xref: /llvm-project/llvm/lib/Target/Mips/MipsSEISelLowering.cpp (revision 6735d527f9945fbf50c14a95cbdd66592472d622)
1 //===- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Subclass of MipsTargetLowering specialized for mips32/64.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MipsSEISelLowering.h"
14 #include "MipsMachineFunction.h"
15 #include "MipsRegisterInfo.h"
16 #include "MipsSubtarget.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/SelectionDAG.h"
29 #include "llvm/CodeGen/SelectionDAGNodes.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/CodeGenTypes/MachineValueType.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsMips.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/TargetParser/Triple.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "mips-isel"
53 
54 static cl::opt<bool>
55 UseMipsTailCalls("mips-tail-calls", cl::Hidden,
56                     cl::desc("MIPS: permit tail calls."), cl::init(false));
57 
58 static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
59                                    cl::desc("Expand double precision loads and "
60                                             "stores to their single precision "
61                                             "counterparts"));
62 
63 // Widen the v2 vectors to the register width, i.e. v2i16 -> v8i16,
64 // v2i32 -> v4i32, etc, to ensure the correct rail size is used, i.e.
65 // INST.h for v16, INST.w for v32, INST.d for v64.
66 TargetLoweringBase::LegalizeTypeAction
67 MipsSETargetLowering::getPreferredVectorAction(MVT VT) const {
68   if (this->Subtarget.hasMSA()) {
69     switch (VT.SimpleTy) {
70     // Leave v2i1 vectors to be promoted to larger ones.
71     // Other i1 types will be promoted by default.
72     case MVT::v2i1:
73       return TypePromoteInteger;
74       break;
75     // 16-bit vector types (v2 and longer)
76     case MVT::v2i8:
77     // 32-bit vector types (v2 and longer)
78     case MVT::v2i16:
79     case MVT::v4i8:
80     // 64-bit vector types (v2 and longer)
81     case MVT::v2i32:
82     case MVT::v4i16:
83     case MVT::v8i8:
84       return TypeWidenVector;
85       break;
86     // Only word (.w) and doubleword (.d) are available for floating point
87     // vectors. That means floating point vectors should be either v2f64
88     // or v4f32.
89     // Here we only explicitly widen the f32 types - f16 will be promoted
90     // by default.
91     case MVT::v2f32:
92     case MVT::v3f32:
93       return TypeWidenVector;
94     // v2i64 is already 128-bit wide.
95     default:
96       break;
97     }
98   }
99   return TargetLoweringBase::getPreferredVectorAction(VT);
100 }
101 
102 MipsSETargetLowering::MipsSETargetLowering(const MipsTargetMachine &TM,
103                                            const MipsSubtarget &STI)
104     : MipsTargetLowering(TM, STI) {
105   // Set up the register classes
106   addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
107 
108   if (Subtarget.isGP64bit())
109     addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
110 
111   if (Subtarget.hasDSP() || Subtarget.hasMSA()) {
112     // Expand all truncating stores and extending loads.
113     for (MVT VT0 : MVT::fixedlen_vector_valuetypes()) {
114       for (MVT VT1 : MVT::fixedlen_vector_valuetypes()) {
115         setTruncStoreAction(VT0, VT1, Expand);
116         setLoadExtAction(ISD::SEXTLOAD, VT0, VT1, Expand);
117         setLoadExtAction(ISD::ZEXTLOAD, VT0, VT1, Expand);
118         setLoadExtAction(ISD::EXTLOAD, VT0, VT1, Expand);
119       }
120     }
121   }
122 
123   if (Subtarget.hasDSP()) {
124     MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
125 
126     for (const auto &VecTy : VecTys) {
127       addRegisterClass(VecTy, &Mips::DSPRRegClass);
128 
129       // Expand all builtin opcodes.
130       for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
131         setOperationAction(Opc, VecTy, Expand);
132 
133       setOperationAction(ISD::ADD, VecTy, Legal);
134       setOperationAction(ISD::SUB, VecTy, Legal);
135       setOperationAction(ISD::LOAD, VecTy, Legal);
136       setOperationAction(ISD::STORE, VecTy, Legal);
137       setOperationAction(ISD::BITCAST, VecTy, Legal);
138     }
139 
140     setTargetDAGCombine(
141         {ISD::SHL, ISD::SRA, ISD::SRL, ISD::SETCC, ISD::VSELECT});
142 
143     if (Subtarget.hasMips32r2()) {
144       setOperationAction(ISD::ADDC, MVT::i32, Legal);
145       setOperationAction(ISD::ADDE, MVT::i32, Legal);
146     }
147   }
148 
149   if (Subtarget.hasDSPR2())
150     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
151 
152   if (Subtarget.hasMSA()) {
153     addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
154     addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
155     addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
156     addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
157     addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
158     addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
159     addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
160 
161     // f16 is a storage-only type, always promote it to f32.
162     addRegisterClass(MVT::f16, &Mips::MSA128HRegClass);
163     setOperationAction(ISD::SETCC, MVT::f16, Promote);
164     setOperationAction(ISD::BR_CC, MVT::f16, Promote);
165     setOperationAction(ISD::SELECT_CC, MVT::f16, Promote);
166     setOperationAction(ISD::SELECT, MVT::f16, Promote);
167     setOperationAction(ISD::FADD, MVT::f16, Promote);
168     setOperationAction(ISD::FSUB, MVT::f16, Promote);
169     setOperationAction(ISD::FMUL, MVT::f16, Promote);
170     setOperationAction(ISD::FDIV, MVT::f16, Promote);
171     setOperationAction(ISD::FREM, MVT::f16, Promote);
172     setOperationAction(ISD::FMA, MVT::f16, Promote);
173     setOperationAction(ISD::FNEG, MVT::f16, Promote);
174     setOperationAction(ISD::FABS, MVT::f16, Promote);
175     setOperationAction(ISD::FCEIL, MVT::f16, Promote);
176     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote);
177     setOperationAction(ISD::FCOS, MVT::f16, Promote);
178     setOperationAction(ISD::FP_EXTEND, MVT::f16, Promote);
179     setOperationAction(ISD::FFLOOR, MVT::f16, Promote);
180     setOperationAction(ISD::FNEARBYINT, MVT::f16, Promote);
181     setOperationAction(ISD::FPOW, MVT::f16, Promote);
182     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
183     setOperationAction(ISD::FRINT, MVT::f16, Promote);
184     setOperationAction(ISD::FSIN, MVT::f16, Promote);
185     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
186     setOperationAction(ISD::FSQRT, MVT::f16, Promote);
187     setOperationAction(ISD::FEXP, MVT::f16, Promote);
188     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
189     setOperationAction(ISD::FLOG, MVT::f16, Promote);
190     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
191     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
192     setOperationAction(ISD::FROUND, MVT::f16, Promote);
193     setOperationAction(ISD::FTRUNC, MVT::f16, Promote);
194     setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
195     setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
196     setOperationAction(ISD::FMINIMUM, MVT::f16, Promote);
197     setOperationAction(ISD::FMAXIMUM, MVT::f16, Promote);
198 
199     setTargetDAGCombine({ISD::AND, ISD::OR, ISD::SRA, ISD::VSELECT, ISD::XOR});
200   }
201 
202   if (!Subtarget.useSoftFloat()) {
203     addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
204 
205     // When dealing with single precision only, use libcalls
206     if (!Subtarget.isSingleFloat()) {
207       if (Subtarget.isFP64bit())
208         addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
209       else
210         addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
211     }
212   }
213 
214   setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
215   setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
216   setOperationAction(ISD::MULHS,              MVT::i32, Custom);
217   setOperationAction(ISD::MULHU,              MVT::i32, Custom);
218 
219   if (Subtarget.hasCnMips())
220     setOperationAction(ISD::MUL,              MVT::i64, Legal);
221   else if (Subtarget.isGP64bit())
222     setOperationAction(ISD::MUL,              MVT::i64, Custom);
223 
224   if (Subtarget.isGP64bit()) {
225     setOperationAction(ISD::SMUL_LOHI,        MVT::i64, Custom);
226     setOperationAction(ISD::UMUL_LOHI,        MVT::i64, Custom);
227     setOperationAction(ISD::MULHS,            MVT::i64, Custom);
228     setOperationAction(ISD::MULHU,            MVT::i64, Custom);
229     setOperationAction(ISD::SDIVREM,          MVT::i64, Custom);
230     setOperationAction(ISD::UDIVREM,          MVT::i64, Custom);
231   }
232 
233   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
234   setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
235 
236   setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
237   setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
239   if (Subtarget.hasMips32r6()) {
240     setOperationAction(ISD::LOAD,               MVT::i32, Legal);
241     setOperationAction(ISD::STORE,              MVT::i32, Legal);
242   } else {
243     setOperationAction(ISD::LOAD,               MVT::i32, Custom);
244     setOperationAction(ISD::STORE,              MVT::i32, Custom);
245   }
246 
247   setTargetDAGCombine(ISD::MUL);
248 
249   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
250   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
251   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
252 
253   if (Subtarget.hasMips32r2() && !Subtarget.useSoftFloat() &&
254       !Subtarget.hasMips64()) {
255     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
256   }
257 
258   if (NoDPLoadStore) {
259     setOperationAction(ISD::LOAD, MVT::f64, Custom);
260     setOperationAction(ISD::STORE, MVT::f64, Custom);
261   }
262 
263   if (Subtarget.hasMips32r6()) {
264     // MIPS32r6 replaces the accumulator-based multiplies with a three register
265     // instruction
266     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
267     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
268     setOperationAction(ISD::MUL, MVT::i32, Legal);
269     setOperationAction(ISD::MULHS, MVT::i32, Legal);
270     setOperationAction(ISD::MULHU, MVT::i32, Legal);
271 
272     // MIPS32r6 replaces the accumulator-based division/remainder with separate
273     // three register division and remainder instructions.
274     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
275     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
276     setOperationAction(ISD::SDIV, MVT::i32, Legal);
277     setOperationAction(ISD::UDIV, MVT::i32, Legal);
278     setOperationAction(ISD::SREM, MVT::i32, Legal);
279     setOperationAction(ISD::UREM, MVT::i32, Legal);
280 
281     // MIPS32r6 replaces conditional moves with an equivalent that removes the
282     // need for three GPR read ports.
283     setOperationAction(ISD::SETCC, MVT::i32, Legal);
284     setOperationAction(ISD::SELECT, MVT::i32, Legal);
285     setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
286 
287     setOperationAction(ISD::SETCC, MVT::f32, Legal);
288     setOperationAction(ISD::SELECT, MVT::f32, Legal);
289     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
290 
291     assert(Subtarget.isFP64bit() && "FR=1 is required for MIPS32r6");
292     setOperationAction(ISD::SETCC, MVT::f64, Legal);
293     setOperationAction(ISD::SELECT, MVT::f64, Custom);
294     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
295 
296     setOperationAction(ISD::BRCOND, MVT::Other, Legal);
297 
298     // Floating point > and >= are supported via < and <=
299     setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
300     setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
301     setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
302     setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
303 
304     setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
305     setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
306     setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
307     setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
308   }
309 
310   if (Subtarget.hasMips64r6()) {
311     // MIPS64r6 replaces the accumulator-based multiplies with a three register
312     // instruction
313     setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
314     setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
315     setOperationAction(ISD::MUL, MVT::i64, Legal);
316     setOperationAction(ISD::MULHS, MVT::i64, Legal);
317     setOperationAction(ISD::MULHU, MVT::i64, Legal);
318 
319     // MIPS32r6 replaces the accumulator-based division/remainder with separate
320     // three register division and remainder instructions.
321     setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
322     setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
323     setOperationAction(ISD::SDIV, MVT::i64, Legal);
324     setOperationAction(ISD::UDIV, MVT::i64, Legal);
325     setOperationAction(ISD::SREM, MVT::i64, Legal);
326     setOperationAction(ISD::UREM, MVT::i64, Legal);
327 
328     // MIPS64r6 replaces conditional moves with an equivalent that removes the
329     // need for three GPR read ports.
330     setOperationAction(ISD::SETCC, MVT::i64, Legal);
331     setOperationAction(ISD::SELECT, MVT::i64, Legal);
332     setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
333   }
334 
335   computeRegisterProperties(Subtarget.getRegisterInfo());
336 }
337 
338 const MipsTargetLowering *
339 llvm::createMipsSETargetLowering(const MipsTargetMachine &TM,
340                                  const MipsSubtarget &STI) {
341   return new MipsSETargetLowering(TM, STI);
342 }
343 
344 const TargetRegisterClass *
345 MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
346   if (VT == MVT::Untyped)
347     return Subtarget.hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
348 
349   return TargetLowering::getRepRegClassFor(VT);
350 }
351 
352 // Enable MSA support for the given integer type and Register class.
353 void MipsSETargetLowering::
354 addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
355   addRegisterClass(Ty, RC);
356 
357   // Expand all builtin opcodes.
358   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
359     setOperationAction(Opc, Ty, Expand);
360 
361   setOperationAction(ISD::BITCAST, Ty, Legal);
362   setOperationAction(ISD::LOAD, Ty, Legal);
363   setOperationAction(ISD::STORE, Ty, Legal);
364   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
365   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
366   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
367   setOperationAction(ISD::UNDEF, Ty, Legal);
368 
369   setOperationAction(ISD::ADD, Ty, Legal);
370   setOperationAction(ISD::AND, Ty, Legal);
371   setOperationAction(ISD::CTLZ, Ty, Legal);
372   setOperationAction(ISD::CTPOP, Ty, Legal);
373   setOperationAction(ISD::MUL, Ty, Legal);
374   setOperationAction(ISD::OR, Ty, Legal);
375   setOperationAction(ISD::SDIV, Ty, Legal);
376   setOperationAction(ISD::SREM, Ty, Legal);
377   setOperationAction(ISD::SHL, Ty, Legal);
378   setOperationAction(ISD::SRA, Ty, Legal);
379   setOperationAction(ISD::SRL, Ty, Legal);
380   setOperationAction(ISD::SUB, Ty, Legal);
381   setOperationAction(ISD::SMAX, Ty, Legal);
382   setOperationAction(ISD::SMIN, Ty, Legal);
383   setOperationAction(ISD::UDIV, Ty, Legal);
384   setOperationAction(ISD::UREM, Ty, Legal);
385   setOperationAction(ISD::UMAX, Ty, Legal);
386   setOperationAction(ISD::UMIN, Ty, Legal);
387   setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
388   setOperationAction(ISD::VSELECT, Ty, Legal);
389   setOperationAction(ISD::XOR, Ty, Legal);
390 
391   if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
392     setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
393     setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
394     setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
395     setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
396   }
397 
398   setOperationAction(ISD::SETCC, Ty, Legal);
399   setCondCodeAction(ISD::SETNE, Ty, Expand);
400   setCondCodeAction(ISD::SETGE, Ty, Expand);
401   setCondCodeAction(ISD::SETGT, Ty, Expand);
402   setCondCodeAction(ISD::SETUGE, Ty, Expand);
403   setCondCodeAction(ISD::SETUGT, Ty, Expand);
404 }
405 
406 // Enable MSA support for the given floating-point type and Register class.
407 void MipsSETargetLowering::
408 addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
409   addRegisterClass(Ty, RC);
410 
411   // Expand all builtin opcodes.
412   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
413     setOperationAction(Opc, Ty, Expand);
414 
415   setOperationAction(ISD::LOAD, Ty, Legal);
416   setOperationAction(ISD::STORE, Ty, Legal);
417   setOperationAction(ISD::BITCAST, Ty, Legal);
418   setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
419   setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
420   setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
421 
422   if (Ty != MVT::v8f16) {
423     setOperationAction(ISD::FABS,  Ty, Legal);
424     setOperationAction(ISD::FADD,  Ty, Legal);
425     setOperationAction(ISD::FDIV,  Ty, Legal);
426     setOperationAction(ISD::FEXP2, Ty, Legal);
427     setOperationAction(ISD::FLOG2, Ty, Legal);
428     setOperationAction(ISD::FMA,   Ty, Legal);
429     setOperationAction(ISD::FMUL,  Ty, Legal);
430     setOperationAction(ISD::FRINT, Ty, Legal);
431     setOperationAction(ISD::FSQRT, Ty, Legal);
432     setOperationAction(ISD::FSUB,  Ty, Legal);
433     setOperationAction(ISD::VSELECT, Ty, Legal);
434 
435     setOperationAction(ISD::SETCC, Ty, Legal);
436     setCondCodeAction(ISD::SETOGE, Ty, Expand);
437     setCondCodeAction(ISD::SETOGT, Ty, Expand);
438     setCondCodeAction(ISD::SETUGE, Ty, Expand);
439     setCondCodeAction(ISD::SETUGT, Ty, Expand);
440     setCondCodeAction(ISD::SETGE,  Ty, Expand);
441     setCondCodeAction(ISD::SETGT,  Ty, Expand);
442   }
443 }
444 
445 SDValue MipsSETargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
446   if(!Subtarget.hasMips32r6())
447     return MipsTargetLowering::LowerOperation(Op, DAG);
448 
449   EVT ResTy = Op->getValueType(0);
450   SDLoc DL(Op);
451 
452   // Although MTC1_D64 takes an i32 and writes an f64, the upper 32 bits of the
453   // floating point register are undefined. Not really an issue as sel.d, which
454   // is produced from an FSELECT node, only looks at bit 0.
455   SDValue Tmp = DAG.getNode(MipsISD::MTC1_D64, DL, MVT::f64, Op->getOperand(0));
456   return DAG.getNode(MipsISD::FSELECT, DL, ResTy, Tmp, Op->getOperand(1),
457                      Op->getOperand(2));
458 }
459 
460 bool MipsSETargetLowering::allowsMisalignedMemoryAccesses(
461     EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const {
462   MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
463 
464   if (Subtarget.systemSupportsUnalignedAccess()) {
465     // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
466     // implementation defined whether this is handled by hardware, software, or
467     // a hybrid of the two but it's expected that most implementations will
468     // handle the majority of cases in hardware.
469     if (Fast)
470       *Fast = 1;
471     return true;
472   } else if (Subtarget.hasMips32r6()) {
473     return false;
474   }
475 
476   switch (SVT) {
477   case MVT::i64:
478   case MVT::i32:
479     if (Fast)
480       *Fast = 1;
481     return true;
482   default:
483     return false;
484   }
485 }
486 
487 SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
488                                              SelectionDAG &DAG) const {
489   switch(Op.getOpcode()) {
490   case ISD::LOAD:  return lowerLOAD(Op, DAG);
491   case ISD::STORE: return lowerSTORE(Op, DAG);
492   case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
493   case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
494   case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
495   case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
496   case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
497   case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
498   case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
499                                           DAG);
500   case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
501   case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
502   case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
503   case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
504   case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
505   case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
506   case ISD::SELECT:             return lowerSELECT(Op, DAG);
507   case ISD::BITCAST:            return lowerBITCAST(Op, DAG);
508   }
509 
510   return MipsTargetLowering::LowerOperation(Op, DAG);
511 }
512 
513 // Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
514 //
515 // Performs the following transformations:
516 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
517 //   sign/zero-extension is completely overwritten by the new one performed by
518 //   the ISD::AND.
519 // - Removes redundant zero extensions performed by an ISD::AND.
520 static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
521                                  TargetLowering::DAGCombinerInfo &DCI,
522                                  const MipsSubtarget &Subtarget) {
523   if (!Subtarget.hasMSA())
524     return SDValue();
525 
526   SDValue Op0 = N->getOperand(0);
527   SDValue Op1 = N->getOperand(1);
528   unsigned Op0Opcode = Op0->getOpcode();
529 
530   // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
531   // where $d + 1 == 2^n and n == 32
532   // or    $d + 1 == 2^n and n <= 32 and ZExt
533   // -> (MipsVExtractZExt $a, $b, $c)
534   if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
535       Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
536     ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
537 
538     if (!Mask)
539       return SDValue();
540 
541     int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
542 
543     if (Log2IfPositive <= 0)
544       return SDValue(); // Mask+1 is not a power of 2
545 
546     SDValue Op0Op2 = Op0->getOperand(2);
547     EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
548     unsigned ExtendTySize = ExtendTy.getSizeInBits();
549     unsigned Log2 = Log2IfPositive;
550 
551     if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
552         Log2 == ExtendTySize) {
553       SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
554       return DAG.getNode(MipsISD::VEXTRACT_ZEXT_ELT, SDLoc(Op0),
555                          Op0->getVTList(),
556                          ArrayRef(Ops, Op0->getNumOperands()));
557     }
558   }
559 
560   return SDValue();
561 }
562 
563 // Determine if the specified node is a constant vector splat.
564 //
565 // Returns true and sets Imm if:
566 // * N is a ISD::BUILD_VECTOR representing a constant splat
567 //
568 // This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
569 // differences are that it assumes the MSA has already been checked and the
570 // arbitrary requirement for a maximum of 32-bit integers isn't applied (and
571 // must not be in order for binsri.d to be selectable).
572 static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
573   BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
574 
575   if (!Node)
576     return false;
577 
578   APInt SplatValue, SplatUndef;
579   unsigned SplatBitSize;
580   bool HasAnyUndefs;
581 
582   if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
583                              8, !IsLittleEndian))
584     return false;
585 
586   Imm = SplatValue;
587 
588   return true;
589 }
590 
591 // Test whether the given node is an all-ones build_vector.
592 static bool isVectorAllOnes(SDValue N) {
593   // Look through bitcasts. Endianness doesn't matter because we are looking
594   // for an all-ones value.
595   if (N->getOpcode() == ISD::BITCAST)
596     N = N->getOperand(0);
597 
598   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
599 
600   if (!BVN)
601     return false;
602 
603   APInt SplatValue, SplatUndef;
604   unsigned SplatBitSize;
605   bool HasAnyUndefs;
606 
607   // Endianness doesn't matter in this context because we are looking for
608   // an all-ones value.
609   if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
610     return SplatValue.isAllOnes();
611 
612   return false;
613 }
614 
615 // Test whether N is the bitwise inverse of OfNode.
616 static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
617   if (N->getOpcode() != ISD::XOR)
618     return false;
619 
620   if (isVectorAllOnes(N->getOperand(0)))
621     return N->getOperand(1) == OfNode;
622 
623   if (isVectorAllOnes(N->getOperand(1)))
624     return N->getOperand(0) == OfNode;
625 
626   return false;
627 }
628 
629 // Perform combines where ISD::OR is the root node.
630 //
631 // Performs the following transformations:
632 // - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
633 //   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
634 //   vector type.
635 static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
636                                 TargetLowering::DAGCombinerInfo &DCI,
637                                 const MipsSubtarget &Subtarget) {
638   if (!Subtarget.hasMSA())
639     return SDValue();
640 
641   EVT Ty = N->getValueType(0);
642 
643   if (!Ty.is128BitVector())
644     return SDValue();
645 
646   SDValue Op0 = N->getOperand(0);
647   SDValue Op1 = N->getOperand(1);
648 
649   if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
650     SDValue Op0Op0 = Op0->getOperand(0);
651     SDValue Op0Op1 = Op0->getOperand(1);
652     SDValue Op1Op0 = Op1->getOperand(0);
653     SDValue Op1Op1 = Op1->getOperand(1);
654     bool IsLittleEndian = !Subtarget.isLittle();
655 
656     SDValue IfSet, IfClr, Cond;
657     bool IsConstantMask = false;
658     APInt Mask, InvMask;
659 
660     // If Op0Op0 is an appropriate mask, try to find it's inverse in either
661     // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
662     // looking.
663     // IfClr will be set if we find a valid match.
664     if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
665       Cond = Op0Op0;
666       IfSet = Op0Op1;
667 
668       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
669           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
670         IfClr = Op1Op1;
671       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
672                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
673         IfClr = Op1Op0;
674 
675       IsConstantMask = true;
676     }
677 
678     // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
679     // thing again using this mask.
680     // IfClr will be set if we find a valid match.
681     if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
682       Cond = Op0Op1;
683       IfSet = Op0Op0;
684 
685       if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
686           Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
687         IfClr = Op1Op1;
688       else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
689                Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
690         IfClr = Op1Op0;
691 
692       IsConstantMask = true;
693     }
694 
695     // If IfClr is not yet set, try looking for a non-constant match.
696     // IfClr will be set if we find a valid match amongst the eight
697     // possibilities.
698     if (!IfClr.getNode()) {
699       if (isBitwiseInverse(Op0Op0, Op1Op0)) {
700         Cond = Op1Op0;
701         IfSet = Op1Op1;
702         IfClr = Op0Op1;
703       } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
704         Cond = Op1Op0;
705         IfSet = Op1Op1;
706         IfClr = Op0Op0;
707       } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
708         Cond = Op1Op1;
709         IfSet = Op1Op0;
710         IfClr = Op0Op1;
711       } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
712         Cond = Op1Op1;
713         IfSet = Op1Op0;
714         IfClr = Op0Op0;
715       } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
716         Cond = Op0Op0;
717         IfSet = Op0Op1;
718         IfClr = Op1Op1;
719       } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
720         Cond = Op0Op0;
721         IfSet = Op0Op1;
722         IfClr = Op1Op0;
723       } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
724         Cond = Op0Op1;
725         IfSet = Op0Op0;
726         IfClr = Op1Op1;
727       } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
728         Cond = Op0Op1;
729         IfSet = Op0Op0;
730         IfClr = Op1Op0;
731       }
732     }
733 
734     // At this point, IfClr will be set if we have a valid match.
735     if (!IfClr.getNode())
736       return SDValue();
737 
738     assert(Cond.getNode() && IfSet.getNode());
739 
740     // Fold degenerate cases.
741     if (IsConstantMask) {
742       if (Mask.isAllOnes())
743         return IfSet;
744       else if (Mask == 0)
745         return IfClr;
746     }
747 
748     // Transform the DAG into an equivalent VSELECT.
749     return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
750   }
751 
752   return SDValue();
753 }
754 
755 static bool shouldTransformMulToShiftsAddsSubs(APInt C, EVT VT,
756                                                SelectionDAG &DAG,
757                                                const MipsSubtarget &Subtarget) {
758   // Estimate the number of operations the below transform will turn a
759   // constant multiply into. The number is approximately equal to the minimal
760   // number of powers of two that constant can be broken down to by adding
761   // or subtracting them.
762   //
763   // If we have taken more than 12[1] / 8[2] steps to attempt the
764   // optimization for a native sized value, it is more than likely that this
765   // optimization will make things worse.
766   //
767   // [1] MIPS64 requires 6 instructions at most to materialize any constant,
768   //     multiplication requires at least 4 cycles, but another cycle (or two)
769   //     to retrieve the result from the HI/LO registers.
770   //
771   // [2] For MIPS32, more than 8 steps is expensive as the constant could be
772   //     materialized in 2 instructions, multiplication requires at least 4
773   //     cycles, but another cycle (or two) to retrieve the result from the
774   //     HI/LO registers.
775   //
776   // TODO:
777   // - MaxSteps needs to consider the `VT` of the constant for the current
778   //   target.
779   // - Consider to perform this optimization after type legalization.
780   //   That allows to remove a workaround for types not supported natively.
781   // - Take in account `-Os, -Oz` flags because this optimization
782   //   increases code size.
783   unsigned MaxSteps = Subtarget.isABI_O32() ? 8 : 12;
784 
785   SmallVector<APInt, 16> WorkStack(1, C);
786   unsigned Steps = 0;
787   unsigned BitWidth = C.getBitWidth();
788 
789   while (!WorkStack.empty()) {
790     APInt Val = WorkStack.pop_back_val();
791 
792     if (Val == 0 || Val == 1)
793       continue;
794 
795     if (Steps >= MaxSteps)
796       return false;
797 
798     if (Val.isPowerOf2()) {
799       ++Steps;
800       continue;
801     }
802 
803     APInt Floor = APInt(BitWidth, 1) << Val.logBase2();
804     APInt Ceil = Val.isNegative() ? APInt(BitWidth, 0)
805                                   : APInt(BitWidth, 1) << C.ceilLogBase2();
806     if ((Val - Floor).ule(Ceil - Val)) {
807       WorkStack.push_back(Floor);
808       WorkStack.push_back(Val - Floor);
809     } else {
810       WorkStack.push_back(Ceil);
811       WorkStack.push_back(Ceil - Val);
812     }
813 
814     ++Steps;
815   }
816 
817   // If the value being multiplied is not supported natively, we have to pay
818   // an additional legalization cost, conservatively assume an increase in the
819   // cost of 3 instructions per step. This values for this heuristic were
820   // determined experimentally.
821   unsigned RegisterSize = DAG.getTargetLoweringInfo()
822                               .getRegisterType(*DAG.getContext(), VT)
823                               .getSizeInBits();
824   Steps *= (VT.getSizeInBits() != RegisterSize) * 3;
825   if (Steps > 27)
826     return false;
827 
828   return true;
829 }
830 
831 static SDValue genConstMult(SDValue X, APInt C, const SDLoc &DL, EVT VT,
832                             EVT ShiftTy, SelectionDAG &DAG) {
833   // Return 0.
834   if (C == 0)
835     return DAG.getConstant(0, DL, VT);
836 
837   // Return x.
838   if (C == 1)
839     return X;
840 
841   // If c is power of 2, return (shl x, log2(c)).
842   if (C.isPowerOf2())
843     return DAG.getNode(ISD::SHL, DL, VT, X,
844                        DAG.getConstant(C.logBase2(), DL, ShiftTy));
845 
846   unsigned BitWidth = C.getBitWidth();
847   APInt Floor = APInt(BitWidth, 1) << C.logBase2();
848   APInt Ceil = C.isNegative() ? APInt(BitWidth, 0) :
849                                 APInt(BitWidth, 1) << C.ceilLogBase2();
850 
851   // If |c - floor_c| <= |c - ceil_c|,
852   // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
853   // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
854   if ((C - Floor).ule(Ceil - C)) {
855     SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
856     SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
857     return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
858   }
859 
860   // If |c - floor_c| > |c - ceil_c|,
861   // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
862   SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
863   SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
864   return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
865 }
866 
867 static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
868                                  const TargetLowering::DAGCombinerInfo &DCI,
869                                  const MipsSETargetLowering *TL,
870                                  const MipsSubtarget &Subtarget) {
871   EVT VT = N->getValueType(0);
872 
873   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
874     if (!VT.isVector() && shouldTransformMulToShiftsAddsSubs(
875                               C->getAPIntValue(), VT, DAG, Subtarget))
876       return genConstMult(N->getOperand(0), C->getAPIntValue(), SDLoc(N), VT,
877                           TL->getScalarShiftAmountTy(DAG.getDataLayout(), VT),
878                           DAG);
879 
880   return SDValue(N, 0);
881 }
882 
883 static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
884                                       SelectionDAG &DAG,
885                                       const MipsSubtarget &Subtarget) {
886   // See if this is a vector splat immediate node.
887   APInt SplatValue, SplatUndef;
888   unsigned SplatBitSize;
889   bool HasAnyUndefs;
890   unsigned EltSize = Ty.getScalarSizeInBits();
891   BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
892 
893   if (!Subtarget.hasDSP())
894     return SDValue();
895 
896   if (!BV ||
897       !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
898                            EltSize, !Subtarget.isLittle()) ||
899       (SplatBitSize != EltSize) ||
900       (SplatValue.getZExtValue() >= EltSize))
901     return SDValue();
902 
903   SDLoc DL(N);
904   return DAG.getNode(Opc, DL, Ty, N->getOperand(0),
905                      DAG.getConstant(SplatValue.getZExtValue(), DL, MVT::i32));
906 }
907 
908 static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
909                                  TargetLowering::DAGCombinerInfo &DCI,
910                                  const MipsSubtarget &Subtarget) {
911   EVT Ty = N->getValueType(0);
912 
913   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
914     return SDValue();
915 
916   return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
917 }
918 
919 // Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
920 // constant splats into MipsISD::SHRA_DSP for DSPr2.
921 //
922 // Performs the following transformations:
923 // - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
924 //   sign/zero-extension is completely overwritten by the new one performed by
925 //   the ISD::SRA and ISD::SHL nodes.
926 // - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
927 //   sequence.
928 //
929 // See performDSPShiftCombine for more information about the transformation
930 // used for DSPr2.
931 static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
932                                  TargetLowering::DAGCombinerInfo &DCI,
933                                  const MipsSubtarget &Subtarget) {
934   EVT Ty = N->getValueType(0);
935 
936   if (Subtarget.hasMSA()) {
937     SDValue Op0 = N->getOperand(0);
938     SDValue Op1 = N->getOperand(1);
939 
940     // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
941     // where $d + sizeof($c) == 32
942     // or    $d + sizeof($c) <= 32 and SExt
943     // -> (MipsVExtractSExt $a, $b, $c)
944     if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
945       SDValue Op0Op0 = Op0->getOperand(0);
946       ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
947 
948       if (!ShAmount)
949         return SDValue();
950 
951       if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
952           Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
953         return SDValue();
954 
955       EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
956       unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
957 
958       if (TotalBits == 32 ||
959           (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
960            TotalBits <= 32)) {
961         SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
962                           Op0Op0->getOperand(2) };
963         return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, SDLoc(Op0Op0),
964                            Op0Op0->getVTList(),
965                            ArrayRef(Ops, Op0Op0->getNumOperands()));
966       }
967     }
968   }
969 
970   if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget.hasDSPR2()))
971     return SDValue();
972 
973   return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
974 }
975 
976 
977 static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
978                                  TargetLowering::DAGCombinerInfo &DCI,
979                                  const MipsSubtarget &Subtarget) {
980   EVT Ty = N->getValueType(0);
981 
982   if (((Ty != MVT::v2i16) || !Subtarget.hasDSPR2()) && (Ty != MVT::v4i8))
983     return SDValue();
984 
985   return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
986 }
987 
988 static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
989   bool IsV216 = (Ty == MVT::v2i16);
990 
991   switch (CC) {
992   case ISD::SETEQ:
993   case ISD::SETNE:  return true;
994   case ISD::SETLT:
995   case ISD::SETLE:
996   case ISD::SETGT:
997   case ISD::SETGE:  return IsV216;
998   case ISD::SETULT:
999   case ISD::SETULE:
1000   case ISD::SETUGT:
1001   case ISD::SETUGE: return !IsV216;
1002   default:          return false;
1003   }
1004 }
1005 
1006 static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
1007   EVT Ty = N->getValueType(0);
1008 
1009   if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
1010     return SDValue();
1011 
1012   if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
1013     return SDValue();
1014 
1015   return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
1016                      N->getOperand(1), N->getOperand(2));
1017 }
1018 
1019 static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
1020   EVT Ty = N->getValueType(0);
1021 
1022   if (Ty == MVT::v2i16 || Ty == MVT::v4i8) {
1023     SDValue SetCC = N->getOperand(0);
1024 
1025     if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
1026       return SDValue();
1027 
1028     return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
1029                        SetCC.getOperand(0), SetCC.getOperand(1),
1030                        N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
1031   }
1032 
1033   return SDValue();
1034 }
1035 
1036 static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
1037                                  const MipsSubtarget &Subtarget) {
1038   EVT Ty = N->getValueType(0);
1039 
1040   if (Subtarget.hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
1041     // Try the following combines:
1042     //   (xor (or $a, $b), (build_vector allones))
1043     //   (xor (or $a, $b), (bitcast (build_vector allones)))
1044     SDValue Op0 = N->getOperand(0);
1045     SDValue Op1 = N->getOperand(1);
1046     SDValue NotOp;
1047 
1048     if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1049       NotOp = Op1;
1050     else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1051       NotOp = Op0;
1052     else
1053       return SDValue();
1054 
1055     if (NotOp->getOpcode() == ISD::OR)
1056       return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1057                          NotOp->getOperand(1));
1058   }
1059 
1060   return SDValue();
1061 }
1062 
1063 SDValue
1064 MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1065   SelectionDAG &DAG = DCI.DAG;
1066   SDValue Val;
1067 
1068   switch (N->getOpcode()) {
1069   case ISD::AND:
1070     Val = performANDCombine(N, DAG, DCI, Subtarget);
1071     break;
1072   case ISD::OR:
1073     Val = performORCombine(N, DAG, DCI, Subtarget);
1074     break;
1075   case ISD::MUL:
1076     return performMULCombine(N, DAG, DCI, this, Subtarget);
1077   case ISD::SHL:
1078     Val = performSHLCombine(N, DAG, DCI, Subtarget);
1079     break;
1080   case ISD::SRA:
1081     return performSRACombine(N, DAG, DCI, Subtarget);
1082   case ISD::SRL:
1083     return performSRLCombine(N, DAG, DCI, Subtarget);
1084   case ISD::VSELECT:
1085     return performVSELECTCombine(N, DAG);
1086   case ISD::XOR:
1087     Val = performXORCombine(N, DAG, Subtarget);
1088     break;
1089   case ISD::SETCC:
1090     Val = performSETCCCombine(N, DAG);
1091     break;
1092   }
1093 
1094   if (Val.getNode()) {
1095     LLVM_DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1096                N->printrWithDepth(dbgs(), &DAG); dbgs() << "\n=> \n";
1097                Val.getNode()->printrWithDepth(dbgs(), &DAG); dbgs() << "\n");
1098     return Val;
1099   }
1100 
1101   return MipsTargetLowering::PerformDAGCombine(N, DCI);
1102 }
1103 
1104 MachineBasicBlock *
1105 MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1106                                                   MachineBasicBlock *BB) const {
1107   switch (MI.getOpcode()) {
1108   default:
1109     return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1110   case Mips::BPOSGE32_PSEUDO:
1111     return emitBPOSGE32(MI, BB);
1112   case Mips::SNZ_B_PSEUDO:
1113     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1114   case Mips::SNZ_H_PSEUDO:
1115     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1116   case Mips::SNZ_W_PSEUDO:
1117     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1118   case Mips::SNZ_D_PSEUDO:
1119     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1120   case Mips::SNZ_V_PSEUDO:
1121     return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1122   case Mips::SZ_B_PSEUDO:
1123     return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1124   case Mips::SZ_H_PSEUDO:
1125     return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1126   case Mips::SZ_W_PSEUDO:
1127     return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1128   case Mips::SZ_D_PSEUDO:
1129     return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1130   case Mips::SZ_V_PSEUDO:
1131     return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1132   case Mips::COPY_FW_PSEUDO:
1133     return emitCOPY_FW(MI, BB);
1134   case Mips::COPY_FD_PSEUDO:
1135     return emitCOPY_FD(MI, BB);
1136   case Mips::INSERT_FW_PSEUDO:
1137     return emitINSERT_FW(MI, BB);
1138   case Mips::INSERT_FD_PSEUDO:
1139     return emitINSERT_FD(MI, BB);
1140   case Mips::INSERT_B_VIDX_PSEUDO:
1141   case Mips::INSERT_B_VIDX64_PSEUDO:
1142     return emitINSERT_DF_VIDX(MI, BB, 1, false);
1143   case Mips::INSERT_H_VIDX_PSEUDO:
1144   case Mips::INSERT_H_VIDX64_PSEUDO:
1145     return emitINSERT_DF_VIDX(MI, BB, 2, false);
1146   case Mips::INSERT_W_VIDX_PSEUDO:
1147   case Mips::INSERT_W_VIDX64_PSEUDO:
1148     return emitINSERT_DF_VIDX(MI, BB, 4, false);
1149   case Mips::INSERT_D_VIDX_PSEUDO:
1150   case Mips::INSERT_D_VIDX64_PSEUDO:
1151     return emitINSERT_DF_VIDX(MI, BB, 8, false);
1152   case Mips::INSERT_FW_VIDX_PSEUDO:
1153   case Mips::INSERT_FW_VIDX64_PSEUDO:
1154     return emitINSERT_DF_VIDX(MI, BB, 4, true);
1155   case Mips::INSERT_FD_VIDX_PSEUDO:
1156   case Mips::INSERT_FD_VIDX64_PSEUDO:
1157     return emitINSERT_DF_VIDX(MI, BB, 8, true);
1158   case Mips::FILL_FW_PSEUDO:
1159     return emitFILL_FW(MI, BB);
1160   case Mips::FILL_FD_PSEUDO:
1161     return emitFILL_FD(MI, BB);
1162   case Mips::FEXP2_W_1_PSEUDO:
1163     return emitFEXP2_W_1(MI, BB);
1164   case Mips::FEXP2_D_1_PSEUDO:
1165     return emitFEXP2_D_1(MI, BB);
1166   case Mips::ST_F16:
1167     return emitST_F16_PSEUDO(MI, BB);
1168   case Mips::LD_F16:
1169     return emitLD_F16_PSEUDO(MI, BB);
1170   case Mips::MSA_FP_EXTEND_W_PSEUDO:
1171     return emitFPEXTEND_PSEUDO(MI, BB, false);
1172   case Mips::MSA_FP_ROUND_W_PSEUDO:
1173     return emitFPROUND_PSEUDO(MI, BB, false);
1174   case Mips::MSA_FP_EXTEND_D_PSEUDO:
1175     return emitFPEXTEND_PSEUDO(MI, BB, true);
1176   case Mips::MSA_FP_ROUND_D_PSEUDO:
1177     return emitFPROUND_PSEUDO(MI, BB, true);
1178   }
1179 }
1180 
1181 bool MipsSETargetLowering::isEligibleForTailCallOptimization(
1182     const CCState &CCInfo, unsigned NextStackOffset,
1183     const MipsFunctionInfo &FI) const {
1184   if (!UseMipsTailCalls)
1185     return false;
1186 
1187   // Exception has to be cleared with eret.
1188   if (FI.isISR())
1189     return false;
1190 
1191   // Return false if either the callee or caller has a byval argument.
1192   if (CCInfo.getInRegsParamsCount() > 0 || FI.hasByvalArg())
1193     return false;
1194 
1195   // Return true if the callee's argument area is no larger than the
1196   // caller's.
1197   return NextStackOffset <= FI.getIncomingArgSize();
1198 }
1199 
1200 void MipsSETargetLowering::
1201 getOpndList(SmallVectorImpl<SDValue> &Ops,
1202             std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
1203             bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1204             bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
1205             SDValue Chain) const {
1206   Ops.push_back(Callee);
1207   MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1208                                   InternalLinkage, IsCallReloc, CLI, Callee,
1209                                   Chain);
1210 }
1211 
1212 SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1213   LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1214 
1215   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1216     return MipsTargetLowering::lowerLOAD(Op, DAG);
1217 
1218   // Replace a double precision load with two i32 loads and a buildpair64.
1219   SDLoc DL(Op);
1220   SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1221   EVT PtrVT = Ptr.getValueType();
1222 
1223   // i32 load from lower address.
1224   SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr, MachinePointerInfo(),
1225                            Nd.getAlign(), Nd.getMemOperand()->getFlags());
1226 
1227   // i32 load from higher address.
1228   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1229   SDValue Hi = DAG.getLoad(
1230       MVT::i32, DL, Lo.getValue(1), Ptr, MachinePointerInfo(),
1231       commonAlignment(Nd.getAlign(), 4), Nd.getMemOperand()->getFlags());
1232 
1233   if (!Subtarget.isLittle())
1234     std::swap(Lo, Hi);
1235 
1236   SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1237   SDValue Ops[2] = {BP, Hi.getValue(1)};
1238   return DAG.getMergeValues(Ops, DL);
1239 }
1240 
1241 SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1242   StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1243 
1244   if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1245     return MipsTargetLowering::lowerSTORE(Op, DAG);
1246 
1247   // Replace a double precision store with two extractelement64s and i32 stores.
1248   SDLoc DL(Op);
1249   SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1250   EVT PtrVT = Ptr.getValueType();
1251   SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1252                            Val, DAG.getConstant(0, DL, MVT::i32));
1253   SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1254                            Val, DAG.getConstant(1, DL, MVT::i32));
1255 
1256   if (!Subtarget.isLittle())
1257     std::swap(Lo, Hi);
1258 
1259   // i32 store to lower address.
1260   Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(), Nd.getAlign(),
1261                        Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1262 
1263   // i32 store to higher address.
1264   Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, DL, PtrVT));
1265   return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1266                       commonAlignment(Nd.getAlign(), 4),
1267                       Nd.getMemOperand()->getFlags(), Nd.getAAInfo());
1268 }
1269 
1270 SDValue MipsSETargetLowering::lowerBITCAST(SDValue Op,
1271                                            SelectionDAG &DAG) const {
1272   SDLoc DL(Op);
1273   MVT Src = Op.getOperand(0).getValueType().getSimpleVT();
1274   MVT Dest = Op.getValueType().getSimpleVT();
1275 
1276   // Bitcast i64 to double.
1277   if (Src == MVT::i64 && Dest == MVT::f64) {
1278     SDValue Lo, Hi;
1279     std::tie(Lo, Hi) =
1280         DAG.SplitScalar(Op.getOperand(0), DL, MVT::i32, MVT::i32);
1281     return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1282   }
1283 
1284   // Bitcast double to i64.
1285   if (Src == MVT::f64 && Dest == MVT::i64) {
1286     // Skip lower bitcast when operand0 has converted float results to integer
1287     // which was done by function SoftenFloatResult.
1288     if (getTypeAction(*DAG.getContext(), Op.getOperand(0).getValueType()) ==
1289         TargetLowering::TypeSoftenFloat)
1290       return SDValue();
1291     SDValue Lo =
1292         DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1293                     DAG.getConstant(0, DL, MVT::i32));
1294     SDValue Hi =
1295         DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
1296                     DAG.getConstant(1, DL, MVT::i32));
1297     return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1298   }
1299 
1300   // Skip other cases of bitcast and use default lowering.
1301   return SDValue();
1302 }
1303 
1304 SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1305                                           bool HasLo, bool HasHi,
1306                                           SelectionDAG &DAG) const {
1307   // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1308   assert(!Subtarget.hasMips32r6());
1309 
1310   EVT Ty = Op.getOperand(0).getValueType();
1311   SDLoc DL(Op);
1312   SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1313                              Op.getOperand(0), Op.getOperand(1));
1314   SDValue Lo, Hi;
1315 
1316   if (HasLo)
1317     Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1318   if (HasHi)
1319     Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1320 
1321   if (!HasLo || !HasHi)
1322     return HasLo ? Lo : Hi;
1323 
1324   SDValue Vals[] = { Lo, Hi };
1325   return DAG.getMergeValues(Vals, DL);
1326 }
1327 
1328 static SDValue initAccumulator(SDValue In, const SDLoc &DL, SelectionDAG &DAG) {
1329   SDValue InLo, InHi;
1330   std::tie(InLo, InHi) = DAG.SplitScalar(In, DL, MVT::i32, MVT::i32);
1331   return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1332 }
1333 
1334 static SDValue extractLOHI(SDValue Op, const SDLoc &DL, SelectionDAG &DAG) {
1335   SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1336   SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1337   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1338 }
1339 
1340 // This function expands mips intrinsic nodes which have 64-bit input operands
1341 // or output values.
1342 //
1343 // out64 = intrinsic-node in64
1344 // =>
1345 // lo = copy (extract-element (in64, 0))
1346 // hi = copy (extract-element (in64, 1))
1347 // mips-specific-node
1348 // v0 = copy lo
1349 // v1 = copy hi
1350 // out64 = merge-values (v0, v1)
1351 //
1352 static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1353   SDLoc DL(Op);
1354   bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1355   SmallVector<SDValue, 3> Ops;
1356   unsigned OpNo = 0;
1357 
1358   // See if Op has a chain input.
1359   if (HasChainIn)
1360     Ops.push_back(Op->getOperand(OpNo++));
1361 
1362   // The next operand is the intrinsic opcode.
1363   assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1364 
1365   // See if the next operand has type i64.
1366   SDValue Opnd = Op->getOperand(++OpNo), In64;
1367 
1368   if (Opnd.getValueType() == MVT::i64)
1369     In64 = initAccumulator(Opnd, DL, DAG);
1370   else
1371     Ops.push_back(Opnd);
1372 
1373   // Push the remaining operands.
1374   for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1375     Ops.push_back(Op->getOperand(OpNo));
1376 
1377   // Add In64 to the end of the list.
1378   if (In64.getNode())
1379     Ops.push_back(In64);
1380 
1381   // Scan output.
1382   SmallVector<EVT, 2> ResTys;
1383 
1384   for (EVT Ty : Op->values())
1385     ResTys.push_back((Ty == MVT::i64) ? MVT::Untyped : Ty);
1386 
1387   // Create node.
1388   SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1389   SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1390 
1391   if (!HasChainIn)
1392     return Out;
1393 
1394   assert(Val->getValueType(1) == MVT::Other);
1395   SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1396   return DAG.getMergeValues(Vals, DL);
1397 }
1398 
1399 // Lower an MSA copy intrinsic into the specified SelectionDAG node
1400 static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1401   SDLoc DL(Op);
1402   SDValue Vec = Op->getOperand(1);
1403   SDValue Idx = Op->getOperand(2);
1404   EVT ResTy = Op->getValueType(0);
1405   EVT EltTy = Vec->getValueType(0).getVectorElementType();
1406 
1407   SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1408                                DAG.getValueType(EltTy));
1409 
1410   return Result;
1411 }
1412 
1413 static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1414   EVT ResVecTy = Op->getValueType(0);
1415   EVT ViaVecTy = ResVecTy;
1416   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1417   SDLoc DL(Op);
1418 
1419   // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1420   // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1421   // lanes.
1422   SDValue LaneA = Op->getOperand(OpNr);
1423   SDValue LaneB;
1424 
1425   if (ResVecTy == MVT::v2i64) {
1426     // In case of the index being passed as an immediate value, set the upper
1427     // lane to 0 so that the splati.d instruction can be matched.
1428     if (isa<ConstantSDNode>(LaneA))
1429       LaneB = DAG.getConstant(0, DL, MVT::i32);
1430     // Having the index passed in a register, set the upper lane to the same
1431     // value as the lower - this results in the BUILD_VECTOR node not being
1432     // expanded through stack. This way we are able to pattern match the set of
1433     // nodes created here to splat.d.
1434     else
1435       LaneB = LaneA;
1436     ViaVecTy = MVT::v4i32;
1437     if(BigEndian)
1438       std::swap(LaneA, LaneB);
1439   } else
1440     LaneB = LaneA;
1441 
1442   SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1443                       LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1444 
1445   SDValue Result = DAG.getBuildVector(
1446       ViaVecTy, DL, ArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1447 
1448   if (ViaVecTy != ResVecTy) {
1449     SDValue One = DAG.getConstant(1, DL, ViaVecTy);
1450     Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy,
1451                          DAG.getNode(ISD::AND, DL, ViaVecTy, Result, One));
1452   }
1453 
1454   return Result;
1455 }
1456 
1457 static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG,
1458                                 bool IsSigned = false) {
1459   auto *CImm = cast<ConstantSDNode>(Op->getOperand(ImmOp));
1460   return DAG.getConstant(
1461       APInt(Op->getValueType(0).getScalarType().getSizeInBits(),
1462             IsSigned ? CImm->getSExtValue() : CImm->getZExtValue(), IsSigned),
1463       SDLoc(Op), Op->getValueType(0));
1464 }
1465 
1466 static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1467                                    bool BigEndian, SelectionDAG &DAG) {
1468   EVT ViaVecTy = VecTy;
1469   SDValue SplatValueA = SplatValue;
1470   SDValue SplatValueB = SplatValue;
1471   SDLoc DL(SplatValue);
1472 
1473   if (VecTy == MVT::v2i64) {
1474     // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1475     ViaVecTy = MVT::v4i32;
1476 
1477     SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1478     SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1479                               DAG.getConstant(32, DL, MVT::i32));
1480     SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1481   }
1482 
1483   // We currently hold the parts in little endian order. Swap them if
1484   // necessary.
1485   if (BigEndian)
1486     std::swap(SplatValueA, SplatValueB);
1487 
1488   SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1489                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1490                       SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1491                       SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1492 
1493   SDValue Result = DAG.getBuildVector(
1494       ViaVecTy, DL, ArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1495 
1496   if (VecTy != ViaVecTy)
1497     Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1498 
1499   return Result;
1500 }
1501 
1502 static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1503                                         unsigned Opc, SDValue Imm,
1504                                         bool BigEndian) {
1505   EVT VecTy = Op->getValueType(0);
1506   SDValue Exp2Imm;
1507   SDLoc DL(Op);
1508 
1509   // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1510   // here for now.
1511   if (VecTy == MVT::v2i64) {
1512     if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1513       APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1514 
1515       SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), DL,
1516                                            MVT::i32);
1517       SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), DL, MVT::i32);
1518 
1519       if (BigEndian)
1520         std::swap(BitImmLoOp, BitImmHiOp);
1521 
1522       Exp2Imm = DAG.getNode(
1523           ISD::BITCAST, DL, MVT::v2i64,
1524           DAG.getBuildVector(MVT::v4i32, DL,
1525                              {BitImmLoOp, BitImmHiOp, BitImmLoOp, BitImmHiOp}));
1526     }
1527   }
1528 
1529   if (!Exp2Imm.getNode()) {
1530     // We couldnt constant fold, do a vector shift instead
1531 
1532     // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1533     // only values 0-63 are valid.
1534     if (VecTy == MVT::v2i64)
1535       Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1536 
1537     Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1538 
1539     Exp2Imm = DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, DL, VecTy),
1540                           Exp2Imm);
1541   }
1542 
1543   return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1544 }
1545 
1546 static SDValue truncateVecElts(SDValue Op, SelectionDAG &DAG) {
1547   SDLoc DL(Op);
1548   EVT ResTy = Op->getValueType(0);
1549   SDValue Vec = Op->getOperand(2);
1550   bool BigEndian = !DAG.getSubtarget().getTargetTriple().isLittleEndian();
1551   MVT ResEltTy = ResTy == MVT::v2i64 ? MVT::i64 : MVT::i32;
1552   SDValue ConstValue = DAG.getConstant(Vec.getScalarValueSizeInBits() - 1,
1553                                        DL, ResEltTy);
1554   SDValue SplatVec = getBuildVectorSplat(ResTy, ConstValue, BigEndian, DAG);
1555 
1556   return DAG.getNode(ISD::AND, DL, ResTy, Vec, SplatVec);
1557 }
1558 
1559 static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1560   EVT ResTy = Op->getValueType(0);
1561   SDLoc DL(Op);
1562   SDValue One = DAG.getConstant(1, DL, ResTy);
1563   SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, truncateVecElts(Op, DAG));
1564 
1565   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1566                      DAG.getNOT(DL, Bit, ResTy));
1567 }
1568 
1569 static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1570   SDLoc DL(Op);
1571   EVT ResTy = Op->getValueType(0);
1572   APInt BitImm = APInt(ResTy.getScalarSizeInBits(), 1)
1573                  << Op->getConstantOperandAPInt(2);
1574   SDValue BitMask = DAG.getConstant(~BitImm, DL, ResTy);
1575 
1576   return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1577 }
1578 
1579 SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1580                                                       SelectionDAG &DAG) const {
1581   SDLoc DL(Op);
1582   unsigned Intrinsic = Op->getConstantOperandVal(0);
1583   switch (Intrinsic) {
1584   default:
1585     return SDValue();
1586   case Intrinsic::mips_shilo:
1587     return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1588   case Intrinsic::mips_dpau_h_qbl:
1589     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1590   case Intrinsic::mips_dpau_h_qbr:
1591     return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1592   case Intrinsic::mips_dpsu_h_qbl:
1593     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1594   case Intrinsic::mips_dpsu_h_qbr:
1595     return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1596   case Intrinsic::mips_dpa_w_ph:
1597     return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1598   case Intrinsic::mips_dps_w_ph:
1599     return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1600   case Intrinsic::mips_dpax_w_ph:
1601     return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1602   case Intrinsic::mips_dpsx_w_ph:
1603     return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1604   case Intrinsic::mips_mulsa_w_ph:
1605     return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1606   case Intrinsic::mips_mult:
1607     return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1608   case Intrinsic::mips_multu:
1609     return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1610   case Intrinsic::mips_madd:
1611     return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1612   case Intrinsic::mips_maddu:
1613     return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1614   case Intrinsic::mips_msub:
1615     return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1616   case Intrinsic::mips_msubu:
1617     return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1618   case Intrinsic::mips_addv_b:
1619   case Intrinsic::mips_addv_h:
1620   case Intrinsic::mips_addv_w:
1621   case Intrinsic::mips_addv_d:
1622     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1623                        Op->getOperand(2));
1624   case Intrinsic::mips_addvi_b:
1625   case Intrinsic::mips_addvi_h:
1626   case Intrinsic::mips_addvi_w:
1627   case Intrinsic::mips_addvi_d:
1628     return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1629                        lowerMSASplatImm(Op, 2, DAG));
1630   case Intrinsic::mips_and_v:
1631     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1632                        Op->getOperand(2));
1633   case Intrinsic::mips_andi_b:
1634     return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1635                        lowerMSASplatImm(Op, 2, DAG));
1636   case Intrinsic::mips_bclr_b:
1637   case Intrinsic::mips_bclr_h:
1638   case Intrinsic::mips_bclr_w:
1639   case Intrinsic::mips_bclr_d:
1640     return lowerMSABitClear(Op, DAG);
1641   case Intrinsic::mips_bclri_b:
1642   case Intrinsic::mips_bclri_h:
1643   case Intrinsic::mips_bclri_w:
1644   case Intrinsic::mips_bclri_d:
1645     return lowerMSABitClearImm(Op, DAG);
1646   case Intrinsic::mips_binsli_b:
1647   case Intrinsic::mips_binsli_h:
1648   case Intrinsic::mips_binsli_w:
1649   case Intrinsic::mips_binsli_d: {
1650     // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1651     EVT VecTy = Op->getValueType(0);
1652     EVT EltTy = VecTy.getVectorElementType();
1653     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1654       report_fatal_error("Immediate out of range");
1655     APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1656                                        Op->getConstantOperandVal(3) + 1);
1657     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1658                        DAG.getConstant(Mask, DL, VecTy, true),
1659                        Op->getOperand(2), Op->getOperand(1));
1660   }
1661   case Intrinsic::mips_binsri_b:
1662   case Intrinsic::mips_binsri_h:
1663   case Intrinsic::mips_binsri_w:
1664   case Intrinsic::mips_binsri_d: {
1665     // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1666     EVT VecTy = Op->getValueType(0);
1667     EVT EltTy = VecTy.getVectorElementType();
1668     if (Op->getConstantOperandVal(3) >= EltTy.getSizeInBits())
1669       report_fatal_error("Immediate out of range");
1670     APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1671                                       Op->getConstantOperandVal(3) + 1);
1672     return DAG.getNode(ISD::VSELECT, DL, VecTy,
1673                        DAG.getConstant(Mask, DL, VecTy, true),
1674                        Op->getOperand(2), Op->getOperand(1));
1675   }
1676   case Intrinsic::mips_bmnz_v:
1677     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1678                        Op->getOperand(2), Op->getOperand(1));
1679   case Intrinsic::mips_bmnzi_b:
1680     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1681                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1682                        Op->getOperand(1));
1683   case Intrinsic::mips_bmz_v:
1684     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1685                        Op->getOperand(1), Op->getOperand(2));
1686   case Intrinsic::mips_bmzi_b:
1687     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1688                        lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1689                        Op->getOperand(2));
1690   case Intrinsic::mips_bneg_b:
1691   case Intrinsic::mips_bneg_h:
1692   case Intrinsic::mips_bneg_w:
1693   case Intrinsic::mips_bneg_d: {
1694     EVT VecTy = Op->getValueType(0);
1695     SDValue One = DAG.getConstant(1, DL, VecTy);
1696 
1697     return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1698                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1699                                    truncateVecElts(Op, DAG)));
1700   }
1701   case Intrinsic::mips_bnegi_b:
1702   case Intrinsic::mips_bnegi_h:
1703   case Intrinsic::mips_bnegi_w:
1704   case Intrinsic::mips_bnegi_d:
1705     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1706                                     !Subtarget.isLittle());
1707   case Intrinsic::mips_bnz_b:
1708   case Intrinsic::mips_bnz_h:
1709   case Intrinsic::mips_bnz_w:
1710   case Intrinsic::mips_bnz_d:
1711     return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1712                        Op->getOperand(1));
1713   case Intrinsic::mips_bnz_v:
1714     return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1715                        Op->getOperand(1));
1716   case Intrinsic::mips_bsel_v:
1717     // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1718     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1719                        Op->getOperand(1), Op->getOperand(3),
1720                        Op->getOperand(2));
1721   case Intrinsic::mips_bseli_b:
1722     // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1723     return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1724                        Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1725                        Op->getOperand(2));
1726   case Intrinsic::mips_bset_b:
1727   case Intrinsic::mips_bset_h:
1728   case Intrinsic::mips_bset_w:
1729   case Intrinsic::mips_bset_d: {
1730     EVT VecTy = Op->getValueType(0);
1731     SDValue One = DAG.getConstant(1, DL, VecTy);
1732 
1733     return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1734                        DAG.getNode(ISD::SHL, DL, VecTy, One,
1735                                    truncateVecElts(Op, DAG)));
1736   }
1737   case Intrinsic::mips_bseti_b:
1738   case Intrinsic::mips_bseti_h:
1739   case Intrinsic::mips_bseti_w:
1740   case Intrinsic::mips_bseti_d:
1741     return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1742                                     !Subtarget.isLittle());
1743   case Intrinsic::mips_bz_b:
1744   case Intrinsic::mips_bz_h:
1745   case Intrinsic::mips_bz_w:
1746   case Intrinsic::mips_bz_d:
1747     return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1748                        Op->getOperand(1));
1749   case Intrinsic::mips_bz_v:
1750     return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1751                        Op->getOperand(1));
1752   case Intrinsic::mips_ceq_b:
1753   case Intrinsic::mips_ceq_h:
1754   case Intrinsic::mips_ceq_w:
1755   case Intrinsic::mips_ceq_d:
1756     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1757                         Op->getOperand(2), ISD::SETEQ);
1758   case Intrinsic::mips_ceqi_b:
1759   case Intrinsic::mips_ceqi_h:
1760   case Intrinsic::mips_ceqi_w:
1761   case Intrinsic::mips_ceqi_d:
1762     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1763                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETEQ);
1764   case Intrinsic::mips_cle_s_b:
1765   case Intrinsic::mips_cle_s_h:
1766   case Intrinsic::mips_cle_s_w:
1767   case Intrinsic::mips_cle_s_d:
1768     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1769                         Op->getOperand(2), ISD::SETLE);
1770   case Intrinsic::mips_clei_s_b:
1771   case Intrinsic::mips_clei_s_h:
1772   case Intrinsic::mips_clei_s_w:
1773   case Intrinsic::mips_clei_s_d:
1774     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1775                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLE);
1776   case Intrinsic::mips_cle_u_b:
1777   case Intrinsic::mips_cle_u_h:
1778   case Intrinsic::mips_cle_u_w:
1779   case Intrinsic::mips_cle_u_d:
1780     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1781                         Op->getOperand(2), ISD::SETULE);
1782   case Intrinsic::mips_clei_u_b:
1783   case Intrinsic::mips_clei_u_h:
1784   case Intrinsic::mips_clei_u_w:
1785   case Intrinsic::mips_clei_u_d:
1786     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1787                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1788   case Intrinsic::mips_clt_s_b:
1789   case Intrinsic::mips_clt_s_h:
1790   case Intrinsic::mips_clt_s_w:
1791   case Intrinsic::mips_clt_s_d:
1792     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1793                         Op->getOperand(2), ISD::SETLT);
1794   case Intrinsic::mips_clti_s_b:
1795   case Intrinsic::mips_clti_s_h:
1796   case Intrinsic::mips_clti_s_w:
1797   case Intrinsic::mips_clti_s_d:
1798     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1799                         lowerMSASplatImm(Op, 2, DAG, true), ISD::SETLT);
1800   case Intrinsic::mips_clt_u_b:
1801   case Intrinsic::mips_clt_u_h:
1802   case Intrinsic::mips_clt_u_w:
1803   case Intrinsic::mips_clt_u_d:
1804     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1805                         Op->getOperand(2), ISD::SETULT);
1806   case Intrinsic::mips_clti_u_b:
1807   case Intrinsic::mips_clti_u_h:
1808   case Intrinsic::mips_clti_u_w:
1809   case Intrinsic::mips_clti_u_d:
1810     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1811                         lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1812   case Intrinsic::mips_copy_s_b:
1813   case Intrinsic::mips_copy_s_h:
1814   case Intrinsic::mips_copy_s_w:
1815     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1816   case Intrinsic::mips_copy_s_d:
1817     if (Subtarget.hasMips64())
1818       // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1819       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1820     else {
1821       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1822       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1823       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1824                          Op->getValueType(0), Op->getOperand(1),
1825                          Op->getOperand(2));
1826     }
1827   case Intrinsic::mips_copy_u_b:
1828   case Intrinsic::mips_copy_u_h:
1829   case Intrinsic::mips_copy_u_w:
1830     return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1831   case Intrinsic::mips_copy_u_d:
1832     if (Subtarget.hasMips64())
1833       // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1834       return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1835     else {
1836       // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1837       // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1838       // Note: When i64 is illegal, this results in copy_s.w instructions
1839       // instead of copy_u.w instructions. This makes no difference to the
1840       // behaviour since i64 is only illegal when the register file is 32-bit.
1841       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1842                          Op->getValueType(0), Op->getOperand(1),
1843                          Op->getOperand(2));
1844     }
1845   case Intrinsic::mips_div_s_b:
1846   case Intrinsic::mips_div_s_h:
1847   case Intrinsic::mips_div_s_w:
1848   case Intrinsic::mips_div_s_d:
1849     return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1850                        Op->getOperand(2));
1851   case Intrinsic::mips_div_u_b:
1852   case Intrinsic::mips_div_u_h:
1853   case Intrinsic::mips_div_u_w:
1854   case Intrinsic::mips_div_u_d:
1855     return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1856                        Op->getOperand(2));
1857   case Intrinsic::mips_fadd_w:
1858   case Intrinsic::mips_fadd_d:
1859     // TODO: If intrinsics have fast-math-flags, propagate them.
1860     return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1861                        Op->getOperand(2));
1862   // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1863   case Intrinsic::mips_fceq_w:
1864   case Intrinsic::mips_fceq_d:
1865     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1866                         Op->getOperand(2), ISD::SETOEQ);
1867   case Intrinsic::mips_fcle_w:
1868   case Intrinsic::mips_fcle_d:
1869     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1870                         Op->getOperand(2), ISD::SETOLE);
1871   case Intrinsic::mips_fclt_w:
1872   case Intrinsic::mips_fclt_d:
1873     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1874                         Op->getOperand(2), ISD::SETOLT);
1875   case Intrinsic::mips_fcne_w:
1876   case Intrinsic::mips_fcne_d:
1877     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1878                         Op->getOperand(2), ISD::SETONE);
1879   case Intrinsic::mips_fcor_w:
1880   case Intrinsic::mips_fcor_d:
1881     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1882                         Op->getOperand(2), ISD::SETO);
1883   case Intrinsic::mips_fcueq_w:
1884   case Intrinsic::mips_fcueq_d:
1885     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1886                         Op->getOperand(2), ISD::SETUEQ);
1887   case Intrinsic::mips_fcule_w:
1888   case Intrinsic::mips_fcule_d:
1889     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1890                         Op->getOperand(2), ISD::SETULE);
1891   case Intrinsic::mips_fcult_w:
1892   case Intrinsic::mips_fcult_d:
1893     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1894                         Op->getOperand(2), ISD::SETULT);
1895   case Intrinsic::mips_fcun_w:
1896   case Intrinsic::mips_fcun_d:
1897     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1898                         Op->getOperand(2), ISD::SETUO);
1899   case Intrinsic::mips_fcune_w:
1900   case Intrinsic::mips_fcune_d:
1901     return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1902                         Op->getOperand(2), ISD::SETUNE);
1903   case Intrinsic::mips_fdiv_w:
1904   case Intrinsic::mips_fdiv_d:
1905     // TODO: If intrinsics have fast-math-flags, propagate them.
1906     return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1907                        Op->getOperand(2));
1908   case Intrinsic::mips_ffint_u_w:
1909   case Intrinsic::mips_ffint_u_d:
1910     return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1911                        Op->getOperand(1));
1912   case Intrinsic::mips_ffint_s_w:
1913   case Intrinsic::mips_ffint_s_d:
1914     return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1915                        Op->getOperand(1));
1916   case Intrinsic::mips_fill_b:
1917   case Intrinsic::mips_fill_h:
1918   case Intrinsic::mips_fill_w:
1919   case Intrinsic::mips_fill_d: {
1920     EVT ResTy = Op->getValueType(0);
1921     SmallVector<SDValue, 16> Ops(ResTy.getVectorNumElements(),
1922                                  Op->getOperand(1));
1923 
1924     // If ResTy is v2i64 then the type legalizer will break this node down into
1925     // an equivalent v4i32.
1926     return DAG.getBuildVector(ResTy, DL, Ops);
1927   }
1928   case Intrinsic::mips_fexp2_w:
1929   case Intrinsic::mips_fexp2_d: {
1930     // TODO: If intrinsics have fast-math-flags, propagate them.
1931     EVT ResTy = Op->getValueType(0);
1932     return DAG.getNode(
1933         ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1934         DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1935   }
1936   case Intrinsic::mips_flog2_w:
1937   case Intrinsic::mips_flog2_d:
1938     return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1939   case Intrinsic::mips_fmadd_w:
1940   case Intrinsic::mips_fmadd_d:
1941     return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1942                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1943   case Intrinsic::mips_fmul_w:
1944   case Intrinsic::mips_fmul_d:
1945     // TODO: If intrinsics have fast-math-flags, propagate them.
1946     return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1947                        Op->getOperand(2));
1948   case Intrinsic::mips_fmsub_w:
1949   case Intrinsic::mips_fmsub_d: {
1950     // TODO: If intrinsics have fast-math-flags, propagate them.
1951     return DAG.getNode(MipsISD::FMS, SDLoc(Op), Op->getValueType(0),
1952                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1953   }
1954   case Intrinsic::mips_frint_w:
1955   case Intrinsic::mips_frint_d:
1956     return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1957   case Intrinsic::mips_fsqrt_w:
1958   case Intrinsic::mips_fsqrt_d:
1959     return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1960   case Intrinsic::mips_fsub_w:
1961   case Intrinsic::mips_fsub_d:
1962     // TODO: If intrinsics have fast-math-flags, propagate them.
1963     return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1964                        Op->getOperand(2));
1965   case Intrinsic::mips_ftrunc_u_w:
1966   case Intrinsic::mips_ftrunc_u_d:
1967     return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1968                        Op->getOperand(1));
1969   case Intrinsic::mips_ftrunc_s_w:
1970   case Intrinsic::mips_ftrunc_s_d:
1971     return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1972                        Op->getOperand(1));
1973   case Intrinsic::mips_ilvev_b:
1974   case Intrinsic::mips_ilvev_h:
1975   case Intrinsic::mips_ilvev_w:
1976   case Intrinsic::mips_ilvev_d:
1977     return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1978                        Op->getOperand(1), Op->getOperand(2));
1979   case Intrinsic::mips_ilvl_b:
1980   case Intrinsic::mips_ilvl_h:
1981   case Intrinsic::mips_ilvl_w:
1982   case Intrinsic::mips_ilvl_d:
1983     return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1984                        Op->getOperand(1), Op->getOperand(2));
1985   case Intrinsic::mips_ilvod_b:
1986   case Intrinsic::mips_ilvod_h:
1987   case Intrinsic::mips_ilvod_w:
1988   case Intrinsic::mips_ilvod_d:
1989     return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1990                        Op->getOperand(1), Op->getOperand(2));
1991   case Intrinsic::mips_ilvr_b:
1992   case Intrinsic::mips_ilvr_h:
1993   case Intrinsic::mips_ilvr_w:
1994   case Intrinsic::mips_ilvr_d:
1995     return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1996                        Op->getOperand(1), Op->getOperand(2));
1997   case Intrinsic::mips_insert_b:
1998   case Intrinsic::mips_insert_h:
1999   case Intrinsic::mips_insert_w:
2000   case Intrinsic::mips_insert_d:
2001     return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
2002                        Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
2003   case Intrinsic::mips_insve_b:
2004   case Intrinsic::mips_insve_h:
2005   case Intrinsic::mips_insve_w:
2006   case Intrinsic::mips_insve_d: {
2007     // Report an error for out of range values.
2008     int64_t Max;
2009     switch (Intrinsic) {
2010     case Intrinsic::mips_insve_b: Max = 15; break;
2011     case Intrinsic::mips_insve_h: Max = 7; break;
2012     case Intrinsic::mips_insve_w: Max = 3; break;
2013     case Intrinsic::mips_insve_d: Max = 1; break;
2014     default: llvm_unreachable("Unmatched intrinsic");
2015     }
2016     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2017     if (Value < 0 || Value > Max)
2018       report_fatal_error("Immediate out of range");
2019     return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
2020                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
2021                        DAG.getConstant(0, DL, MVT::i32));
2022     }
2023   case Intrinsic::mips_ldi_b:
2024   case Intrinsic::mips_ldi_h:
2025   case Intrinsic::mips_ldi_w:
2026   case Intrinsic::mips_ldi_d:
2027     return lowerMSASplatImm(Op, 1, DAG, true);
2028   case Intrinsic::mips_lsa:
2029   case Intrinsic::mips_dlsa: {
2030     EVT ResTy = Op->getValueType(0);
2031     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
2032                        DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
2033                                    Op->getOperand(2), Op->getOperand(3)));
2034   }
2035   case Intrinsic::mips_maddv_b:
2036   case Intrinsic::mips_maddv_h:
2037   case Intrinsic::mips_maddv_w:
2038   case Intrinsic::mips_maddv_d: {
2039     EVT ResTy = Op->getValueType(0);
2040     return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
2041                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2042                                    Op->getOperand(2), Op->getOperand(3)));
2043   }
2044   case Intrinsic::mips_max_s_b:
2045   case Intrinsic::mips_max_s_h:
2046   case Intrinsic::mips_max_s_w:
2047   case Intrinsic::mips_max_s_d:
2048     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2049                        Op->getOperand(1), Op->getOperand(2));
2050   case Intrinsic::mips_max_u_b:
2051   case Intrinsic::mips_max_u_h:
2052   case Intrinsic::mips_max_u_w:
2053   case Intrinsic::mips_max_u_d:
2054     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2055                        Op->getOperand(1), Op->getOperand(2));
2056   case Intrinsic::mips_maxi_s_b:
2057   case Intrinsic::mips_maxi_s_h:
2058   case Intrinsic::mips_maxi_s_w:
2059   case Intrinsic::mips_maxi_s_d:
2060     return DAG.getNode(ISD::SMAX, DL, Op->getValueType(0),
2061                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2062   case Intrinsic::mips_maxi_u_b:
2063   case Intrinsic::mips_maxi_u_h:
2064   case Intrinsic::mips_maxi_u_w:
2065   case Intrinsic::mips_maxi_u_d:
2066     return DAG.getNode(ISD::UMAX, DL, Op->getValueType(0),
2067                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2068   case Intrinsic::mips_min_s_b:
2069   case Intrinsic::mips_min_s_h:
2070   case Intrinsic::mips_min_s_w:
2071   case Intrinsic::mips_min_s_d:
2072     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2073                        Op->getOperand(1), Op->getOperand(2));
2074   case Intrinsic::mips_min_u_b:
2075   case Intrinsic::mips_min_u_h:
2076   case Intrinsic::mips_min_u_w:
2077   case Intrinsic::mips_min_u_d:
2078     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2079                        Op->getOperand(1), Op->getOperand(2));
2080   case Intrinsic::mips_mini_s_b:
2081   case Intrinsic::mips_mini_s_h:
2082   case Intrinsic::mips_mini_s_w:
2083   case Intrinsic::mips_mini_s_d:
2084     return DAG.getNode(ISD::SMIN, DL, Op->getValueType(0),
2085                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG, true));
2086   case Intrinsic::mips_mini_u_b:
2087   case Intrinsic::mips_mini_u_h:
2088   case Intrinsic::mips_mini_u_w:
2089   case Intrinsic::mips_mini_u_d:
2090     return DAG.getNode(ISD::UMIN, DL, Op->getValueType(0),
2091                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2092   case Intrinsic::mips_mod_s_b:
2093   case Intrinsic::mips_mod_s_h:
2094   case Intrinsic::mips_mod_s_w:
2095   case Intrinsic::mips_mod_s_d:
2096     return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2097                        Op->getOperand(2));
2098   case Intrinsic::mips_mod_u_b:
2099   case Intrinsic::mips_mod_u_h:
2100   case Intrinsic::mips_mod_u_w:
2101   case Intrinsic::mips_mod_u_d:
2102     return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2103                        Op->getOperand(2));
2104   case Intrinsic::mips_mulv_b:
2105   case Intrinsic::mips_mulv_h:
2106   case Intrinsic::mips_mulv_w:
2107   case Intrinsic::mips_mulv_d:
2108     return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2109                        Op->getOperand(2));
2110   case Intrinsic::mips_msubv_b:
2111   case Intrinsic::mips_msubv_h:
2112   case Intrinsic::mips_msubv_w:
2113   case Intrinsic::mips_msubv_d: {
2114     EVT ResTy = Op->getValueType(0);
2115     return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2116                        DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2117                                    Op->getOperand(2), Op->getOperand(3)));
2118   }
2119   case Intrinsic::mips_nlzc_b:
2120   case Intrinsic::mips_nlzc_h:
2121   case Intrinsic::mips_nlzc_w:
2122   case Intrinsic::mips_nlzc_d:
2123     return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2124   case Intrinsic::mips_nor_v: {
2125     SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2126                               Op->getOperand(1), Op->getOperand(2));
2127     return DAG.getNOT(DL, Res, Res->getValueType(0));
2128   }
2129   case Intrinsic::mips_nori_b: {
2130     SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2131                                Op->getOperand(1),
2132                                lowerMSASplatImm(Op, 2, DAG));
2133     return DAG.getNOT(DL, Res, Res->getValueType(0));
2134   }
2135   case Intrinsic::mips_or_v:
2136     return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2137                        Op->getOperand(2));
2138   case Intrinsic::mips_ori_b:
2139     return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2140                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2141   case Intrinsic::mips_pckev_b:
2142   case Intrinsic::mips_pckev_h:
2143   case Intrinsic::mips_pckev_w:
2144   case Intrinsic::mips_pckev_d:
2145     return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2146                        Op->getOperand(1), Op->getOperand(2));
2147   case Intrinsic::mips_pckod_b:
2148   case Intrinsic::mips_pckod_h:
2149   case Intrinsic::mips_pckod_w:
2150   case Intrinsic::mips_pckod_d:
2151     return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2152                        Op->getOperand(1), Op->getOperand(2));
2153   case Intrinsic::mips_pcnt_b:
2154   case Intrinsic::mips_pcnt_h:
2155   case Intrinsic::mips_pcnt_w:
2156   case Intrinsic::mips_pcnt_d:
2157     return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2158   case Intrinsic::mips_sat_s_b:
2159   case Intrinsic::mips_sat_s_h:
2160   case Intrinsic::mips_sat_s_w:
2161   case Intrinsic::mips_sat_s_d:
2162   case Intrinsic::mips_sat_u_b:
2163   case Intrinsic::mips_sat_u_h:
2164   case Intrinsic::mips_sat_u_w:
2165   case Intrinsic::mips_sat_u_d: {
2166     // Report an error for out of range values.
2167     int64_t Max;
2168     switch (Intrinsic) {
2169     case Intrinsic::mips_sat_s_b:
2170     case Intrinsic::mips_sat_u_b: Max = 7;  break;
2171     case Intrinsic::mips_sat_s_h:
2172     case Intrinsic::mips_sat_u_h: Max = 15; break;
2173     case Intrinsic::mips_sat_s_w:
2174     case Intrinsic::mips_sat_u_w: Max = 31; break;
2175     case Intrinsic::mips_sat_s_d:
2176     case Intrinsic::mips_sat_u_d: Max = 63; break;
2177     default: llvm_unreachable("Unmatched intrinsic");
2178     }
2179     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2180     if (Value < 0 || Value > Max)
2181       report_fatal_error("Immediate out of range");
2182     return SDValue();
2183   }
2184   case Intrinsic::mips_shf_b:
2185   case Intrinsic::mips_shf_h:
2186   case Intrinsic::mips_shf_w: {
2187     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2188     if (Value < 0 || Value > 255)
2189       report_fatal_error("Immediate out of range");
2190     return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2191                        Op->getOperand(2), Op->getOperand(1));
2192   }
2193   case Intrinsic::mips_sldi_b:
2194   case Intrinsic::mips_sldi_h:
2195   case Intrinsic::mips_sldi_w:
2196   case Intrinsic::mips_sldi_d: {
2197     // Report an error for out of range values.
2198     int64_t Max;
2199     switch (Intrinsic) {
2200     case Intrinsic::mips_sldi_b: Max = 15; break;
2201     case Intrinsic::mips_sldi_h: Max = 7; break;
2202     case Intrinsic::mips_sldi_w: Max = 3; break;
2203     case Intrinsic::mips_sldi_d: Max = 1; break;
2204     default: llvm_unreachable("Unmatched intrinsic");
2205     }
2206     int64_t Value = cast<ConstantSDNode>(Op->getOperand(3))->getSExtValue();
2207     if (Value < 0 || Value > Max)
2208       report_fatal_error("Immediate out of range");
2209     return SDValue();
2210   }
2211   case Intrinsic::mips_sll_b:
2212   case Intrinsic::mips_sll_h:
2213   case Intrinsic::mips_sll_w:
2214   case Intrinsic::mips_sll_d:
2215     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2216                        truncateVecElts(Op, DAG));
2217   case Intrinsic::mips_slli_b:
2218   case Intrinsic::mips_slli_h:
2219   case Intrinsic::mips_slli_w:
2220   case Intrinsic::mips_slli_d:
2221     return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2222                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2223   case Intrinsic::mips_splat_b:
2224   case Intrinsic::mips_splat_h:
2225   case Intrinsic::mips_splat_w:
2226   case Intrinsic::mips_splat_d:
2227     // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2228     // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2229     // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2230     // Instead we lower to MipsISD::VSHF and match from there.
2231     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2232                        lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2233                        Op->getOperand(1));
2234   case Intrinsic::mips_splati_b:
2235   case Intrinsic::mips_splati_h:
2236   case Intrinsic::mips_splati_w:
2237   case Intrinsic::mips_splati_d:
2238     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2239                        lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2240                        Op->getOperand(1));
2241   case Intrinsic::mips_sra_b:
2242   case Intrinsic::mips_sra_h:
2243   case Intrinsic::mips_sra_w:
2244   case Intrinsic::mips_sra_d:
2245     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2246                        truncateVecElts(Op, DAG));
2247   case Intrinsic::mips_srai_b:
2248   case Intrinsic::mips_srai_h:
2249   case Intrinsic::mips_srai_w:
2250   case Intrinsic::mips_srai_d:
2251     return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2252                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2253   case Intrinsic::mips_srari_b:
2254   case Intrinsic::mips_srari_h:
2255   case Intrinsic::mips_srari_w:
2256   case Intrinsic::mips_srari_d: {
2257     // Report an error for out of range values.
2258     int64_t Max;
2259     switch (Intrinsic) {
2260     case Intrinsic::mips_srari_b: Max = 7; break;
2261     case Intrinsic::mips_srari_h: Max = 15; break;
2262     case Intrinsic::mips_srari_w: Max = 31; break;
2263     case Intrinsic::mips_srari_d: Max = 63; break;
2264     default: llvm_unreachable("Unmatched intrinsic");
2265     }
2266     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2267     if (Value < 0 || Value > Max)
2268       report_fatal_error("Immediate out of range");
2269     return SDValue();
2270   }
2271   case Intrinsic::mips_srl_b:
2272   case Intrinsic::mips_srl_h:
2273   case Intrinsic::mips_srl_w:
2274   case Intrinsic::mips_srl_d:
2275     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2276                        truncateVecElts(Op, DAG));
2277   case Intrinsic::mips_srli_b:
2278   case Intrinsic::mips_srli_h:
2279   case Intrinsic::mips_srli_w:
2280   case Intrinsic::mips_srli_d:
2281     return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2282                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2283   case Intrinsic::mips_srlri_b:
2284   case Intrinsic::mips_srlri_h:
2285   case Intrinsic::mips_srlri_w:
2286   case Intrinsic::mips_srlri_d: {
2287     // Report an error for out of range values.
2288     int64_t Max;
2289     switch (Intrinsic) {
2290     case Intrinsic::mips_srlri_b: Max = 7; break;
2291     case Intrinsic::mips_srlri_h: Max = 15; break;
2292     case Intrinsic::mips_srlri_w: Max = 31; break;
2293     case Intrinsic::mips_srlri_d: Max = 63; break;
2294     default: llvm_unreachable("Unmatched intrinsic");
2295     }
2296     int64_t Value = cast<ConstantSDNode>(Op->getOperand(2))->getSExtValue();
2297     if (Value < 0 || Value > Max)
2298       report_fatal_error("Immediate out of range");
2299     return SDValue();
2300   }
2301   case Intrinsic::mips_subv_b:
2302   case Intrinsic::mips_subv_h:
2303   case Intrinsic::mips_subv_w:
2304   case Intrinsic::mips_subv_d:
2305     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2306                        Op->getOperand(2));
2307   case Intrinsic::mips_subvi_b:
2308   case Intrinsic::mips_subvi_h:
2309   case Intrinsic::mips_subvi_w:
2310   case Intrinsic::mips_subvi_d:
2311     return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2312                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2313   case Intrinsic::mips_vshf_b:
2314   case Intrinsic::mips_vshf_h:
2315   case Intrinsic::mips_vshf_w:
2316   case Intrinsic::mips_vshf_d:
2317     return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2318                        Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2319   case Intrinsic::mips_xor_v:
2320     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2321                        Op->getOperand(2));
2322   case Intrinsic::mips_xori_b:
2323     return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2324                        Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2325   case Intrinsic::thread_pointer: {
2326     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2327     return DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
2328   }
2329   }
2330 }
2331 
2332 static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2333                                 const MipsSubtarget &Subtarget) {
2334   SDLoc DL(Op);
2335   SDValue ChainIn = Op->getOperand(0);
2336   SDValue Address = Op->getOperand(2);
2337   SDValue Offset  = Op->getOperand(3);
2338   EVT ResTy = Op->getValueType(0);
2339   EVT PtrTy = Address->getValueType(0);
2340 
2341   // For N64 addresses have the underlying type MVT::i64. This intrinsic
2342   // however takes an i32 signed constant offset. The actual type of the
2343   // intrinsic is a scaled signed i10.
2344   if (Subtarget.isABI_N64())
2345     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2346 
2347   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2348   return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(),
2349                      Align(16));
2350 }
2351 
2352 SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2353                                                      SelectionDAG &DAG) const {
2354   unsigned Intr = Op->getConstantOperandVal(1);
2355   switch (Intr) {
2356   default:
2357     return SDValue();
2358   case Intrinsic::mips_extp:
2359     return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2360   case Intrinsic::mips_extpdp:
2361     return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2362   case Intrinsic::mips_extr_w:
2363     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2364   case Intrinsic::mips_extr_r_w:
2365     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2366   case Intrinsic::mips_extr_rs_w:
2367     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2368   case Intrinsic::mips_extr_s_h:
2369     return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2370   case Intrinsic::mips_mthlip:
2371     return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2372   case Intrinsic::mips_mulsaq_s_w_ph:
2373     return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2374   case Intrinsic::mips_maq_s_w_phl:
2375     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2376   case Intrinsic::mips_maq_s_w_phr:
2377     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2378   case Intrinsic::mips_maq_sa_w_phl:
2379     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2380   case Intrinsic::mips_maq_sa_w_phr:
2381     return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2382   case Intrinsic::mips_dpaq_s_w_ph:
2383     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2384   case Intrinsic::mips_dpsq_s_w_ph:
2385     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2386   case Intrinsic::mips_dpaq_sa_l_w:
2387     return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2388   case Intrinsic::mips_dpsq_sa_l_w:
2389     return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2390   case Intrinsic::mips_dpaqx_s_w_ph:
2391     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2392   case Intrinsic::mips_dpaqx_sa_w_ph:
2393     return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2394   case Intrinsic::mips_dpsqx_s_w_ph:
2395     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2396   case Intrinsic::mips_dpsqx_sa_w_ph:
2397     return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2398   case Intrinsic::mips_ld_b:
2399   case Intrinsic::mips_ld_h:
2400   case Intrinsic::mips_ld_w:
2401   case Intrinsic::mips_ld_d:
2402    return lowerMSALoadIntr(Op, DAG, Intr, Subtarget);
2403   }
2404 }
2405 
2406 static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr,
2407                                  const MipsSubtarget &Subtarget) {
2408   SDLoc DL(Op);
2409   SDValue ChainIn = Op->getOperand(0);
2410   SDValue Value   = Op->getOperand(2);
2411   SDValue Address = Op->getOperand(3);
2412   SDValue Offset  = Op->getOperand(4);
2413   EVT PtrTy = Address->getValueType(0);
2414 
2415   // For N64 addresses have the underlying type MVT::i64. This intrinsic
2416   // however takes an i32 signed constant offset. The actual type of the
2417   // intrinsic is a scaled signed i10.
2418   if (Subtarget.isABI_N64())
2419     Offset = DAG.getNode(ISD::SIGN_EXTEND, DL, PtrTy, Offset);
2420 
2421   Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2422 
2423   return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(),
2424                       Align(16));
2425 }
2426 
2427 SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2428                                                   SelectionDAG &DAG) const {
2429   unsigned Intr = Op->getConstantOperandVal(1);
2430   switch (Intr) {
2431   default:
2432     return SDValue();
2433   case Intrinsic::mips_st_b:
2434   case Intrinsic::mips_st_h:
2435   case Intrinsic::mips_st_w:
2436   case Intrinsic::mips_st_d:
2437     return lowerMSAStoreIntr(Op, DAG, Intr, Subtarget);
2438   }
2439 }
2440 
2441 // Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2442 //
2443 // The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2444 // choose to sign-extend but we could have equally chosen zero-extend. The
2445 // DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2446 // result into this node later (possibly changing it to a zero-extend in the
2447 // process).
2448 SDValue MipsSETargetLowering::
2449 lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2450   SDLoc DL(Op);
2451   EVT ResTy = Op->getValueType(0);
2452   SDValue Op0 = Op->getOperand(0);
2453   EVT VecTy = Op0->getValueType(0);
2454 
2455   if (!VecTy.is128BitVector())
2456     return SDValue();
2457 
2458   if (ResTy.isInteger()) {
2459     SDValue Op1 = Op->getOperand(1);
2460     EVT EltTy = VecTy.getVectorElementType();
2461     return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2462                        DAG.getValueType(EltTy));
2463   }
2464 
2465   return Op;
2466 }
2467 
2468 static bool isConstantOrUndef(const SDValue Op) {
2469   if (Op->isUndef())
2470     return true;
2471   if (isa<ConstantSDNode>(Op))
2472     return true;
2473   if (isa<ConstantFPSDNode>(Op))
2474     return true;
2475   return false;
2476 }
2477 
2478 static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2479   for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2480     if (isConstantOrUndef(Op->getOperand(i)))
2481       return true;
2482   return false;
2483 }
2484 
2485 // Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2486 // backend.
2487 //
2488 // Lowers according to the following rules:
2489 // - Constant splats are legal as-is as long as the SplatBitSize is a power of
2490 //   2 less than or equal to 64 and the value fits into a signed 10-bit
2491 //   immediate
2492 // - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2493 //   is a power of 2 less than or equal to 64 and the value does not fit into a
2494 //   signed 10-bit immediate
2495 // - Non-constant splats are legal as-is.
2496 // - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2497 // - All others are illegal and must be expanded.
2498 SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2499                                                 SelectionDAG &DAG) const {
2500   BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2501   EVT ResTy = Op->getValueType(0);
2502   SDLoc DL(Op);
2503   APInt SplatValue, SplatUndef;
2504   unsigned SplatBitSize;
2505   bool HasAnyUndefs;
2506 
2507   if (!Subtarget.hasMSA() || !ResTy.is128BitVector())
2508     return SDValue();
2509 
2510   if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2511                             HasAnyUndefs, 8,
2512                             !Subtarget.isLittle()) && SplatBitSize <= 64) {
2513     // We can only cope with 8, 16, 32, or 64-bit elements
2514     if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2515         SplatBitSize != 64)
2516       return SDValue();
2517 
2518     // If the value isn't an integer type we will have to bitcast
2519     // from an integer type first. Also, if there are any undefs, we must
2520     // lower them to defined values first.
2521     if (ResTy.isInteger() && !HasAnyUndefs)
2522       return Op;
2523 
2524     EVT ViaVecTy;
2525 
2526     switch (SplatBitSize) {
2527     default:
2528       return SDValue();
2529     case 8:
2530       ViaVecTy = MVT::v16i8;
2531       break;
2532     case 16:
2533       ViaVecTy = MVT::v8i16;
2534       break;
2535     case 32:
2536       ViaVecTy = MVT::v4i32;
2537       break;
2538     case 64:
2539       // There's no fill.d to fall back on for 64-bit values
2540       return SDValue();
2541     }
2542 
2543     // SelectionDAG::getConstant will promote SplatValue appropriately.
2544     SDValue Result = DAG.getConstant(SplatValue, DL, ViaVecTy);
2545 
2546     // Bitcast to the type we originally wanted
2547     if (ViaVecTy != ResTy)
2548       Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2549 
2550     return Result;
2551   } else if (DAG.isSplatValue(Op, /* AllowUndefs */ false))
2552     return Op;
2553   else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2554     // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2555     // The resulting code is the same length as the expansion, but it doesn't
2556     // use memory operations
2557     EVT ResTy = Node->getValueType(0);
2558 
2559     assert(ResTy.isVector());
2560 
2561     unsigned NumElts = ResTy.getVectorNumElements();
2562     SDValue Vector = DAG.getUNDEF(ResTy);
2563     for (unsigned i = 0; i < NumElts; ++i) {
2564       Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2565                            Node->getOperand(i),
2566                            DAG.getConstant(i, DL, MVT::i32));
2567     }
2568     return Vector;
2569   }
2570 
2571   return SDValue();
2572 }
2573 
2574 // Lower VECTOR_SHUFFLE into SHF (if possible).
2575 //
2576 // SHF splits the vector into blocks of four elements, then shuffles these
2577 // elements according to a <4 x i2> constant (encoded as an integer immediate).
2578 //
2579 // It is therefore possible to lower into SHF when the mask takes the form:
2580 //   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2581 // When undef's appear they are treated as if they were whatever value is
2582 // necessary in order to fit the above forms.
2583 //
2584 // For example:
2585 //   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2586 //                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2587 //                                 i32 7, i32 6, i32 5, i32 4>
2588 // is lowered to:
2589 //   (SHF_H $w0, $w1, 27)
2590 // where the 27 comes from:
2591 //   3 + (2 << 2) + (1 << 4) + (0 << 6)
2592 static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2593                                        SmallVector<int, 16> Indices,
2594                                        SelectionDAG &DAG) {
2595   int SHFIndices[4] = { -1, -1, -1, -1 };
2596 
2597   if (Indices.size() < 4)
2598     return SDValue();
2599 
2600   for (unsigned i = 0; i < 4; ++i) {
2601     for (unsigned j = i; j < Indices.size(); j += 4) {
2602       int Idx = Indices[j];
2603 
2604       // Convert from vector index to 4-element subvector index
2605       // If an index refers to an element outside of the subvector then give up
2606       if (Idx != -1) {
2607         Idx -= 4 * (j / 4);
2608         if (Idx < 0 || Idx >= 4)
2609           return SDValue();
2610       }
2611 
2612       // If the mask has an undef, replace it with the current index.
2613       // Note that it might still be undef if the current index is also undef
2614       if (SHFIndices[i] == -1)
2615         SHFIndices[i] = Idx;
2616 
2617       // Check that non-undef values are the same as in the mask. If they
2618       // aren't then give up
2619       if (!(Idx == -1 || Idx == SHFIndices[i]))
2620         return SDValue();
2621     }
2622   }
2623 
2624   // Calculate the immediate. Replace any remaining undefs with zero
2625   APInt Imm(32, 0);
2626   for (int i = 3; i >= 0; --i) {
2627     int Idx = SHFIndices[i];
2628 
2629     if (Idx == -1)
2630       Idx = 0;
2631 
2632     Imm <<= 2;
2633     Imm |= Idx & 0x3;
2634   }
2635 
2636   SDLoc DL(Op);
2637   return DAG.getNode(MipsISD::SHF, DL, ResTy,
2638                      DAG.getTargetConstant(Imm, DL, MVT::i32),
2639                      Op->getOperand(0));
2640 }
2641 
2642 /// Determine whether a range fits a regular pattern of values.
2643 /// This function accounts for the possibility of jumping over the End iterator.
2644 template <typename ValType>
2645 static bool
2646 fitsRegularPattern(typename SmallVectorImpl<ValType>::const_iterator Begin,
2647                    unsigned CheckStride,
2648                    typename SmallVectorImpl<ValType>::const_iterator End,
2649                    ValType ExpectedIndex, unsigned ExpectedIndexStride) {
2650   auto &I = Begin;
2651 
2652   while (I != End) {
2653     if (*I != -1 && *I != ExpectedIndex)
2654       return false;
2655     ExpectedIndex += ExpectedIndexStride;
2656 
2657     // Incrementing past End is undefined behaviour so we must increment one
2658     // step at a time and check for End at each step.
2659     for (unsigned n = 0; n < CheckStride && I != End; ++n, ++I)
2660       ; // Empty loop body.
2661   }
2662   return true;
2663 }
2664 
2665 // Determine whether VECTOR_SHUFFLE is a SPLATI.
2666 //
2667 // It is a SPLATI when the mask is:
2668 //   <x, x, x, ...>
2669 // where x is any valid index.
2670 //
2671 // When undef's appear in the mask they are treated as if they were whatever
2672 // value is necessary in order to fit the above form.
2673 static bool isVECTOR_SHUFFLE_SPLATI(SDValue Op, EVT ResTy,
2674                                     SmallVector<int, 16> Indices,
2675                                     SelectionDAG &DAG) {
2676   assert((Indices.size() % 2) == 0);
2677 
2678   int SplatIndex = -1;
2679   for (const auto &V : Indices) {
2680     if (V != -1) {
2681       SplatIndex = V;
2682       break;
2683     }
2684   }
2685 
2686   return fitsRegularPattern<int>(Indices.begin(), 1, Indices.end(), SplatIndex,
2687                                  0);
2688 }
2689 
2690 // Lower VECTOR_SHUFFLE into ILVEV (if possible).
2691 //
2692 // ILVEV interleaves the even elements from each vector.
2693 //
2694 // It is possible to lower into ILVEV when the mask consists of two of the
2695 // following forms interleaved:
2696 //   <0, 2, 4, ...>
2697 //   <n, n+2, n+4, ...>
2698 // where n is the number of elements in the vector.
2699 // For example:
2700 //   <0, 0, 2, 2, 4, 4, ...>
2701 //   <0, n, 2, n+2, 4, n+4, ...>
2702 //
2703 // When undef's appear in the mask they are treated as if they were whatever
2704 // value is necessary in order to fit the above forms.
2705 static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2706                                          SmallVector<int, 16> Indices,
2707                                          SelectionDAG &DAG) {
2708   assert((Indices.size() % 2) == 0);
2709 
2710   SDValue Wt;
2711   SDValue Ws;
2712   const auto &Begin = Indices.begin();
2713   const auto &End = Indices.end();
2714 
2715   // Check even elements are taken from the even elements of one half or the
2716   // other and pick an operand accordingly.
2717   if (fitsRegularPattern<int>(Begin, 2, End, 0, 2))
2718     Wt = Op->getOperand(0);
2719   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 2))
2720     Wt = Op->getOperand(1);
2721   else
2722     return SDValue();
2723 
2724   // Check odd elements are taken from the even elements of one half or the
2725   // other and pick an operand accordingly.
2726   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 2))
2727     Ws = Op->getOperand(0);
2728   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 2))
2729     Ws = Op->getOperand(1);
2730   else
2731     return SDValue();
2732 
2733   return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Ws, Wt);
2734 }
2735 
2736 // Lower VECTOR_SHUFFLE into ILVOD (if possible).
2737 //
2738 // ILVOD interleaves the odd elements from each vector.
2739 //
2740 // It is possible to lower into ILVOD when the mask consists of two of the
2741 // following forms interleaved:
2742 //   <1, 3, 5, ...>
2743 //   <n+1, n+3, n+5, ...>
2744 // where n is the number of elements in the vector.
2745 // For example:
2746 //   <1, 1, 3, 3, 5, 5, ...>
2747 //   <1, n+1, 3, n+3, 5, n+5, ...>
2748 //
2749 // When undef's appear in the mask they are treated as if they were whatever
2750 // value is necessary in order to fit the above forms.
2751 static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2752                                          SmallVector<int, 16> Indices,
2753                                          SelectionDAG &DAG) {
2754   assert((Indices.size() % 2) == 0);
2755 
2756   SDValue Wt;
2757   SDValue Ws;
2758   const auto &Begin = Indices.begin();
2759   const auto &End = Indices.end();
2760 
2761   // Check even elements are taken from the odd elements of one half or the
2762   // other and pick an operand accordingly.
2763   if (fitsRegularPattern<int>(Begin, 2, End, 1, 2))
2764     Wt = Op->getOperand(0);
2765   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + 1, 2))
2766     Wt = Op->getOperand(1);
2767   else
2768     return SDValue();
2769 
2770   // Check odd elements are taken from the odd elements of one half or the
2771   // other and pick an operand accordingly.
2772   if (fitsRegularPattern<int>(Begin + 1, 2, End, 1, 2))
2773     Ws = Op->getOperand(0);
2774   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + 1, 2))
2775     Ws = Op->getOperand(1);
2776   else
2777     return SDValue();
2778 
2779   return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Ws, Wt);
2780 }
2781 
2782 // Lower VECTOR_SHUFFLE into ILVR (if possible).
2783 //
2784 // ILVR interleaves consecutive elements from the right (lowest-indexed) half of
2785 // each vector.
2786 //
2787 // It is possible to lower into ILVR when the mask consists of two of the
2788 // following forms interleaved:
2789 //   <0, 1, 2, ...>
2790 //   <n, n+1, n+2, ...>
2791 // where n is the number of elements in the vector.
2792 // For example:
2793 //   <0, 0, 1, 1, 2, 2, ...>
2794 //   <0, n, 1, n+1, 2, n+2, ...>
2795 //
2796 // When undef's appear in the mask they are treated as if they were whatever
2797 // value is necessary in order to fit the above forms.
2798 static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2799                                         SmallVector<int, 16> Indices,
2800                                         SelectionDAG &DAG) {
2801   assert((Indices.size() % 2) == 0);
2802 
2803   SDValue Wt;
2804   SDValue Ws;
2805   const auto &Begin = Indices.begin();
2806   const auto &End = Indices.end();
2807 
2808   // Check even elements are taken from the right (lowest-indexed) elements of
2809   // one half or the other and pick an operand accordingly.
2810   if (fitsRegularPattern<int>(Begin, 2, End, 0, 1))
2811     Wt = Op->getOperand(0);
2812   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size(), 1))
2813     Wt = Op->getOperand(1);
2814   else
2815     return SDValue();
2816 
2817   // Check odd elements are taken from the right (lowest-indexed) elements of
2818   // one half or the other and pick an operand accordingly.
2819   if (fitsRegularPattern<int>(Begin + 1, 2, End, 0, 1))
2820     Ws = Op->getOperand(0);
2821   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size(), 1))
2822     Ws = Op->getOperand(1);
2823   else
2824     return SDValue();
2825 
2826   return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Ws, Wt);
2827 }
2828 
2829 // Lower VECTOR_SHUFFLE into ILVL (if possible).
2830 //
2831 // ILVL interleaves consecutive elements from the left (highest-indexed) half
2832 // of each vector.
2833 //
2834 // It is possible to lower into ILVL when the mask consists of two of the
2835 // following forms interleaved:
2836 //   <x, x+1, x+2, ...>
2837 //   <n+x, n+x+1, n+x+2, ...>
2838 // where n is the number of elements in the vector and x is half n.
2839 // For example:
2840 //   <x, x, x+1, x+1, x+2, x+2, ...>
2841 //   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2842 //
2843 // When undef's appear in the mask they are treated as if they were whatever
2844 // value is necessary in order to fit the above forms.
2845 static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2846                                         SmallVector<int, 16> Indices,
2847                                         SelectionDAG &DAG) {
2848   assert((Indices.size() % 2) == 0);
2849 
2850   unsigned HalfSize = Indices.size() / 2;
2851   SDValue Wt;
2852   SDValue Ws;
2853   const auto &Begin = Indices.begin();
2854   const auto &End = Indices.end();
2855 
2856   // Check even elements are taken from the left (highest-indexed) elements of
2857   // one half or the other and pick an operand accordingly.
2858   if (fitsRegularPattern<int>(Begin, 2, End, HalfSize, 1))
2859     Wt = Op->getOperand(0);
2860   else if (fitsRegularPattern<int>(Begin, 2, End, Indices.size() + HalfSize, 1))
2861     Wt = Op->getOperand(1);
2862   else
2863     return SDValue();
2864 
2865   // Check odd elements are taken from the left (highest-indexed) elements of
2866   // one half or the other and pick an operand accordingly.
2867   if (fitsRegularPattern<int>(Begin + 1, 2, End, HalfSize, 1))
2868     Ws = Op->getOperand(0);
2869   else if (fitsRegularPattern<int>(Begin + 1, 2, End, Indices.size() + HalfSize,
2870                                    1))
2871     Ws = Op->getOperand(1);
2872   else
2873     return SDValue();
2874 
2875   return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Ws, Wt);
2876 }
2877 
2878 // Lower VECTOR_SHUFFLE into PCKEV (if possible).
2879 //
2880 // PCKEV copies the even elements of each vector into the result vector.
2881 //
2882 // It is possible to lower into PCKEV when the mask consists of two of the
2883 // following forms concatenated:
2884 //   <0, 2, 4, ...>
2885 //   <n, n+2, n+4, ...>
2886 // where n is the number of elements in the vector.
2887 // For example:
2888 //   <0, 2, 4, ..., 0, 2, 4, ...>
2889 //   <0, 2, 4, ..., n, n+2, n+4, ...>
2890 //
2891 // When undef's appear in the mask they are treated as if they were whatever
2892 // value is necessary in order to fit the above forms.
2893 static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2894                                          SmallVector<int, 16> Indices,
2895                                          SelectionDAG &DAG) {
2896   assert((Indices.size() % 2) == 0);
2897 
2898   SDValue Wt;
2899   SDValue Ws;
2900   const auto &Begin = Indices.begin();
2901   const auto &Mid = Indices.begin() + Indices.size() / 2;
2902   const auto &End = Indices.end();
2903 
2904   if (fitsRegularPattern<int>(Begin, 1, Mid, 0, 2))
2905     Wt = Op->getOperand(0);
2906   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size(), 2))
2907     Wt = Op->getOperand(1);
2908   else
2909     return SDValue();
2910 
2911   if (fitsRegularPattern<int>(Mid, 1, End, 0, 2))
2912     Ws = Op->getOperand(0);
2913   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size(), 2))
2914     Ws = Op->getOperand(1);
2915   else
2916     return SDValue();
2917 
2918   return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Ws, Wt);
2919 }
2920 
2921 // Lower VECTOR_SHUFFLE into PCKOD (if possible).
2922 //
2923 // PCKOD copies the odd elements of each vector into the result vector.
2924 //
2925 // It is possible to lower into PCKOD when the mask consists of two of the
2926 // following forms concatenated:
2927 //   <1, 3, 5, ...>
2928 //   <n+1, n+3, n+5, ...>
2929 // where n is the number of elements in the vector.
2930 // For example:
2931 //   <1, 3, 5, ..., 1, 3, 5, ...>
2932 //   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2933 //
2934 // When undef's appear in the mask they are treated as if they were whatever
2935 // value is necessary in order to fit the above forms.
2936 static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2937                                          SmallVector<int, 16> Indices,
2938                                          SelectionDAG &DAG) {
2939   assert((Indices.size() % 2) == 0);
2940 
2941   SDValue Wt;
2942   SDValue Ws;
2943   const auto &Begin = Indices.begin();
2944   const auto &Mid = Indices.begin() + Indices.size() / 2;
2945   const auto &End = Indices.end();
2946 
2947   if (fitsRegularPattern<int>(Begin, 1, Mid, 1, 2))
2948     Wt = Op->getOperand(0);
2949   else if (fitsRegularPattern<int>(Begin, 1, Mid, Indices.size() + 1, 2))
2950     Wt = Op->getOperand(1);
2951   else
2952     return SDValue();
2953 
2954   if (fitsRegularPattern<int>(Mid, 1, End, 1, 2))
2955     Ws = Op->getOperand(0);
2956   else if (fitsRegularPattern<int>(Mid, 1, End, Indices.size() + 1, 2))
2957     Ws = Op->getOperand(1);
2958   else
2959     return SDValue();
2960 
2961   return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Ws, Wt);
2962 }
2963 
2964 // Lower VECTOR_SHUFFLE into VSHF.
2965 //
2966 // This mostly consists of converting the shuffle indices in Indices into a
2967 // BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2968 // also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2969 // if the type is v8i16 and all the indices are less than 8 then the second
2970 // operand is unused and can be replaced with anything. We choose to replace it
2971 // with the used operand since this reduces the number of instructions overall.
2972 //
2973 // NOTE: SPLATI shuffle masks may contain UNDEFs, since isSPLATI() treats
2974 //       UNDEFs as same as SPLATI index.
2975 //       For other instances we use the last valid index if UNDEF is
2976 //       encountered.
2977 static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2978                                         const SmallVector<int, 16> &Indices,
2979                                         const bool isSPLATI,
2980                                         SelectionDAG &DAG) {
2981   SmallVector<SDValue, 16> Ops;
2982   SDValue Op0;
2983   SDValue Op1;
2984   EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2985   EVT MaskEltTy = MaskVecTy.getVectorElementType();
2986   bool Using1stVec = false;
2987   bool Using2ndVec = false;
2988   SDLoc DL(Op);
2989   int ResTyNumElts = ResTy.getVectorNumElements();
2990 
2991   assert(Indices[0] >= 0 &&
2992          "shuffle mask starts with an UNDEF, which is not expected");
2993 
2994   for (int i = 0; i < ResTyNumElts; ++i) {
2995     // Idx == -1 means UNDEF
2996     int Idx = Indices[i];
2997 
2998     if (0 <= Idx && Idx < ResTyNumElts)
2999       Using1stVec = true;
3000     if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
3001       Using2ndVec = true;
3002   }
3003   int LastValidIndex = 0;
3004   for (size_t i = 0; i < Indices.size(); i++) {
3005     int Idx = Indices[i];
3006     if (Idx < 0) {
3007       // Continue using splati index or use the last valid index.
3008       Idx = isSPLATI ? Indices[0] : LastValidIndex;
3009     } else {
3010       LastValidIndex = Idx;
3011     }
3012     Ops.push_back(DAG.getTargetConstant(Idx, DL, MaskEltTy));
3013   }
3014 
3015   SDValue MaskVec = DAG.getBuildVector(MaskVecTy, DL, Ops);
3016 
3017   if (Using1stVec && Using2ndVec) {
3018     Op0 = Op->getOperand(0);
3019     Op1 = Op->getOperand(1);
3020   } else if (Using1stVec)
3021     Op0 = Op1 = Op->getOperand(0);
3022   else if (Using2ndVec)
3023     Op0 = Op1 = Op->getOperand(1);
3024   else
3025     llvm_unreachable("shuffle vector mask references neither vector operand?");
3026 
3027   // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
3028   // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
3029   // VSHF concatenates the vectors in a bitwise fashion:
3030   // <0b00, 0b01> + <0b10, 0b11> ->
3031   // 0b0100       + 0b1110       -> 0b01001110
3032   //                                <0b10, 0b11, 0b00, 0b01>
3033   // We must therefore swap the operands to get the correct result.
3034   return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
3035 }
3036 
3037 // Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
3038 // indices in the shuffle.
3039 SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
3040                                                   SelectionDAG &DAG) const {
3041   ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
3042   EVT ResTy = Op->getValueType(0);
3043 
3044   if (!ResTy.is128BitVector())
3045     return SDValue();
3046 
3047   int ResTyNumElts = ResTy.getVectorNumElements();
3048   SmallVector<int, 16> Indices;
3049 
3050   for (int i = 0; i < ResTyNumElts; ++i)
3051     Indices.push_back(Node->getMaskElt(i));
3052 
3053   // splati.[bhwd] is preferable to the others but is matched from
3054   // MipsISD::VSHF.
3055   if (isVECTOR_SHUFFLE_SPLATI(Op, ResTy, Indices, DAG))
3056     return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, true, DAG);
3057   SDValue Result;
3058   if ((Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG)))
3059     return Result;
3060   if ((Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG)))
3061     return Result;
3062   if ((Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG)))
3063     return Result;
3064   if ((Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG)))
3065     return Result;
3066   if ((Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG)))
3067     return Result;
3068   if ((Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG)))
3069     return Result;
3070   if ((Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG)))
3071     return Result;
3072   return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, false, DAG);
3073 }
3074 
3075 MachineBasicBlock *
3076 MipsSETargetLowering::emitBPOSGE32(MachineInstr &MI,
3077                                    MachineBasicBlock *BB) const {
3078   // $bb:
3079   //  bposge32_pseudo $vr0
3080   //  =>
3081   // $bb:
3082   //  bposge32 $tbb
3083   // $fbb:
3084   //  li $vr2, 0
3085   //  b $sink
3086   // $tbb:
3087   //  li $vr1, 1
3088   // $sink:
3089   //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
3090 
3091   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3092   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3093   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3094   DebugLoc DL = MI.getDebugLoc();
3095   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3096   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3097   MachineFunction *F = BB->getParent();
3098   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3099   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3100   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3101   F->insert(It, FBB);
3102   F->insert(It, TBB);
3103   F->insert(It, Sink);
3104 
3105   // Transfer the remainder of BB and its successor edges to Sink.
3106   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3107                BB->end());
3108   Sink->transferSuccessorsAndUpdatePHIs(BB);
3109 
3110   // Add successors.
3111   BB->addSuccessor(FBB);
3112   BB->addSuccessor(TBB);
3113   FBB->addSuccessor(Sink);
3114   TBB->addSuccessor(Sink);
3115 
3116   // Insert the real bposge32 instruction to $BB.
3117   BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
3118   // Insert the real bposge32c instruction to $BB.
3119   BuildMI(BB, DL, TII->get(Mips::BPOSGE32C_MMR3)).addMBB(TBB);
3120 
3121   // Fill $FBB.
3122   Register VR2 = RegInfo.createVirtualRegister(RC);
3123   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
3124     .addReg(Mips::ZERO).addImm(0);
3125   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3126 
3127   // Fill $TBB.
3128   Register VR1 = RegInfo.createVirtualRegister(RC);
3129   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
3130     .addReg(Mips::ZERO).addImm(1);
3131 
3132   // Insert phi function to $Sink.
3133   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3134           MI.getOperand(0).getReg())
3135       .addReg(VR2)
3136       .addMBB(FBB)
3137       .addReg(VR1)
3138       .addMBB(TBB);
3139 
3140   MI.eraseFromParent(); // The pseudo instruction is gone now.
3141   return Sink;
3142 }
3143 
3144 MachineBasicBlock *MipsSETargetLowering::emitMSACBranchPseudo(
3145     MachineInstr &MI, MachineBasicBlock *BB, unsigned BranchOp) const {
3146   // $bb:
3147   //  vany_nonzero $rd, $ws
3148   //  =>
3149   // $bb:
3150   //  bnz.b $ws, $tbb
3151   //  b $fbb
3152   // $fbb:
3153   //  li $rd1, 0
3154   //  b $sink
3155   // $tbb:
3156   //  li $rd2, 1
3157   // $sink:
3158   //  $rd = phi($rd1, $fbb, $rd2, $tbb)
3159 
3160   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3161   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3162   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
3163   DebugLoc DL = MI.getDebugLoc();
3164   const BasicBlock *LLVM_BB = BB->getBasicBlock();
3165   MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
3166   MachineFunction *F = BB->getParent();
3167   MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
3168   MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
3169   MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
3170   F->insert(It, FBB);
3171   F->insert(It, TBB);
3172   F->insert(It, Sink);
3173 
3174   // Transfer the remainder of BB and its successor edges to Sink.
3175   Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
3176                BB->end());
3177   Sink->transferSuccessorsAndUpdatePHIs(BB);
3178 
3179   // Add successors.
3180   BB->addSuccessor(FBB);
3181   BB->addSuccessor(TBB);
3182   FBB->addSuccessor(Sink);
3183   TBB->addSuccessor(Sink);
3184 
3185   // Insert the real bnz.b instruction to $BB.
3186   BuildMI(BB, DL, TII->get(BranchOp))
3187       .addReg(MI.getOperand(1).getReg())
3188       .addMBB(TBB);
3189 
3190   // Fill $FBB.
3191   Register RD1 = RegInfo.createVirtualRegister(RC);
3192   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
3193     .addReg(Mips::ZERO).addImm(0);
3194   BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
3195 
3196   // Fill $TBB.
3197   Register RD2 = RegInfo.createVirtualRegister(RC);
3198   BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
3199     .addReg(Mips::ZERO).addImm(1);
3200 
3201   // Insert phi function to $Sink.
3202   BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
3203           MI.getOperand(0).getReg())
3204       .addReg(RD1)
3205       .addMBB(FBB)
3206       .addReg(RD2)
3207       .addMBB(TBB);
3208 
3209   MI.eraseFromParent(); // The pseudo instruction is gone now.
3210   return Sink;
3211 }
3212 
3213 // Emit the COPY_FW pseudo instruction.
3214 //
3215 // copy_fw_pseudo $fd, $ws, n
3216 // =>
3217 // copy_u_w $rt, $ws, $n
3218 // mtc1     $rt, $fd
3219 //
3220 // When n is zero, the equivalent operation can be performed with (potentially)
3221 // zero instructions due to register overlaps. This optimization is never valid
3222 // for lane 1 because it would require FR=0 mode which isn't supported by MSA.
3223 MachineBasicBlock *
3224 MipsSETargetLowering::emitCOPY_FW(MachineInstr &MI,
3225                                   MachineBasicBlock *BB) const {
3226   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3227   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3228   DebugLoc DL = MI.getDebugLoc();
3229   Register Fd = MI.getOperand(0).getReg();
3230   Register Ws = MI.getOperand(1).getReg();
3231   unsigned Lane = MI.getOperand(2).getImm();
3232 
3233   if (Lane == 0) {
3234     unsigned Wt = Ws;
3235     if (!Subtarget.useOddSPReg()) {
3236       // We must copy to an even-numbered MSA register so that the
3237       // single-precision sub-register is also guaranteed to be even-numbered.
3238       Wt = RegInfo.createVirtualRegister(&Mips::MSA128WEvensRegClass);
3239 
3240       BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Wt).addReg(Ws);
3241     }
3242 
3243     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3244   } else {
3245     Register Wt = RegInfo.createVirtualRegister(
3246         Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3247                                 : &Mips::MSA128WEvensRegClass);
3248 
3249     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
3250     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
3251   }
3252 
3253   MI.eraseFromParent(); // The pseudo instruction is gone now.
3254   return BB;
3255 }
3256 
3257 // Emit the COPY_FD pseudo instruction.
3258 //
3259 // copy_fd_pseudo $fd, $ws, n
3260 // =>
3261 // splati.d $wt, $ws, $n
3262 // copy $fd, $wt:sub_64
3263 //
3264 // When n is zero, the equivalent operation can be performed with (potentially)
3265 // zero instructions due to register overlaps. This optimization is always
3266 // valid because FR=1 mode which is the only supported mode in MSA.
3267 MachineBasicBlock *
3268 MipsSETargetLowering::emitCOPY_FD(MachineInstr &MI,
3269                                   MachineBasicBlock *BB) const {
3270   assert(Subtarget.isFP64bit());
3271 
3272   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3273   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3274   Register Fd = MI.getOperand(0).getReg();
3275   Register Ws = MI.getOperand(1).getReg();
3276   unsigned Lane = MI.getOperand(2).getImm() * 2;
3277   DebugLoc DL = MI.getDebugLoc();
3278 
3279   if (Lane == 0)
3280     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
3281   else {
3282     Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3283 
3284     BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
3285     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
3286   }
3287 
3288   MI.eraseFromParent(); // The pseudo instruction is gone now.
3289   return BB;
3290 }
3291 
3292 // Emit the INSERT_FW pseudo instruction.
3293 //
3294 // insert_fw_pseudo $wd, $wd_in, $n, $fs
3295 // =>
3296 // subreg_to_reg $wt:sub_lo, $fs
3297 // insve_w $wd[$n], $wd_in, $wt[0]
3298 MachineBasicBlock *
3299 MipsSETargetLowering::emitINSERT_FW(MachineInstr &MI,
3300                                     MachineBasicBlock *BB) const {
3301   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3302   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3303   DebugLoc DL = MI.getDebugLoc();
3304   Register Wd = MI.getOperand(0).getReg();
3305   Register Wd_in = MI.getOperand(1).getReg();
3306   unsigned Lane = MI.getOperand(2).getImm();
3307   Register Fs = MI.getOperand(3).getReg();
3308   Register Wt = RegInfo.createVirtualRegister(
3309       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3310                               : &Mips::MSA128WEvensRegClass);
3311 
3312   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3313       .addImm(0)
3314       .addReg(Fs)
3315       .addImm(Mips::sub_lo);
3316   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
3317       .addReg(Wd_in)
3318       .addImm(Lane)
3319       .addReg(Wt)
3320       .addImm(0);
3321 
3322   MI.eraseFromParent(); // The pseudo instruction is gone now.
3323   return BB;
3324 }
3325 
3326 // Emit the INSERT_FD pseudo instruction.
3327 //
3328 // insert_fd_pseudo $wd, $fs, n
3329 // =>
3330 // subreg_to_reg $wt:sub_64, $fs
3331 // insve_d $wd[$n], $wd_in, $wt[0]
3332 MachineBasicBlock *
3333 MipsSETargetLowering::emitINSERT_FD(MachineInstr &MI,
3334                                     MachineBasicBlock *BB) const {
3335   assert(Subtarget.isFP64bit());
3336 
3337   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3338   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3339   DebugLoc DL = MI.getDebugLoc();
3340   Register Wd = MI.getOperand(0).getReg();
3341   Register Wd_in = MI.getOperand(1).getReg();
3342   unsigned Lane = MI.getOperand(2).getImm();
3343   Register Fs = MI.getOperand(3).getReg();
3344   Register Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3345 
3346   BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3347       .addImm(0)
3348       .addReg(Fs)
3349       .addImm(Mips::sub_64);
3350   BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
3351       .addReg(Wd_in)
3352       .addImm(Lane)
3353       .addReg(Wt)
3354       .addImm(0);
3355 
3356   MI.eraseFromParent(); // The pseudo instruction is gone now.
3357   return BB;
3358 }
3359 
3360 // Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
3361 //
3362 // For integer:
3363 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
3364 // =>
3365 // (SLL $lanetmp1, $lane, <log2size)
3366 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3367 // (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3368 // (NEG $lanetmp2, $lanetmp1)
3369 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3370 //
3371 // For floating point:
3372 // (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3373 // =>
3374 // (SUBREG_TO_REG $wt, $fs, <subreg>)
3375 // (SLL $lanetmp1, $lane, <log2size)
3376 // (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3377 // (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3378 // (NEG $lanetmp2, $lanetmp1)
3379 // (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3380 MachineBasicBlock *MipsSETargetLowering::emitINSERT_DF_VIDX(
3381     MachineInstr &MI, MachineBasicBlock *BB, unsigned EltSizeInBytes,
3382     bool IsFP) const {
3383   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3384   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3385   DebugLoc DL = MI.getDebugLoc();
3386   Register Wd = MI.getOperand(0).getReg();
3387   Register SrcVecReg = MI.getOperand(1).getReg();
3388   Register LaneReg = MI.getOperand(2).getReg();
3389   Register SrcValReg = MI.getOperand(3).getReg();
3390 
3391   const TargetRegisterClass *VecRC = nullptr;
3392   // FIXME: This should be true for N32 too.
3393   const TargetRegisterClass *GPRRC =
3394       Subtarget.isABI_N64() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3395   unsigned SubRegIdx = Subtarget.isABI_N64() ? Mips::sub_32 : 0;
3396   unsigned ShiftOp = Subtarget.isABI_N64() ? Mips::DSLL : Mips::SLL;
3397   unsigned EltLog2Size;
3398   unsigned InsertOp = 0;
3399   unsigned InsveOp = 0;
3400   switch (EltSizeInBytes) {
3401   default:
3402     llvm_unreachable("Unexpected size");
3403   case 1:
3404     EltLog2Size = 0;
3405     InsertOp = Mips::INSERT_B;
3406     InsveOp = Mips::INSVE_B;
3407     VecRC = &Mips::MSA128BRegClass;
3408     break;
3409   case 2:
3410     EltLog2Size = 1;
3411     InsertOp = Mips::INSERT_H;
3412     InsveOp = Mips::INSVE_H;
3413     VecRC = &Mips::MSA128HRegClass;
3414     break;
3415   case 4:
3416     EltLog2Size = 2;
3417     InsertOp = Mips::INSERT_W;
3418     InsveOp = Mips::INSVE_W;
3419     VecRC = &Mips::MSA128WRegClass;
3420     break;
3421   case 8:
3422     EltLog2Size = 3;
3423     InsertOp = Mips::INSERT_D;
3424     InsveOp = Mips::INSVE_D;
3425     VecRC = &Mips::MSA128DRegClass;
3426     break;
3427   }
3428 
3429   if (IsFP) {
3430     Register Wt = RegInfo.createVirtualRegister(VecRC);
3431     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3432         .addImm(0)
3433         .addReg(SrcValReg)
3434         .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3435     SrcValReg = Wt;
3436   }
3437 
3438   // Convert the lane index into a byte index
3439   if (EltSizeInBytes != 1) {
3440     Register LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3441     BuildMI(*BB, MI, DL, TII->get(ShiftOp), LaneTmp1)
3442         .addReg(LaneReg)
3443         .addImm(EltLog2Size);
3444     LaneReg = LaneTmp1;
3445   }
3446 
3447   // Rotate bytes around so that the desired lane is element zero
3448   Register WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3449   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3450       .addReg(SrcVecReg)
3451       .addReg(SrcVecReg)
3452       .addReg(LaneReg, 0, SubRegIdx);
3453 
3454   Register WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3455   if (IsFP) {
3456     // Use insve.df to insert to element zero
3457     BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3458         .addReg(WdTmp1)
3459         .addImm(0)
3460         .addReg(SrcValReg)
3461         .addImm(0);
3462   } else {
3463     // Use insert.df to insert to element zero
3464     BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3465         .addReg(WdTmp1)
3466         .addReg(SrcValReg)
3467         .addImm(0);
3468   }
3469 
3470   // Rotate elements the rest of the way for a full rotation.
3471   // sld.df inteprets $rt modulo the number of columns so we only need to negate
3472   // the lane index to do this.
3473   Register LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3474   BuildMI(*BB, MI, DL, TII->get(Subtarget.isABI_N64() ? Mips::DSUB : Mips::SUB),
3475           LaneTmp2)
3476       .addReg(Subtarget.isABI_N64() ? Mips::ZERO_64 : Mips::ZERO)
3477       .addReg(LaneReg);
3478   BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3479       .addReg(WdTmp2)
3480       .addReg(WdTmp2)
3481       .addReg(LaneTmp2, 0, SubRegIdx);
3482 
3483   MI.eraseFromParent(); // The pseudo instruction is gone now.
3484   return BB;
3485 }
3486 
3487 // Emit the FILL_FW pseudo instruction.
3488 //
3489 // fill_fw_pseudo $wd, $fs
3490 // =>
3491 // implicit_def $wt1
3492 // insert_subreg $wt2:subreg_lo, $wt1, $fs
3493 // splati.w $wd, $wt2[0]
3494 MachineBasicBlock *
3495 MipsSETargetLowering::emitFILL_FW(MachineInstr &MI,
3496                                   MachineBasicBlock *BB) const {
3497   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3498   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3499   DebugLoc DL = MI.getDebugLoc();
3500   Register Wd = MI.getOperand(0).getReg();
3501   Register Fs = MI.getOperand(1).getReg();
3502   Register Wt1 = RegInfo.createVirtualRegister(
3503       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3504                               : &Mips::MSA128WEvensRegClass);
3505   Register Wt2 = RegInfo.createVirtualRegister(
3506       Subtarget.useOddSPReg() ? &Mips::MSA128WRegClass
3507                               : &Mips::MSA128WEvensRegClass);
3508 
3509   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3510   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3511       .addReg(Wt1)
3512       .addReg(Fs)
3513       .addImm(Mips::sub_lo);
3514   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3515 
3516   MI.eraseFromParent(); // The pseudo instruction is gone now.
3517   return BB;
3518 }
3519 
3520 // Emit the FILL_FD pseudo instruction.
3521 //
3522 // fill_fd_pseudo $wd, $fs
3523 // =>
3524 // implicit_def $wt1
3525 // insert_subreg $wt2:subreg_64, $wt1, $fs
3526 // splati.d $wd, $wt2[0]
3527 MachineBasicBlock *
3528 MipsSETargetLowering::emitFILL_FD(MachineInstr &MI,
3529                                   MachineBasicBlock *BB) const {
3530   assert(Subtarget.isFP64bit());
3531 
3532   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3533   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3534   DebugLoc DL = MI.getDebugLoc();
3535   Register Wd = MI.getOperand(0).getReg();
3536   Register Fs = MI.getOperand(1).getReg();
3537   Register Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3538   Register Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3539 
3540   BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3541   BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3542       .addReg(Wt1)
3543       .addReg(Fs)
3544       .addImm(Mips::sub_64);
3545   BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3546 
3547   MI.eraseFromParent(); // The pseudo instruction is gone now.
3548   return BB;
3549 }
3550 
3551 // Emit the ST_F16_PSEDUO instruction to store a f16 value from an MSA
3552 // register.
3553 //
3554 // STF16 MSA128F16:$wd, mem_simm10:$addr
3555 // =>
3556 //  copy_u.h $rtemp,$wd[0]
3557 //  sh $rtemp, $addr
3558 //
3559 // Safety: We can't use st.h & co as they would over write the memory after
3560 // the destination. It would require half floats be allocated 16 bytes(!) of
3561 // space.
3562 MachineBasicBlock *
3563 MipsSETargetLowering::emitST_F16_PSEUDO(MachineInstr &MI,
3564                                        MachineBasicBlock *BB) const {
3565 
3566   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3567   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3568   DebugLoc DL = MI.getDebugLoc();
3569   Register Ws = MI.getOperand(0).getReg();
3570   Register Rt = MI.getOperand(1).getReg();
3571   const MachineMemOperand &MMO = **MI.memoperands_begin();
3572   unsigned Imm = MMO.getOffset();
3573 
3574   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3575   //          spill and reload can expand as a GPR64 operand. Examine the
3576   //          operand in detail and default to ABI.
3577   const TargetRegisterClass *RC =
3578       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3579                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3580                                                         : &Mips::GPR64RegClass);
3581   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3582   Register Rs = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3583 
3584   BuildMI(*BB, MI, DL, TII->get(Mips::COPY_U_H), Rs).addReg(Ws).addImm(0);
3585   if(!UsingMips32) {
3586     Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR64RegClass);
3587     BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Tmp)
3588         .addImm(0)
3589         .addReg(Rs)
3590         .addImm(Mips::sub_32);
3591     Rs = Tmp;
3592   }
3593   BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::SH : Mips::SH64))
3594       .addReg(Rs)
3595       .addReg(Rt)
3596       .addImm(Imm)
3597       .addMemOperand(BB->getParent()->getMachineMemOperand(
3598           &MMO, MMO.getOffset(), MMO.getSize()));
3599 
3600   MI.eraseFromParent();
3601   return BB;
3602 }
3603 
3604 // Emit the LD_F16_PSEDUO instruction to load a f16 value into an MSA register.
3605 //
3606 // LD_F16 MSA128F16:$wd, mem_simm10:$addr
3607 // =>
3608 //  lh $rtemp, $addr
3609 //  fill.h $wd, $rtemp
3610 //
3611 // Safety: We can't use ld.h & co as they over-read from the source.
3612 // Additionally, if the address is not modulo 16, 2 cases can occur:
3613 //  a) Segmentation fault as the load instruction reads from a memory page
3614 //     memory it's not supposed to.
3615 //  b) The load crosses an implementation specific boundary, requiring OS
3616 //     intervention.
3617 MachineBasicBlock *
3618 MipsSETargetLowering::emitLD_F16_PSEUDO(MachineInstr &MI,
3619                                        MachineBasicBlock *BB) const {
3620 
3621   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3622   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3623   DebugLoc DL = MI.getDebugLoc();
3624   Register Wd = MI.getOperand(0).getReg();
3625 
3626   // Caution: A load via the GOT can expand to a GPR32 operand, a load via
3627   //          spill and reload can expand as a GPR64 operand. Examine the
3628   //          operand in detail and default to ABI.
3629   const TargetRegisterClass *RC =
3630       MI.getOperand(1).isReg() ? RegInfo.getRegClass(MI.getOperand(1).getReg())
3631                                : (Subtarget.isABI_O32() ? &Mips::GPR32RegClass
3632                                                         : &Mips::GPR64RegClass);
3633 
3634   const bool UsingMips32 = RC == &Mips::GPR32RegClass;
3635   Register Rt = RegInfo.createVirtualRegister(RC);
3636 
3637   MachineInstrBuilder MIB =
3638       BuildMI(*BB, MI, DL, TII->get(UsingMips32 ? Mips::LH : Mips::LH64), Rt);
3639   for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
3640     MIB.add(MO);
3641 
3642   if(!UsingMips32) {
3643     Register Tmp = RegInfo.createVirtualRegister(&Mips::GPR32RegClass);
3644     BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Tmp).addReg(Rt, 0, Mips::sub_32);
3645     Rt = Tmp;
3646   }
3647 
3648   BuildMI(*BB, MI, DL, TII->get(Mips::FILL_H), Wd).addReg(Rt);
3649 
3650   MI.eraseFromParent();
3651   return BB;
3652 }
3653 
3654 // Emit the FPROUND_PSEUDO instruction.
3655 //
3656 // Round an FGR64Opnd, FGR32Opnd to an f16.
3657 //
3658 // Safety: Cycle the operand through the GPRs so the result always ends up
3659 //         the correct MSA register.
3660 //
3661 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fs
3662 //        / FGR64Opnd:$Fs and MSA128F16:$Wd to the same physical register
3663 //        (which they can be, as the MSA registers are defined to alias the
3664 //        FPU's 64 bit and 32 bit registers) the result can be accessed using
3665 //        the correct register class. That requires operands be tie-able across
3666 //        register classes which have a sub/super register class relationship.
3667 //
3668 // For FPG32Opnd:
3669 //
3670 // FPROUND MSA128F16:$wd, FGR32Opnd:$fs
3671 // =>
3672 //  mfc1 $rtemp, $fs
3673 //  fill.w $rtemp, $wtemp
3674 //  fexdo.w $wd, $wtemp, $wtemp
3675 //
3676 // For FPG64Opnd on mips32r2+:
3677 //
3678 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3679 // =>
3680 //  mfc1 $rtemp, $fs
3681 //  fill.w $rtemp, $wtemp
3682 //  mfhc1 $rtemp2, $fs
3683 //  insert.w $wtemp[1], $rtemp2
3684 //  insert.w $wtemp[3], $rtemp2
3685 //  fexdo.w $wtemp2, $wtemp, $wtemp
3686 //  fexdo.h $wd, $temp2, $temp2
3687 //
3688 // For FGR64Opnd on mips64r2+:
3689 //
3690 // FPROUND MSA128F16:$wd, FGR64Opnd:$fs
3691 // =>
3692 //  dmfc1 $rtemp, $fs
3693 //  fill.d $rtemp, $wtemp
3694 //  fexdo.w $wtemp2, $wtemp, $wtemp
3695 //  fexdo.h $wd, $wtemp2, $wtemp2
3696 //
3697 // Safety note: As $wtemp is UNDEF, we may provoke a spurious exception if the
3698 //              undef bits are "just right" and the exception enable bits are
3699 //              set. By using fill.w to replicate $fs into all elements over
3700 //              insert.w for one element, we avoid that potiential case. If
3701 //              fexdo.[hw] causes an exception in, the exception is valid and it
3702 //              occurs for all elements.
3703 MachineBasicBlock *
3704 MipsSETargetLowering::emitFPROUND_PSEUDO(MachineInstr &MI,
3705                                          MachineBasicBlock *BB,
3706                                          bool IsFGR64) const {
3707 
3708   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3709   // here. It's technically doable to support MIPS32 here, but the ISA forbids
3710   // it.
3711   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3712 
3713   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3714   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3715 
3716   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3717   DebugLoc DL = MI.getDebugLoc();
3718   Register Wd = MI.getOperand(0).getReg();
3719   Register Fs = MI.getOperand(1).getReg();
3720 
3721   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3722   Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3723   const TargetRegisterClass *GPRRC =
3724       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3725   unsigned MFC1Opc = IsFGR64onMips64
3726                          ? Mips::DMFC1
3727                          : (IsFGR64onMips32 ? Mips::MFC1_D64 : Mips::MFC1);
3728   unsigned FILLOpc = IsFGR64onMips64 ? Mips::FILL_D : Mips::FILL_W;
3729 
3730   // Perform the register class copy as mentioned above.
3731   Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3732   BuildMI(*BB, MI, DL, TII->get(MFC1Opc), Rtemp).addReg(Fs);
3733   BuildMI(*BB, MI, DL, TII->get(FILLOpc), Wtemp).addReg(Rtemp);
3734   unsigned WPHI = Wtemp;
3735 
3736   if (IsFGR64onMips32) {
3737     Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3738     BuildMI(*BB, MI, DL, TII->get(Mips::MFHC1_D64), Rtemp2).addReg(Fs);
3739     Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3740     Register Wtemp3 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3741     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp2)
3742         .addReg(Wtemp)
3743         .addReg(Rtemp2)
3744         .addImm(1);
3745     BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_W), Wtemp3)
3746         .addReg(Wtemp2)
3747         .addReg(Rtemp2)
3748         .addImm(3);
3749     WPHI = Wtemp3;
3750   }
3751 
3752   if (IsFGR64) {
3753     Register Wtemp2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3754     BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_W), Wtemp2)
3755         .addReg(WPHI)
3756         .addReg(WPHI);
3757     WPHI = Wtemp2;
3758   }
3759 
3760   BuildMI(*BB, MI, DL, TII->get(Mips::FEXDO_H), Wd).addReg(WPHI).addReg(WPHI);
3761 
3762   MI.eraseFromParent();
3763   return BB;
3764 }
3765 
3766 // Emit the FPEXTEND_PSEUDO instruction.
3767 //
3768 // Expand an f16 to either a FGR32Opnd or FGR64Opnd.
3769 //
3770 // Safety: Cycle the result through the GPRs so the result always ends up
3771 //         the correct floating point register.
3772 //
3773 // FIXME: This copying is strictly unnecessary. If we could tie FGR32Opnd:$Fd
3774 //        / FGR64Opnd:$Fd and MSA128F16:$Ws to the same physical register
3775 //        (which they can be, as the MSA registers are defined to alias the
3776 //        FPU's 64 bit and 32 bit registers) the result can be accessed using
3777 //        the correct register class. That requires operands be tie-able across
3778 //        register classes which have a sub/super register class relationship. I
3779 //        haven't checked.
3780 //
3781 // For FGR32Opnd:
3782 //
3783 // FPEXTEND FGR32Opnd:$fd, MSA128F16:$ws
3784 // =>
3785 //  fexupr.w $wtemp, $ws
3786 //  copy_s.w $rtemp, $ws[0]
3787 //  mtc1 $rtemp, $fd
3788 //
3789 // For FGR64Opnd on Mips64:
3790 //
3791 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3792 // =>
3793 //  fexupr.w $wtemp, $ws
3794 //  fexupr.d $wtemp2, $wtemp
3795 //  copy_s.d $rtemp, $wtemp2s[0]
3796 //  dmtc1 $rtemp, $fd
3797 //
3798 // For FGR64Opnd on Mips32:
3799 //
3800 // FPEXTEND FGR64Opnd:$fd, MSA128F16:$ws
3801 // =>
3802 //  fexupr.w $wtemp, $ws
3803 //  fexupr.d $wtemp2, $wtemp
3804 //  copy_s.w $rtemp, $wtemp2[0]
3805 //  mtc1 $rtemp, $ftemp
3806 //  copy_s.w $rtemp2, $wtemp2[1]
3807 //  $fd = mthc1 $rtemp2, $ftemp
3808 MachineBasicBlock *
3809 MipsSETargetLowering::emitFPEXTEND_PSEUDO(MachineInstr &MI,
3810                                           MachineBasicBlock *BB,
3811                                           bool IsFGR64) const {
3812 
3813   // Strictly speaking, we need MIPS32R5 to support MSA. We'll be generous
3814   // here. It's technically doable to support MIPS32 here, but the ISA forbids
3815   // it.
3816   assert(Subtarget.hasMSA() && Subtarget.hasMips32r2());
3817 
3818   bool IsFGR64onMips64 = Subtarget.hasMips64() && IsFGR64;
3819   bool IsFGR64onMips32 = !Subtarget.hasMips64() && IsFGR64;
3820 
3821   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3822   DebugLoc DL = MI.getDebugLoc();
3823   Register Fd = MI.getOperand(0).getReg();
3824   Register Ws = MI.getOperand(1).getReg();
3825 
3826   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3827   const TargetRegisterClass *GPRRC =
3828       IsFGR64onMips64 ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3829   unsigned MTC1Opc = IsFGR64onMips64
3830                          ? Mips::DMTC1
3831                          : (IsFGR64onMips32 ? Mips::MTC1_D64 : Mips::MTC1);
3832   Register COPYOpc = IsFGR64onMips64 ? Mips::COPY_S_D : Mips::COPY_S_W;
3833 
3834   Register Wtemp = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3835   Register WPHI = Wtemp;
3836 
3837   BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_W), Wtemp).addReg(Ws);
3838   if (IsFGR64) {
3839     WPHI = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3840     BuildMI(*BB, MI, DL, TII->get(Mips::FEXUPR_D), WPHI).addReg(Wtemp);
3841   }
3842 
3843   // Perform the safety regclass copy mentioned above.
3844   Register Rtemp = RegInfo.createVirtualRegister(GPRRC);
3845   Register FPRPHI = IsFGR64onMips32
3846                         ? RegInfo.createVirtualRegister(&Mips::FGR64RegClass)
3847                         : Fd;
3848   BuildMI(*BB, MI, DL, TII->get(COPYOpc), Rtemp).addReg(WPHI).addImm(0);
3849   BuildMI(*BB, MI, DL, TII->get(MTC1Opc), FPRPHI).addReg(Rtemp);
3850 
3851   if (IsFGR64onMips32) {
3852     Register Rtemp2 = RegInfo.createVirtualRegister(GPRRC);
3853     BuildMI(*BB, MI, DL, TII->get(Mips::COPY_S_W), Rtemp2)
3854         .addReg(WPHI)
3855         .addImm(1);
3856     BuildMI(*BB, MI, DL, TII->get(Mips::MTHC1_D64), Fd)
3857         .addReg(FPRPHI)
3858         .addReg(Rtemp2);
3859   }
3860 
3861   MI.eraseFromParent();
3862   return BB;
3863 }
3864 
3865 // Emit the FEXP2_W_1 pseudo instructions.
3866 //
3867 // fexp2_w_1_pseudo $wd, $wt
3868 // =>
3869 // ldi.w $ws, 1
3870 // fexp2.w $wd, $ws, $wt
3871 MachineBasicBlock *
3872 MipsSETargetLowering::emitFEXP2_W_1(MachineInstr &MI,
3873                                     MachineBasicBlock *BB) const {
3874   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3875   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3876   const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3877   Register Ws1 = RegInfo.createVirtualRegister(RC);
3878   Register Ws2 = RegInfo.createVirtualRegister(RC);
3879   DebugLoc DL = MI.getDebugLoc();
3880 
3881   // Splat 1.0 into a vector
3882   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3883   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3884 
3885   // Emit 1.0 * fexp2(Wt)
3886   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI.getOperand(0).getReg())
3887       .addReg(Ws2)
3888       .addReg(MI.getOperand(1).getReg());
3889 
3890   MI.eraseFromParent(); // The pseudo instruction is gone now.
3891   return BB;
3892 }
3893 
3894 // Emit the FEXP2_D_1 pseudo instructions.
3895 //
3896 // fexp2_d_1_pseudo $wd, $wt
3897 // =>
3898 // ldi.d $ws, 1
3899 // fexp2.d $wd, $ws, $wt
3900 MachineBasicBlock *
3901 MipsSETargetLowering::emitFEXP2_D_1(MachineInstr &MI,
3902                                     MachineBasicBlock *BB) const {
3903   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
3904   MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3905   const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3906   Register Ws1 = RegInfo.createVirtualRegister(RC);
3907   Register Ws2 = RegInfo.createVirtualRegister(RC);
3908   DebugLoc DL = MI.getDebugLoc();
3909 
3910   // Splat 1.0 into a vector
3911   BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3912   BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3913 
3914   // Emit 1.0 * fexp2(Wt)
3915   BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI.getOperand(0).getReg())
3916       .addReg(Ws2)
3917       .addReg(MI.getOperand(1).getReg());
3918 
3919   MI.eraseFromParent(); // The pseudo instruction is gone now.
3920   return BB;
3921 }
3922