::pair<Instruction *, Instruction *> Base = rewriteForBase( 577 L, BasePtrSCEV, Bucket.Elements[BaseElemIdx].Instr, 578 false /* CanPreInc */, ChainCommoning, SCEVE, DeletedPtrs); 579 580 if (!Base.first || !Base.second) 581 return MadeChange; 582 583 // Keep track of the replacement pointer values we've inserted so that we 584 // don't generate more pointer values than necessary. 585 SmallPtrSet<Value *, 16> NewPtrs; 586 NewPtrs.insert(Base.first); 587 588 for (unsigned Idx = BaseElemIdx + 1; Idx < BaseElemIdx + Bucket.ChainSize; 589 ++Idx) { 590 BucketElement &I = Bucket.Elements[Idx]; 591 Value *Ptr = getPointerOperandAndType(I.Instr); 592 assert(Ptr && "No pointer operand"); 593 if (NewPtrs.count(Ptr)) 594 continue; 595 596 const SCEV *OffsetSCEV = 597 BaseElemIdx ? SE->getMinusSCEV(Bucket.Elements[Idx].Offset, 598 Bucket.Elements[BaseElemIdx].Offset) 599 : Bucket.Elements[Idx].Offset; 600 601 // Make sure offset is able to expand. Only need to check one time as the 602 // offsets are reused between different chains. 603 if (!BaseElemIdx) 604 if (!SCEVE.isSafeToExpand(OffsetSCEV)) 605 return false; 606 607 Value *OffsetValue = SCEVE.expandCodeFor( 608 OffsetSCEV, OffsetSCEV->getType(), LoopPredecessor->getTerminator()); 609 610 Instruction *NewPtr = rewriteForBucketElement(Base, Bucket.Elements[Idx], 611 OffsetValue, DeletedPtrs); 612 613 assert(NewPtr && "Wrong rewrite!\n"); 614 NewPtrs.insert(NewPtr); 615 } 616 617 ++ChainCommoningRewritten; 618 } 619 620 // Clear the rewriter cache, because values that are in the rewriter's cache 621 // can be deleted below, causing the AssertingVH in the cache to trigger. 622 SCEVE.clear(); 623 624 for (auto *Ptr : DeletedPtrs) { 625 if (Instruction *IDel = dyn_cast<Instruction>(Ptr)) 626 BBChanged.insert(IDel->getParent()); 627 RecursivelyDeleteTriviallyDeadInstructions(Ptr); 628 } 629 630 MadeChange = true; 631 return MadeChange; 632 } 633 634 // Rewrite the new base according to BasePtrSCEV. 635 // bb.loop.preheader: 636 // %newstart = ... 637 // bb.loop.body: 638 // %phinode = phi [ %newstart, %bb.loop.preheader ], [ %add, %bb.loop.body ] 639 // ... 640 // %add = getelementptr %phinode, %inc 641 // 642 // First returned instruciton is %phinode (or a type cast to %phinode), caller 643 // needs this value to rewrite other load/stores in the same chain. 644 // Second returned instruction is %add, caller needs this value to rewrite other 645 // load/stores in the same chain. 646 std::pair<Instruction *, Instruction *> 647 PPCLoopInstrFormPrep::rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV, 648 Instruction *BaseMemI, bool CanPreInc, 649 PrepForm Form, SCEVExpander &SCEVE, 650 SmallPtrSet<Value *, 16> &DeletedPtrs) { 651 652 LLVM_DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n"); 653 654 assert(BasePtrSCEV->getLoop() == L && "AddRec for the wrong loop?"); 655 656 Value *BasePtr = getPointerOperandAndType(BaseMemI); 657 assert(BasePtr && "No pointer operand"); 658 659 Type *I8Ty = Type::getInt8Ty(BaseMemI->getParent()->getContext()); 660 Type *I8PtrTy = 661 PointerType::get(BaseMemI->getParent()->getContext(), 662 BasePtr->getType()->getPointerAddressSpace()); 663 664 bool IsConstantInc = false; 665 const SCEV *BasePtrIncSCEV = BasePtrSCEV->getStepRecurrence(*SE); 666 Value *IncNode = getNodeForInc(L, BaseMemI, BasePtrIncSCEV); 667 668 const SCEVConstant *BasePtrIncConstantSCEV = 669 dyn_cast<SCEVConstant>(BasePtrIncSCEV); 670 if (BasePtrIncConstantSCEV) 671 IsConstantInc = true; 672 673 // No valid representation for the increment. 674 if (!IncNode) { 675 LLVM_DEBUG(dbgs() << "Loop Increasement can not be represented!\n"); 676 return std::make_pair(nullptr, nullptr); 677 } 678 679 if (Form == UpdateForm && !IsConstantInc && !EnableUpdateFormForNonConstInc) { 680 LLVM_DEBUG( 681 dbgs() 682 << "Update form prepare for non-const increment is not enabled!\n"); 683 return std::make_pair(nullptr, nullptr); 684 } 685 686 const SCEV *BasePtrStartSCEV = nullptr; 687 if (CanPreInc) { 688 assert(SE->isLoopInvariant(BasePtrIncSCEV, L) && 689 "Increment is not loop invariant!\n"); 690 BasePtrStartSCEV = SE->getMinusSCEV(BasePtrSCEV->getStart(), 691 IsConstantInc ? BasePtrIncConstantSCEV 692 : BasePtrIncSCEV); 693 } else 694 BasePtrStartSCEV = BasePtrSCEV->getStart(); 695 696 if (alreadyPrepared(L, BaseMemI, BasePtrStartSCEV, BasePtrIncSCEV, Form)) { 697 LLVM_DEBUG(dbgs() << "Instruction form is already prepared!\n"); 698 return std::make_pair(nullptr, nullptr); 699 } 700 701 LLVM_DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n"); 702 703 BasicBlock *Header = L->getHeader(); 704 unsigned HeaderLoopPredCount = pred_size(Header); 705 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 706 707 PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount, 708 getInstrName(BaseMemI, PHINodeNameSuffix)); 709 NewPHI->insertBefore(Header->getFirstNonPHIIt()); 710 711 Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy, 712 LoopPredecessor->getTerminator()); 713 714 // Note that LoopPredecessor might occur in the predecessor list multiple 715 // times, and we need to add it the right number of times. 716 for (auto *PI : predecessors(Header)) { 717 if (PI != LoopPredecessor) 718 continue; 719 720 NewPHI->addIncoming(BasePtrStart, LoopPredecessor); 721 } 722 723 Instruction *PtrInc = nullptr; 724 Instruction *NewBasePtr = nullptr; 725 if (CanPreInc) { 726 BasicBlock::iterator InsPoint = Header->getFirstInsertionPt(); 727 PtrInc = GetElementPtrInst::Create( 728 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), 729 InsPoint); 730 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); 731 for (auto *PI : predecessors(Header)) { 732 if (PI == LoopPredecessor) 733 continue; 734 735 NewPHI->addIncoming(PtrInc, PI); 736 } 737 if (PtrInc->getType() != BasePtr->getType()) 738 NewBasePtr = 739 new BitCastInst(PtrInc, BasePtr->getType(), 740 getInstrName(PtrInc, CastNodeNameSuffix), InsPoint); 741 else 742 NewBasePtr = PtrInc; 743 } else { 744 // Note that LoopPredecessor might occur in the predecessor list multiple 745 // times, and we need to make sure no more incoming value for them in PHI. 746 for (auto *PI : predecessors(Header)) { 747 if (PI == LoopPredecessor) 748 continue; 749 750 // For the latch predecessor, we need to insert a GEP just before the 751 // terminator to increase the address. 752 BasicBlock *BB = PI; 753 BasicBlock::iterator InsPoint = BB->getTerminator()->getIterator(); 754 PtrInc = GetElementPtrInst::Create( 755 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix), 756 InsPoint); 757 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr)); 758 759 NewPHI->addIncoming(PtrInc, PI); 760 } 761 PtrInc = NewPHI; 762 if (NewPHI->getType() != BasePtr->getType()) 763 NewBasePtr = new BitCastInst(NewPHI, BasePtr->getType(), 764 getInstrName(NewPHI, CastNodeNameSuffix), 765 Header->getFirstInsertionPt()); 766 else 767 NewBasePtr = NewPHI; 768 } 769 770 BasePtr->replaceAllUsesWith(NewBasePtr); 771 772 DeletedPtrs.insert(BasePtr); 773 774 return std::make_pair(NewBasePtr, PtrInc); 775 } 776 777 Instruction *PPCLoopInstrFormPrep::rewriteForBucketElement( 778 std::pair<Instruction *, Instruction *> Base, const BucketElement &Element, 779 Value *OffToBase, SmallPtrSet<Value *, 16> &DeletedPtrs) { 780 Instruction *NewBasePtr = Base.first; 781 Instruction *PtrInc = Base.second; 782 assert((NewBasePtr && PtrInc) && "base does not exist!\n"); 783 784 Type *I8Ty = Type::getInt8Ty(PtrInc->getParent()->getContext()); 785 786 Value *Ptr = getPointerOperandAndType(Element.Instr); 787 assert(Ptr && "No pointer operand"); 788 789 Instruction *RealNewPtr; 790 if (!Element.Offset || 791 (isa<SCEVConstant>(Element.Offset) && 792 cast<SCEVConstant>(Element.Offset)->getValue()->isZero())) { 793 RealNewPtr = NewBasePtr; 794 } else { 795 std::optional<BasicBlock::iterator> PtrIP = std::nullopt; 796 if (Instruction *I = dyn_cast<Instruction>(Ptr)) 797 PtrIP = I->getIterator(); 798 799 if (PtrIP && isa<Instruction>(NewBasePtr) && 800 cast<Instruction>(NewBasePtr)->getParent() == (*PtrIP)->getParent()) 801 PtrIP = std::nullopt; 802 else if (PtrIP && isa<PHINode>(*PtrIP)) 803 PtrIP = (*PtrIP)->getParent()->getFirstInsertionPt(); 804 else if (!PtrIP) 805 PtrIP = Element.Instr->getIterator(); 806 807 assert(OffToBase && "There should be an offset for non base element!\n"); 808 GetElementPtrInst *NewPtr = GetElementPtrInst::Create( 809 I8Ty, PtrInc, OffToBase, 810 getInstrName(Element.Instr, GEPNodeOffNameSuffix)); 811 if (PtrIP) 812 NewPtr->insertBefore(*(*PtrIP)->getParent(), *PtrIP); 813 else 814 NewPtr->insertAfter(cast<Instruction>(PtrInc)); 815 NewPtr->setIsInBounds(IsPtrInBounds(Ptr)); 816 RealNewPtr = NewPtr; 817 } 818 819 Instruction *ReplNewPtr; 820 if (Ptr->getType() != RealNewPtr->getType()) { 821 ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(), 822 getInstrName(Ptr, CastNodeNameSuffix)); 823 ReplNewPtr->insertAfter(RealNewPtr); 824 } else 825 ReplNewPtr = RealNewPtr; 826 827 Ptr->replaceAllUsesWith(ReplNewPtr); 828 DeletedPtrs.insert(Ptr); 829 830 return ReplNewPtr; 831 } 832 833 void PPCLoopInstrFormPrep::addOneCandidate( 834 Instruction *MemI, const SCEV *LSCEV, SmallVector<Bucket, 16> &Buckets, 835 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) { 836 assert((MemI && getPointerOperandAndType(MemI)) && 837 "Candidate should be a memory instruction."); 838 assert(LSCEV && "Invalid SCEV for Ptr value."); 839 840 bool FoundBucket = false; 841 for (auto &B : Buckets) { 842 if (cast<SCEVAddRecExpr>(B.BaseSCEV)->getStepRecurrence(*SE) != 843 cast<SCEVAddRecExpr>(LSCEV)->getStepRecurrence(*SE)) 844 continue; 845 const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV); 846 if (isValidDiff(Diff)) { 847 B.Elements.push_back(BucketElement(Diff, MemI)); 848 FoundBucket = true; 849 break; 850 } 851 } 852 853 if (!FoundBucket) { 854 if (Buckets.size() == MaxCandidateNum) { 855 LLVM_DEBUG(dbgs() << "Can not prepare more chains, reach maximum limit " 856 << MaxCandidateNum << "\n"); 857 return; 858 } 859 Buckets.push_back(Bucket(LSCEV, MemI)); 860 } 861 } 862 863 SmallVector<Bucket, 16> PPCLoopInstrFormPrep::collectCandidates( 864 Loop *L, 865 std::function<bool(const Instruction *, Value *, const Type *)> 866 isValidCandidate, 867 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) { 868 SmallVector<Bucket, 16> Buckets; 869 870 for (const auto &BB : L->blocks()) 871 for (auto &J : *BB) { 872 Value *PtrValue = nullptr; 873 Type *PointerElementType = nullptr; 874 PtrValue = getPointerOperandAndType(&J, &PointerElementType); 875 876 if (!PtrValue) 877 continue; 878 879 if (PtrValue->getType()->getPointerAddressSpace()) 880 continue; 881 882 if (L->isLoopInvariant(PtrValue)) 883 continue; 884 885 const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L); 886 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV); 887 if (!LARSCEV || LARSCEV->getLoop() != L) 888 continue; 889 890 // Mark that we have candidates for preparing. 891 HasCandidateForPrepare = true; 892 893 if (isValidCandidate(&J, PtrValue, PointerElementType)) 894 addOneCandidate(&J, LSCEV, Buckets, isValidDiff, MaxCandidateNum); 895 } 896 return Buckets; 897 } 898 899 bool PPCLoopInstrFormPrep::prepareBaseForDispFormChain(Bucket &BucketChain, 900 PrepForm Form) { 901 // RemainderOffsetInfo details: 902 // key: value of (Offset urem DispConstraint). For DSForm, it can 903 // be [0, 4). 904 // first of pair: the index of first BucketElement whose remainder is equal 905 // to key. For key 0, this value must be 0. 906 // second of pair: number of load/stores with the same remainder. 907 DenseMap<unsigned, std::pair<unsigned, unsigned>> RemainderOffsetInfo; 908 909 for (unsigned j = 0, je = BucketChain.Elements.size(); j != je; ++j) { 910 if (!BucketChain.Elements[j].Offset) 911 RemainderOffsetInfo[0] = std::make_pair(0, 1); 912 else { 913 unsigned Remainder = cast<SCEVConstant>(BucketChain.Elements[j].Offset) 914 ->getAPInt() 915 .urem(Form); 916 if (!RemainderOffsetInfo.contains(Remainder)) 917 RemainderOffsetInfo[Remainder] = std::make_pair(j, 1); 918 else 919 RemainderOffsetInfo[Remainder].second++; 920 } 921 } 922 // Currently we choose the most profitable base as the one which has the max 923 // number of load/store with same remainder. 924 // FIXME: adjust the base selection strategy according to load/store offset 925 // distribution. 926 // For example, if we have one candidate chain for DS form preparation, which 927 // contains following load/stores with different remainders: 928 // 1: 10 load/store whose remainder is 1; 929 // 2: 9 load/store whose remainder is 2; 930 // 3: 1 for remainder 3 and 0 for remainder 0; 931 // Now we will choose the first load/store whose remainder is 1 as base and 932 // adjust all other load/stores according to new base, so we will get 10 DS 933 // form and 10 X form. 934 // But we should be more clever, for this case we could use two bases, one for 935 // remainder 1 and the other for remainder 2, thus we could get 19 DS form and 936 // 1 X form. 937 unsigned MaxCountRemainder = 0; 938 for (unsigned j = 0; j < (unsigned)Form; j++) 939 if ((RemainderOffsetInfo.contains(j)) && 940 RemainderOffsetInfo[j].second > 941 RemainderOffsetInfo[MaxCountRemainder].second) 942 MaxCountRemainder = j; 943 944 // Abort when there are too few insts with common base. 945 if (RemainderOffsetInfo[MaxCountRemainder].second < DispFormPrepMinThreshold) 946 return false; 947 948 // If the first value is most profitable, no needed to adjust BucketChain 949 // elements as they are substracted the first value when collecting. 950 if (MaxCountRemainder == 0) 951 return true; 952 953 // Adjust load/store to the new chosen base. 954 const SCEV *Offset = 955 BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first].Offset; 956 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); 957 for (auto &E : BucketChain.Elements) { 958 if (E.Offset) 959 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset)); 960 else 961 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset)); 962 } 963 964 std::swap(BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first], 965 BucketChain.Elements[0]); 966 return true; 967 } 968 969 // FIXME: implement a more clever base choosing policy. 970 // Currently we always choose an exist load/store offset. This maybe lead to 971 // suboptimal code sequences. For example, for one DS chain with offsets 972 // {-32769, 2003, 2007, 2011}, we choose -32769 as base offset, and left disp 973 // for load/stores are {0, 34772, 34776, 34780}. Though each offset now is a 974 // multipler of 4, it cannot be represented by sint16. 975 bool PPCLoopInstrFormPrep::prepareBaseForUpdateFormChain(Bucket &BucketChain) { 976 // We have a choice now of which instruction's memory operand we use as the 977 // base for the generated PHI. Always picking the first instruction in each 978 // bucket does not work well, specifically because that instruction might 979 // be a prefetch (and there are no pre-increment dcbt variants). Otherwise, 980 // the choice is somewhat arbitrary, because the backend will happily 981 // generate direct offsets from both the pre-incremented and 982 // post-incremented pointer values. Thus, we'll pick the first non-prefetch 983 // instruction in each bucket, and adjust the recurrence and other offsets 984 // accordingly. 985 for (int j = 0, je = BucketChain.Elements.size(); j != je; ++j) { 986 if (auto *II = dyn_cast<IntrinsicInst>(BucketChain.Elements[j].Instr)) 987 if (II->getIntrinsicID() == Intrinsic::prefetch) 988 continue; 989 990 // If we'd otherwise pick the first element anyway, there's nothing to do. 991 if (j == 0) 992 break; 993 994 // If our chosen element has no offset from the base pointer, there's 995 // nothing to do. 996 if (!BucketChain.Elements[j].Offset || 997 cast<SCEVConstant>(BucketChain.Elements[j].Offset)->isZero()) 998 break; 999 1000 const SCEV *Offset = BucketChain.Elements[j].Offset; 1001 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset); 1002 for (auto &E : BucketChain.Elements) { 1003 if (E.Offset) 1004 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset)); 1005 else 1006 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset)); 1007 } 1008 1009 std::swap(BucketChain.Elements[j], BucketChain.Elements[0]); 1010 break; 1011 } 1012 return true; 1013 } 1014 1015 bool PPCLoopInstrFormPrep::rewriteLoadStores( 1016 Loop *L, Bucket &BucketChain, SmallSet<BasicBlock *, 16> &BBChanged, 1017 PrepForm Form) { 1018 bool MadeChange = false; 1019 1020 const SCEVAddRecExpr *BasePtrSCEV = 1021 cast<SCEVAddRecExpr>(BucketChain.BaseSCEV); 1022 if (!BasePtrSCEV->isAffine()) 1023 return MadeChange; 1024 1025 BasicBlock *Header = L->getHeader(); 1026 SCEVExpander SCEVE(*SE, Header->getDataLayout(), 1027 "loopprepare-formrewrite"); 1028 if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart())) 1029 return MadeChange; 1030 1031 SmallPtrSet<Value *, 16> DeletedPtrs; 1032 1033 // For some DS form load/store instructions, it can also be an update form, 1034 // if the stride is constant and is a multipler of 4. Use update form if 1035 // prefer it. 1036 bool CanPreInc = (Form == UpdateForm || 1037 ((Form == DSForm) && 1038 isa<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) && 1039 !cast<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) 1040 ->getAPInt() 1041 .urem(4) && 1042 PreferUpdateForm)); 1043 1044 std::pair<Instruction *, Instruction *> Base = 1045 rewriteForBase(L, BasePtrSCEV, BucketChain.Elements.begin()->Instr, 1046 CanPreInc, Form, SCEVE, DeletedPtrs); 1047 1048 if (!Base.first || !Base.second) 1049 return MadeChange; 1050 1051 // Keep track of the replacement pointer values we've inserted so that we 1052 // don't generate more pointer values than necessary. 1053 SmallPtrSet<Value *, 16> NewPtrs; 1054 NewPtrs.insert(Base.first); 1055 1056 for (const BucketElement &BE : llvm::drop_begin(BucketChain.Elements)) { 1057 Value *Ptr = getPointerOperandAndType(BE.Instr); 1058 assert(Ptr && "No pointer operand"); 1059 if (NewPtrs.count(Ptr)) 1060 continue; 1061 1062 Instruction *NewPtr = rewriteForBucketElement( 1063 Base, BE, 1064 BE.Offset ? cast<SCEVConstant>(BE.Offset)->getValue() : nullptr, 1065 DeletedPtrs); 1066 assert(NewPtr && "wrong rewrite!\n"); 1067 NewPtrs.insert(NewPtr); 1068 } 1069 1070 // Clear the rewriter cache, because values that are in the rewriter's cache 1071 // can be deleted below, causing the AssertingVH in the cache to trigger. 1072 SCEVE.clear(); 1073 1074 for (auto *Ptr : DeletedPtrs) { 1075 if (Instruction *IDel = dyn_cast<Instruction>(Ptr)) 1076 BBChanged.insert(IDel->getParent()); 1077 RecursivelyDeleteTriviallyDeadInstructions(Ptr); 1078 } 1079 1080 MadeChange = true; 1081 1082 SuccPrepCount++; 1083 1084 if (Form == DSForm && !CanPreInc) 1085 DSFormChainRewritten++; 1086 else if (Form == DQForm) 1087 DQFormChainRewritten++; 1088 else if (Form == UpdateForm || (Form == DSForm && CanPreInc)) 1089 UpdFormChainRewritten++; 1090 1091 return MadeChange; 1092 } 1093 1094 bool PPCLoopInstrFormPrep::updateFormPrep(Loop *L, 1095 SmallVector<Bucket, 16> &Buckets) { 1096 bool MadeChange = false; 1097 if (Buckets.empty()) 1098 return MadeChange; 1099 SmallSet<BasicBlock *, 16> BBChanged; 1100 for (auto &Bucket : Buckets) 1101 // The base address of each bucket is transformed into a phi and the others 1102 // are rewritten based on new base. 1103 if (prepareBaseForUpdateFormChain(Bucket)) 1104 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, UpdateForm); 1105 1106 if (MadeChange) 1107 for (auto *BB : BBChanged) 1108 DeleteDeadPHIs(BB); 1109 return MadeChange; 1110 } 1111 1112 bool PPCLoopInstrFormPrep::dispFormPrep(Loop *L, 1113 SmallVector<Bucket, 16> &Buckets, 1114 PrepForm Form) { 1115 bool MadeChange = false; 1116 1117 if (Buckets.empty()) 1118 return MadeChange; 1119 1120 SmallSet<BasicBlock *, 16> BBChanged; 1121 for (auto &Bucket : Buckets) { 1122 if (Bucket.Elements.size() < DispFormPrepMinThreshold) 1123 continue; 1124 if (prepareBaseForDispFormChain(Bucket, Form)) 1125 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, Form); 1126 } 1127 1128 if (MadeChange) 1129 for (auto *BB : BBChanged) 1130 DeleteDeadPHIs(BB); 1131 return MadeChange; 1132 } 1133 1134 // Find the loop invariant increment node for SCEV BasePtrIncSCEV. 1135 // bb.loop.preheader: 1136 // %start = ... 1137 // bb.loop.body: 1138 // %phinode = phi [ %start, %bb.loop.preheader ], [ %add, %bb.loop.body ] 1139 // ... 1140 // %add = add %phinode, %inc ; %inc is what we want to get. 1141 // 1142 Value *PPCLoopInstrFormPrep::getNodeForInc(Loop *L, Instruction *MemI, 1143 const SCEV *BasePtrIncSCEV) { 1144 // If the increment is a constant, no definition is needed. 1145 // Return the value directly. 1146 if (isa<SCEVConstant>(BasePtrIncSCEV)) 1147 return cast<SCEVConstant>(BasePtrIncSCEV)->getValue(); 1148 1149 if (!SE->isLoopInvariant(BasePtrIncSCEV, L)) 1150 return nullptr; 1151 1152 BasicBlock *BB = MemI->getParent(); 1153 if (!BB) 1154 return nullptr; 1155 1156 BasicBlock *LatchBB = L->getLoopLatch(); 1157 1158 if (!LatchBB) 1159 return nullptr; 1160 1161 // Run through the PHIs and check their operands to find valid representation 1162 // for the increment SCEV. 1163 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis(); 1164 for (auto &CurrentPHI : PHIIter) { 1165 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI); 1166 if (!CurrentPHINode) 1167 continue; 1168 1169 if (!SE->isSCEVable(CurrentPHINode->getType())) 1170 continue; 1171 1172 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); 1173 1174 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV); 1175 if (!PHIBasePtrSCEV) 1176 continue; 1177 1178 const SCEV *PHIBasePtrIncSCEV = PHIBasePtrSCEV->getStepRecurrence(*SE); 1179 1180 if (!PHIBasePtrIncSCEV || (PHIBasePtrIncSCEV != BasePtrIncSCEV)) 1181 continue; 1182 1183 // Get the incoming value from the loop latch and check if the value has 1184 // the add form with the required increment. 1185 if (CurrentPHINode->getBasicBlockIndex(LatchBB) < 0) 1186 continue; 1187 if (Instruction *I = dyn_cast<Instruction>( 1188 CurrentPHINode->getIncomingValueForBlock(LatchBB))) { 1189 Value *StrippedBaseI = I; 1190 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBaseI)) 1191 StrippedBaseI = BC->getOperand(0); 1192 1193 Instruction *StrippedI = dyn_cast<Instruction>(StrippedBaseI); 1194 if (!StrippedI) 1195 continue; 1196 1197 // LSR pass may add a getelementptr instruction to do the loop increment, 1198 // also search in that getelementptr instruction. 1199 if (StrippedI->getOpcode() == Instruction::Add || 1200 (StrippedI->getOpcode() == Instruction::GetElementPtr && 1201 StrippedI->getNumOperands() == 2)) { 1202 if (SE->getSCEVAtScope(StrippedI->getOperand(0), L) == BasePtrIncSCEV) 1203 return StrippedI->getOperand(0); 1204 if (SE->getSCEVAtScope(StrippedI->getOperand(1), L) == BasePtrIncSCEV) 1205 return StrippedI->getOperand(1); 1206 } 1207 } 1208 } 1209 return nullptr; 1210 } 1211 1212 // In order to prepare for the preferred instruction form, a PHI is added. 1213 // This function will check to see if that PHI already exists and will return 1214 // true if it found an existing PHI with the matched start and increment as the 1215 // one we wanted to create. 1216 bool PPCLoopInstrFormPrep::alreadyPrepared(Loop *L, Instruction *MemI, 1217 const SCEV *BasePtrStartSCEV, 1218 const SCEV *BasePtrIncSCEV, 1219 PrepForm Form) { 1220 BasicBlock *BB = MemI->getParent(); 1221 if (!BB) 1222 return false; 1223 1224 BasicBlock *PredBB = L->getLoopPredecessor(); 1225 BasicBlock *LatchBB = L->getLoopLatch(); 1226 1227 if (!PredBB || !LatchBB) 1228 return false; 1229 1230 // Run through the PHIs and see if we have some that looks like a preparation 1231 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis(); 1232 for (auto & CurrentPHI : PHIIter) { 1233 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI); 1234 if (!CurrentPHINode) 1235 continue; 1236 1237 if (!SE->isSCEVable(CurrentPHINode->getType())) 1238 continue; 1239 1240 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L); 1241 1242 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV); 1243 if (!PHIBasePtrSCEV) 1244 continue; 1245 1246 const SCEVConstant *PHIBasePtrIncSCEV = 1247 dyn_cast<SCEVConstant>(PHIBasePtrSCEV->getStepRecurrence(*SE)); 1248 if (!PHIBasePtrIncSCEV) 1249 continue; 1250 1251 if (CurrentPHINode->getNumIncomingValues() == 2) { 1252 if ((CurrentPHINode->getIncomingBlock(0) == LatchBB && 1253 CurrentPHINode->getIncomingBlock(1) == PredBB) || 1254 (CurrentPHINode->getIncomingBlock(1) == LatchBB && 1255 CurrentPHINode->getIncomingBlock(0) == PredBB)) { 1256 if (PHIBasePtrIncSCEV == BasePtrIncSCEV) { 1257 // The existing PHI (CurrentPHINode) has the same start and increment 1258 // as the PHI that we wanted to create. 1259 if ((Form == UpdateForm || Form == ChainCommoning ) && 1260 PHIBasePtrSCEV->getStart() == BasePtrStartSCEV) { 1261 ++PHINodeAlreadyExistsUpdate; 1262 return true; 1263 } 1264 if (Form == DSForm || Form == DQForm) { 1265 const SCEVConstant *Diff = dyn_cast<SCEVConstant>( 1266 SE->getMinusSCEV(PHIBasePtrSCEV->getStart(), BasePtrStartSCEV)); 1267 if (Diff && !Diff->getAPInt().urem(Form)) { 1268 if (Form == DSForm) 1269 ++PHINodeAlreadyExistsDS; 1270 else 1271 ++PHINodeAlreadyExistsDQ; 1272 return true; 1273 } 1274 } 1275 } 1276 } 1277 } 1278 } 1279 return false; 1280 } 1281 1282 bool PPCLoopInstrFormPrep::runOnLoop(Loop *L) { 1283 bool MadeChange = false; 1284 1285 // Only prep. the inner-most loop 1286 if (!L->isInnermost()) 1287 return MadeChange; 1288 1289 // Return if already done enough preparation. 1290 if (SuccPrepCount >= MaxVarsPrep) 1291 return MadeChange; 1292 1293 LLVM_DEBUG(dbgs() << "PIP: Examining: " << *L << "\n"); 1294 1295 BasicBlock *LoopPredecessor = L->getLoopPredecessor(); 1296 // If there is no loop predecessor, or the loop predecessor's terminator 1297 // returns a value (which might contribute to determining the loop's 1298 // iteration space), insert a new preheader for the loop. 1299 if (!LoopPredecessor || 1300 !LoopPredecessor->getTerminator()->getType()->isVoidTy()) { 1301 LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA); 1302 if (LoopPredecessor) 1303 MadeChange = true; 1304 } 1305 if (!LoopPredecessor) { 1306 LLVM_DEBUG(dbgs() << "PIP fails since no predecessor for current loop.\n"); 1307 return MadeChange; 1308 } 1309 // Check if a load/store has update form. This lambda is used by function 1310 // collectCandidates which can collect candidates for types defined by lambda. 1311 auto isUpdateFormCandidate = [&](const Instruction *I, Value *PtrValue, 1312 const Type *PointerElementType) { 1313 assert((PtrValue && I) && "Invalid parameter!"); 1314 // There are no update forms for Altivec vector load/stores. 1315 if (ST && ST->hasAltivec() && PointerElementType->isVectorTy()) 1316 return false; 1317 // There are no update forms for P10 lxvp/stxvp intrinsic. 1318 auto *II = dyn_cast<IntrinsicInst>(I); 1319 if (II && ((II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) || 1320 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp)) 1321 return false; 1322 // See getPreIndexedAddressParts, the displacement for LDU/STDU has to 1323 // be 4's multiple (DS-form). For i64 loads/stores when the displacement 1324 // fits in a 16-bit signed field but isn't a multiple of 4, it will be 1325 // useless and possible to break some original well-form addressing mode 1326 // to make this pre-inc prep for it. 1327 if (PointerElementType->isIntegerTy(64)) { 1328 const SCEV *LSCEV = SE->getSCEVAtScope(const_cast<Value *>(PtrValue), L); 1329 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV); 1330 if (!LARSCEV || LARSCEV->getLoop() != L) 1331 return false; 1332 if (const SCEVConstant *StepConst = 1333 dyn_cast<SCEVConstant>(LARSCEV->getStepRecurrence(*SE))) { 1334 const APInt &ConstInt = StepConst->getValue()->getValue(); 1335 if (ConstInt.isSignedIntN(16) && ConstInt.srem(4) != 0) 1336 return false; 1337 } 1338 } 1339 return true; 1340 }; 1341 1342 // Check if a load/store has DS form. 1343 auto isDSFormCandidate = [](const Instruction *I, Value *PtrValue, 1344 const Type *PointerElementType) { 1345 assert((PtrValue && I) && "Invalid parameter!"); 1346 if (isa<IntrinsicInst>(I)) 1347 return false; 1348 return (PointerElementType->isIntegerTy(64)) || 1349 (PointerElementType->isFloatTy()) || 1350 (PointerElementType->isDoubleTy()) || 1351 (PointerElementType->isIntegerTy(32) && 1352 llvm::any_of(I->users(), 1353 [](const User *U) { return isa<SExtInst>(U); })); 1354 }; 1355 1356 // Check if a load/store has DQ form. 1357 auto isDQFormCandidate = [&](const Instruction *I, Value *PtrValue, 1358 const Type *PointerElementType) { 1359 assert((PtrValue && I) && "Invalid parameter!"); 1360 // Check if it is a P10 lxvp/stxvp intrinsic. 1361 auto *II = dyn_cast<IntrinsicInst>(I); 1362 if (II) 1363 return II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp || 1364 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp; 1365 // Check if it is a P9 vector load/store. 1366 return ST && ST->hasP9Vector() && (PointerElementType->isVectorTy()); 1367 }; 1368 1369 // Check if a load/store is candidate for chain commoning. 1370 // If the SCEV is only with one ptr operand in its start, we can use that 1371 // start as a chain separator. Mark this load/store as a candidate. 1372 auto isChainCommoningCandidate = [&](const Instruction *I, Value *PtrValue, 1373 const Type *PointerElementType) { 1374 const SCEVAddRecExpr *ARSCEV = 1375 cast<SCEVAddRecExpr>(SE->getSCEVAtScope(PtrValue, L)); 1376 if (!ARSCEV) 1377 return false; 1378 1379 if (!ARSCEV->isAffine()) 1380 return false; 1381 1382 const SCEV *Start = ARSCEV->getStart(); 1383 1384 // A single pointer. We can treat it as offset 0. 1385 if (isa<SCEVUnknown>(Start) && Start->getType()->isPointerTy()) 1386 return true; 1387 1388 const SCEVAddExpr *ASCEV = dyn_cast<SCEVAddExpr>(Start); 1389 1390 // We need a SCEVAddExpr to include both base and offset. 1391 if (!ASCEV) 1392 return false; 1393 1394 // Make sure there is only one pointer operand(base) and all other operands 1395 // are integer type. 1396 bool SawPointer = false; 1397 for (const SCEV *Op : ASCEV->operands()) { 1398 if (Op->getType()->isPointerTy()) { 1399 if (SawPointer) 1400 return false; 1401 SawPointer = true; 1402 } else if (!Op->getType()->isIntegerTy()) 1403 return false; 1404 } 1405 1406 return SawPointer; 1407 }; 1408 1409 // Check if the diff is a constant type. This is used for update/DS/DQ form 1410 // preparation. 1411 auto isValidConstantDiff = [](const SCEV *Diff) { 1412 return dyn_cast<SCEVConstant>(Diff) != nullptr; 1413 }; 1414 1415 // Make sure the diff between the base and new candidate is required type. 1416 // This is used for chain commoning preparation. 1417 auto isValidChainCommoningDiff = [](const SCEV *Diff) { 1418 assert(Diff && "Invalid Diff!\n"); 1419 1420 // Don't mess up previous dform prepare. 1421 if (isa<SCEVConstant>(Diff)) 1422 return false; 1423 1424 // A single integer type offset. 1425 if (isa<SCEVUnknown>(Diff) && Diff->getType()->isIntegerTy()) 1426 return true; 1427 1428 const SCEVNAryExpr *ADiff = dyn_cast<SCEVNAryExpr>(Diff); 1429 if (!ADiff) 1430 return false; 1431 1432 for (const SCEV *Op : ADiff->operands()) 1433 if (!Op->getType()->isIntegerTy()) 1434 return false; 1435 1436 return true; 1437 }; 1438 1439 HasCandidateForPrepare = false; 1440 1441 LLVM_DEBUG(dbgs() << "Start to prepare for update form.\n"); 1442 // Collect buckets of comparable addresses used by loads and stores for update 1443 // form. 1444 SmallVector<Bucket, 16> UpdateFormBuckets = collectCandidates( 1445 L, isUpdateFormCandidate, isValidConstantDiff, MaxVarsUpdateForm); 1446 1447 // Prepare for update form. 1448 if (!UpdateFormBuckets.empty()) 1449 MadeChange |= updateFormPrep(L, UpdateFormBuckets); 1450 else if (!HasCandidateForPrepare) { 1451 LLVM_DEBUG( 1452 dbgs() 1453 << "No prepare candidates found, stop praparation for current loop!\n"); 1454 // If no candidate for preparing, return early. 1455 return MadeChange; 1456 } 1457 1458 LLVM_DEBUG(dbgs() << "Start to prepare for DS form.\n"); 1459 // Collect buckets of comparable addresses used by loads and stores for DS 1460 // form. 1461 SmallVector<Bucket, 16> DSFormBuckets = collectCandidates( 1462 L, isDSFormCandidate, isValidConstantDiff, MaxVarsDSForm); 1463 1464 // Prepare for DS form. 1465 if (!DSFormBuckets.empty()) 1466 MadeChange |= dispFormPrep(L, DSFormBuckets, DSForm); 1467 1468 LLVM_DEBUG(dbgs() << "Start to prepare for DQ form.\n"); 1469 // Collect buckets of comparable addresses used by loads and stores for DQ 1470 // form. 1471 SmallVector<Bucket, 16> DQFormBuckets = collectCandidates( 1472 L, isDQFormCandidate, isValidConstantDiff, MaxVarsDQForm); 1473 1474 // Prepare for DQ form. 1475 if (!DQFormBuckets.empty()) 1476 MadeChange |= dispFormPrep(L, DQFormBuckets, DQForm); 1477 1478 // Collect buckets of comparable addresses used by loads and stores for chain 1479 // commoning. With chain commoning, we reuse offsets between the chains, so 1480 // the register pressure will be reduced. 1481 if (!EnableChainCommoning) { 1482 LLVM_DEBUG(dbgs() << "Chain commoning is not enabled.\n"); 1483 return MadeChange; 1484 } 1485 1486 LLVM_DEBUG(dbgs() << "Start to prepare for chain commoning.\n"); 1487 SmallVector<Bucket, 16> Buckets = 1488 collectCandidates(L, isChainCommoningCandidate, isValidChainCommoningDiff, 1489 MaxVarsChainCommon); 1490 1491 // Prepare for chain commoning. 1492 if (!Buckets.empty()) 1493 MadeChange |= chainCommoning(L, Buckets); 1494 1495 return MadeChange; 1496 } 1497