1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the PowerPC-specific support for the FastISel class. Some 10 // of the target-specific code is generated by tablegen in the file 11 // PPCGenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "MCTargetDesc/PPCPredicates.h" 16 #include "PPC.h" 17 #include "PPCCallingConv.h" 18 #include "PPCISelLowering.h" 19 #include "PPCMachineFunctionInfo.h" 20 #include "PPCSubtarget.h" 21 #include "llvm/CodeGen/CallingConvLower.h" 22 #include "llvm/CodeGen/FastISel.h" 23 #include "llvm/CodeGen/FunctionLoweringInfo.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/TargetLowering.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/Target/TargetMachine.h" 34 35 //===----------------------------------------------------------------------===// 36 // 37 // TBD: 38 // fastLowerArguments: Handle simple cases. 39 // PPCMaterializeGV: Handle TLS. 40 // SelectCall: Handle function pointers. 41 // SelectCall: Handle multi-register return values. 42 // SelectCall: Optimize away nops for local calls. 43 // processCallArgs: Handle bit-converted arguments. 44 // finishCall: Handle multi-register return values. 45 // PPCComputeAddress: Handle parameter references as FrameIndex's. 46 // PPCEmitCmp: Handle immediate as operand 1. 47 // SelectCall: Handle small byval arguments. 48 // SelectIntrinsicCall: Implement. 49 // SelectSelect: Implement. 50 // Consider factoring isTypeLegal into the base class. 51 // Implement switches and jump tables. 52 // 53 //===----------------------------------------------------------------------===// 54 using namespace llvm; 55 56 #define DEBUG_TYPE "ppcfastisel" 57 58 namespace { 59 60 struct Address { 61 enum { 62 RegBase, 63 FrameIndexBase 64 } BaseType; 65 66 union { 67 unsigned Reg; 68 int FI; 69 } Base; 70 71 int64_t Offset; 72 73 // Innocuous defaults for our address. 74 Address() 75 : BaseType(RegBase), Offset(0) { 76 Base.Reg = 0; 77 } 78 }; 79 80 class PPCFastISel final : public FastISel { 81 82 const TargetMachine &TM; 83 const PPCSubtarget *Subtarget; 84 PPCFunctionInfo *PPCFuncInfo; 85 const TargetInstrInfo &TII; 86 const TargetLowering &TLI; 87 LLVMContext *Context; 88 89 public: 90 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, 91 const TargetLibraryInfo *LibInfo) 92 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), 93 Subtarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()), 94 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()), 95 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()), 96 Context(&FuncInfo.Fn->getContext()) {} 97 98 // Backend specific FastISel code. 99 private: 100 bool fastSelectInstruction(const Instruction *I) override; 101 unsigned fastMaterializeConstant(const Constant *C) override; 102 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 103 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 104 const LoadInst *LI) override; 105 bool fastLowerArguments() override; 106 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override; 107 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 108 const TargetRegisterClass *RC, 109 unsigned Op0, uint64_t Imm); 110 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 111 const TargetRegisterClass *RC, unsigned Op0); 112 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 113 const TargetRegisterClass *RC, 114 unsigned Op0, unsigned Op1); 115 116 bool fastLowerCall(CallLoweringInfo &CLI) override; 117 118 // Instruction selection routines. 119 private: 120 bool SelectLoad(const Instruction *I); 121 bool SelectStore(const Instruction *I); 122 bool SelectBranch(const Instruction *I); 123 bool SelectIndirectBr(const Instruction *I); 124 bool SelectFPExt(const Instruction *I); 125 bool SelectFPTrunc(const Instruction *I); 126 bool SelectIToFP(const Instruction *I, bool IsSigned); 127 bool SelectFPToI(const Instruction *I, bool IsSigned); 128 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 129 bool SelectRet(const Instruction *I); 130 bool SelectTrunc(const Instruction *I); 131 bool SelectIntExt(const Instruction *I); 132 133 // Utility routines. 134 private: 135 bool isTypeLegal(Type *Ty, MVT &VT); 136 bool isLoadTypeLegal(Type *Ty, MVT &VT); 137 bool isValueAvailable(const Value *V) const; 138 bool isVSFRCRegClass(const TargetRegisterClass *RC) const { 139 return RC->getID() == PPC::VSFRCRegClassID; 140 } 141 bool isVSSRCRegClass(const TargetRegisterClass *RC) const { 142 return RC->getID() == PPC::VSSRCRegClassID; 143 } 144 unsigned copyRegToRegClass(const TargetRegisterClass *ToRC, 145 unsigned SrcReg, unsigned Flag = 0, 146 unsigned SubReg = 0) { 147 Register TmpReg = createResultReg(ToRC); 148 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 149 TII.get(TargetOpcode::COPY), TmpReg).addReg(SrcReg, Flag, SubReg); 150 return TmpReg; 151 } 152 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value, 153 bool isZExt, unsigned DestReg, 154 const PPC::Predicate Pred); 155 bool PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 156 const TargetRegisterClass *RC, bool IsZExt = true, 157 unsigned FP64LoadOpc = PPC::LFD); 158 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr); 159 bool PPCComputeAddress(const Value *Obj, Address &Addr); 160 void PPCSimplifyAddress(Address &Addr, bool &UseOffset, 161 unsigned &IndexReg); 162 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 163 unsigned DestReg, bool IsZExt); 164 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); 165 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT); 166 unsigned PPCMaterializeInt(const ConstantInt *CI, MVT VT, 167 bool UseSExt = true); 168 unsigned PPCMaterialize32BitInt(int64_t Imm, 169 const TargetRegisterClass *RC); 170 unsigned PPCMaterialize64BitInt(int64_t Imm, 171 const TargetRegisterClass *RC); 172 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT, 173 unsigned SrcReg, bool IsSigned); 174 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned); 175 176 // Call handling routines. 177 private: 178 bool processCallArgs(SmallVectorImpl<Value*> &Args, 179 SmallVectorImpl<unsigned> &ArgRegs, 180 SmallVectorImpl<MVT> &ArgVTs, 181 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 182 SmallVectorImpl<unsigned> &RegArgs, 183 CallingConv::ID CC, 184 unsigned &NumBytes, 185 bool IsVarArg); 186 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes); 187 188 private: 189 #include "PPCGenFastISel.inc" 190 191 }; 192 193 } // end anonymous namespace 194 195 static std::optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) { 196 switch (Pred) { 197 // These are not representable with any single compare. 198 case CmpInst::FCMP_FALSE: 199 case CmpInst::FCMP_TRUE: 200 // Major concern about the following 6 cases is NaN result. The comparison 201 // result consists of 4 bits, indicating lt, eq, gt and un (unordered), 202 // only one of which will be set. The result is generated by fcmpu 203 // instruction. However, bc instruction only inspects one of the first 3 204 // bits, so when un is set, bc instruction may jump to an undesired 205 // place. 206 // 207 // More specifically, if we expect an unordered comparison and un is set, we 208 // expect to always go to true branch; in such case UEQ, UGT and ULT still 209 // give false, which are undesired; but UNE, UGE, ULE happen to give true, 210 // since they are tested by inspecting !eq, !lt, !gt, respectively. 211 // 212 // Similarly, for ordered comparison, when un is set, we always expect the 213 // result to be false. In such case OGT, OLT and OEQ is good, since they are 214 // actually testing GT, LT, and EQ respectively, which are false. OGE, OLE 215 // and ONE are tested through !lt, !gt and !eq, and these are true. 216 case CmpInst::FCMP_UEQ: 217 case CmpInst::FCMP_UGT: 218 case CmpInst::FCMP_ULT: 219 case CmpInst::FCMP_OGE: 220 case CmpInst::FCMP_OLE: 221 case CmpInst::FCMP_ONE: 222 default: 223 return std::nullopt; 224 225 case CmpInst::FCMP_OEQ: 226 case CmpInst::ICMP_EQ: 227 return PPC::PRED_EQ; 228 229 case CmpInst::FCMP_OGT: 230 case CmpInst::ICMP_UGT: 231 case CmpInst::ICMP_SGT: 232 return PPC::PRED_GT; 233 234 case CmpInst::FCMP_UGE: 235 case CmpInst::ICMP_UGE: 236 case CmpInst::ICMP_SGE: 237 return PPC::PRED_GE; 238 239 case CmpInst::FCMP_OLT: 240 case CmpInst::ICMP_ULT: 241 case CmpInst::ICMP_SLT: 242 return PPC::PRED_LT; 243 244 case CmpInst::FCMP_ULE: 245 case CmpInst::ICMP_ULE: 246 case CmpInst::ICMP_SLE: 247 return PPC::PRED_LE; 248 249 case CmpInst::FCMP_UNE: 250 case CmpInst::ICMP_NE: 251 return PPC::PRED_NE; 252 253 case CmpInst::FCMP_ORD: 254 return PPC::PRED_NU; 255 256 case CmpInst::FCMP_UNO: 257 return PPC::PRED_UN; 258 } 259 } 260 261 // Determine whether the type Ty is simple enough to be handled by 262 // fast-isel, and return its equivalent machine type in VT. 263 // FIXME: Copied directly from ARM -- factor into base class? 264 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) { 265 EVT Evt = TLI.getValueType(DL, Ty, true); 266 267 // Only handle simple types. 268 if (Evt == MVT::Other || !Evt.isSimple()) return false; 269 VT = Evt.getSimpleVT(); 270 271 // Handle all legal types, i.e. a register that will directly hold this 272 // value. 273 return TLI.isTypeLegal(VT); 274 } 275 276 // Determine whether the type Ty is simple enough to be handled by 277 // fast-isel as a load target, and return its equivalent machine type in VT. 278 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 279 if (isTypeLegal(Ty, VT)) return true; 280 281 // If this is a type than can be sign or zero-extended to a basic operation 282 // go ahead and accept it now. 283 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) { 284 return true; 285 } 286 287 return false; 288 } 289 290 bool PPCFastISel::isValueAvailable(const Value *V) const { 291 if (!isa<Instruction>(V)) 292 return true; 293 294 const auto *I = cast<Instruction>(V); 295 return FuncInfo.getMBB(I->getParent()) == FuncInfo.MBB; 296 } 297 298 // Given a value Obj, create an Address object Addr that represents its 299 // address. Return false if we can't handle it. 300 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) { 301 const User *U = nullptr; 302 unsigned Opcode = Instruction::UserOp1; 303 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 304 // Don't walk into other basic blocks unless the object is an alloca from 305 // another block, otherwise it may not have a virtual register assigned. 306 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 307 FuncInfo.getMBB(I->getParent()) == FuncInfo.MBB) { 308 Opcode = I->getOpcode(); 309 U = I; 310 } 311 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 312 Opcode = C->getOpcode(); 313 U = C; 314 } 315 316 switch (Opcode) { 317 default: 318 break; 319 case Instruction::BitCast: 320 // Look through bitcasts. 321 return PPCComputeAddress(U->getOperand(0), Addr); 322 case Instruction::IntToPtr: 323 // Look past no-op inttoptrs. 324 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 325 TLI.getPointerTy(DL)) 326 return PPCComputeAddress(U->getOperand(0), Addr); 327 break; 328 case Instruction::PtrToInt: 329 // Look past no-op ptrtoints. 330 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 331 return PPCComputeAddress(U->getOperand(0), Addr); 332 break; 333 case Instruction::GetElementPtr: { 334 Address SavedAddr = Addr; 335 int64_t TmpOffset = Addr.Offset; 336 337 // Iterate through the GEP folding the constants into offsets where 338 // we can. 339 gep_type_iterator GTI = gep_type_begin(U); 340 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end(); 341 II != IE; ++II, ++GTI) { 342 const Value *Op = *II; 343 if (StructType *STy = GTI.getStructTypeOrNull()) { 344 const StructLayout *SL = DL.getStructLayout(STy); 345 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 346 TmpOffset += SL->getElementOffset(Idx); 347 } else { 348 uint64_t S = GTI.getSequentialElementStride(DL); 349 for (;;) { 350 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 351 // Constant-offset addressing. 352 TmpOffset += CI->getSExtValue() * S; 353 break; 354 } 355 if (canFoldAddIntoGEP(U, Op)) { 356 // A compatible add with a constant operand. Fold the constant. 357 ConstantInt *CI = 358 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 359 TmpOffset += CI->getSExtValue() * S; 360 // Iterate on the other operand. 361 Op = cast<AddOperator>(Op)->getOperand(0); 362 continue; 363 } 364 // Unsupported 365 goto unsupported_gep; 366 } 367 } 368 } 369 370 // Try to grab the base operand now. 371 Addr.Offset = TmpOffset; 372 if (PPCComputeAddress(U->getOperand(0), Addr)) return true; 373 374 // We failed, restore everything and try the other options. 375 Addr = SavedAddr; 376 377 unsupported_gep: 378 break; 379 } 380 case Instruction::Alloca: { 381 const AllocaInst *AI = cast<AllocaInst>(Obj); 382 DenseMap<const AllocaInst*, int>::iterator SI = 383 FuncInfo.StaticAllocaMap.find(AI); 384 if (SI != FuncInfo.StaticAllocaMap.end()) { 385 Addr.BaseType = Address::FrameIndexBase; 386 Addr.Base.FI = SI->second; 387 return true; 388 } 389 break; 390 } 391 } 392 393 // FIXME: References to parameters fall through to the behavior 394 // below. They should be able to reference a frame index since 395 // they are stored to the stack, so we can get "ld rx, offset(r1)" 396 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will 397 // just contain the parameter. Try to handle this with a FI. 398 399 // Try to get this in a register if nothing else has worked. 400 if (Addr.Base.Reg == 0) 401 Addr.Base.Reg = getRegForValue(Obj); 402 403 // Prevent assignment of base register to X0, which is inappropriate 404 // for loads and stores alike. 405 if (Addr.Base.Reg != 0) 406 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass); 407 408 return Addr.Base.Reg != 0; 409 } 410 411 // Fix up some addresses that can't be used directly. For example, if 412 // an offset won't fit in an instruction field, we may need to move it 413 // into an index register. 414 void PPCFastISel::PPCSimplifyAddress(Address &Addr, bool &UseOffset, 415 unsigned &IndexReg) { 416 417 // Check whether the offset fits in the instruction field. 418 if (!isInt<16>(Addr.Offset)) 419 UseOffset = false; 420 421 // If this is a stack pointer and the offset needs to be simplified then 422 // put the alloca address into a register, set the base type back to 423 // register and continue. This should almost never happen. 424 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) { 425 Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 426 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDI8), 427 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0); 428 Addr.Base.Reg = ResultReg; 429 Addr.BaseType = Address::RegBase; 430 } 431 432 if (!UseOffset) { 433 IntegerType *OffsetTy = Type::getInt64Ty(*Context); 434 const ConstantInt *Offset = ConstantInt::getSigned(OffsetTy, Addr.Offset); 435 IndexReg = PPCMaterializeInt(Offset, MVT::i64); 436 assert(IndexReg && "Unexpected error in PPCMaterializeInt!"); 437 } 438 } 439 440 // Emit a load instruction if possible, returning true if we succeeded, 441 // otherwise false. See commentary below for how the register class of 442 // the load is determined. 443 bool PPCFastISel::PPCEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 444 const TargetRegisterClass *RC, 445 bool IsZExt, unsigned FP64LoadOpc) { 446 unsigned Opc; 447 bool UseOffset = true; 448 bool HasSPE = Subtarget->hasSPE(); 449 450 // If ResultReg is given, it determines the register class of the load. 451 // Otherwise, RC is the register class to use. If the result of the 452 // load isn't anticipated in this block, both may be zero, in which 453 // case we must make a conservative guess. In particular, don't assign 454 // R0 or X0 to the result register, as the result may be used in a load, 455 // store, add-immediate, or isel that won't permit this. (Though 456 // perhaps the spill and reload of live-exit values would handle this?) 457 const TargetRegisterClass *UseRC = 458 (ResultReg ? MRI.getRegClass(ResultReg) : 459 (RC ? RC : 460 (VT == MVT::f64 ? (HasSPE ? &PPC::SPERCRegClass : &PPC::F8RCRegClass) : 461 (VT == MVT::f32 ? (HasSPE ? &PPC::GPRCRegClass : &PPC::F4RCRegClass) : 462 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 463 &PPC::GPRC_and_GPRC_NOR0RegClass))))); 464 465 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass); 466 467 switch (VT.SimpleTy) { 468 default: // e.g., vector types not handled 469 return false; 470 case MVT::i8: 471 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8; 472 break; 473 case MVT::i16: 474 Opc = (IsZExt ? (Is32BitInt ? PPC::LHZ : PPC::LHZ8) 475 : (Is32BitInt ? PPC::LHA : PPC::LHA8)); 476 break; 477 case MVT::i32: 478 Opc = (IsZExt ? (Is32BitInt ? PPC::LWZ : PPC::LWZ8) 479 : (Is32BitInt ? PPC::LWA_32 : PPC::LWA)); 480 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0)) 481 UseOffset = false; 482 break; 483 case MVT::i64: 484 Opc = PPC::LD; 485 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) && 486 "64-bit load with 32-bit target??"); 487 UseOffset = ((Addr.Offset & 3) == 0); 488 break; 489 case MVT::f32: 490 Opc = Subtarget->hasSPE() ? PPC::SPELWZ : PPC::LFS; 491 break; 492 case MVT::f64: 493 Opc = FP64LoadOpc; 494 break; 495 } 496 497 // If necessary, materialize the offset into a register and use 498 // the indexed form. Also handle stack pointers with special needs. 499 unsigned IndexReg = 0; 500 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 501 502 // If this is a potential VSX load with an offset of 0, a VSX indexed load can 503 // be used. 504 bool IsVSSRC = isVSSRCRegClass(UseRC); 505 bool IsVSFRC = isVSFRCRegClass(UseRC); 506 bool Is32VSXLoad = IsVSSRC && Opc == PPC::LFS; 507 bool Is64VSXLoad = IsVSFRC && Opc == PPC::LFD; 508 if ((Is32VSXLoad || Is64VSXLoad) && 509 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 510 (Addr.Offset == 0)) { 511 UseOffset = false; 512 } 513 514 if (ResultReg == 0) 515 ResultReg = createResultReg(UseRC); 516 517 // Note: If we still have a frame index here, we know the offset is 518 // in range, as otherwise PPCSimplifyAddress would have converted it 519 // into a RegBase. 520 if (Addr.BaseType == Address::FrameIndexBase) { 521 // VSX only provides an indexed load. 522 if (Is32VSXLoad || Is64VSXLoad) return false; 523 524 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 525 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 526 Addr.Offset), 527 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI), 528 MFI.getObjectAlign(Addr.Base.FI)); 529 530 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 531 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO); 532 533 // Base reg with offset in range. 534 } else if (UseOffset) { 535 // VSX only provides an indexed load. 536 if (Is32VSXLoad || Is64VSXLoad) return false; 537 538 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 539 .addImm(Addr.Offset).addReg(Addr.Base.Reg); 540 541 // Indexed form. 542 } else { 543 // Get the RR opcode corresponding to the RI one. FIXME: It would be 544 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 545 // is hard to get at. 546 switch (Opc) { 547 default: llvm_unreachable("Unexpected opcode!"); 548 case PPC::LBZ: Opc = PPC::LBZX; break; 549 case PPC::LBZ8: Opc = PPC::LBZX8; break; 550 case PPC::LHZ: Opc = PPC::LHZX; break; 551 case PPC::LHZ8: Opc = PPC::LHZX8; break; 552 case PPC::LHA: Opc = PPC::LHAX; break; 553 case PPC::LHA8: Opc = PPC::LHAX8; break; 554 case PPC::LWZ: Opc = PPC::LWZX; break; 555 case PPC::LWZ8: Opc = PPC::LWZX8; break; 556 case PPC::LWA: Opc = PPC::LWAX; break; 557 case PPC::LWA_32: Opc = PPC::LWAX_32; break; 558 case PPC::LD: Opc = PPC::LDX; break; 559 case PPC::LFS: Opc = IsVSSRC ? PPC::LXSSPX : PPC::LFSX; break; 560 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break; 561 case PPC::EVLDD: Opc = PPC::EVLDDX; break; 562 case PPC::SPELWZ: Opc = PPC::SPELWZX; break; 563 } 564 565 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 566 ResultReg); 567 568 // If we have an index register defined we use it in the store inst, 569 // otherwise we use X0 as base as it makes the vector instructions to 570 // use zero in the computation of the effective address regardless the 571 // content of the register. 572 if (IndexReg) 573 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 574 else 575 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 576 } 577 578 return true; 579 } 580 581 // Attempt to fast-select a load instruction. 582 bool PPCFastISel::SelectLoad(const Instruction *I) { 583 // FIXME: No atomic loads are supported. 584 if (cast<LoadInst>(I)->isAtomic()) 585 return false; 586 587 // Verify we have a legal type before going any further. 588 MVT VT; 589 if (!isLoadTypeLegal(I->getType(), VT)) 590 return false; 591 592 // See if we can handle this address. 593 Address Addr; 594 if (!PPCComputeAddress(I->getOperand(0), Addr)) 595 return false; 596 597 // Look at the currently assigned register for this instruction 598 // to determine the required register class. This is necessary 599 // to constrain RA from using R0/X0 when this is not legal. 600 Register AssignedReg = FuncInfo.ValueMap[I]; 601 const TargetRegisterClass *RC = 602 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 603 604 Register ResultReg = 0; 605 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, true, 606 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) 607 return false; 608 updateValueMap(I, ResultReg); 609 return true; 610 } 611 612 // Emit a store instruction to store SrcReg at Addr. 613 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) { 614 assert(SrcReg && "Nothing to store!"); 615 unsigned Opc; 616 bool UseOffset = true; 617 618 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg); 619 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass); 620 621 switch (VT.SimpleTy) { 622 default: // e.g., vector types not handled 623 return false; 624 case MVT::i8: 625 Opc = Is32BitInt ? PPC::STB : PPC::STB8; 626 break; 627 case MVT::i16: 628 Opc = Is32BitInt ? PPC::STH : PPC::STH8; 629 break; 630 case MVT::i32: 631 assert(Is32BitInt && "Not GPRC for i32??"); 632 Opc = PPC::STW; 633 break; 634 case MVT::i64: 635 Opc = PPC::STD; 636 UseOffset = ((Addr.Offset & 3) == 0); 637 break; 638 case MVT::f32: 639 Opc = Subtarget->hasSPE() ? PPC::SPESTW : PPC::STFS; 640 break; 641 case MVT::f64: 642 Opc = Subtarget->hasSPE() ? PPC::EVSTDD : PPC::STFD; 643 break; 644 } 645 646 // If necessary, materialize the offset into a register and use 647 // the indexed form. Also handle stack pointers with special needs. 648 unsigned IndexReg = 0; 649 PPCSimplifyAddress(Addr, UseOffset, IndexReg); 650 651 // If this is a potential VSX store with an offset of 0, a VSX indexed store 652 // can be used. 653 bool IsVSSRC = isVSSRCRegClass(RC); 654 bool IsVSFRC = isVSFRCRegClass(RC); 655 bool Is32VSXStore = IsVSSRC && Opc == PPC::STFS; 656 bool Is64VSXStore = IsVSFRC && Opc == PPC::STFD; 657 if ((Is32VSXStore || Is64VSXStore) && 658 (Addr.BaseType != Address::FrameIndexBase) && UseOffset && 659 (Addr.Offset == 0)) { 660 UseOffset = false; 661 } 662 663 // Note: If we still have a frame index here, we know the offset is 664 // in range, as otherwise PPCSimplifyAddress would have converted it 665 // into a RegBase. 666 if (Addr.BaseType == Address::FrameIndexBase) { 667 // VSX only provides an indexed store. 668 if (Is32VSXStore || Is64VSXStore) return false; 669 670 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 671 MachinePointerInfo::getFixedStack(*FuncInfo.MF, Addr.Base.FI, 672 Addr.Offset), 673 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI), 674 MFI.getObjectAlign(Addr.Base.FI)); 675 676 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)) 677 .addReg(SrcReg) 678 .addImm(Addr.Offset) 679 .addFrameIndex(Addr.Base.FI) 680 .addMemOperand(MMO); 681 682 // Base reg with offset in range. 683 } else if (UseOffset) { 684 // VSX only provides an indexed store. 685 if (Is32VSXStore || Is64VSXStore) 686 return false; 687 688 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)) 689 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg); 690 691 // Indexed form. 692 } else { 693 // Get the RR opcode corresponding to the RI one. FIXME: It would be 694 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it 695 // is hard to get at. 696 switch (Opc) { 697 default: llvm_unreachable("Unexpected opcode!"); 698 case PPC::STB: Opc = PPC::STBX; break; 699 case PPC::STH : Opc = PPC::STHX; break; 700 case PPC::STW : Opc = PPC::STWX; break; 701 case PPC::STB8: Opc = PPC::STBX8; break; 702 case PPC::STH8: Opc = PPC::STHX8; break; 703 case PPC::STW8: Opc = PPC::STWX8; break; 704 case PPC::STD: Opc = PPC::STDX; break; 705 case PPC::STFS: Opc = IsVSSRC ? PPC::STXSSPX : PPC::STFSX; break; 706 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break; 707 case PPC::EVSTDD: Opc = PPC::EVSTDDX; break; 708 case PPC::SPESTW: Opc = PPC::SPESTWX; break; 709 } 710 711 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc)) 712 .addReg(SrcReg); 713 714 // If we have an index register defined we use it in the store inst, 715 // otherwise we use X0 as base as it makes the vector instructions to 716 // use zero in the computation of the effective address regardless the 717 // content of the register. 718 if (IndexReg) 719 MIB.addReg(Addr.Base.Reg).addReg(IndexReg); 720 else 721 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg); 722 } 723 724 return true; 725 } 726 727 // Attempt to fast-select a store instruction. 728 bool PPCFastISel::SelectStore(const Instruction *I) { 729 Value *Op0 = I->getOperand(0); 730 unsigned SrcReg = 0; 731 732 // FIXME: No atomics loads are supported. 733 if (cast<StoreInst>(I)->isAtomic()) 734 return false; 735 736 // Verify we have a legal type before going any further. 737 MVT VT; 738 if (!isLoadTypeLegal(Op0->getType(), VT)) 739 return false; 740 741 // Get the value to be stored into a register. 742 SrcReg = getRegForValue(Op0); 743 if (SrcReg == 0) 744 return false; 745 746 // See if we can handle this address. 747 Address Addr; 748 if (!PPCComputeAddress(I->getOperand(1), Addr)) 749 return false; 750 751 if (!PPCEmitStore(VT, SrcReg, Addr)) 752 return false; 753 754 return true; 755 } 756 757 // Attempt to fast-select a branch instruction. 758 bool PPCFastISel::SelectBranch(const Instruction *I) { 759 const BranchInst *BI = cast<BranchInst>(I); 760 MachineBasicBlock *BrBB = FuncInfo.MBB; 761 MachineBasicBlock *TBB = FuncInfo.getMBB(BI->getSuccessor(0)); 762 MachineBasicBlock *FBB = FuncInfo.getMBB(BI->getSuccessor(1)); 763 764 // For now, just try the simplest case where it's fed by a compare. 765 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 766 if (isValueAvailable(CI)) { 767 std::optional<PPC::Predicate> OptPPCPred = 768 getComparePred(CI->getPredicate()); 769 if (!OptPPCPred) 770 return false; 771 772 PPC::Predicate PPCPred = *OptPPCPred; 773 774 // Take advantage of fall-through opportunities. 775 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 776 std::swap(TBB, FBB); 777 PPCPred = PPC::InvertPredicate(PPCPred); 778 } 779 780 Register CondReg = createResultReg(&PPC::CRRCRegClass); 781 782 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 783 CondReg, PPCPred)) 784 return false; 785 786 BuildMI(*BrBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::BCC)) 787 .addImm(Subtarget->hasSPE() ? PPC::PRED_SPE : PPCPred) 788 .addReg(CondReg) 789 .addMBB(TBB); 790 finishCondBranch(BI->getParent(), TBB, FBB); 791 return true; 792 } 793 } else if (const ConstantInt *CI = 794 dyn_cast<ConstantInt>(BI->getCondition())) { 795 uint64_t Imm = CI->getZExtValue(); 796 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 797 fastEmitBranch(Target, MIMD.getDL()); 798 return true; 799 } 800 801 // FIXME: ARM looks for a case where the block containing the compare 802 // has been split from the block containing the branch. If this happens, 803 // there is a vreg available containing the result of the compare. I'm 804 // not sure we can do much, as we've lost the predicate information with 805 // the compare instruction -- we have a 4-bit CR but don't know which bit 806 // to test here. 807 return false; 808 } 809 810 // Attempt to emit a compare of the two source values. Signed and unsigned 811 // comparisons are supported. Return false if we can't handle it. 812 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2, 813 bool IsZExt, unsigned DestReg, 814 const PPC::Predicate Pred) { 815 Type *Ty = SrcValue1->getType(); 816 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 817 if (!SrcEVT.isSimple()) 818 return false; 819 MVT SrcVT = SrcEVT.getSimpleVT(); 820 821 if (SrcVT == MVT::i1 && Subtarget->useCRBits()) 822 return false; 823 824 // See if operand 2 is an immediate encodeable in the compare. 825 // FIXME: Operands are not in canonical order at -O0, so an immediate 826 // operand in position 1 is a lost opportunity for now. We are 827 // similar to ARM in this regard. 828 int64_t Imm = 0; 829 bool UseImm = false; 830 const bool HasSPE = Subtarget->hasSPE(); 831 832 // Only 16-bit integer constants can be represented in compares for 833 // PowerPC. Others will be materialized into a register. 834 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) { 835 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 || 836 SrcVT == MVT::i8 || SrcVT == MVT::i1) { 837 const APInt &CIVal = ConstInt->getValue(); 838 Imm = (IsZExt) ? (int64_t)CIVal.getZExtValue() : 839 (int64_t)CIVal.getSExtValue(); 840 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm))) 841 UseImm = true; 842 } 843 } 844 845 Register SrcReg1 = getRegForValue(SrcValue1); 846 if (SrcReg1 == 0) 847 return false; 848 849 unsigned SrcReg2 = 0; 850 if (!UseImm) { 851 SrcReg2 = getRegForValue(SrcValue2); 852 if (SrcReg2 == 0) 853 return false; 854 } 855 856 unsigned CmpOpc; 857 bool NeedsExt = false; 858 859 auto RC1 = MRI.getRegClass(SrcReg1); 860 auto RC2 = SrcReg2 != 0 ? MRI.getRegClass(SrcReg2) : nullptr; 861 862 switch (SrcVT.SimpleTy) { 863 default: return false; 864 case MVT::f32: 865 if (HasSPE) { 866 switch (Pred) { 867 default: return false; 868 case PPC::PRED_EQ: 869 CmpOpc = PPC::EFSCMPEQ; 870 break; 871 case PPC::PRED_LT: 872 CmpOpc = PPC::EFSCMPLT; 873 break; 874 case PPC::PRED_GT: 875 CmpOpc = PPC::EFSCMPGT; 876 break; 877 } 878 } else { 879 CmpOpc = PPC::FCMPUS; 880 if (isVSSRCRegClass(RC1)) 881 SrcReg1 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg1); 882 if (RC2 && isVSSRCRegClass(RC2)) 883 SrcReg2 = copyRegToRegClass(&PPC::F4RCRegClass, SrcReg2); 884 } 885 break; 886 case MVT::f64: 887 if (HasSPE) { 888 switch (Pred) { 889 default: return false; 890 case PPC::PRED_EQ: 891 CmpOpc = PPC::EFDCMPEQ; 892 break; 893 case PPC::PRED_LT: 894 CmpOpc = PPC::EFDCMPLT; 895 break; 896 case PPC::PRED_GT: 897 CmpOpc = PPC::EFDCMPGT; 898 break; 899 } 900 } else if (isVSFRCRegClass(RC1) || (RC2 && isVSFRCRegClass(RC2))) { 901 CmpOpc = PPC::XSCMPUDP; 902 } else { 903 CmpOpc = PPC::FCMPUD; 904 } 905 break; 906 case MVT::i1: 907 case MVT::i8: 908 case MVT::i16: 909 NeedsExt = true; 910 [[fallthrough]]; 911 case MVT::i32: 912 if (!UseImm) 913 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW; 914 else 915 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI; 916 break; 917 case MVT::i64: 918 if (!UseImm) 919 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD; 920 else 921 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI; 922 break; 923 } 924 925 if (NeedsExt) { 926 Register ExtReg = createResultReg(&PPC::GPRCRegClass); 927 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt)) 928 return false; 929 SrcReg1 = ExtReg; 930 931 if (!UseImm) { 932 Register ExtReg = createResultReg(&PPC::GPRCRegClass); 933 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt)) 934 return false; 935 SrcReg2 = ExtReg; 936 } 937 } 938 939 if (!UseImm) 940 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CmpOpc), DestReg) 941 .addReg(SrcReg1).addReg(SrcReg2); 942 else 943 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CmpOpc), DestReg) 944 .addReg(SrcReg1).addImm(Imm); 945 946 return true; 947 } 948 949 // Attempt to fast-select a floating-point extend instruction. 950 bool PPCFastISel::SelectFPExt(const Instruction *I) { 951 Value *Src = I->getOperand(0); 952 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 953 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 954 955 if (SrcVT != MVT::f32 || DestVT != MVT::f64) 956 return false; 957 958 Register SrcReg = getRegForValue(Src); 959 if (!SrcReg) 960 return false; 961 962 // No code is generated for a FP extend. 963 updateValueMap(I, SrcReg); 964 return true; 965 } 966 967 // Attempt to fast-select a floating-point truncate instruction. 968 bool PPCFastISel::SelectFPTrunc(const Instruction *I) { 969 Value *Src = I->getOperand(0); 970 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 971 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 972 973 if (SrcVT != MVT::f64 || DestVT != MVT::f32) 974 return false; 975 976 Register SrcReg = getRegForValue(Src); 977 if (!SrcReg) 978 return false; 979 980 // Round the result to single precision. 981 unsigned DestReg; 982 auto RC = MRI.getRegClass(SrcReg); 983 if (Subtarget->hasSPE()) { 984 DestReg = createResultReg(&PPC::GPRCRegClass); 985 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::EFSCFD), 986 DestReg) 987 .addReg(SrcReg); 988 } else if (Subtarget->hasP8Vector() && isVSFRCRegClass(RC)) { 989 DestReg = createResultReg(&PPC::VSSRCRegClass); 990 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::XSRSP), 991 DestReg) 992 .addReg(SrcReg); 993 } else { 994 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg); 995 DestReg = createResultReg(&PPC::F4RCRegClass); 996 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 997 TII.get(PPC::FRSP), DestReg) 998 .addReg(SrcReg); 999 } 1000 1001 updateValueMap(I, DestReg); 1002 return true; 1003 } 1004 1005 // Move an i32 or i64 value in a GPR to an f64 value in an FPR. 1006 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1007 // those should be used instead of moving via a stack slot when the 1008 // subtarget permits. 1009 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte 1010 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte 1011 // case to 8 bytes which produces tighter code but wastes stack space. 1012 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg, 1013 bool IsSigned) { 1014 1015 // If necessary, extend 32-bit int to 64-bit. 1016 if (SrcVT == MVT::i32) { 1017 Register TmpReg = createResultReg(&PPC::G8RCRegClass); 1018 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1019 return 0; 1020 SrcReg = TmpReg; 1021 } 1022 1023 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1024 Address Addr; 1025 Addr.BaseType = Address::FrameIndexBase; 1026 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false); 1027 1028 // Store the value from the GPR. 1029 if (!PPCEmitStore(MVT::i64, SrcReg, Addr)) 1030 return 0; 1031 1032 // Load the integer value into an FPR. The kind of load used depends 1033 // on a number of conditions. 1034 unsigned LoadOpc = PPC::LFD; 1035 1036 if (SrcVT == MVT::i32) { 1037 if (!IsSigned) { 1038 LoadOpc = PPC::LFIWZX; 1039 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; 1040 } else if (Subtarget->hasLFIWAX()) { 1041 LoadOpc = PPC::LFIWAX; 1042 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; 1043 } 1044 } 1045 1046 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1047 Register ResultReg = 0; 1048 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc)) 1049 return 0; 1050 1051 return ResultReg; 1052 } 1053 1054 // Attempt to fast-select an integer-to-floating-point conversion. 1055 // FIXME: Once fast-isel has better support for VSX, conversions using 1056 // direct moves should be implemented. 1057 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) { 1058 MVT DstVT; 1059 Type *DstTy = I->getType(); 1060 if (!isTypeLegal(DstTy, DstVT)) 1061 return false; 1062 1063 if (DstVT != MVT::f32 && DstVT != MVT::f64) 1064 return false; 1065 1066 Value *Src = I->getOperand(0); 1067 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1068 if (!SrcEVT.isSimple()) 1069 return false; 1070 1071 MVT SrcVT = SrcEVT.getSimpleVT(); 1072 1073 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && 1074 SrcVT != MVT::i32 && SrcVT != MVT::i64) 1075 return false; 1076 1077 Register SrcReg = getRegForValue(Src); 1078 if (SrcReg == 0) 1079 return false; 1080 1081 // Shortcut for SPE. Doesn't need to store/load, since it's all in the GPRs 1082 if (Subtarget->hasSPE()) { 1083 unsigned Opc; 1084 if (DstVT == MVT::f32) 1085 Opc = IsSigned ? PPC::EFSCFSI : PPC::EFSCFUI; 1086 else 1087 Opc = IsSigned ? PPC::EFDCFSI : PPC::EFDCFUI; 1088 1089 Register DestReg = createResultReg(&PPC::SPERCRegClass); 1090 // Generate the convert. 1091 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 1092 .addReg(SrcReg); 1093 updateValueMap(I, DestReg); 1094 return true; 1095 } 1096 1097 // We can only lower an unsigned convert if we have the newer 1098 // floating-point conversion operations. 1099 if (!IsSigned && !Subtarget->hasFPCVT()) 1100 return false; 1101 1102 // FIXME: For now we require the newer floating-point conversion operations 1103 // (which are present only on P7 and A2 server models) when converting 1104 // to single-precision float. Otherwise we have to generate a lot of 1105 // fiddly code to avoid double rounding. If necessary, the fiddly code 1106 // can be found in PPCTargetLowering::LowerINT_TO_FP(). 1107 if (DstVT == MVT::f32 && !Subtarget->hasFPCVT()) 1108 return false; 1109 1110 // Extend the input if necessary. 1111 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) { 1112 Register TmpReg = createResultReg(&PPC::G8RCRegClass); 1113 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned)) 1114 return false; 1115 SrcVT = MVT::i64; 1116 SrcReg = TmpReg; 1117 } 1118 1119 // Move the integer value to an FPR. 1120 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned); 1121 if (FPReg == 0) 1122 return false; 1123 1124 // Determine the opcode for the conversion. 1125 const TargetRegisterClass *RC = &PPC::F8RCRegClass; 1126 Register DestReg = createResultReg(RC); 1127 unsigned Opc; 1128 1129 if (DstVT == MVT::f32) 1130 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS; 1131 else 1132 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU; 1133 1134 // Generate the convert. 1135 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 1136 .addReg(FPReg); 1137 1138 updateValueMap(I, DestReg); 1139 return true; 1140 } 1141 1142 // Move the floating-point value in SrcReg into an integer destination 1143 // register, and return the register (or zero if we can't handle it). 1144 // FIXME: When direct register moves are implemented (see PowerISA 2.07), 1145 // those should be used instead of moving via a stack slot when the 1146 // subtarget permits. 1147 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT, 1148 unsigned SrcReg, bool IsSigned) { 1149 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary. 1150 // Note that if have STFIWX available, we could use a 4-byte stack 1151 // slot for i32, but this being fast-isel we'll just go with the 1152 // easiest code gen possible. 1153 Address Addr; 1154 Addr.BaseType = Address::FrameIndexBase; 1155 Addr.Base.FI = MFI.CreateStackObject(8, Align(8), false); 1156 1157 // Store the value from the FPR. 1158 if (!PPCEmitStore(MVT::f64, SrcReg, Addr)) 1159 return 0; 1160 1161 // Reload it into a GPR. If we want an i32 on big endian, modify the 1162 // address to have a 4-byte offset so we load from the right place. 1163 if (VT == MVT::i32) 1164 Addr.Offset = (Subtarget->isLittleEndian()) ? 0 : 4; 1165 1166 // Look at the currently assigned register for this instruction 1167 // to determine the required register class. 1168 Register AssignedReg = FuncInfo.ValueMap[I]; 1169 const TargetRegisterClass *RC = 1170 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr; 1171 1172 Register ResultReg = 0; 1173 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned)) 1174 return 0; 1175 1176 return ResultReg; 1177 } 1178 1179 // Attempt to fast-select a floating-point-to-integer conversion. 1180 // FIXME: Once fast-isel has better support for VSX, conversions using 1181 // direct moves should be implemented. 1182 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) { 1183 MVT DstVT, SrcVT; 1184 Type *DstTy = I->getType(); 1185 if (!isTypeLegal(DstTy, DstVT)) 1186 return false; 1187 1188 if (DstVT != MVT::i32 && DstVT != MVT::i64) 1189 return false; 1190 1191 // If we don't have FCTIDUZ, or SPE, and we need it, punt to SelectionDAG. 1192 if (DstVT == MVT::i64 && !IsSigned && !Subtarget->hasFPCVT() && 1193 !Subtarget->hasSPE()) 1194 return false; 1195 1196 Value *Src = I->getOperand(0); 1197 Type *SrcTy = Src->getType(); 1198 if (!isTypeLegal(SrcTy, SrcVT)) 1199 return false; 1200 1201 if (SrcVT != MVT::f32 && SrcVT != MVT::f64) 1202 return false; 1203 1204 Register SrcReg = getRegForValue(Src); 1205 if (SrcReg == 0) 1206 return false; 1207 1208 // Convert f32 to f64 or convert VSSRC to VSFRC if necessary. This is just a 1209 // meaningless copy to get the register class right. 1210 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg); 1211 if (InRC == &PPC::F4RCRegClass) 1212 SrcReg = copyRegToRegClass(&PPC::F8RCRegClass, SrcReg); 1213 else if (InRC == &PPC::VSSRCRegClass) 1214 SrcReg = copyRegToRegClass(&PPC::VSFRCRegClass, SrcReg); 1215 1216 // Determine the opcode for the conversion, which takes place 1217 // entirely within FPRs or VSRs. 1218 unsigned DestReg; 1219 unsigned Opc; 1220 auto RC = MRI.getRegClass(SrcReg); 1221 1222 if (Subtarget->hasSPE()) { 1223 DestReg = createResultReg(&PPC::GPRCRegClass); 1224 if (IsSigned) 1225 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTSIZ : PPC::EFDCTSIZ; 1226 else 1227 Opc = InRC == &PPC::GPRCRegClass ? PPC::EFSCTUIZ : PPC::EFDCTUIZ; 1228 } else if (isVSFRCRegClass(RC)) { 1229 DestReg = createResultReg(&PPC::VSFRCRegClass); 1230 if (DstVT == MVT::i32) 1231 Opc = IsSigned ? PPC::XSCVDPSXWS : PPC::XSCVDPUXWS; 1232 else 1233 Opc = IsSigned ? PPC::XSCVDPSXDS : PPC::XSCVDPUXDS; 1234 } else { 1235 DestReg = createResultReg(&PPC::F8RCRegClass); 1236 if (DstVT == MVT::i32) 1237 if (IsSigned) 1238 Opc = PPC::FCTIWZ; 1239 else 1240 Opc = Subtarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ; 1241 else 1242 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ; 1243 } 1244 1245 // Generate the convert. 1246 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 1247 .addReg(SrcReg); 1248 1249 // Now move the integer value from a float register to an integer register. 1250 unsigned IntReg = Subtarget->hasSPE() 1251 ? DestReg 1252 : PPCMoveToIntReg(I, DstVT, DestReg, IsSigned); 1253 1254 if (IntReg == 0) 1255 return false; 1256 1257 updateValueMap(I, IntReg); 1258 return true; 1259 } 1260 1261 // Attempt to fast-select a binary integer operation that isn't already 1262 // handled automatically. 1263 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1264 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1265 1266 // We can get here in the case when we have a binary operation on a non-legal 1267 // type and the target independent selector doesn't know how to handle it. 1268 if (DestVT != MVT::i16 && DestVT != MVT::i8) 1269 return false; 1270 1271 // Look at the currently assigned register for this instruction 1272 // to determine the required register class. If there is no register, 1273 // make a conservative choice (don't assign R0). 1274 Register AssignedReg = FuncInfo.ValueMap[I]; 1275 const TargetRegisterClass *RC = 1276 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1277 &PPC::GPRC_and_GPRC_NOR0RegClass); 1278 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 1279 1280 unsigned Opc; 1281 switch (ISDOpcode) { 1282 default: return false; 1283 case ISD::ADD: 1284 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8; 1285 break; 1286 case ISD::OR: 1287 Opc = IsGPRC ? PPC::OR : PPC::OR8; 1288 break; 1289 case ISD::SUB: 1290 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8; 1291 break; 1292 } 1293 1294 Register ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass); 1295 Register SrcReg1 = getRegForValue(I->getOperand(0)); 1296 if (SrcReg1 == 0) return false; 1297 1298 // Handle case of small immediate operand. 1299 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) { 1300 const APInt &CIVal = ConstInt->getValue(); 1301 int Imm = (int)CIVal.getSExtValue(); 1302 bool UseImm = true; 1303 if (isInt<16>(Imm)) { 1304 switch (Opc) { 1305 default: 1306 llvm_unreachable("Missing case!"); 1307 case PPC::ADD4: 1308 Opc = PPC::ADDI; 1309 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1310 break; 1311 case PPC::ADD8: 1312 Opc = PPC::ADDI8; 1313 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1314 break; 1315 case PPC::OR: 1316 Opc = PPC::ORI; 1317 break; 1318 case PPC::OR8: 1319 Opc = PPC::ORI8; 1320 break; 1321 case PPC::SUBF: 1322 if (Imm == -32768) 1323 UseImm = false; 1324 else { 1325 Opc = PPC::ADDI; 1326 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass); 1327 Imm = -Imm; 1328 } 1329 break; 1330 case PPC::SUBF8: 1331 if (Imm == -32768) 1332 UseImm = false; 1333 else { 1334 Opc = PPC::ADDI8; 1335 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass); 1336 Imm = -Imm; 1337 } 1338 break; 1339 } 1340 1341 if (UseImm) { 1342 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 1343 ResultReg) 1344 .addReg(SrcReg1) 1345 .addImm(Imm); 1346 updateValueMap(I, ResultReg); 1347 return true; 1348 } 1349 } 1350 } 1351 1352 // Reg-reg case. 1353 Register SrcReg2 = getRegForValue(I->getOperand(1)); 1354 if (SrcReg2 == 0) return false; 1355 1356 // Reverse operands for subtract-from. 1357 if (ISDOpcode == ISD::SUB) 1358 std::swap(SrcReg1, SrcReg2); 1359 1360 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg) 1361 .addReg(SrcReg1).addReg(SrcReg2); 1362 updateValueMap(I, ResultReg); 1363 return true; 1364 } 1365 1366 // Handle arguments to a call that we're attempting to fast-select. 1367 // Return false if the arguments are too complex for us at the moment. 1368 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args, 1369 SmallVectorImpl<unsigned> &ArgRegs, 1370 SmallVectorImpl<MVT> &ArgVTs, 1371 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1372 SmallVectorImpl<unsigned> &RegArgs, 1373 CallingConv::ID CC, 1374 unsigned &NumBytes, 1375 bool IsVarArg) { 1376 SmallVector<CCValAssign, 16> ArgLocs; 1377 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context); 1378 1379 // Reserve space for the linkage area on the stack. 1380 unsigned LinkageSize = Subtarget->getFrameLowering()->getLinkageSize(); 1381 CCInfo.AllocateStack(LinkageSize, Align(8)); 1382 1383 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS); 1384 1385 // Bail out if we can't handle any of the arguments. 1386 for (const CCValAssign &VA : ArgLocs) { 1387 MVT ArgVT = ArgVTs[VA.getValNo()]; 1388 1389 // Skip vector arguments for now, as well as long double and 1390 // uint128_t, and anything that isn't passed in a register. 1391 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 || 1392 !VA.isRegLoc() || VA.needsCustom()) 1393 return false; 1394 1395 // Skip bit-converted arguments for now. 1396 if (VA.getLocInfo() == CCValAssign::BCvt) 1397 return false; 1398 } 1399 1400 // Get a count of how many bytes are to be pushed onto the stack. 1401 NumBytes = CCInfo.getStackSize(); 1402 1403 // The prolog code of the callee may store up to 8 GPR argument registers to 1404 // the stack, allowing va_start to index over them in memory if its varargs. 1405 // Because we cannot tell if this is needed on the caller side, we have to 1406 // conservatively assume that it is needed. As such, make sure we have at 1407 // least enough stack space for the caller to store the 8 GPRs. 1408 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area. 1409 NumBytes = std::max(NumBytes, LinkageSize + 64); 1410 1411 // Issue CALLSEQ_START. 1412 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1413 TII.get(TII.getCallFrameSetupOpcode())) 1414 .addImm(NumBytes).addImm(0); 1415 1416 // Prepare to assign register arguments. Every argument uses up a 1417 // GPR protocol register even if it's passed in a floating-point 1418 // register (unless we're using the fast calling convention). 1419 unsigned NextGPR = PPC::X3; 1420 unsigned NextFPR = PPC::F1; 1421 1422 // Process arguments. 1423 for (const CCValAssign &VA : ArgLocs) { 1424 unsigned Arg = ArgRegs[VA.getValNo()]; 1425 MVT ArgVT = ArgVTs[VA.getValNo()]; 1426 1427 // Handle argument promotion and bitcasts. 1428 switch (VA.getLocInfo()) { 1429 default: 1430 llvm_unreachable("Unknown loc info!"); 1431 case CCValAssign::Full: 1432 break; 1433 case CCValAssign::SExt: { 1434 MVT DestVT = VA.getLocVT(); 1435 const TargetRegisterClass *RC = 1436 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1437 Register TmpReg = createResultReg(RC); 1438 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false)) 1439 llvm_unreachable("Failed to emit a sext!"); 1440 ArgVT = DestVT; 1441 Arg = TmpReg; 1442 break; 1443 } 1444 case CCValAssign::AExt: 1445 case CCValAssign::ZExt: { 1446 MVT DestVT = VA.getLocVT(); 1447 const TargetRegisterClass *RC = 1448 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1449 Register TmpReg = createResultReg(RC); 1450 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true)) 1451 llvm_unreachable("Failed to emit a zext!"); 1452 ArgVT = DestVT; 1453 Arg = TmpReg; 1454 break; 1455 } 1456 case CCValAssign::BCvt: { 1457 // FIXME: Not yet handled. 1458 llvm_unreachable("Should have bailed before getting here!"); 1459 break; 1460 } 1461 } 1462 1463 // Copy this argument to the appropriate register. 1464 unsigned ArgReg; 1465 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) { 1466 ArgReg = NextFPR++; 1467 if (CC != CallingConv::Fast) 1468 ++NextGPR; 1469 } else 1470 ArgReg = NextGPR++; 1471 1472 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1473 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg); 1474 RegArgs.push_back(ArgReg); 1475 } 1476 1477 return true; 1478 } 1479 1480 // For a call that we've determined we can fast-select, finish the 1481 // call sequence and generate a copy to obtain the return value (if any). 1482 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) { 1483 CallingConv::ID CC = CLI.CallConv; 1484 1485 // Issue CallSEQ_END. 1486 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1487 TII.get(TII.getCallFrameDestroyOpcode())) 1488 .addImm(NumBytes).addImm(0); 1489 1490 // Next, generate a copy to obtain the return value. 1491 // FIXME: No multi-register return values yet, though I don't foresee 1492 // any real difficulties there. 1493 if (RetVT != MVT::isVoid) { 1494 SmallVector<CCValAssign, 16> RVLocs; 1495 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 1496 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1497 CCValAssign &VA = RVLocs[0]; 1498 assert(RVLocs.size() == 1 && "No support for multi-reg return values!"); 1499 assert(VA.isRegLoc() && "Can only return in registers!"); 1500 1501 MVT DestVT = VA.getValVT(); 1502 MVT CopyVT = DestVT; 1503 1504 // Ints smaller than a register still arrive in a full 64-bit 1505 // register, so make sure we recognize this. 1506 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) 1507 CopyVT = MVT::i64; 1508 1509 unsigned SourcePhysReg = VA.getLocReg(); 1510 unsigned ResultReg = 0; 1511 1512 if (RetVT == CopyVT) { 1513 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT); 1514 ResultReg = copyRegToRegClass(CpyRC, SourcePhysReg); 1515 1516 // If necessary, round the floating result to single precision. 1517 } else if (CopyVT == MVT::f64) { 1518 ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1519 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::FRSP), 1520 ResultReg).addReg(SourcePhysReg); 1521 1522 // If only the low half of a general register is needed, generate 1523 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be 1524 // used along the fast-isel path (not lowered), and downstream logic 1525 // also doesn't like a direct subreg copy on a physical reg.) 1526 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) { 1527 // Convert physical register from G8RC to GPRC. 1528 SourcePhysReg -= PPC::X0 - PPC::R0; 1529 ResultReg = copyRegToRegClass(&PPC::GPRCRegClass, SourcePhysReg); 1530 } 1531 1532 assert(ResultReg && "ResultReg unset!"); 1533 CLI.InRegs.push_back(SourcePhysReg); 1534 CLI.ResultReg = ResultReg; 1535 CLI.NumResultRegs = 1; 1536 } 1537 1538 return true; 1539 } 1540 1541 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) { 1542 CallingConv::ID CC = CLI.CallConv; 1543 bool IsTailCall = CLI.IsTailCall; 1544 bool IsVarArg = CLI.IsVarArg; 1545 const Value *Callee = CLI.Callee; 1546 const MCSymbol *Symbol = CLI.Symbol; 1547 1548 if (!Callee && !Symbol) 1549 return false; 1550 1551 // Allow SelectionDAG isel to handle tail calls and long calls. 1552 if (IsTailCall || Subtarget->useLongCalls()) 1553 return false; 1554 1555 // Let SDISel handle vararg functions. 1556 if (IsVarArg) 1557 return false; 1558 1559 // If this is a PC-Rel function, let SDISel handle the call. 1560 if (Subtarget->isUsingPCRelativeCalls()) 1561 return false; 1562 1563 // Handle simple calls for now, with legal return types and 1564 // those that can be extended. 1565 Type *RetTy = CLI.RetTy; 1566 MVT RetVT; 1567 if (RetTy->isVoidTy()) 1568 RetVT = MVT::isVoid; 1569 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 1570 RetVT != MVT::i8) 1571 return false; 1572 else if (RetVT == MVT::i1 && Subtarget->useCRBits()) 1573 // We can't handle boolean returns when CR bits are in use. 1574 return false; 1575 1576 // FIXME: No multi-register return values yet. 1577 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 && 1578 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 && 1579 RetVT != MVT::f64) { 1580 SmallVector<CCValAssign, 16> RVLocs; 1581 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context); 1582 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS); 1583 if (RVLocs.size() > 1) 1584 return false; 1585 } 1586 1587 // Bail early if more than 8 arguments, as we only currently 1588 // handle arguments passed in registers. 1589 unsigned NumArgs = CLI.OutVals.size(); 1590 if (NumArgs > 8) 1591 return false; 1592 1593 // Set up the argument vectors. 1594 SmallVector<Value*, 8> Args; 1595 SmallVector<unsigned, 8> ArgRegs; 1596 SmallVector<MVT, 8> ArgVTs; 1597 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 1598 1599 Args.reserve(NumArgs); 1600 ArgRegs.reserve(NumArgs); 1601 ArgVTs.reserve(NumArgs); 1602 ArgFlags.reserve(NumArgs); 1603 1604 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) { 1605 // Only handle easy calls for now. It would be reasonably easy 1606 // to handle <= 8-byte structures passed ByVal in registers, but we 1607 // have to ensure they are right-justified in the register. 1608 ISD::ArgFlagsTy Flags = CLI.OutFlags[i]; 1609 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal()) 1610 return false; 1611 1612 Value *ArgValue = CLI.OutVals[i]; 1613 Type *ArgTy = ArgValue->getType(); 1614 MVT ArgVT; 1615 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8) 1616 return false; 1617 1618 // FIXME: FastISel cannot handle non-simple types yet, including 128-bit FP 1619 // types, which is passed through vector register. Skip these types and 1620 // fallback to default SelectionDAG based selection. 1621 if (ArgVT.isVector() || ArgVT == MVT::f128) 1622 return false; 1623 1624 Register Arg = getRegForValue(ArgValue); 1625 if (Arg == 0) 1626 return false; 1627 1628 Args.push_back(ArgValue); 1629 ArgRegs.push_back(Arg); 1630 ArgVTs.push_back(ArgVT); 1631 ArgFlags.push_back(Flags); 1632 } 1633 1634 // Process the arguments. 1635 SmallVector<unsigned, 8> RegArgs; 1636 unsigned NumBytes; 1637 1638 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 1639 RegArgs, CC, NumBytes, IsVarArg)) 1640 return false; 1641 1642 MachineInstrBuilder MIB; 1643 // FIXME: No handling for function pointers yet. This requires 1644 // implementing the function descriptor (OPD) setup. 1645 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 1646 if (!GV) { 1647 // patchpoints are a special case; they always dispatch to a pointer value. 1648 // However, we don't actually want to generate the indirect call sequence 1649 // here (that will be generated, as necessary, during asm printing), and 1650 // the call we generate here will be erased by FastISel::selectPatchpoint, 1651 // so don't try very hard... 1652 if (CLI.IsPatchPoint) 1653 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::NOP)); 1654 else 1655 return false; 1656 } else { 1657 // Build direct call with NOP for TOC restore. 1658 // FIXME: We can and should optimize away the NOP for local calls. 1659 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1660 TII.get(PPC::BL8_NOP)); 1661 // Add callee. 1662 MIB.addGlobalAddress(GV); 1663 } 1664 1665 // Add implicit physical register uses to the call. 1666 for (unsigned Reg : RegArgs) 1667 MIB.addReg(Reg, RegState::Implicit); 1668 1669 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live 1670 // into the call. 1671 PPCFuncInfo->setUsesTOCBasePtr(); 1672 MIB.addReg(PPC::X2, RegState::Implicit); 1673 1674 // Add a register mask with the call-preserved registers. Proper 1675 // defs for return values will be added by setPhysRegsDeadExcept(). 1676 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 1677 1678 CLI.Call = MIB; 1679 1680 // Finish off the call including any return values. 1681 return finishCall(RetVT, CLI, NumBytes); 1682 } 1683 1684 // Attempt to fast-select a return instruction. 1685 bool PPCFastISel::SelectRet(const Instruction *I) { 1686 1687 if (!FuncInfo.CanLowerReturn) 1688 return false; 1689 1690 const ReturnInst *Ret = cast<ReturnInst>(I); 1691 const Function &F = *I->getParent()->getParent(); 1692 1693 // Build a list of return value registers. 1694 SmallVector<unsigned, 4> RetRegs; 1695 CallingConv::ID CC = F.getCallingConv(); 1696 1697 if (Ret->getNumOperands() > 0) { 1698 SmallVector<ISD::OutputArg, 4> Outs; 1699 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 1700 1701 // Analyze operands of the call, assigning locations to each operand. 1702 SmallVector<CCValAssign, 16> ValLocs; 1703 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context); 1704 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS); 1705 const Value *RV = Ret->getOperand(0); 1706 1707 // FIXME: Only one output register for now. 1708 if (ValLocs.size() > 1) 1709 return false; 1710 1711 // Special case for returning a constant integer of any size - materialize 1712 // the constant as an i64 and copy it to the return register. 1713 if (const ConstantInt *CI = dyn_cast<ConstantInt>(RV)) { 1714 CCValAssign &VA = ValLocs[0]; 1715 1716 Register RetReg = VA.getLocReg(); 1717 // We still need to worry about properly extending the sign. For example, 1718 // we could have only a single bit or a constant that needs zero 1719 // extension rather than sign extension. Make sure we pass the return 1720 // value extension property to integer materialization. 1721 unsigned SrcReg = 1722 PPCMaterializeInt(CI, MVT::i64, VA.getLocInfo() != CCValAssign::ZExt); 1723 1724 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1725 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg); 1726 1727 RetRegs.push_back(RetReg); 1728 1729 } else { 1730 Register Reg = getRegForValue(RV); 1731 1732 if (Reg == 0) 1733 return false; 1734 1735 // Copy the result values into the output registers. 1736 for (unsigned i = 0; i < ValLocs.size(); ++i) { 1737 1738 CCValAssign &VA = ValLocs[i]; 1739 assert(VA.isRegLoc() && "Can only return in registers!"); 1740 RetRegs.push_back(VA.getLocReg()); 1741 unsigned SrcReg = Reg + VA.getValNo(); 1742 1743 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 1744 if (!RVEVT.isSimple()) 1745 return false; 1746 MVT RVVT = RVEVT.getSimpleVT(); 1747 MVT DestVT = VA.getLocVT(); 1748 1749 if (RVVT != DestVT && RVVT != MVT::i8 && 1750 RVVT != MVT::i16 && RVVT != MVT::i32) 1751 return false; 1752 1753 if (RVVT != DestVT) { 1754 switch (VA.getLocInfo()) { 1755 default: 1756 llvm_unreachable("Unknown loc info!"); 1757 case CCValAssign::Full: 1758 llvm_unreachable("Full value assign but types don't match?"); 1759 case CCValAssign::AExt: 1760 case CCValAssign::ZExt: { 1761 const TargetRegisterClass *RC = 1762 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1763 Register TmpReg = createResultReg(RC); 1764 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true)) 1765 return false; 1766 SrcReg = TmpReg; 1767 break; 1768 } 1769 case CCValAssign::SExt: { 1770 const TargetRegisterClass *RC = 1771 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; 1772 Register TmpReg = createResultReg(RC); 1773 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false)) 1774 return false; 1775 SrcReg = TmpReg; 1776 break; 1777 } 1778 } 1779 } 1780 1781 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1782 TII.get(TargetOpcode::COPY), RetRegs[i]) 1783 .addReg(SrcReg); 1784 } 1785 } 1786 } 1787 1788 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1789 TII.get(PPC::BLR8)); 1790 1791 for (unsigned Reg : RetRegs) 1792 MIB.addReg(Reg, RegState::Implicit); 1793 1794 return true; 1795 } 1796 1797 // Attempt to emit an integer extend of SrcReg into DestReg. Both 1798 // signed and zero extensions are supported. Return false if we 1799 // can't handle it. 1800 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 1801 unsigned DestReg, bool IsZExt) { 1802 if (DestVT != MVT::i32 && DestVT != MVT::i64) 1803 return false; 1804 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32) 1805 return false; 1806 1807 // Signed extensions use EXTSB, EXTSH, EXTSW. 1808 if (!IsZExt) { 1809 unsigned Opc; 1810 if (SrcVT == MVT::i8) 1811 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64; 1812 else if (SrcVT == MVT::i16) 1813 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64; 1814 else { 1815 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??"); 1816 Opc = PPC::EXTSW_32_64; 1817 } 1818 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 1819 .addReg(SrcReg); 1820 1821 // Unsigned 32-bit extensions use RLWINM. 1822 } else if (DestVT == MVT::i32) { 1823 unsigned MB; 1824 if (SrcVT == MVT::i8) 1825 MB = 24; 1826 else { 1827 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??"); 1828 MB = 16; 1829 } 1830 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::RLWINM), 1831 DestReg) 1832 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31); 1833 1834 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source). 1835 } else { 1836 unsigned MB; 1837 if (SrcVT == MVT::i8) 1838 MB = 56; 1839 else if (SrcVT == MVT::i16) 1840 MB = 48; 1841 else 1842 MB = 32; 1843 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1844 TII.get(PPC::RLDICL_32_64), DestReg) 1845 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB); 1846 } 1847 1848 return true; 1849 } 1850 1851 // Attempt to fast-select an indirect branch instruction. 1852 bool PPCFastISel::SelectIndirectBr(const Instruction *I) { 1853 Register AddrReg = getRegForValue(I->getOperand(0)); 1854 if (AddrReg == 0) 1855 return false; 1856 1857 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::MTCTR8)) 1858 .addReg(AddrReg); 1859 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::BCTR8)); 1860 1861 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1862 for (const BasicBlock *SuccBB : IB->successors()) 1863 FuncInfo.MBB->addSuccessor(FuncInfo.getMBB(SuccBB)); 1864 1865 return true; 1866 } 1867 1868 // Attempt to fast-select an integer truncate instruction. 1869 bool PPCFastISel::SelectTrunc(const Instruction *I) { 1870 Value *Src = I->getOperand(0); 1871 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true); 1872 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1873 1874 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16) 1875 return false; 1876 1877 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 1878 return false; 1879 1880 Register SrcReg = getRegForValue(Src); 1881 if (!SrcReg) 1882 return false; 1883 1884 // The only interesting case is when we need to switch register classes. 1885 if (SrcVT == MVT::i64) 1886 SrcReg = copyRegToRegClass(&PPC::GPRCRegClass, SrcReg, 0, PPC::sub_32); 1887 1888 updateValueMap(I, SrcReg); 1889 return true; 1890 } 1891 1892 // Attempt to fast-select an integer extend instruction. 1893 bool PPCFastISel::SelectIntExt(const Instruction *I) { 1894 Type *DestTy = I->getType(); 1895 Value *Src = I->getOperand(0); 1896 Type *SrcTy = Src->getType(); 1897 1898 bool IsZExt = isa<ZExtInst>(I); 1899 Register SrcReg = getRegForValue(Src); 1900 if (!SrcReg) return false; 1901 1902 EVT SrcEVT, DestEVT; 1903 SrcEVT = TLI.getValueType(DL, SrcTy, true); 1904 DestEVT = TLI.getValueType(DL, DestTy, true); 1905 if (!SrcEVT.isSimple()) 1906 return false; 1907 if (!DestEVT.isSimple()) 1908 return false; 1909 1910 MVT SrcVT = SrcEVT.getSimpleVT(); 1911 MVT DestVT = DestEVT.getSimpleVT(); 1912 1913 // If we know the register class needed for the result of this 1914 // instruction, use it. Otherwise pick the register class of the 1915 // correct size that does not contain X0/R0, since we don't know 1916 // whether downstream uses permit that assignment. 1917 Register AssignedReg = FuncInfo.ValueMap[I]; 1918 const TargetRegisterClass *RC = 1919 (AssignedReg ? MRI.getRegClass(AssignedReg) : 1920 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass : 1921 &PPC::GPRC_and_GPRC_NOR0RegClass)); 1922 Register ResultReg = createResultReg(RC); 1923 1924 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt)) 1925 return false; 1926 1927 updateValueMap(I, ResultReg); 1928 return true; 1929 } 1930 1931 // Attempt to fast-select an instruction that wasn't handled by 1932 // the table-generated machinery. 1933 bool PPCFastISel::fastSelectInstruction(const Instruction *I) { 1934 1935 switch (I->getOpcode()) { 1936 case Instruction::Load: 1937 return SelectLoad(I); 1938 case Instruction::Store: 1939 return SelectStore(I); 1940 case Instruction::Br: 1941 return SelectBranch(I); 1942 case Instruction::IndirectBr: 1943 return SelectIndirectBr(I); 1944 case Instruction::FPExt: 1945 return SelectFPExt(I); 1946 case Instruction::FPTrunc: 1947 return SelectFPTrunc(I); 1948 case Instruction::SIToFP: 1949 return SelectIToFP(I, /*IsSigned*/ true); 1950 case Instruction::UIToFP: 1951 return SelectIToFP(I, /*IsSigned*/ false); 1952 case Instruction::FPToSI: 1953 return SelectFPToI(I, /*IsSigned*/ true); 1954 case Instruction::FPToUI: 1955 return SelectFPToI(I, /*IsSigned*/ false); 1956 case Instruction::Add: 1957 return SelectBinaryIntOp(I, ISD::ADD); 1958 case Instruction::Or: 1959 return SelectBinaryIntOp(I, ISD::OR); 1960 case Instruction::Sub: 1961 return SelectBinaryIntOp(I, ISD::SUB); 1962 case Instruction::Ret: 1963 return SelectRet(I); 1964 case Instruction::Trunc: 1965 return SelectTrunc(I); 1966 case Instruction::ZExt: 1967 case Instruction::SExt: 1968 return SelectIntExt(I); 1969 // Here add other flavors of Instruction::XXX that automated 1970 // cases don't catch. For example, switches are terminators 1971 // that aren't yet handled. 1972 default: 1973 break; 1974 } 1975 return false; 1976 } 1977 1978 // Materialize a floating-point constant into a register, and return 1979 // the register number (or zero if we failed to handle it). 1980 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { 1981 // If this is a PC-Rel function, let SDISel handle constant pool. 1982 if (Subtarget->isUsingPCRelativeCalls()) 1983 return false; 1984 1985 // No plans to handle long double here. 1986 if (VT != MVT::f32 && VT != MVT::f64) 1987 return 0; 1988 1989 // All FP constants are loaded from the constant pool. 1990 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 1991 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment); 1992 const bool HasSPE = Subtarget->hasSPE(); 1993 const TargetRegisterClass *RC; 1994 if (HasSPE) 1995 RC = ((VT == MVT::f32) ? &PPC::GPRCRegClass : &PPC::SPERCRegClass); 1996 else 1997 RC = ((VT == MVT::f32) ? &PPC::F4RCRegClass : &PPC::F8RCRegClass); 1998 1999 Register DestReg = createResultReg(RC); 2000 CodeModel::Model CModel = TM.getCodeModel(); 2001 2002 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 2003 MachinePointerInfo::getConstantPool(*FuncInfo.MF), 2004 MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Alignment); 2005 2006 unsigned Opc; 2007 2008 if (HasSPE) 2009 Opc = ((VT == MVT::f32) ? PPC::SPELWZ : PPC::EVLDD); 2010 else 2011 Opc = ((VT == MVT::f32) ? PPC::LFS : PPC::LFD); 2012 2013 Register TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2014 2015 PPCFuncInfo->setUsesTOCBasePtr(); 2016 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)). 2017 if (CModel == CodeModel::Small) { 2018 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocCPT), 2019 TmpReg) 2020 .addConstantPoolIndex(Idx).addReg(PPC::X2); 2021 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 2022 .addImm(0).addReg(TmpReg).addMemOperand(MMO); 2023 } else { 2024 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA8(X2, Idx)). 2025 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDIStocHA8), 2026 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); 2027 // But for large code model, we must generate a LDtocL followed 2028 // by the LF[SD]. 2029 if (CModel == CodeModel::Large) { 2030 Register TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2031 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocL), 2032 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg); 2033 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 2034 .addImm(0) 2035 .addReg(TmpReg2); 2036 } else 2037 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 2038 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) 2039 .addReg(TmpReg) 2040 .addMemOperand(MMO); 2041 } 2042 2043 return DestReg; 2044 } 2045 2046 // Materialize the address of a global value into a register, and return 2047 // the register number (or zero if we failed to handle it). 2048 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) { 2049 // If this is a PC-Rel function, let SDISel handle GV materialization. 2050 if (Subtarget->isUsingPCRelativeCalls()) 2051 return false; 2052 2053 assert(VT == MVT::i64 && "Non-address!"); 2054 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass; 2055 Register DestReg = createResultReg(RC); 2056 2057 // Global values may be plain old object addresses, TLS object 2058 // addresses, constant pool entries, or jump tables. How we generate 2059 // code for these may depend on small, medium, or large code model. 2060 CodeModel::Model CModel = TM.getCodeModel(); 2061 2062 // FIXME: Jump tables are not yet required because fast-isel doesn't 2063 // handle switches; if that changes, we need them as well. For now, 2064 // what follows assumes everything's a generic (or TLS) global address. 2065 2066 // FIXME: We don't yet handle the complexity of TLS. 2067 if (GV->isThreadLocal()) 2068 return 0; 2069 2070 PPCFuncInfo->setUsesTOCBasePtr(); 2071 bool IsAIXTocData = TM.getTargetTriple().isOSAIX() && 2072 isa<GlobalVariable>(GV) && 2073 cast<GlobalVariable>(GV)->hasAttribute("toc-data"); 2074 2075 // For small code model, generate a simple TOC load. 2076 if (CModel == CodeModel::Small) { 2077 auto MIB = BuildMI( 2078 *FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2079 IsAIXTocData ? TII.get(PPC::ADDItoc8) : TII.get(PPC::LDtoc), DestReg); 2080 if (IsAIXTocData) 2081 MIB.addReg(PPC::X2).addGlobalAddress(GV); 2082 else 2083 MIB.addGlobalAddress(GV).addReg(PPC::X2); 2084 } else { 2085 // If the address is an externally defined symbol, a symbol with common 2086 // or externally available linkage, a non-local function address, or a 2087 // jump table address (not yet needed), or if we are generating code 2088 // for large code model, we generate: 2089 // LDtocL(GV, ADDIStocHA8(%x2, GV)) 2090 // Otherwise we generate: 2091 // ADDItocL8(ADDIStocHA8(%x2, GV), GV) 2092 // Either way, start with the ADDIStocHA8: 2093 Register HighPartReg = createResultReg(RC); 2094 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDIStocHA8), 2095 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV); 2096 2097 if (Subtarget->isGVIndirectSymbol(GV)) { 2098 assert(!IsAIXTocData && "TOC data should always be direct."); 2099 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::LDtocL), 2100 DestReg).addGlobalAddress(GV).addReg(HighPartReg); 2101 } else { 2102 // Otherwise generate the ADDItocL8. 2103 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDItocL8), 2104 DestReg) 2105 .addReg(HighPartReg) 2106 .addGlobalAddress(GV); 2107 } 2108 } 2109 2110 return DestReg; 2111 } 2112 2113 // Materialize a 32-bit integer constant into a register, and return 2114 // the register number (or zero if we failed to handle it). 2115 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, 2116 const TargetRegisterClass *RC) { 2117 unsigned Lo = Imm & 0xFFFF; 2118 unsigned Hi = (Imm >> 16) & 0xFFFF; 2119 2120 Register ResultReg = createResultReg(RC); 2121 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); 2122 2123 if (isInt<16>(Imm)) 2124 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2125 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) 2126 .addImm(Imm); 2127 else if (Lo) { 2128 // Both Lo and Hi have nonzero bits. 2129 Register TmpReg = createResultReg(RC); 2130 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2131 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) 2132 .addImm(Hi); 2133 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2134 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) 2135 .addReg(TmpReg).addImm(Lo); 2136 } else 2137 // Just Hi bits. 2138 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2139 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) 2140 .addImm(Hi); 2141 2142 return ResultReg; 2143 } 2144 2145 // Materialize a 64-bit integer constant into a register, and return 2146 // the register number (or zero if we failed to handle it). 2147 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, 2148 const TargetRegisterClass *RC) { 2149 unsigned Remainder = 0; 2150 unsigned Shift = 0; 2151 2152 // If the value doesn't fit in 32 bits, see if we can shift it 2153 // so that it fits in 32 bits. 2154 if (!isInt<32>(Imm)) { 2155 Shift = llvm::countr_zero<uint64_t>(Imm); 2156 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; 2157 2158 if (isInt<32>(ImmSh)) 2159 Imm = ImmSh; 2160 else { 2161 Remainder = Imm; 2162 Shift = 32; 2163 Imm >>= 32; 2164 } 2165 } 2166 2167 // Handle the high-order 32 bits (if shifted) or the whole 32 bits 2168 // (if not shifted). 2169 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); 2170 if (!Shift) 2171 return TmpReg1; 2172 2173 // If upper 32 bits were not zero, we've built them and need to shift 2174 // them into place. 2175 unsigned TmpReg2; 2176 if (Imm) { 2177 TmpReg2 = createResultReg(RC); 2178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::RLDICR), 2179 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); 2180 } else 2181 TmpReg2 = TmpReg1; 2182 2183 unsigned TmpReg3, Hi, Lo; 2184 if ((Hi = (Remainder >> 16) & 0xFFFF)) { 2185 TmpReg3 = createResultReg(RC); 2186 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ORIS8), 2187 TmpReg3).addReg(TmpReg2).addImm(Hi); 2188 } else 2189 TmpReg3 = TmpReg2; 2190 2191 if ((Lo = Remainder & 0xFFFF)) { 2192 Register ResultReg = createResultReg(RC); 2193 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ORI8), 2194 ResultReg).addReg(TmpReg3).addImm(Lo); 2195 return ResultReg; 2196 } 2197 2198 return TmpReg3; 2199 } 2200 2201 // Materialize an integer constant into a register, and return 2202 // the register number (or zero if we failed to handle it). 2203 unsigned PPCFastISel::PPCMaterializeInt(const ConstantInt *CI, MVT VT, 2204 bool UseSExt) { 2205 // If we're using CR bit registers for i1 values, handle that as a special 2206 // case first. 2207 if (VT == MVT::i1 && Subtarget->useCRBits()) { 2208 Register ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2209 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2210 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2211 return ImmReg; 2212 } 2213 2214 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2215 VT != MVT::i1) 2216 return 0; 2217 2218 const TargetRegisterClass *RC = 2219 ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); 2220 int64_t Imm = UseSExt ? CI->getSExtValue() : CI->getZExtValue(); 2221 2222 // If the constant is in range, use a load-immediate. 2223 // Since LI will sign extend the constant we need to make sure that for 2224 // our zeroext constants that the sign extended constant fits into 16-bits - 2225 // a range of 0..0x7fff. 2226 if (isInt<16>(Imm)) { 2227 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; 2228 Register ImmReg = createResultReg(RC); 2229 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ImmReg) 2230 .addImm(Imm); 2231 return ImmReg; 2232 } 2233 2234 // Construct the constant piecewise. 2235 if (VT == MVT::i64) 2236 return PPCMaterialize64BitInt(Imm, RC); 2237 else if (VT == MVT::i32) 2238 return PPCMaterialize32BitInt(Imm, RC); 2239 2240 return 0; 2241 } 2242 2243 // Materialize a constant into a register, and return the register 2244 // number (or zero if we failed to handle it). 2245 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) { 2246 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 2247 2248 // Only handle simple types. 2249 if (!CEVT.isSimple()) return 0; 2250 MVT VT = CEVT.getSimpleVT(); 2251 2252 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 2253 return PPCMaterializeFP(CFP, VT); 2254 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 2255 return PPCMaterializeGV(GV, VT); 2256 else if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 2257 // Note that the code in FunctionLoweringInfo::ComputePHILiveOutRegInfo 2258 // assumes that constant PHI operands will be zero extended, and failure to 2259 // match that assumption will cause problems if we sign extend here but 2260 // some user of a PHI is in a block for which we fall back to full SDAG 2261 // instruction selection. 2262 return PPCMaterializeInt(CI, VT, false); 2263 2264 return 0; 2265 } 2266 2267 // Materialize the address created by an alloca into a register, and 2268 // return the register number (or zero if we failed to handle it). 2269 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 2270 // Don't handle dynamic allocas. 2271 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 2272 2273 MVT VT; 2274 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 2275 2276 DenseMap<const AllocaInst*, int>::iterator SI = 2277 FuncInfo.StaticAllocaMap.find(AI); 2278 2279 if (SI != FuncInfo.StaticAllocaMap.end()) { 2280 Register ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); 2281 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(PPC::ADDI8), 2282 ResultReg).addFrameIndex(SI->second).addImm(0); 2283 return ResultReg; 2284 } 2285 2286 return 0; 2287 } 2288 2289 // Fold loads into extends when possible. 2290 // FIXME: We can have multiple redundant extend/trunc instructions 2291 // following a load. The folding only picks up one. Extend this 2292 // to check subsequent instructions for the same pattern and remove 2293 // them. Thus ResultReg should be the def reg for the last redundant 2294 // instruction in a chain, and all intervening instructions can be 2295 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll 2296 // to add ELF64-NOT: rldicl to the appropriate tests when this works. 2297 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2298 const LoadInst *LI) { 2299 // Verify we have a legal type before going any further. 2300 MVT VT; 2301 if (!isLoadTypeLegal(LI->getType(), VT)) 2302 return false; 2303 2304 // Combine load followed by zero- or sign-extend. 2305 bool IsZExt = false; 2306 switch(MI->getOpcode()) { 2307 default: 2308 return false; 2309 2310 case PPC::RLDICL: 2311 case PPC::RLDICL_32_64: { 2312 IsZExt = true; 2313 unsigned MB = MI->getOperand(3).getImm(); 2314 if ((VT == MVT::i8 && MB <= 56) || 2315 (VT == MVT::i16 && MB <= 48) || 2316 (VT == MVT::i32 && MB <= 32)) 2317 break; 2318 return false; 2319 } 2320 2321 case PPC::RLWINM: 2322 case PPC::RLWINM8: { 2323 IsZExt = true; 2324 unsigned MB = MI->getOperand(3).getImm(); 2325 if ((VT == MVT::i8 && MB <= 24) || 2326 (VT == MVT::i16 && MB <= 16)) 2327 break; 2328 return false; 2329 } 2330 2331 case PPC::EXTSB: 2332 case PPC::EXTSB8: 2333 case PPC::EXTSB8_32_64: 2334 /* There is no sign-extending load-byte instruction. */ 2335 return false; 2336 2337 case PPC::EXTSH: 2338 case PPC::EXTSH8: 2339 case PPC::EXTSH8_32_64: { 2340 if (VT != MVT::i16 && VT != MVT::i8) 2341 return false; 2342 break; 2343 } 2344 2345 case PPC::EXTSW: 2346 case PPC::EXTSW_32: 2347 case PPC::EXTSW_32_64: { 2348 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8) 2349 return false; 2350 break; 2351 } 2352 } 2353 2354 // See if we can handle this address. 2355 Address Addr; 2356 if (!PPCComputeAddress(LI->getOperand(0), Addr)) 2357 return false; 2358 2359 Register ResultReg = MI->getOperand(0).getReg(); 2360 2361 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt, 2362 Subtarget->hasSPE() ? PPC::EVLDD : PPC::LFD)) 2363 return false; 2364 2365 MachineBasicBlock::iterator I(MI); 2366 removeDeadCode(I, std::next(I)); 2367 return true; 2368 } 2369 2370 // Attempt to lower call arguments in a faster way than done by 2371 // the selection DAG code. 2372 bool PPCFastISel::fastLowerArguments() { 2373 // Defer to normal argument lowering for now. It's reasonably 2374 // efficient. Consider doing something like ARM to handle the 2375 // case where all args fit in registers, no varargs, no float 2376 // or vector args. 2377 return false; 2378 } 2379 2380 // Handle materializing integer constants into a register. This is not 2381 // automatically generated for PowerPC, so must be explicitly created here. 2382 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) { 2383 2384 if (Opc != ISD::Constant) 2385 return 0; 2386 2387 // If we're using CR bit registers for i1 values, handle that as a special 2388 // case first. 2389 if (VT == MVT::i1 && Subtarget->useCRBits()) { 2390 Register ImmReg = createResultReg(&PPC::CRBITRCRegClass); 2391 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2392 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg); 2393 return ImmReg; 2394 } 2395 2396 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && 2397 VT != MVT::i1) 2398 return 0; 2399 2400 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : 2401 &PPC::GPRCRegClass); 2402 if (VT == MVT::i64) 2403 return PPCMaterialize64BitInt(Imm, RC); 2404 else 2405 return PPCMaterialize32BitInt(Imm, RC); 2406 } 2407 2408 // Override for ADDI and ADDI8 to set the correct register class 2409 // on RHS operand 0. The automatic infrastructure naively assumes 2410 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost 2411 // for these cases. At the moment, none of the other automatically 2412 // generated RI instructions require special treatment. However, once 2413 // SelectSelect is implemented, "isel" requires similar handling. 2414 // 2415 // Also be conservative about the output register class. Avoid 2416 // assigning R0 or X0 to the output register for GPRC and G8RC 2417 // register classes, as any such result could be used in ADDI, etc., 2418 // where those regs have another meaning. 2419 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 2420 const TargetRegisterClass *RC, 2421 unsigned Op0, 2422 uint64_t Imm) { 2423 if (MachineInstOpcode == PPC::ADDI) 2424 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass); 2425 else if (MachineInstOpcode == PPC::ADDI8) 2426 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass); 2427 2428 const TargetRegisterClass *UseRC = 2429 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2430 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2431 2432 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC, Op0, Imm); 2433 } 2434 2435 // Override for instructions with one register operand to avoid use of 2436 // R0/X0. The automatic infrastructure isn't aware of the context so 2437 // we must be conservative. 2438 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 2439 const TargetRegisterClass* RC, 2440 unsigned Op0) { 2441 const TargetRegisterClass *UseRC = 2442 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2443 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2444 2445 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0); 2446 } 2447 2448 // Override for instructions with two register operands to avoid use 2449 // of R0/X0. The automatic infrastructure isn't aware of the context 2450 // so we must be conservative. 2451 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 2452 const TargetRegisterClass* RC, 2453 unsigned Op0, unsigned Op1) { 2454 const TargetRegisterClass *UseRC = 2455 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass : 2456 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC)); 2457 2458 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op1); 2459 } 2460 2461 namespace llvm { 2462 // Create the fast instruction selector for PowerPC64 ELF. 2463 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, 2464 const TargetLibraryInfo *LibInfo) { 2465 // Only available on 64-bit for now. 2466 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>(); 2467 if (Subtarget.isPPC64()) 2468 return new PPCFastISel(FuncInfo, LibInfo); 2469 return nullptr; 2470 } 2471 } 2472