1 //===-- PPCAsmParser.cpp - Parse PowerPC asm to MCInst instructions -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "MCTargetDesc/PPCMCExpr.h" 10 #include "MCTargetDesc/PPCMCTargetDesc.h" 11 #include "PPCInstrInfo.h" 12 #include "PPCTargetStreamer.h" 13 #include "TargetInfo/PowerPCTargetInfo.h" 14 #include "llvm/ADT/Twine.h" 15 #include "llvm/MC/MCContext.h" 16 #include "llvm/MC/MCExpr.h" 17 #include "llvm/MC/MCInst.h" 18 #include "llvm/MC/MCInstrInfo.h" 19 #include "llvm/MC/MCParser/MCAsmLexer.h" 20 #include "llvm/MC/MCParser/MCAsmParser.h" 21 #include "llvm/MC/MCParser/MCParsedAsmOperand.h" 22 #include "llvm/MC/MCParser/MCTargetAsmParser.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/MC/MCSubtargetInfo.h" 25 #include "llvm/MC/MCSymbolELF.h" 26 #include "llvm/MC/TargetRegistry.h" 27 #include "llvm/Support/SourceMgr.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace llvm; 31 32 DEFINE_PPC_REGCLASSES 33 34 // Evaluate an expression containing condition register 35 // or condition register field symbols. Returns positive 36 // value on success, or -1 on error. 37 static int64_t 38 EvaluateCRExpr(const MCExpr *E) { 39 switch (E->getKind()) { 40 case MCExpr::Target: 41 return -1; 42 43 case MCExpr::Constant: { 44 int64_t Res = cast<MCConstantExpr>(E)->getValue(); 45 return Res < 0 ? -1 : Res; 46 } 47 48 case MCExpr::SymbolRef: { 49 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 50 StringRef Name = SRE->getSymbol().getName(); 51 52 if (Name == "lt") return 0; 53 if (Name == "gt") return 1; 54 if (Name == "eq") return 2; 55 if (Name == "so") return 3; 56 if (Name == "un") return 3; 57 58 if (Name == "cr0") return 0; 59 if (Name == "cr1") return 1; 60 if (Name == "cr2") return 2; 61 if (Name == "cr3") return 3; 62 if (Name == "cr4") return 4; 63 if (Name == "cr5") return 5; 64 if (Name == "cr6") return 6; 65 if (Name == "cr7") return 7; 66 67 return -1; 68 } 69 70 case MCExpr::Unary: 71 return -1; 72 73 case MCExpr::Binary: { 74 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 75 int64_t LHSVal = EvaluateCRExpr(BE->getLHS()); 76 int64_t RHSVal = EvaluateCRExpr(BE->getRHS()); 77 int64_t Res; 78 79 if (LHSVal < 0 || RHSVal < 0) 80 return -1; 81 82 switch (BE->getOpcode()) { 83 default: return -1; 84 case MCBinaryExpr::Add: Res = LHSVal + RHSVal; break; 85 case MCBinaryExpr::Mul: Res = LHSVal * RHSVal; break; 86 } 87 88 return Res < 0 ? -1 : Res; 89 } 90 } 91 92 llvm_unreachable("Invalid expression kind!"); 93 } 94 95 namespace { 96 97 struct PPCOperand; 98 99 class PPCAsmParser : public MCTargetAsmParser { 100 const bool IsPPC64; 101 102 void Warning(SMLoc L, const Twine &Msg) { getParser().Warning(L, Msg); } 103 104 bool isPPC64() const { return IsPPC64; } 105 106 MCRegister matchRegisterName(int64_t &IntVal); 107 108 bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; 109 ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, 110 SMLoc &EndLoc) override; 111 112 const MCExpr *extractModifierFromExpr(const MCExpr *E, 113 PPCMCExpr::VariantKind &Variant); 114 const MCExpr *fixupVariantKind(const MCExpr *E); 115 bool parseExpression(const MCExpr *&EVal); 116 117 bool parseOperand(OperandVector &Operands); 118 119 bool parseDirectiveWord(unsigned Size, AsmToken ID); 120 bool parseDirectiveTC(unsigned Size, AsmToken ID); 121 bool parseDirectiveMachine(SMLoc L); 122 bool parseDirectiveAbiVersion(SMLoc L); 123 bool parseDirectiveLocalEntry(SMLoc L); 124 bool parseGNUAttribute(SMLoc L); 125 126 bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 127 OperandVector &Operands, MCStreamer &Out, 128 uint64_t &ErrorInfo, 129 bool MatchingInlineAsm) override; 130 131 void processInstruction(MCInst &Inst, const OperandVector &Ops); 132 133 /// @name Auto-generated Match Functions 134 /// { 135 136 #define GET_ASSEMBLER_HEADER 137 #include "PPCGenAsmMatcher.inc" 138 139 /// } 140 141 142 public: 143 PPCAsmParser(const MCSubtargetInfo &STI, MCAsmParser &, 144 const MCInstrInfo &MII, const MCTargetOptions &Options) 145 : MCTargetAsmParser(Options, STI, MII), 146 IsPPC64(STI.getTargetTriple().isPPC64()) { 147 // Initialize the set of available features. 148 setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); 149 } 150 151 bool parseInstruction(ParseInstructionInfo &Info, StringRef Name, 152 SMLoc NameLoc, OperandVector &Operands) override; 153 154 bool ParseDirective(AsmToken DirectiveID) override; 155 156 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, 157 unsigned Kind) override; 158 159 const MCExpr *applyModifierToExpr(const MCExpr *E, 160 MCSymbolRefExpr::VariantKind, 161 MCContext &Ctx) override; 162 }; 163 164 /// PPCOperand - Instances of this class represent a parsed PowerPC machine 165 /// instruction. 166 struct PPCOperand : public MCParsedAsmOperand { 167 enum KindTy { 168 Token, 169 Immediate, 170 ContextImmediate, 171 Expression, 172 TLSRegister 173 } Kind; 174 175 SMLoc StartLoc, EndLoc; 176 bool IsPPC64; 177 178 struct TokOp { 179 const char *Data; 180 unsigned Length; 181 }; 182 183 struct ImmOp { 184 int64_t Val; 185 bool IsMemOpBase; 186 }; 187 188 struct ExprOp { 189 const MCExpr *Val; 190 int64_t CRVal; // Cached result of EvaluateCRExpr(Val) 191 }; 192 193 struct TLSRegOp { 194 const MCSymbolRefExpr *Sym; 195 }; 196 197 union { 198 struct TokOp Tok; 199 struct ImmOp Imm; 200 struct ExprOp Expr; 201 struct TLSRegOp TLSReg; 202 }; 203 204 PPCOperand(KindTy K) : Kind(K) {} 205 206 public: 207 PPCOperand(const PPCOperand &o) : MCParsedAsmOperand() { 208 Kind = o.Kind; 209 StartLoc = o.StartLoc; 210 EndLoc = o.EndLoc; 211 IsPPC64 = o.IsPPC64; 212 switch (Kind) { 213 case Token: 214 Tok = o.Tok; 215 break; 216 case Immediate: 217 case ContextImmediate: 218 Imm = o.Imm; 219 break; 220 case Expression: 221 Expr = o.Expr; 222 break; 223 case TLSRegister: 224 TLSReg = o.TLSReg; 225 break; 226 } 227 } 228 229 // Disable use of sized deallocation due to overallocation of PPCOperand 230 // objects in CreateTokenWithStringCopy. 231 void operator delete(void *p) { ::operator delete(p); } 232 233 /// getStartLoc - Get the location of the first token of this operand. 234 SMLoc getStartLoc() const override { return StartLoc; } 235 236 /// getEndLoc - Get the location of the last token of this operand. 237 SMLoc getEndLoc() const override { return EndLoc; } 238 239 /// getLocRange - Get the range between the first and last token of this 240 /// operand. 241 SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } 242 243 /// isPPC64 - True if this operand is for an instruction in 64-bit mode. 244 bool isPPC64() const { return IsPPC64; } 245 246 /// isMemOpBase - True if this operand is the base of a memory operand. 247 bool isMemOpBase() const { return Kind == Immediate && Imm.IsMemOpBase; } 248 249 int64_t getImm() const { 250 assert(Kind == Immediate && "Invalid access!"); 251 return Imm.Val; 252 } 253 int64_t getImmS16Context() const { 254 assert((Kind == Immediate || Kind == ContextImmediate) && 255 "Invalid access!"); 256 if (Kind == Immediate) 257 return Imm.Val; 258 return static_cast<int16_t>(Imm.Val); 259 } 260 int64_t getImmU16Context() const { 261 assert((Kind == Immediate || Kind == ContextImmediate) && 262 "Invalid access!"); 263 return Imm.Val; 264 } 265 266 const MCExpr *getExpr() const { 267 assert(Kind == Expression && "Invalid access!"); 268 return Expr.Val; 269 } 270 271 int64_t getExprCRVal() const { 272 assert(Kind == Expression && "Invalid access!"); 273 return Expr.CRVal; 274 } 275 276 const MCExpr *getTLSReg() const { 277 assert(Kind == TLSRegister && "Invalid access!"); 278 return TLSReg.Sym; 279 } 280 281 MCRegister getReg() const override { llvm_unreachable("Not implemented"); } 282 283 unsigned getRegNum() const { 284 assert(isRegNumber() && "Invalid access!"); 285 return (unsigned)Imm.Val; 286 } 287 288 unsigned getFpReg() const { 289 assert(isEvenRegNumber() && "Invalid access!"); 290 return (unsigned)(Imm.Val >> 1); 291 } 292 293 unsigned getVSReg() const { 294 assert(isVSRegNumber() && "Invalid access!"); 295 return (unsigned) Imm.Val; 296 } 297 298 unsigned getACCReg() const { 299 assert(isACCRegNumber() && "Invalid access!"); 300 return (unsigned) Imm.Val; 301 } 302 303 unsigned getDMRROWReg() const { 304 assert(isDMRROWRegNumber() && "Invalid access!"); 305 return (unsigned)Imm.Val; 306 } 307 308 unsigned getDMRROWpReg() const { 309 assert(isDMRROWpRegNumber() && "Invalid access!"); 310 return (unsigned)Imm.Val; 311 } 312 313 unsigned getDMRReg() const { 314 assert(isDMRRegNumber() && "Invalid access!"); 315 return (unsigned)Imm.Val; 316 } 317 318 unsigned getDMRpReg() const { 319 assert(isDMRpRegNumber() && "Invalid access!"); 320 return (unsigned)Imm.Val; 321 } 322 323 unsigned getVSRpEvenReg() const { 324 assert(isVSRpEvenRegNumber() && "Invalid access!"); 325 return (unsigned) Imm.Val >> 1; 326 } 327 328 unsigned getG8pReg() const { 329 assert(isEvenRegNumber() && "Invalid access!"); 330 return (unsigned)Imm.Val; 331 } 332 333 unsigned getCCReg() const { 334 assert(isCCRegNumber() && "Invalid access!"); 335 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 336 } 337 338 unsigned getCRBit() const { 339 assert(isCRBitNumber() && "Invalid access!"); 340 return (unsigned) (Kind == Immediate ? Imm.Val : Expr.CRVal); 341 } 342 343 unsigned getCRBitMask() const { 344 assert(isCRBitMask() && "Invalid access!"); 345 return 7 - llvm::countr_zero<uint64_t>(Imm.Val); 346 } 347 348 bool isToken() const override { return Kind == Token; } 349 bool isImm() const override { 350 return Kind == Immediate || Kind == Expression; 351 } 352 bool isU1Imm() const { return Kind == Immediate && isUInt<1>(getImm()); } 353 bool isU2Imm() const { return Kind == Immediate && isUInt<2>(getImm()); } 354 bool isU3Imm() const { return Kind == Immediate && isUInt<3>(getImm()); } 355 bool isU4Imm() const { return Kind == Immediate && isUInt<4>(getImm()); } 356 bool isU5Imm() const { return Kind == Immediate && isUInt<5>(getImm()); } 357 bool isS5Imm() const { return Kind == Immediate && isInt<5>(getImm()); } 358 bool isU6Imm() const { return Kind == Immediate && isUInt<6>(getImm()); } 359 bool isU6ImmX2() const { return Kind == Immediate && 360 isUInt<6>(getImm()) && 361 (getImm() & 1) == 0; } 362 bool isU7Imm() const { return Kind == Immediate && isUInt<7>(getImm()); } 363 bool isU7ImmX4() const { return Kind == Immediate && 364 isUInt<7>(getImm()) && 365 (getImm() & 3) == 0; } 366 bool isU8Imm() const { return Kind == Immediate && isUInt<8>(getImm()); } 367 bool isU8ImmX8() const { return Kind == Immediate && 368 isUInt<8>(getImm()) && 369 (getImm() & 7) == 0; } 370 371 bool isU10Imm() const { return Kind == Immediate && isUInt<10>(getImm()); } 372 bool isU12Imm() const { return Kind == Immediate && isUInt<12>(getImm()); } 373 bool isU16Imm() const { return isExtImm<16>(/*Signed*/ false, 1); } 374 bool isS16Imm() const { return isExtImm<16>(/*Signed*/ true, 1); } 375 bool isS16ImmX4() const { return isExtImm<16>(/*Signed*/ true, 4); } 376 bool isS16ImmX16() const { return isExtImm<16>(/*Signed*/ true, 16); } 377 bool isS17Imm() const { return isExtImm<17>(/*Signed*/ true, 1); } 378 379 bool isHashImmX8() const { 380 // The Hash Imm form is used for instructions that check or store a hash. 381 // These instructions have a small immediate range that spans between 382 // -8 and -512. 383 return (Kind == Immediate && getImm() <= -8 && getImm() >= -512 && 384 (getImm() & 7) == 0); 385 } 386 387 bool isS34ImmX16() const { 388 return Kind == Expression || 389 (Kind == Immediate && isInt<34>(getImm()) && (getImm() & 15) == 0); 390 } 391 bool isS34Imm() const { 392 // Once the PC-Rel ABI is finalized, evaluate whether a 34-bit 393 // ContextImmediate is needed. 394 return Kind == Expression || (Kind == Immediate && isInt<34>(getImm())); 395 } 396 397 bool isTLSReg() const { return Kind == TLSRegister; } 398 bool isDirectBr() const { 399 if (Kind == Expression) 400 return true; 401 if (Kind != Immediate) 402 return false; 403 // Operand must be 64-bit aligned, signed 27-bit immediate. 404 if ((getImm() & 3) != 0) 405 return false; 406 if (isInt<26>(getImm())) 407 return true; 408 if (!IsPPC64) { 409 // In 32-bit mode, large 32-bit quantities wrap around. 410 if (isUInt<32>(getImm()) && isInt<26>(static_cast<int32_t>(getImm()))) 411 return true; 412 } 413 return false; 414 } 415 bool isCondBr() const { return Kind == Expression || 416 (Kind == Immediate && isInt<16>(getImm()) && 417 (getImm() & 3) == 0); } 418 bool isImmZero() const { return Kind == Immediate && getImm() == 0; } 419 bool isRegNumber() const { return Kind == Immediate && isUInt<5>(getImm()); } 420 bool isACCRegNumber() const { 421 return Kind == Immediate && isUInt<3>(getImm()); 422 } 423 bool isDMRROWRegNumber() const { 424 return Kind == Immediate && isUInt<6>(getImm()); 425 } 426 bool isDMRROWpRegNumber() const { 427 return Kind == Immediate && isUInt<5>(getImm()); 428 } 429 bool isDMRRegNumber() const { 430 return Kind == Immediate && isUInt<3>(getImm()); 431 } 432 bool isDMRpRegNumber() const { 433 return Kind == Immediate && isUInt<2>(getImm()); 434 } 435 bool isVSRpEvenRegNumber() const { 436 return Kind == Immediate && isUInt<6>(getImm()) && ((getImm() & 1) == 0); 437 } 438 bool isVSRegNumber() const { 439 return Kind == Immediate && isUInt<6>(getImm()); 440 } 441 bool isCCRegNumber() const { return (Kind == Expression 442 && isUInt<3>(getExprCRVal())) || 443 (Kind == Immediate 444 && isUInt<3>(getImm())); } 445 bool isCRBitNumber() const { return (Kind == Expression 446 && isUInt<5>(getExprCRVal())) || 447 (Kind == Immediate 448 && isUInt<5>(getImm())); } 449 450 bool isEvenRegNumber() const { return isRegNumber() && (getImm() & 1) == 0; } 451 452 bool isCRBitMask() const { 453 return Kind == Immediate && isUInt<8>(getImm()) && 454 llvm::has_single_bit<uint32_t>(getImm()); 455 } 456 bool isATBitsAsHint() const { return false; } 457 bool isMem() const override { return false; } 458 bool isReg() const override { return false; } 459 460 void addRegOperands(MCInst &Inst, unsigned N) const { 461 llvm_unreachable("addRegOperands"); 462 } 463 464 void addRegGPRCOperands(MCInst &Inst, unsigned N) const { 465 assert(N == 1 && "Invalid number of operands!"); 466 Inst.addOperand(MCOperand::createReg(RRegs[getRegNum()])); 467 } 468 469 void addRegGPRCNoR0Operands(MCInst &Inst, unsigned N) const { 470 assert(N == 1 && "Invalid number of operands!"); 471 Inst.addOperand(MCOperand::createReg(RRegsNoR0[getRegNum()])); 472 } 473 474 void addRegG8RCOperands(MCInst &Inst, unsigned N) const { 475 assert(N == 1 && "Invalid number of operands!"); 476 Inst.addOperand(MCOperand::createReg(XRegs[getRegNum()])); 477 } 478 479 void addRegG8RCNoX0Operands(MCInst &Inst, unsigned N) const { 480 assert(N == 1 && "Invalid number of operands!"); 481 Inst.addOperand(MCOperand::createReg(XRegsNoX0[getRegNum()])); 482 } 483 484 void addRegG8pRCOperands(MCInst &Inst, unsigned N) const { 485 assert(N == 1 && "Invalid number of operands!"); 486 Inst.addOperand(MCOperand::createReg(XRegs[getG8pReg()])); 487 } 488 489 void addRegGxRCOperands(MCInst &Inst, unsigned N) const { 490 if (isPPC64()) 491 addRegG8RCOperands(Inst, N); 492 else 493 addRegGPRCOperands(Inst, N); 494 } 495 496 void addRegGxRCNoR0Operands(MCInst &Inst, unsigned N) const { 497 if (isPPC64()) 498 addRegG8RCNoX0Operands(Inst, N); 499 else 500 addRegGPRCNoR0Operands(Inst, N); 501 } 502 503 void addRegF4RCOperands(MCInst &Inst, unsigned N) const { 504 assert(N == 1 && "Invalid number of operands!"); 505 Inst.addOperand(MCOperand::createReg(FRegs[getRegNum()])); 506 } 507 508 void addRegF8RCOperands(MCInst &Inst, unsigned N) const { 509 assert(N == 1 && "Invalid number of operands!"); 510 Inst.addOperand(MCOperand::createReg(FRegs[getRegNum()])); 511 } 512 513 void addRegFpRCOperands(MCInst &Inst, unsigned N) const { 514 assert(N == 1 && "Invalid number of operands!"); 515 Inst.addOperand(MCOperand::createReg(FpRegs[getFpReg()])); 516 } 517 518 void addRegVFRCOperands(MCInst &Inst, unsigned N) const { 519 assert(N == 1 && "Invalid number of operands!"); 520 Inst.addOperand(MCOperand::createReg(VFRegs[getRegNum()])); 521 } 522 523 void addRegVRRCOperands(MCInst &Inst, unsigned N) const { 524 assert(N == 1 && "Invalid number of operands!"); 525 Inst.addOperand(MCOperand::createReg(VRegs[getRegNum()])); 526 } 527 528 void addRegVSRCOperands(MCInst &Inst, unsigned N) const { 529 assert(N == 1 && "Invalid number of operands!"); 530 Inst.addOperand(MCOperand::createReg(VSRegs[getVSReg()])); 531 } 532 533 void addRegVSFRCOperands(MCInst &Inst, unsigned N) const { 534 assert(N == 1 && "Invalid number of operands!"); 535 Inst.addOperand(MCOperand::createReg(VSFRegs[getVSReg()])); 536 } 537 538 void addRegVSSRCOperands(MCInst &Inst, unsigned N) const { 539 assert(N == 1 && "Invalid number of operands!"); 540 Inst.addOperand(MCOperand::createReg(VSSRegs[getVSReg()])); 541 } 542 543 void addRegSPE4RCOperands(MCInst &Inst, unsigned N) const { 544 assert(N == 1 && "Invalid number of operands!"); 545 Inst.addOperand(MCOperand::createReg(RRegs[getRegNum()])); 546 } 547 548 void addRegSPERCOperands(MCInst &Inst, unsigned N) const { 549 assert(N == 1 && "Invalid number of operands!"); 550 Inst.addOperand(MCOperand::createReg(SPERegs[getRegNum()])); 551 } 552 553 void addRegACCRCOperands(MCInst &Inst, unsigned N) const { 554 assert(N == 1 && "Invalid number of operands!"); 555 Inst.addOperand(MCOperand::createReg(ACCRegs[getACCReg()])); 556 } 557 558 void addRegDMRROWRCOperands(MCInst &Inst, unsigned N) const { 559 assert(N == 1 && "Invalid number of operands!"); 560 Inst.addOperand(MCOperand::createReg(DMRROWRegs[getDMRROWReg()])); 561 } 562 563 void addRegDMRROWpRCOperands(MCInst &Inst, unsigned N) const { 564 assert(N == 1 && "Invalid number of operands!"); 565 Inst.addOperand(MCOperand::createReg(DMRROWpRegs[getDMRROWpReg()])); 566 } 567 568 void addRegDMRRCOperands(MCInst &Inst, unsigned N) const { 569 assert(N == 1 && "Invalid number of operands!"); 570 Inst.addOperand(MCOperand::createReg(DMRRegs[getDMRReg()])); 571 } 572 573 void addRegDMRpRCOperands(MCInst &Inst, unsigned N) const { 574 assert(N == 1 && "Invalid number of operands!"); 575 Inst.addOperand(MCOperand::createReg(DMRpRegs[getDMRpReg()])); 576 } 577 578 void addRegWACCRCOperands(MCInst &Inst, unsigned N) const { 579 assert(N == 1 && "Invalid number of operands!"); 580 Inst.addOperand(MCOperand::createReg(WACCRegs[getACCReg()])); 581 } 582 583 void addRegWACC_HIRCOperands(MCInst &Inst, unsigned N) const { 584 assert(N == 1 && "Invalid number of operands!"); 585 Inst.addOperand(MCOperand::createReg(WACC_HIRegs[getACCReg()])); 586 } 587 588 void addRegVSRpRCOperands(MCInst &Inst, unsigned N) const { 589 assert(N == 1 && "Invalid number of operands!"); 590 Inst.addOperand(MCOperand::createReg(VSRpRegs[getVSRpEvenReg()])); 591 } 592 593 void addRegVSRpEvenRCOperands(MCInst &Inst, unsigned N) const { 594 assert(N == 1 && "Invalid number of operands!"); 595 Inst.addOperand(MCOperand::createReg(VSRpRegs[getVSRpEvenReg()])); 596 } 597 598 void addRegCRBITRCOperands(MCInst &Inst, unsigned N) const { 599 assert(N == 1 && "Invalid number of operands!"); 600 Inst.addOperand(MCOperand::createReg(CRBITRegs[getCRBit()])); 601 } 602 603 void addRegCRRCOperands(MCInst &Inst, unsigned N) const { 604 assert(N == 1 && "Invalid number of operands!"); 605 Inst.addOperand(MCOperand::createReg(CRRegs[getCCReg()])); 606 } 607 608 void addCRBitMaskOperands(MCInst &Inst, unsigned N) const { 609 assert(N == 1 && "Invalid number of operands!"); 610 Inst.addOperand(MCOperand::createReg(CRRegs[getCRBitMask()])); 611 } 612 613 void addImmOperands(MCInst &Inst, unsigned N) const { 614 assert(N == 1 && "Invalid number of operands!"); 615 if (Kind == Immediate) 616 Inst.addOperand(MCOperand::createImm(getImm())); 617 else 618 Inst.addOperand(MCOperand::createExpr(getExpr())); 619 } 620 621 void addS16ImmOperands(MCInst &Inst, unsigned N) const { 622 assert(N == 1 && "Invalid number of operands!"); 623 switch (Kind) { 624 case Immediate: 625 Inst.addOperand(MCOperand::createImm(getImm())); 626 break; 627 case ContextImmediate: 628 Inst.addOperand(MCOperand::createImm(getImmS16Context())); 629 break; 630 default: 631 Inst.addOperand(MCOperand::createExpr(getExpr())); 632 break; 633 } 634 } 635 636 void addU16ImmOperands(MCInst &Inst, unsigned N) const { 637 assert(N == 1 && "Invalid number of operands!"); 638 switch (Kind) { 639 case Immediate: 640 Inst.addOperand(MCOperand::createImm(getImm())); 641 break; 642 case ContextImmediate: 643 Inst.addOperand(MCOperand::createImm(getImmU16Context())); 644 break; 645 default: 646 Inst.addOperand(MCOperand::createExpr(getExpr())); 647 break; 648 } 649 } 650 651 void addBranchTargetOperands(MCInst &Inst, unsigned N) const { 652 assert(N == 1 && "Invalid number of operands!"); 653 if (Kind == Immediate) 654 Inst.addOperand(MCOperand::createImm(getImm() / 4)); 655 else 656 Inst.addOperand(MCOperand::createExpr(getExpr())); 657 } 658 659 void addTLSRegOperands(MCInst &Inst, unsigned N) const { 660 assert(N == 1 && "Invalid number of operands!"); 661 Inst.addOperand(MCOperand::createExpr(getTLSReg())); 662 } 663 664 StringRef getToken() const { 665 assert(Kind == Token && "Invalid access!"); 666 return StringRef(Tok.Data, Tok.Length); 667 } 668 669 void print(raw_ostream &OS) const override; 670 671 static std::unique_ptr<PPCOperand> CreateToken(StringRef Str, SMLoc S, 672 bool IsPPC64) { 673 auto Op = std::make_unique<PPCOperand>(Token); 674 Op->Tok.Data = Str.data(); 675 Op->Tok.Length = Str.size(); 676 Op->StartLoc = S; 677 Op->EndLoc = S; 678 Op->IsPPC64 = IsPPC64; 679 return Op; 680 } 681 682 static std::unique_ptr<PPCOperand> 683 CreateTokenWithStringCopy(StringRef Str, SMLoc S, bool IsPPC64) { 684 // Allocate extra memory for the string and copy it. 685 // FIXME: This is incorrect, Operands are owned by unique_ptr with a default 686 // deleter which will destroy them by simply using "delete", not correctly 687 // calling operator delete on this extra memory after calling the dtor 688 // explicitly. 689 void *Mem = ::operator new(sizeof(PPCOperand) + Str.size()); 690 std::unique_ptr<PPCOperand> Op(new (Mem) PPCOperand(Token)); 691 Op->Tok.Data = reinterpret_cast<const char *>(Op.get() + 1); 692 Op->Tok.Length = Str.size(); 693 std::memcpy(const_cast<char *>(Op->Tok.Data), Str.data(), Str.size()); 694 Op->StartLoc = S; 695 Op->EndLoc = S; 696 Op->IsPPC64 = IsPPC64; 697 return Op; 698 } 699 700 static std::unique_ptr<PPCOperand> CreateImm(int64_t Val, SMLoc S, SMLoc E, 701 bool IsPPC64, 702 bool IsMemOpBase = false) { 703 auto Op = std::make_unique<PPCOperand>(Immediate); 704 Op->Imm.Val = Val; 705 Op->Imm.IsMemOpBase = IsMemOpBase; 706 Op->StartLoc = S; 707 Op->EndLoc = E; 708 Op->IsPPC64 = IsPPC64; 709 return Op; 710 } 711 712 static std::unique_ptr<PPCOperand> CreateExpr(const MCExpr *Val, SMLoc S, 713 SMLoc E, bool IsPPC64) { 714 auto Op = std::make_unique<PPCOperand>(Expression); 715 Op->Expr.Val = Val; 716 Op->Expr.CRVal = EvaluateCRExpr(Val); 717 Op->StartLoc = S; 718 Op->EndLoc = E; 719 Op->IsPPC64 = IsPPC64; 720 return Op; 721 } 722 723 static std::unique_ptr<PPCOperand> 724 CreateTLSReg(const MCSymbolRefExpr *Sym, SMLoc S, SMLoc E, bool IsPPC64) { 725 auto Op = std::make_unique<PPCOperand>(TLSRegister); 726 Op->TLSReg.Sym = Sym; 727 Op->StartLoc = S; 728 Op->EndLoc = E; 729 Op->IsPPC64 = IsPPC64; 730 return Op; 731 } 732 733 static std::unique_ptr<PPCOperand> 734 CreateContextImm(int64_t Val, SMLoc S, SMLoc E, bool IsPPC64) { 735 auto Op = std::make_unique<PPCOperand>(ContextImmediate); 736 Op->Imm.Val = Val; 737 Op->StartLoc = S; 738 Op->EndLoc = E; 739 Op->IsPPC64 = IsPPC64; 740 return Op; 741 } 742 743 static std::unique_ptr<PPCOperand> 744 CreateFromMCExpr(const MCExpr *Val, SMLoc S, SMLoc E, bool IsPPC64) { 745 if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Val)) 746 return CreateImm(CE->getValue(), S, E, IsPPC64); 747 748 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Val)) 749 if (SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS || 750 SRE->getKind() == MCSymbolRefExpr::VK_PPC_TLS_PCREL) 751 return CreateTLSReg(SRE, S, E, IsPPC64); 752 753 if (const PPCMCExpr *TE = dyn_cast<PPCMCExpr>(Val)) { 754 int64_t Res; 755 if (TE->evaluateAsConstant(Res)) 756 return CreateContextImm(Res, S, E, IsPPC64); 757 } 758 759 return CreateExpr(Val, S, E, IsPPC64); 760 } 761 762 private: 763 template <unsigned Width> 764 bool isExtImm(bool Signed, unsigned Multiple) const { 765 switch (Kind) { 766 default: 767 return false; 768 case Expression: 769 return true; 770 case Immediate: 771 case ContextImmediate: 772 if (Signed) 773 return isInt<Width>(getImmS16Context()) && 774 (getImmS16Context() & (Multiple - 1)) == 0; 775 else 776 return isUInt<Width>(getImmU16Context()) && 777 (getImmU16Context() & (Multiple - 1)) == 0; 778 } 779 } 780 }; 781 782 } // end anonymous namespace. 783 784 void PPCOperand::print(raw_ostream &OS) const { 785 switch (Kind) { 786 case Token: 787 OS << "'" << getToken() << "'"; 788 break; 789 case Immediate: 790 case ContextImmediate: 791 OS << getImm(); 792 break; 793 case Expression: 794 OS << *getExpr(); 795 break; 796 case TLSRegister: 797 OS << *getTLSReg(); 798 break; 799 } 800 } 801 802 static void 803 addNegOperand(MCInst &Inst, MCOperand &Op, MCContext &Ctx) { 804 if (Op.isImm()) { 805 Inst.addOperand(MCOperand::createImm(-Op.getImm())); 806 return; 807 } 808 const MCExpr *Expr = Op.getExpr(); 809 if (const MCUnaryExpr *UnExpr = dyn_cast<MCUnaryExpr>(Expr)) { 810 if (UnExpr->getOpcode() == MCUnaryExpr::Minus) { 811 Inst.addOperand(MCOperand::createExpr(UnExpr->getSubExpr())); 812 return; 813 } 814 } else if (const MCBinaryExpr *BinExpr = dyn_cast<MCBinaryExpr>(Expr)) { 815 if (BinExpr->getOpcode() == MCBinaryExpr::Sub) { 816 const MCExpr *NE = MCBinaryExpr::createSub(BinExpr->getRHS(), 817 BinExpr->getLHS(), Ctx); 818 Inst.addOperand(MCOperand::createExpr(NE)); 819 return; 820 } 821 } 822 Inst.addOperand(MCOperand::createExpr(MCUnaryExpr::createMinus(Expr, Ctx))); 823 } 824 825 void PPCAsmParser::processInstruction(MCInst &Inst, 826 const OperandVector &Operands) { 827 int Opcode = Inst.getOpcode(); 828 switch (Opcode) { 829 case PPC::DCBTx: 830 case PPC::DCBTT: 831 case PPC::DCBTSTx: 832 case PPC::DCBTSTT: { 833 MCInst TmpInst; 834 TmpInst.setOpcode((Opcode == PPC::DCBTx || Opcode == PPC::DCBTT) ? 835 PPC::DCBT : PPC::DCBTST); 836 TmpInst.addOperand(MCOperand::createImm( 837 (Opcode == PPC::DCBTx || Opcode == PPC::DCBTSTx) ? 0 : 16)); 838 TmpInst.addOperand(Inst.getOperand(0)); 839 TmpInst.addOperand(Inst.getOperand(1)); 840 Inst = TmpInst; 841 break; 842 } 843 case PPC::DCBTCT: 844 case PPC::DCBTDS: { 845 MCInst TmpInst; 846 TmpInst.setOpcode(PPC::DCBT); 847 TmpInst.addOperand(Inst.getOperand(2)); 848 TmpInst.addOperand(Inst.getOperand(0)); 849 TmpInst.addOperand(Inst.getOperand(1)); 850 Inst = TmpInst; 851 break; 852 } 853 case PPC::DCBTSTCT: 854 case PPC::DCBTSTDS: { 855 MCInst TmpInst; 856 TmpInst.setOpcode(PPC::DCBTST); 857 TmpInst.addOperand(Inst.getOperand(2)); 858 TmpInst.addOperand(Inst.getOperand(0)); 859 TmpInst.addOperand(Inst.getOperand(1)); 860 Inst = TmpInst; 861 break; 862 } 863 case PPC::DCBFx: 864 case PPC::DCBFL: 865 case PPC::DCBFLP: 866 case PPC::DCBFPS: 867 case PPC::DCBSTPS: { 868 int L = 0; 869 if (Opcode == PPC::DCBFL) 870 L = 1; 871 else if (Opcode == PPC::DCBFLP) 872 L = 3; 873 else if (Opcode == PPC::DCBFPS) 874 L = 4; 875 else if (Opcode == PPC::DCBSTPS) 876 L = 6; 877 878 MCInst TmpInst; 879 TmpInst.setOpcode(PPC::DCBF); 880 TmpInst.addOperand(MCOperand::createImm(L)); 881 TmpInst.addOperand(Inst.getOperand(0)); 882 TmpInst.addOperand(Inst.getOperand(1)); 883 Inst = TmpInst; 884 break; 885 } 886 case PPC::LAx: { 887 MCInst TmpInst; 888 TmpInst.setOpcode(PPC::LA); 889 TmpInst.addOperand(Inst.getOperand(0)); 890 TmpInst.addOperand(Inst.getOperand(2)); 891 TmpInst.addOperand(Inst.getOperand(1)); 892 Inst = TmpInst; 893 break; 894 } 895 case PPC::PLA8: 896 case PPC::PLA: { 897 MCInst TmpInst; 898 TmpInst.setOpcode(Opcode == PPC::PLA ? PPC::PADDI : PPC::PADDI8); 899 TmpInst.addOperand(Inst.getOperand(0)); 900 TmpInst.addOperand(Inst.getOperand(1)); 901 TmpInst.addOperand(Inst.getOperand(2)); 902 Inst = TmpInst; 903 break; 904 } 905 case PPC::PLA8pc: 906 case PPC::PLApc: { 907 MCInst TmpInst; 908 TmpInst.setOpcode(Opcode == PPC::PLApc ? PPC::PADDIpc : PPC::PADDI8pc); 909 TmpInst.addOperand(Inst.getOperand(0)); 910 TmpInst.addOperand(MCOperand::createImm(0)); 911 TmpInst.addOperand(Inst.getOperand(1)); 912 Inst = TmpInst; 913 break; 914 } 915 case PPC::SUBI: { 916 MCInst TmpInst; 917 TmpInst.setOpcode(PPC::ADDI); 918 TmpInst.addOperand(Inst.getOperand(0)); 919 TmpInst.addOperand(Inst.getOperand(1)); 920 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 921 Inst = TmpInst; 922 break; 923 } 924 case PPC::PSUBI: { 925 MCInst TmpInst; 926 TmpInst.setOpcode(PPC::PADDI); 927 TmpInst.addOperand(Inst.getOperand(0)); 928 TmpInst.addOperand(Inst.getOperand(1)); 929 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 930 Inst = TmpInst; 931 break; 932 } 933 case PPC::SUBIS: { 934 MCInst TmpInst; 935 TmpInst.setOpcode(PPC::ADDIS); 936 TmpInst.addOperand(Inst.getOperand(0)); 937 TmpInst.addOperand(Inst.getOperand(1)); 938 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 939 Inst = TmpInst; 940 break; 941 } 942 case PPC::SUBIC: { 943 MCInst TmpInst; 944 TmpInst.setOpcode(PPC::ADDIC); 945 TmpInst.addOperand(Inst.getOperand(0)); 946 TmpInst.addOperand(Inst.getOperand(1)); 947 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 948 Inst = TmpInst; 949 break; 950 } 951 case PPC::SUBIC_rec: { 952 MCInst TmpInst; 953 TmpInst.setOpcode(PPC::ADDIC_rec); 954 TmpInst.addOperand(Inst.getOperand(0)); 955 TmpInst.addOperand(Inst.getOperand(1)); 956 addNegOperand(TmpInst, Inst.getOperand(2), getContext()); 957 Inst = TmpInst; 958 break; 959 } 960 case PPC::EXTLWI: 961 case PPC::EXTLWI_rec: { 962 MCInst TmpInst; 963 int64_t N = Inst.getOperand(2).getImm(); 964 int64_t B = Inst.getOperand(3).getImm(); 965 TmpInst.setOpcode(Opcode == PPC::EXTLWI ? PPC::RLWINM : PPC::RLWINM_rec); 966 TmpInst.addOperand(Inst.getOperand(0)); 967 TmpInst.addOperand(Inst.getOperand(1)); 968 TmpInst.addOperand(MCOperand::createImm(B)); 969 TmpInst.addOperand(MCOperand::createImm(0)); 970 TmpInst.addOperand(MCOperand::createImm(N - 1)); 971 Inst = TmpInst; 972 break; 973 } 974 case PPC::EXTRWI: 975 case PPC::EXTRWI_rec: { 976 MCInst TmpInst; 977 int64_t N = Inst.getOperand(2).getImm(); 978 int64_t B = Inst.getOperand(3).getImm(); 979 TmpInst.setOpcode(Opcode == PPC::EXTRWI ? PPC::RLWINM : PPC::RLWINM_rec); 980 TmpInst.addOperand(Inst.getOperand(0)); 981 TmpInst.addOperand(Inst.getOperand(1)); 982 TmpInst.addOperand(MCOperand::createImm(B + N)); 983 TmpInst.addOperand(MCOperand::createImm(32 - N)); 984 TmpInst.addOperand(MCOperand::createImm(31)); 985 Inst = TmpInst; 986 break; 987 } 988 case PPC::INSLWI: 989 case PPC::INSLWI_rec: { 990 MCInst TmpInst; 991 int64_t N = Inst.getOperand(2).getImm(); 992 int64_t B = Inst.getOperand(3).getImm(); 993 TmpInst.setOpcode(Opcode == PPC::INSLWI ? PPC::RLWIMI : PPC::RLWIMI_rec); 994 TmpInst.addOperand(Inst.getOperand(0)); 995 TmpInst.addOperand(Inst.getOperand(0)); 996 TmpInst.addOperand(Inst.getOperand(1)); 997 TmpInst.addOperand(MCOperand::createImm(32 - B)); 998 TmpInst.addOperand(MCOperand::createImm(B)); 999 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 1000 Inst = TmpInst; 1001 break; 1002 } 1003 case PPC::INSRWI: 1004 case PPC::INSRWI_rec: { 1005 MCInst TmpInst; 1006 int64_t N = Inst.getOperand(2).getImm(); 1007 int64_t B = Inst.getOperand(3).getImm(); 1008 TmpInst.setOpcode(Opcode == PPC::INSRWI ? PPC::RLWIMI : PPC::RLWIMI_rec); 1009 TmpInst.addOperand(Inst.getOperand(0)); 1010 TmpInst.addOperand(Inst.getOperand(0)); 1011 TmpInst.addOperand(Inst.getOperand(1)); 1012 TmpInst.addOperand(MCOperand::createImm(32 - (B + N))); 1013 TmpInst.addOperand(MCOperand::createImm(B)); 1014 TmpInst.addOperand(MCOperand::createImm((B + N) - 1)); 1015 Inst = TmpInst; 1016 break; 1017 } 1018 case PPC::ROTRWI: 1019 case PPC::ROTRWI_rec: { 1020 MCInst TmpInst; 1021 int64_t N = Inst.getOperand(2).getImm(); 1022 TmpInst.setOpcode(Opcode == PPC::ROTRWI ? PPC::RLWINM : PPC::RLWINM_rec); 1023 TmpInst.addOperand(Inst.getOperand(0)); 1024 TmpInst.addOperand(Inst.getOperand(1)); 1025 TmpInst.addOperand(MCOperand::createImm(32 - N)); 1026 TmpInst.addOperand(MCOperand::createImm(0)); 1027 TmpInst.addOperand(MCOperand::createImm(31)); 1028 Inst = TmpInst; 1029 break; 1030 } 1031 case PPC::SLWI: 1032 case PPC::SLWI_rec: { 1033 MCInst TmpInst; 1034 int64_t N = Inst.getOperand(2).getImm(); 1035 TmpInst.setOpcode(Opcode == PPC::SLWI ? PPC::RLWINM : PPC::RLWINM_rec); 1036 TmpInst.addOperand(Inst.getOperand(0)); 1037 TmpInst.addOperand(Inst.getOperand(1)); 1038 TmpInst.addOperand(MCOperand::createImm(N)); 1039 TmpInst.addOperand(MCOperand::createImm(0)); 1040 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1041 Inst = TmpInst; 1042 break; 1043 } 1044 case PPC::SRWI: 1045 case PPC::SRWI_rec: { 1046 MCInst TmpInst; 1047 int64_t N = Inst.getOperand(2).getImm(); 1048 TmpInst.setOpcode(Opcode == PPC::SRWI ? PPC::RLWINM : PPC::RLWINM_rec); 1049 TmpInst.addOperand(Inst.getOperand(0)); 1050 TmpInst.addOperand(Inst.getOperand(1)); 1051 TmpInst.addOperand(MCOperand::createImm(32 - N)); 1052 TmpInst.addOperand(MCOperand::createImm(N)); 1053 TmpInst.addOperand(MCOperand::createImm(31)); 1054 Inst = TmpInst; 1055 break; 1056 } 1057 case PPC::CLRRWI: 1058 case PPC::CLRRWI_rec: { 1059 MCInst TmpInst; 1060 int64_t N = Inst.getOperand(2).getImm(); 1061 TmpInst.setOpcode(Opcode == PPC::CLRRWI ? PPC::RLWINM : PPC::RLWINM_rec); 1062 TmpInst.addOperand(Inst.getOperand(0)); 1063 TmpInst.addOperand(Inst.getOperand(1)); 1064 TmpInst.addOperand(MCOperand::createImm(0)); 1065 TmpInst.addOperand(MCOperand::createImm(0)); 1066 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1067 Inst = TmpInst; 1068 break; 1069 } 1070 case PPC::CLRLSLWI: 1071 case PPC::CLRLSLWI_rec: { 1072 MCInst TmpInst; 1073 int64_t B = Inst.getOperand(2).getImm(); 1074 int64_t N = Inst.getOperand(3).getImm(); 1075 TmpInst.setOpcode(Opcode == PPC::CLRLSLWI ? PPC::RLWINM : PPC::RLWINM_rec); 1076 TmpInst.addOperand(Inst.getOperand(0)); 1077 TmpInst.addOperand(Inst.getOperand(1)); 1078 TmpInst.addOperand(MCOperand::createImm(N)); 1079 TmpInst.addOperand(MCOperand::createImm(B - N)); 1080 TmpInst.addOperand(MCOperand::createImm(31 - N)); 1081 Inst = TmpInst; 1082 break; 1083 } 1084 case PPC::EXTLDI: 1085 case PPC::EXTLDI_rec: { 1086 MCInst TmpInst; 1087 int64_t N = Inst.getOperand(2).getImm(); 1088 int64_t B = Inst.getOperand(3).getImm(); 1089 TmpInst.setOpcode(Opcode == PPC::EXTLDI ? PPC::RLDICR : PPC::RLDICR_rec); 1090 TmpInst.addOperand(Inst.getOperand(0)); 1091 TmpInst.addOperand(Inst.getOperand(1)); 1092 TmpInst.addOperand(MCOperand::createImm(B)); 1093 TmpInst.addOperand(MCOperand::createImm(N - 1)); 1094 Inst = TmpInst; 1095 break; 1096 } 1097 case PPC::EXTRDI: 1098 case PPC::EXTRDI_rec: { 1099 MCInst TmpInst; 1100 int64_t N = Inst.getOperand(2).getImm(); 1101 int64_t B = Inst.getOperand(3).getImm(); 1102 TmpInst.setOpcode(Opcode == PPC::EXTRDI ? PPC::RLDICL : PPC::RLDICL_rec); 1103 TmpInst.addOperand(Inst.getOperand(0)); 1104 TmpInst.addOperand(Inst.getOperand(1)); 1105 TmpInst.addOperand(MCOperand::createImm(B + N)); 1106 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1107 Inst = TmpInst; 1108 break; 1109 } 1110 case PPC::INSRDI: 1111 case PPC::INSRDI_rec: { 1112 MCInst TmpInst; 1113 int64_t N = Inst.getOperand(2).getImm(); 1114 int64_t B = Inst.getOperand(3).getImm(); 1115 TmpInst.setOpcode(Opcode == PPC::INSRDI ? PPC::RLDIMI : PPC::RLDIMI_rec); 1116 TmpInst.addOperand(Inst.getOperand(0)); 1117 TmpInst.addOperand(Inst.getOperand(0)); 1118 TmpInst.addOperand(Inst.getOperand(1)); 1119 TmpInst.addOperand(MCOperand::createImm(64 - (B + N))); 1120 TmpInst.addOperand(MCOperand::createImm(B)); 1121 Inst = TmpInst; 1122 break; 1123 } 1124 case PPC::ROTRDI: 1125 case PPC::ROTRDI_rec: { 1126 MCInst TmpInst; 1127 int64_t N = Inst.getOperand(2).getImm(); 1128 TmpInst.setOpcode(Opcode == PPC::ROTRDI ? PPC::RLDICL : PPC::RLDICL_rec); 1129 TmpInst.addOperand(Inst.getOperand(0)); 1130 TmpInst.addOperand(Inst.getOperand(1)); 1131 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1132 TmpInst.addOperand(MCOperand::createImm(0)); 1133 Inst = TmpInst; 1134 break; 1135 } 1136 case PPC::SLDI: 1137 case PPC::SLDI_rec: { 1138 MCInst TmpInst; 1139 int64_t N = Inst.getOperand(2).getImm(); 1140 TmpInst.setOpcode(Opcode == PPC::SLDI ? PPC::RLDICR : PPC::RLDICR_rec); 1141 TmpInst.addOperand(Inst.getOperand(0)); 1142 TmpInst.addOperand(Inst.getOperand(1)); 1143 TmpInst.addOperand(MCOperand::createImm(N)); 1144 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1145 Inst = TmpInst; 1146 break; 1147 } 1148 case PPC::SUBPCIS: { 1149 MCInst TmpInst; 1150 int64_t N = Inst.getOperand(1).getImm(); 1151 TmpInst.setOpcode(PPC::ADDPCIS); 1152 TmpInst.addOperand(Inst.getOperand(0)); 1153 TmpInst.addOperand(MCOperand::createImm(-N)); 1154 Inst = TmpInst; 1155 break; 1156 } 1157 case PPC::SRDI: 1158 case PPC::SRDI_rec: { 1159 MCInst TmpInst; 1160 int64_t N = Inst.getOperand(2).getImm(); 1161 TmpInst.setOpcode(Opcode == PPC::SRDI ? PPC::RLDICL : PPC::RLDICL_rec); 1162 TmpInst.addOperand(Inst.getOperand(0)); 1163 TmpInst.addOperand(Inst.getOperand(1)); 1164 TmpInst.addOperand(MCOperand::createImm(64 - N)); 1165 TmpInst.addOperand(MCOperand::createImm(N)); 1166 Inst = TmpInst; 1167 break; 1168 } 1169 case PPC::CLRRDI: 1170 case PPC::CLRRDI_rec: { 1171 MCInst TmpInst; 1172 int64_t N = Inst.getOperand(2).getImm(); 1173 TmpInst.setOpcode(Opcode == PPC::CLRRDI ? PPC::RLDICR : PPC::RLDICR_rec); 1174 TmpInst.addOperand(Inst.getOperand(0)); 1175 TmpInst.addOperand(Inst.getOperand(1)); 1176 TmpInst.addOperand(MCOperand::createImm(0)); 1177 TmpInst.addOperand(MCOperand::createImm(63 - N)); 1178 Inst = TmpInst; 1179 break; 1180 } 1181 case PPC::CLRLSLDI: 1182 case PPC::CLRLSLDI_rec: { 1183 MCInst TmpInst; 1184 int64_t B = Inst.getOperand(2).getImm(); 1185 int64_t N = Inst.getOperand(3).getImm(); 1186 TmpInst.setOpcode(Opcode == PPC::CLRLSLDI ? PPC::RLDIC : PPC::RLDIC_rec); 1187 TmpInst.addOperand(Inst.getOperand(0)); 1188 TmpInst.addOperand(Inst.getOperand(1)); 1189 TmpInst.addOperand(MCOperand::createImm(N)); 1190 TmpInst.addOperand(MCOperand::createImm(B - N)); 1191 Inst = TmpInst; 1192 break; 1193 } 1194 case PPC::RLWINMbm: 1195 case PPC::RLWINMbm_rec: { 1196 unsigned MB, ME; 1197 int64_t BM = Inst.getOperand(3).getImm(); 1198 if (!isRunOfOnes(BM, MB, ME)) 1199 break; 1200 1201 MCInst TmpInst; 1202 TmpInst.setOpcode(Opcode == PPC::RLWINMbm ? PPC::RLWINM : PPC::RLWINM_rec); 1203 TmpInst.addOperand(Inst.getOperand(0)); 1204 TmpInst.addOperand(Inst.getOperand(1)); 1205 TmpInst.addOperand(Inst.getOperand(2)); 1206 TmpInst.addOperand(MCOperand::createImm(MB)); 1207 TmpInst.addOperand(MCOperand::createImm(ME)); 1208 Inst = TmpInst; 1209 break; 1210 } 1211 case PPC::RLWIMIbm: 1212 case PPC::RLWIMIbm_rec: { 1213 unsigned MB, ME; 1214 int64_t BM = Inst.getOperand(3).getImm(); 1215 if (!isRunOfOnes(BM, MB, ME)) 1216 break; 1217 1218 MCInst TmpInst; 1219 TmpInst.setOpcode(Opcode == PPC::RLWIMIbm ? PPC::RLWIMI : PPC::RLWIMI_rec); 1220 TmpInst.addOperand(Inst.getOperand(0)); 1221 TmpInst.addOperand(Inst.getOperand(0)); // The tied operand. 1222 TmpInst.addOperand(Inst.getOperand(1)); 1223 TmpInst.addOperand(Inst.getOperand(2)); 1224 TmpInst.addOperand(MCOperand::createImm(MB)); 1225 TmpInst.addOperand(MCOperand::createImm(ME)); 1226 Inst = TmpInst; 1227 break; 1228 } 1229 case PPC::RLWNMbm: 1230 case PPC::RLWNMbm_rec: { 1231 unsigned MB, ME; 1232 int64_t BM = Inst.getOperand(3).getImm(); 1233 if (!isRunOfOnes(BM, MB, ME)) 1234 break; 1235 1236 MCInst TmpInst; 1237 TmpInst.setOpcode(Opcode == PPC::RLWNMbm ? PPC::RLWNM : PPC::RLWNM_rec); 1238 TmpInst.addOperand(Inst.getOperand(0)); 1239 TmpInst.addOperand(Inst.getOperand(1)); 1240 TmpInst.addOperand(Inst.getOperand(2)); 1241 TmpInst.addOperand(MCOperand::createImm(MB)); 1242 TmpInst.addOperand(MCOperand::createImm(ME)); 1243 Inst = TmpInst; 1244 break; 1245 } 1246 case PPC::MFTB: { 1247 if (getSTI().hasFeature(PPC::FeatureMFTB)) { 1248 assert(Inst.getNumOperands() == 2 && "Expecting two operands"); 1249 Inst.setOpcode(PPC::MFSPR); 1250 } 1251 break; 1252 } 1253 } 1254 } 1255 1256 static std::string PPCMnemonicSpellCheck(StringRef S, const FeatureBitset &FBS, 1257 unsigned VariantID = 0); 1258 1259 // Check that the register+immediate memory operand is in the right position and 1260 // is expected by the instruction. Returns true if the memory operand syntax is 1261 // valid; otherwise, returns false. 1262 static bool validateMemOp(const OperandVector &Operands, bool isMemriOp) { 1263 for (size_t idx = 0; idx < Operands.size(); ++idx) { 1264 const PPCOperand &Op = static_cast<const PPCOperand &>(*Operands[idx]); 1265 if (Op.isMemOpBase() != (idx == 3 && isMemriOp)) 1266 return false; 1267 } 1268 return true; 1269 } 1270 1271 bool PPCAsmParser::matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, 1272 OperandVector &Operands, 1273 MCStreamer &Out, uint64_t &ErrorInfo, 1274 bool MatchingInlineAsm) { 1275 MCInst Inst; 1276 const PPCInstrInfo *TII = static_cast<const PPCInstrInfo *>(&MII); 1277 1278 switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) { 1279 case Match_Success: 1280 if (!validateMemOp(Operands, TII->isMemriOp(Inst.getOpcode()))) 1281 return Error(IDLoc, "invalid operand for instruction"); 1282 // Post-process instructions (typically extended mnemonics) 1283 processInstruction(Inst, Operands); 1284 Inst.setLoc(IDLoc); 1285 Out.emitInstruction(Inst, getSTI()); 1286 return false; 1287 case Match_MissingFeature: 1288 return Error(IDLoc, "instruction use requires an option to be enabled"); 1289 case Match_MnemonicFail: { 1290 FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits()); 1291 std::string Suggestion = PPCMnemonicSpellCheck( 1292 ((PPCOperand &)*Operands[0]).getToken(), FBS); 1293 return Error(IDLoc, "invalid instruction" + Suggestion, 1294 ((PPCOperand &)*Operands[0]).getLocRange()); 1295 } 1296 case Match_InvalidOperand: { 1297 SMLoc ErrorLoc = IDLoc; 1298 if (ErrorInfo != ~0ULL) { 1299 if (ErrorInfo >= Operands.size()) 1300 return Error(IDLoc, "too few operands for instruction"); 1301 1302 ErrorLoc = ((PPCOperand &)*Operands[ErrorInfo]).getStartLoc(); 1303 if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc; 1304 } 1305 1306 return Error(ErrorLoc, "invalid operand for instruction"); 1307 } 1308 } 1309 1310 llvm_unreachable("Implement any new match types added!"); 1311 } 1312 1313 #define GET_REGISTER_MATCHER 1314 #include "PPCGenAsmMatcher.inc" 1315 1316 MCRegister PPCAsmParser::matchRegisterName(int64_t &IntVal) { 1317 if (getParser().getTok().is(AsmToken::Percent)) 1318 getParser().Lex(); // Eat the '%'. 1319 1320 if (!getParser().getTok().is(AsmToken::Identifier)) 1321 return MCRegister(); 1322 1323 StringRef Name = getParser().getTok().getString(); 1324 MCRegister RegNo = MatchRegisterName(Name); 1325 if (!RegNo) 1326 return RegNo; 1327 1328 Name.substr(Name.find_first_of("1234567890")).getAsInteger(10, IntVal); 1329 1330 // MatchRegisterName doesn't seem to have special handling for 64bit vs 32bit 1331 // register types. 1332 if (Name.equals_insensitive("lr")) { 1333 RegNo = isPPC64() ? PPC::LR8 : PPC::LR; 1334 IntVal = 8; 1335 } else if (Name.equals_insensitive("ctr")) { 1336 RegNo = isPPC64() ? PPC::CTR8 : PPC::CTR; 1337 IntVal = 9; 1338 } else if (Name.equals_insensitive("vrsave")) 1339 IntVal = 256; 1340 else if (Name.starts_with_insensitive("r")) 1341 RegNo = isPPC64() ? XRegs[IntVal] : RRegs[IntVal]; 1342 1343 getParser().Lex(); 1344 return RegNo; 1345 } 1346 1347 bool PPCAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, 1348 SMLoc &EndLoc) { 1349 if (!tryParseRegister(Reg, StartLoc, EndLoc).isSuccess()) 1350 return TokError("invalid register name"); 1351 return false; 1352 } 1353 1354 ParseStatus PPCAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, 1355 SMLoc &EndLoc) { 1356 const AsmToken &Tok = getParser().getTok(); 1357 StartLoc = Tok.getLoc(); 1358 EndLoc = Tok.getEndLoc(); 1359 int64_t IntVal; 1360 if (!(Reg = matchRegisterName(IntVal))) 1361 return ParseStatus::NoMatch; 1362 return ParseStatus::Success; 1363 } 1364 1365 /// Extract \code @l/@ha \endcode modifier from expression. Recursively scan 1366 /// the expression and check for VK_PPC_LO/HI/HA 1367 /// symbol variants. If all symbols with modifier use the same 1368 /// variant, return the corresponding PPCMCExpr::VariantKind, 1369 /// and a modified expression using the default symbol variant. 1370 /// Otherwise, return NULL. 1371 const MCExpr * 1372 PPCAsmParser::extractModifierFromExpr(const MCExpr *E, 1373 PPCMCExpr::VariantKind &Variant) { 1374 MCContext &Context = getParser().getContext(); 1375 Variant = PPCMCExpr::VK_PPC_None; 1376 1377 switch (E->getKind()) { 1378 case MCExpr::Target: 1379 case MCExpr::Constant: 1380 return nullptr; 1381 1382 case MCExpr::SymbolRef: { 1383 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1384 1385 switch (SRE->getKind()) { 1386 case MCSymbolRefExpr::VK_PPC_LO: 1387 Variant = PPCMCExpr::VK_PPC_LO; 1388 break; 1389 case MCSymbolRefExpr::VK_PPC_HI: 1390 Variant = PPCMCExpr::VK_PPC_HI; 1391 break; 1392 case MCSymbolRefExpr::VK_PPC_HA: 1393 Variant = PPCMCExpr::VK_PPC_HA; 1394 break; 1395 case MCSymbolRefExpr::VK_PPC_HIGH: 1396 Variant = PPCMCExpr::VK_PPC_HIGH; 1397 break; 1398 case MCSymbolRefExpr::VK_PPC_HIGHA: 1399 Variant = PPCMCExpr::VK_PPC_HIGHA; 1400 break; 1401 case MCSymbolRefExpr::VK_PPC_HIGHER: 1402 Variant = PPCMCExpr::VK_PPC_HIGHER; 1403 break; 1404 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1405 Variant = PPCMCExpr::VK_PPC_HIGHERA; 1406 break; 1407 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1408 Variant = PPCMCExpr::VK_PPC_HIGHEST; 1409 break; 1410 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1411 Variant = PPCMCExpr::VK_PPC_HIGHESTA; 1412 break; 1413 default: 1414 return nullptr; 1415 } 1416 1417 return MCSymbolRefExpr::create(&SRE->getSymbol(), Context); 1418 } 1419 1420 case MCExpr::Unary: { 1421 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1422 const MCExpr *Sub = extractModifierFromExpr(UE->getSubExpr(), Variant); 1423 if (!Sub) 1424 return nullptr; 1425 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1426 } 1427 1428 case MCExpr::Binary: { 1429 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1430 PPCMCExpr::VariantKind LHSVariant, RHSVariant; 1431 const MCExpr *LHS = extractModifierFromExpr(BE->getLHS(), LHSVariant); 1432 const MCExpr *RHS = extractModifierFromExpr(BE->getRHS(), RHSVariant); 1433 1434 if (!LHS && !RHS) 1435 return nullptr; 1436 1437 if (!LHS) LHS = BE->getLHS(); 1438 if (!RHS) RHS = BE->getRHS(); 1439 1440 if (LHSVariant == PPCMCExpr::VK_PPC_None) 1441 Variant = RHSVariant; 1442 else if (RHSVariant == PPCMCExpr::VK_PPC_None) 1443 Variant = LHSVariant; 1444 else if (LHSVariant == RHSVariant) 1445 Variant = LHSVariant; 1446 else 1447 return nullptr; 1448 1449 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1450 } 1451 } 1452 1453 llvm_unreachable("Invalid expression kind!"); 1454 } 1455 1456 /// Find all VK_TLSGD/VK_TLSLD symbol references in expression and replace 1457 /// them by VK_PPC_TLSGD/VK_PPC_TLSLD. This is necessary to avoid having 1458 /// _GLOBAL_OFFSET_TABLE_ created via ELFObjectWriter::RelocNeedsGOT. 1459 /// FIXME: This is a hack. 1460 const MCExpr *PPCAsmParser::fixupVariantKind(const MCExpr *E) { 1461 MCContext &Context = getParser().getContext(); 1462 1463 switch (E->getKind()) { 1464 case MCExpr::Target: 1465 case MCExpr::Constant: 1466 return E; 1467 1468 case MCExpr::SymbolRef: { 1469 const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E); 1470 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; 1471 1472 switch (SRE->getKind()) { 1473 case MCSymbolRefExpr::VK_TLSGD: 1474 Variant = MCSymbolRefExpr::VK_PPC_TLSGD; 1475 break; 1476 case MCSymbolRefExpr::VK_TLSLD: 1477 Variant = MCSymbolRefExpr::VK_PPC_TLSLD; 1478 break; 1479 default: 1480 return E; 1481 } 1482 return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, Context); 1483 } 1484 1485 case MCExpr::Unary: { 1486 const MCUnaryExpr *UE = cast<MCUnaryExpr>(E); 1487 const MCExpr *Sub = fixupVariantKind(UE->getSubExpr()); 1488 if (Sub == UE->getSubExpr()) 1489 return E; 1490 return MCUnaryExpr::create(UE->getOpcode(), Sub, Context); 1491 } 1492 1493 case MCExpr::Binary: { 1494 const MCBinaryExpr *BE = cast<MCBinaryExpr>(E); 1495 const MCExpr *LHS = fixupVariantKind(BE->getLHS()); 1496 const MCExpr *RHS = fixupVariantKind(BE->getRHS()); 1497 if (LHS == BE->getLHS() && RHS == BE->getRHS()) 1498 return E; 1499 return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, Context); 1500 } 1501 } 1502 1503 llvm_unreachable("Invalid expression kind!"); 1504 } 1505 1506 /// This differs from the default "parseExpression" in that it handles 1507 /// modifiers. 1508 bool PPCAsmParser::parseExpression(const MCExpr *&EVal) { 1509 // (ELF Platforms) 1510 // Handle \code @l/@ha \endcode 1511 if (getParser().parseExpression(EVal)) 1512 return true; 1513 1514 EVal = fixupVariantKind(EVal); 1515 1516 PPCMCExpr::VariantKind Variant; 1517 const MCExpr *E = extractModifierFromExpr(EVal, Variant); 1518 if (E) 1519 EVal = PPCMCExpr::create(Variant, E, getParser().getContext()); 1520 1521 return false; 1522 } 1523 1524 /// This handles registers in the form 'NN', '%rNN' for ELF platforms and 1525 /// rNN for MachO. 1526 bool PPCAsmParser::parseOperand(OperandVector &Operands) { 1527 MCAsmParser &Parser = getParser(); 1528 SMLoc S = Parser.getTok().getLoc(); 1529 SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); 1530 const MCExpr *EVal; 1531 1532 // Attempt to parse the next token as an immediate 1533 switch (getLexer().getKind()) { 1534 // Special handling for register names. These are interpreted 1535 // as immediates corresponding to the register number. 1536 case AsmToken::Percent: { 1537 int64_t IntVal; 1538 if (!matchRegisterName(IntVal)) 1539 return Error(S, "invalid register name"); 1540 1541 Operands.push_back(PPCOperand::CreateImm(IntVal, S, E, isPPC64())); 1542 return false; 1543 } 1544 case AsmToken::Identifier: 1545 case AsmToken::LParen: 1546 case AsmToken::Plus: 1547 case AsmToken::Minus: 1548 case AsmToken::Integer: 1549 case AsmToken::Dot: 1550 case AsmToken::Dollar: 1551 case AsmToken::Exclaim: 1552 case AsmToken::Tilde: 1553 if (!parseExpression(EVal)) 1554 break; 1555 // Fall-through 1556 [[fallthrough]]; 1557 default: 1558 return Error(S, "unknown operand"); 1559 } 1560 1561 // Push the parsed operand into the list of operands 1562 Operands.push_back(PPCOperand::CreateFromMCExpr(EVal, S, E, isPPC64())); 1563 1564 // Check whether this is a TLS call expression 1565 const char TlsGetAddr[] = "__tls_get_addr"; 1566 bool TlsCall = false; 1567 const MCExpr *TlsCallAddend = nullptr; 1568 if (auto *Ref = dyn_cast<MCSymbolRefExpr>(EVal)) { 1569 TlsCall = Ref->getSymbol().getName() == TlsGetAddr; 1570 } else if (auto *Bin = dyn_cast<MCBinaryExpr>(EVal); 1571 Bin && Bin->getOpcode() == MCBinaryExpr::Add) { 1572 if (auto *Ref = dyn_cast<MCSymbolRefExpr>(Bin->getLHS())) { 1573 TlsCall = Ref->getSymbol().getName() == TlsGetAddr; 1574 TlsCallAddend = Bin->getRHS(); 1575 } 1576 } 1577 1578 if (TlsCall && parseOptionalToken(AsmToken::LParen)) { 1579 const MCExpr *TLSSym; 1580 const SMLoc S2 = Parser.getTok().getLoc(); 1581 if (parseExpression(TLSSym)) 1582 return Error(S2, "invalid TLS call expression"); 1583 E = Parser.getTok().getLoc(); 1584 if (parseToken(AsmToken::RParen, "expected ')'")) 1585 return true; 1586 // PPC32 allows bl __tls_get_addr[+a](x@tlsgd)@plt+b. Parse "@plt[+b]". 1587 if (!isPPC64() && parseOptionalToken(AsmToken::At)) { 1588 AsmToken Tok = getTok(); 1589 if (!(parseOptionalToken(AsmToken::Identifier) && 1590 Tok.getString().compare_insensitive("plt") == 0)) 1591 return Error(Tok.getLoc(), "expected 'plt'"); 1592 EVal = MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_PLT, 1593 getContext()); 1594 if (parseOptionalToken(AsmToken::Plus)) { 1595 const MCExpr *Addend = nullptr; 1596 SMLoc EndLoc; 1597 if (parsePrimaryExpr(Addend, EndLoc)) 1598 return true; 1599 if (TlsCallAddend) // __tls_get_addr+a(x@tlsgd)@plt+b 1600 TlsCallAddend = 1601 MCBinaryExpr::createAdd(TlsCallAddend, Addend, getContext()); 1602 else // __tls_get_addr(x@tlsgd)@plt+b 1603 TlsCallAddend = Addend; 1604 } 1605 if (TlsCallAddend) 1606 EVal = MCBinaryExpr::createAdd(EVal, TlsCallAddend, getContext()); 1607 // Add a __tls_get_addr operand with addend a, b, or a+b. 1608 Operands.back() = PPCOperand::CreateFromMCExpr( 1609 EVal, S, Parser.getTok().getLoc(), false); 1610 } 1611 1612 Operands.push_back(PPCOperand::CreateFromMCExpr(TLSSym, S, E, isPPC64())); 1613 } 1614 1615 // Otherwise, check for D-form memory operands 1616 if (!TlsCall && parseOptionalToken(AsmToken::LParen)) { 1617 S = Parser.getTok().getLoc(); 1618 1619 int64_t IntVal; 1620 switch (getLexer().getKind()) { 1621 case AsmToken::Percent: { 1622 if (!matchRegisterName(IntVal)) 1623 return Error(S, "invalid register name"); 1624 break; 1625 } 1626 case AsmToken::Integer: 1627 if (getParser().parseAbsoluteExpression(IntVal) || IntVal < 0 || 1628 IntVal > 31) 1629 return Error(S, "invalid register number"); 1630 break; 1631 case AsmToken::Identifier: 1632 default: 1633 return Error(S, "invalid memory operand"); 1634 } 1635 1636 E = Parser.getTok().getLoc(); 1637 if (parseToken(AsmToken::RParen, "missing ')'")) 1638 return true; 1639 Operands.push_back( 1640 PPCOperand::CreateImm(IntVal, S, E, isPPC64(), /*IsMemOpBase=*/true)); 1641 } 1642 1643 return false; 1644 } 1645 1646 /// Parse an instruction mnemonic followed by its operands. 1647 bool PPCAsmParser::parseInstruction(ParseInstructionInfo &Info, StringRef Name, 1648 SMLoc NameLoc, OperandVector &Operands) { 1649 // The first operand is the token for the instruction name. 1650 // If the next character is a '+' or '-', we need to add it to the 1651 // instruction name, to match what TableGen is doing. 1652 std::string NewOpcode; 1653 if (parseOptionalToken(AsmToken::Plus)) { 1654 NewOpcode = std::string(Name); 1655 NewOpcode += '+'; 1656 Name = NewOpcode; 1657 } 1658 if (parseOptionalToken(AsmToken::Minus)) { 1659 NewOpcode = std::string(Name); 1660 NewOpcode += '-'; 1661 Name = NewOpcode; 1662 } 1663 // If the instruction ends in a '.', we need to create a separate 1664 // token for it, to match what TableGen is doing. 1665 size_t Dot = Name.find('.'); 1666 StringRef Mnemonic = Name.slice(0, Dot); 1667 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1668 Operands.push_back( 1669 PPCOperand::CreateTokenWithStringCopy(Mnemonic, NameLoc, isPPC64())); 1670 else 1671 Operands.push_back(PPCOperand::CreateToken(Mnemonic, NameLoc, isPPC64())); 1672 if (Dot != StringRef::npos) { 1673 SMLoc DotLoc = SMLoc::getFromPointer(NameLoc.getPointer() + Dot); 1674 StringRef DotStr = Name.substr(Dot); 1675 if (!NewOpcode.empty()) // Underlying memory for Name is volatile. 1676 Operands.push_back( 1677 PPCOperand::CreateTokenWithStringCopy(DotStr, DotLoc, isPPC64())); 1678 else 1679 Operands.push_back(PPCOperand::CreateToken(DotStr, DotLoc, isPPC64())); 1680 } 1681 1682 // If there are no more operands then finish 1683 if (parseOptionalToken(AsmToken::EndOfStatement)) 1684 return false; 1685 1686 // Parse the first operand 1687 if (parseOperand(Operands)) 1688 return true; 1689 1690 while (!parseOptionalToken(AsmToken::EndOfStatement)) { 1691 if (parseToken(AsmToken::Comma) || parseOperand(Operands)) 1692 return true; 1693 } 1694 1695 // We'll now deal with an unfortunate special case: the syntax for the dcbt 1696 // and dcbtst instructions differs for server vs. embedded cores. 1697 // The syntax for dcbt is: 1698 // dcbt ra, rb, th [server] 1699 // dcbt th, ra, rb [embedded] 1700 // where th can be omitted when it is 0. dcbtst is the same. We take the 1701 // server form to be the default, so swap the operands if we're parsing for 1702 // an embedded core (they'll be swapped again upon printing). 1703 if (getSTI().hasFeature(PPC::FeatureBookE) && 1704 Operands.size() == 4 && 1705 (Name == "dcbt" || Name == "dcbtst")) { 1706 std::swap(Operands[1], Operands[3]); 1707 std::swap(Operands[2], Operands[1]); 1708 } 1709 1710 // Handle base mnemonic for atomic loads where the EH bit is zero. 1711 if (Name == "lqarx" || Name == "ldarx" || Name == "lwarx" || 1712 Name == "lharx" || Name == "lbarx") { 1713 if (Operands.size() != 5) 1714 return false; 1715 PPCOperand &EHOp = (PPCOperand &)*Operands[4]; 1716 if (EHOp.isU1Imm() && EHOp.getImm() == 0) 1717 Operands.pop_back(); 1718 } 1719 1720 return false; 1721 } 1722 1723 /// Parses the PPC specific directives 1724 bool PPCAsmParser::ParseDirective(AsmToken DirectiveID) { 1725 StringRef IDVal = DirectiveID.getIdentifier(); 1726 if (IDVal == ".word") 1727 parseDirectiveWord(2, DirectiveID); 1728 else if (IDVal == ".llong") 1729 parseDirectiveWord(8, DirectiveID); 1730 else if (IDVal == ".tc") 1731 parseDirectiveTC(isPPC64() ? 8 : 4, DirectiveID); 1732 else if (IDVal == ".machine") 1733 parseDirectiveMachine(DirectiveID.getLoc()); 1734 else if (IDVal == ".abiversion") 1735 parseDirectiveAbiVersion(DirectiveID.getLoc()); 1736 else if (IDVal == ".localentry") 1737 parseDirectiveLocalEntry(DirectiveID.getLoc()); 1738 else if (IDVal.starts_with(".gnu_attribute")) 1739 parseGNUAttribute(DirectiveID.getLoc()); 1740 else 1741 return true; 1742 return false; 1743 } 1744 1745 /// ::= .word [ expression (, expression)* ] 1746 bool PPCAsmParser::parseDirectiveWord(unsigned Size, AsmToken ID) { 1747 auto parseOp = [&]() -> bool { 1748 const MCExpr *Value; 1749 SMLoc ExprLoc = getParser().getTok().getLoc(); 1750 if (getParser().parseExpression(Value)) 1751 return true; 1752 if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) { 1753 assert(Size <= 8 && "Invalid size"); 1754 uint64_t IntValue = MCE->getValue(); 1755 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) 1756 return Error(ExprLoc, "literal value out of range for '" + 1757 ID.getIdentifier() + "' directive"); 1758 getStreamer().emitIntValue(IntValue, Size); 1759 } else 1760 getStreamer().emitValue(Value, Size, ExprLoc); 1761 return false; 1762 }; 1763 1764 if (parseMany(parseOp)) 1765 return addErrorSuffix(" in '" + ID.getIdentifier() + "' directive"); 1766 return false; 1767 } 1768 1769 /// ::= .tc [ symbol (, expression)* ] 1770 bool PPCAsmParser::parseDirectiveTC(unsigned Size, AsmToken ID) { 1771 MCAsmParser &Parser = getParser(); 1772 // Skip TC symbol, which is only used with XCOFF. 1773 while (getLexer().isNot(AsmToken::EndOfStatement) 1774 && getLexer().isNot(AsmToken::Comma)) 1775 Parser.Lex(); 1776 if (parseToken(AsmToken::Comma)) 1777 return addErrorSuffix(" in '.tc' directive"); 1778 1779 // Align to word size. 1780 getParser().getStreamer().emitValueToAlignment(Align(Size)); 1781 1782 // Emit expressions. 1783 return parseDirectiveWord(Size, ID); 1784 } 1785 1786 /// ELF platforms. 1787 /// ::= .machine [ cpu | "push" | "pop" ] 1788 bool PPCAsmParser::parseDirectiveMachine(SMLoc L) { 1789 MCAsmParser &Parser = getParser(); 1790 if (Parser.getTok().isNot(AsmToken::Identifier) && 1791 Parser.getTok().isNot(AsmToken::String)) 1792 return Error(L, "unexpected token in '.machine' directive"); 1793 1794 StringRef CPU = Parser.getTok().getIdentifier(); 1795 1796 // FIXME: Right now, the parser always allows any available 1797 // instruction, so the .machine directive is not useful. 1798 // In the wild, any/push/pop/ppc64/altivec/power[4-9] are seen. 1799 1800 Parser.Lex(); 1801 1802 if (parseToken(AsmToken::EndOfStatement)) 1803 return addErrorSuffix(" in '.machine' directive"); 1804 1805 PPCTargetStreamer *TStreamer = static_cast<PPCTargetStreamer *>( 1806 getParser().getStreamer().getTargetStreamer()); 1807 if (TStreamer != nullptr) 1808 TStreamer->emitMachine(CPU); 1809 1810 return false; 1811 } 1812 1813 /// ::= .abiversion constant-expression 1814 bool PPCAsmParser::parseDirectiveAbiVersion(SMLoc L) { 1815 int64_t AbiVersion; 1816 if (check(getParser().parseAbsoluteExpression(AbiVersion), L, 1817 "expected constant expression") || 1818 parseToken(AsmToken::EndOfStatement)) 1819 return addErrorSuffix(" in '.abiversion' directive"); 1820 1821 PPCTargetStreamer *TStreamer = static_cast<PPCTargetStreamer *>( 1822 getParser().getStreamer().getTargetStreamer()); 1823 if (TStreamer != nullptr) 1824 TStreamer->emitAbiVersion(AbiVersion); 1825 1826 return false; 1827 } 1828 1829 /// ::= .localentry symbol, expression 1830 bool PPCAsmParser::parseDirectiveLocalEntry(SMLoc L) { 1831 StringRef Name; 1832 if (getParser().parseIdentifier(Name)) 1833 return Error(L, "expected identifier in '.localentry' directive"); 1834 1835 MCSymbolELF *Sym = cast<MCSymbolELF>(getContext().getOrCreateSymbol(Name)); 1836 const MCExpr *Expr; 1837 1838 if (parseToken(AsmToken::Comma) || 1839 check(getParser().parseExpression(Expr), L, "expected expression") || 1840 parseToken(AsmToken::EndOfStatement)) 1841 return addErrorSuffix(" in '.localentry' directive"); 1842 1843 PPCTargetStreamer *TStreamer = static_cast<PPCTargetStreamer *>( 1844 getParser().getStreamer().getTargetStreamer()); 1845 if (TStreamer != nullptr) 1846 TStreamer->emitLocalEntry(Sym, Expr); 1847 1848 return false; 1849 } 1850 1851 bool PPCAsmParser::parseGNUAttribute(SMLoc L) { 1852 int64_t Tag; 1853 int64_t IntegerValue; 1854 if (!getParser().parseGNUAttribute(L, Tag, IntegerValue)) 1855 return false; 1856 1857 getParser().getStreamer().emitGNUAttribute(Tag, IntegerValue); 1858 1859 return true; 1860 } 1861 1862 /// Force static initialization. 1863 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmParser() { 1864 RegisterMCAsmParser<PPCAsmParser> A(getThePPC32Target()); 1865 RegisterMCAsmParser<PPCAsmParser> B(getThePPC32LETarget()); 1866 RegisterMCAsmParser<PPCAsmParser> C(getThePPC64Target()); 1867 RegisterMCAsmParser<PPCAsmParser> D(getThePPC64LETarget()); 1868 } 1869 1870 #define GET_MATCHER_IMPLEMENTATION 1871 #define GET_MNEMONIC_SPELL_CHECKER 1872 #include "PPCGenAsmMatcher.inc" 1873 1874 // Define this matcher function after the auto-generated include so we 1875 // have the match class enum definitions. 1876 unsigned PPCAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, 1877 unsigned Kind) { 1878 // If the kind is a token for a literal immediate, check if our asm 1879 // operand matches. This is for InstAliases which have a fixed-value 1880 // immediate in the syntax. 1881 int64_t ImmVal; 1882 switch (Kind) { 1883 case MCK_0: ImmVal = 0; break; 1884 case MCK_1: ImmVal = 1; break; 1885 case MCK_2: ImmVal = 2; break; 1886 case MCK_3: ImmVal = 3; break; 1887 case MCK_4: ImmVal = 4; break; 1888 case MCK_5: ImmVal = 5; break; 1889 case MCK_6: ImmVal = 6; break; 1890 case MCK_7: ImmVal = 7; break; 1891 default: return Match_InvalidOperand; 1892 } 1893 1894 PPCOperand &Op = static_cast<PPCOperand &>(AsmOp); 1895 if (Op.isU3Imm() && Op.getImm() == ImmVal) 1896 return Match_Success; 1897 1898 return Match_InvalidOperand; 1899 } 1900 1901 const MCExpr * 1902 PPCAsmParser::applyModifierToExpr(const MCExpr *E, 1903 MCSymbolRefExpr::VariantKind Variant, 1904 MCContext &Ctx) { 1905 switch (Variant) { 1906 case MCSymbolRefExpr::VK_PPC_LO: 1907 return PPCMCExpr::create(PPCMCExpr::VK_PPC_LO, E, Ctx); 1908 case MCSymbolRefExpr::VK_PPC_HI: 1909 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HI, E, Ctx); 1910 case MCSymbolRefExpr::VK_PPC_HA: 1911 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HA, E, Ctx); 1912 case MCSymbolRefExpr::VK_PPC_HIGH: 1913 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGH, E, Ctx); 1914 case MCSymbolRefExpr::VK_PPC_HIGHA: 1915 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHA, E, Ctx); 1916 case MCSymbolRefExpr::VK_PPC_HIGHER: 1917 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHER, E, Ctx); 1918 case MCSymbolRefExpr::VK_PPC_HIGHERA: 1919 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHERA, E, Ctx); 1920 case MCSymbolRefExpr::VK_PPC_HIGHEST: 1921 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHEST, E, Ctx); 1922 case MCSymbolRefExpr::VK_PPC_HIGHESTA: 1923 return PPCMCExpr::create(PPCMCExpr::VK_PPC_HIGHESTA, E, Ctx); 1924 default: 1925 return nullptr; 1926 } 1927 } 1928