xref: /llvm-project/llvm/lib/Target/Mips/MipsInstrInfo.cpp (revision 677177bb60dbe0d551251058c28466c5d74cebac)
1 //===- MipsInstrInfo.cpp - Mips Instruction Information -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Mips implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MipsInstrInfo.h"
14 #include "MCTargetDesc/MipsBaseInfo.h"
15 #include "MCTargetDesc/MipsMCTargetDesc.h"
16 #include "Mips.h"
17 #include "MipsSubtarget.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include <cassert>
32 
33 using namespace llvm;
34 
35 #define GET_INSTRINFO_CTOR_DTOR
36 #include "MipsGenInstrInfo.inc"
37 
38 // Pin the vtable to this file.
39 void MipsInstrInfo::anchor() {}
40 
41 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr)
42     : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP),
43       Subtarget(STI), UncondBrOpc(UncondBr) {}
44 
45 const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) {
46   if (STI.inMips16Mode())
47     return createMips16InstrInfo(STI);
48 
49   return createMipsSEInstrInfo(STI);
50 }
51 
52 bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const {
53   return op.isImm() && op.getImm() == 0;
54 }
55 
56 /// insertNoop - If data hazard condition is found insert the target nop
57 /// instruction.
58 void MipsInstrInfo::
59 insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const
60 {
61   DebugLoc DL;
62   BuildMI(MBB, MI, DL, get(Mips::NOP));
63 }
64 
65 MachineInstrBuilder MipsInstrInfo::insertNop(MachineBasicBlock &MBB,
66                                              MachineBasicBlock::iterator MI,
67                                              DebugLoc DL) const {
68   assert(!Subtarget.inMips16Mode() &&
69          "insertNop does not support MIPS16e mode at this time");
70   const unsigned MMOpc =
71       Subtarget.hasMips32r6() ? Mips::SLL_MMR6 : Mips::SLL_MM;
72   const unsigned Opc =
73       Subtarget.inMicroMipsMode() ? MMOpc : (unsigned)Mips::SLL;
74   return BuildMI(MBB, MI, DL, get(Opc), Mips::ZERO)
75       .addReg(Mips::ZERO)
76       .addImm(0);
77 }
78 
79 MachineMemOperand *
80 MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI,
81                              MachineMemOperand::Flags Flags) const {
82   MachineFunction &MF = *MBB.getParent();
83   MachineFrameInfo &MFI = MF.getFrameInfo();
84 
85   return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
86                                  Flags, MFI.getObjectSize(FI),
87                                  MFI.getObjectAlign(FI));
88 }
89 
90 //===----------------------------------------------------------------------===//
91 // Branch Analysis
92 //===----------------------------------------------------------------------===//
93 
94 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc,
95                                   MachineBasicBlock *&BB,
96                                   SmallVectorImpl<MachineOperand> &Cond) const {
97   assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch");
98   int NumOp = Inst->getNumExplicitOperands();
99 
100   // for both int and fp branches, the last explicit operand is the
101   // MBB.
102   BB = Inst->getOperand(NumOp-1).getMBB();
103   Cond.push_back(MachineOperand::CreateImm(Opc));
104 
105   for (int i = 0; i < NumOp-1; i++)
106     Cond.push_back(Inst->getOperand(i));
107 }
108 
109 bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
110                                   MachineBasicBlock *&TBB,
111                                   MachineBasicBlock *&FBB,
112                                   SmallVectorImpl<MachineOperand> &Cond,
113                                   bool AllowModify) const {
114   SmallVector<MachineInstr*, 2> BranchInstrs;
115   BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs);
116 
117   return (BT == BT_None) || (BT == BT_Indirect);
118 }
119 
120 void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
121                                 const DebugLoc &DL,
122                                 ArrayRef<MachineOperand> Cond) const {
123   unsigned Opc = Cond[0].getImm();
124   const MCInstrDesc &MCID = get(Opc);
125   MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID);
126 
127   for (unsigned i = 1; i < Cond.size(); ++i) {
128     assert((Cond[i].isImm() || Cond[i].isReg()) &&
129            "Cannot copy operand for conditional branch!");
130     MIB.add(Cond[i]);
131   }
132   MIB.addMBB(TBB);
133 }
134 
135 unsigned MipsInstrInfo::insertBranch(MachineBasicBlock &MBB,
136                                      MachineBasicBlock *TBB,
137                                      MachineBasicBlock *FBB,
138                                      ArrayRef<MachineOperand> Cond,
139                                      const DebugLoc &DL,
140                                      int *BytesAdded) const {
141   // Shouldn't be a fall through.
142   assert(TBB && "insertBranch must not be told to insert a fallthrough");
143   assert(!BytesAdded && "code size not handled");
144 
145   // # of condition operands:
146   //  Unconditional branches: 0
147   //  Floating point branches: 1 (opc)
148   //  Int BranchZero: 2 (opc, reg)
149   //  Int Branch: 3 (opc, reg0, reg1)
150   assert((Cond.size() <= 3) &&
151          "# of Mips branch conditions must be <= 3!");
152 
153   // Two-way Conditional branch.
154   if (FBB) {
155     BuildCondBr(MBB, TBB, DL, Cond);
156     BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB);
157     return 2;
158   }
159 
160   // One way branch.
161   // Unconditional branch.
162   if (Cond.empty())
163     BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB);
164   else // Conditional branch.
165     BuildCondBr(MBB, TBB, DL, Cond);
166   return 1;
167 }
168 
169 unsigned MipsInstrInfo::removeBranch(MachineBasicBlock &MBB,
170                                      int *BytesRemoved) const {
171   assert(!BytesRemoved && "code size not handled");
172 
173   MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
174   unsigned removed = 0;
175 
176   // Up to 2 branches are removed.
177   // Note that indirect branches are not removed.
178   while (I != REnd && removed < 2) {
179     // Skip past debug instructions.
180     if (I->isDebugInstr()) {
181       ++I;
182       continue;
183     }
184     if (!getAnalyzableBrOpc(I->getOpcode()))
185       break;
186     // Remove the branch.
187     I->eraseFromParent();
188     I = MBB.rbegin();
189     ++removed;
190   }
191 
192   return removed;
193 }
194 
195 /// reverseBranchCondition - Return the inverse opcode of the
196 /// specified Branch instruction.
197 bool MipsInstrInfo::reverseBranchCondition(
198     SmallVectorImpl<MachineOperand> &Cond) const {
199   assert( (Cond.size() && Cond.size() <= 3) &&
200           "Invalid Mips branch condition!");
201   Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm()));
202   return false;
203 }
204 
205 MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch(
206     MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB,
207     SmallVectorImpl<MachineOperand> &Cond, bool AllowModify,
208     SmallVectorImpl<MachineInstr *> &BranchInstrs) const {
209   MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend();
210 
211   // Skip all the debug instructions.
212   while (I != REnd && I->isDebugInstr())
213     ++I;
214 
215   if (I == REnd || !isUnpredicatedTerminator(*I)) {
216     // This block ends with no branches (it just falls through to its succ).
217     // Leave TBB/FBB null.
218     TBB = FBB = nullptr;
219     return BT_NoBranch;
220   }
221 
222   MachineInstr *LastInst = &*I;
223   unsigned LastOpc = LastInst->getOpcode();
224   BranchInstrs.push_back(LastInst);
225 
226   // Not an analyzable branch (e.g., indirect jump).
227   if (!getAnalyzableBrOpc(LastOpc))
228     return LastInst->isIndirectBranch() ? BT_Indirect : BT_None;
229 
230   // Get the second to last instruction in the block.
231   unsigned SecondLastOpc = 0;
232   MachineInstr *SecondLastInst = nullptr;
233 
234   // Skip past any debug instruction to see if the second last actual
235   // is a branch.
236   ++I;
237   while (I != REnd && I->isDebugInstr())
238     ++I;
239 
240   if (I != REnd) {
241     SecondLastInst = &*I;
242     SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode());
243 
244     // Not an analyzable branch (must be an indirect jump).
245     if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc)
246       return BT_None;
247   }
248 
249   // If there is only one terminator instruction, process it.
250   if (!SecondLastOpc) {
251     // Unconditional branch.
252     if (LastInst->isUnconditionalBranch()) {
253       TBB = LastInst->getOperand(0).getMBB();
254       return BT_Uncond;
255     }
256 
257     // Conditional branch
258     AnalyzeCondBr(LastInst, LastOpc, TBB, Cond);
259     return BT_Cond;
260   }
261 
262   // If we reached here, there are two branches.
263   // If there are three terminators, we don't know what sort of block this is.
264   if (++I != REnd && isUnpredicatedTerminator(*I))
265     return BT_None;
266 
267   BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst);
268 
269   // If second to last instruction is an unconditional branch,
270   // analyze it and remove the last instruction.
271   if (SecondLastInst->isUnconditionalBranch()) {
272     // Return if the last instruction cannot be removed.
273     if (!AllowModify)
274       return BT_None;
275 
276     TBB = SecondLastInst->getOperand(0).getMBB();
277     LastInst->eraseFromParent();
278     BranchInstrs.pop_back();
279     return BT_Uncond;
280   }
281 
282   // Conditional branch followed by an unconditional branch.
283   // The last one must be unconditional.
284   if (!LastInst->isUnconditionalBranch())
285     return BT_None;
286 
287   AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond);
288   FBB = LastInst->getOperand(0).getMBB();
289 
290   return BT_CondUncond;
291 }
292 
293 bool MipsInstrInfo::isBranchOffsetInRange(unsigned BranchOpc,
294                                           int64_t BrOffset) const {
295   switch (BranchOpc) {
296   case Mips::B:
297   case Mips::BAL:
298   case Mips::BAL_BR:
299   case Mips::BAL_BR_MM:
300   case Mips::BC1F:
301   case Mips::BC1FL:
302   case Mips::BC1T:
303   case Mips::BC1TL:
304   case Mips::BEQ:     case Mips::BEQ64:
305   case Mips::BEQL:
306   case Mips::BGEZ:    case Mips::BGEZ64:
307   case Mips::BGEZL:
308   case Mips::BGEZAL:
309   case Mips::BGEZALL:
310   case Mips::BGTZ:    case Mips::BGTZ64:
311   case Mips::BGTZL:
312   case Mips::BLEZ:    case Mips::BLEZ64:
313   case Mips::BLEZL:
314   case Mips::BLTZ:    case Mips::BLTZ64:
315   case Mips::BLTZL:
316   case Mips::BLTZAL:
317   case Mips::BLTZALL:
318   case Mips::BNE:     case Mips::BNE64:
319   case Mips::BNEL:
320     return isInt<18>(BrOffset);
321 
322   // microMIPSr3 branches
323   case Mips::B_MM:
324   case Mips::BC1F_MM:
325   case Mips::BC1T_MM:
326   case Mips::BEQ_MM:
327   case Mips::BGEZ_MM:
328   case Mips::BGEZAL_MM:
329   case Mips::BGTZ_MM:
330   case Mips::BLEZ_MM:
331   case Mips::BLTZ_MM:
332   case Mips::BLTZAL_MM:
333   case Mips::BNE_MM:
334   case Mips::BEQZC_MM:
335   case Mips::BNEZC_MM:
336     return isInt<17>(BrOffset);
337 
338   // microMIPSR3 short branches.
339   case Mips::B16_MM:
340     return isInt<11>(BrOffset);
341 
342   case Mips::BEQZ16_MM:
343   case Mips::BNEZ16_MM:
344     return isInt<8>(BrOffset);
345 
346   // MIPSR6 branches.
347   case Mips::BALC:
348   case Mips::BC:
349     return isInt<28>(BrOffset);
350 
351   case Mips::BC1EQZ:
352   case Mips::BC1NEZ:
353   case Mips::BC2EQZ:
354   case Mips::BC2NEZ:
355   case Mips::BEQC:   case Mips::BEQC64:
356   case Mips::BNEC:   case Mips::BNEC64:
357   case Mips::BGEC:   case Mips::BGEC64:
358   case Mips::BGEUC:  case Mips::BGEUC64:
359   case Mips::BGEZC:  case Mips::BGEZC64:
360   case Mips::BGTZC:  case Mips::BGTZC64:
361   case Mips::BLEZC:  case Mips::BLEZC64:
362   case Mips::BLTC:   case Mips::BLTC64:
363   case Mips::BLTUC:  case Mips::BLTUC64:
364   case Mips::BLTZC:  case Mips::BLTZC64:
365   case Mips::BNVC:
366   case Mips::BOVC:
367   case Mips::BGEZALC:
368   case Mips::BEQZALC:
369   case Mips::BGTZALC:
370   case Mips::BLEZALC:
371   case Mips::BLTZALC:
372   case Mips::BNEZALC:
373     return isInt<18>(BrOffset);
374 
375   case Mips::BEQZC:  case Mips::BEQZC64:
376   case Mips::BNEZC:  case Mips::BNEZC64:
377     return isInt<23>(BrOffset);
378 
379   // microMIPSR6 branches
380   case Mips::BC16_MMR6:
381     return isInt<11>(BrOffset);
382 
383   case Mips::BEQZC16_MMR6:
384   case Mips::BNEZC16_MMR6:
385     return isInt<8>(BrOffset);
386 
387   case Mips::BALC_MMR6:
388   case Mips::BC_MMR6:
389     return isInt<27>(BrOffset);
390 
391   case Mips::BC1EQZC_MMR6:
392   case Mips::BC1NEZC_MMR6:
393   case Mips::BC2EQZC_MMR6:
394   case Mips::BC2NEZC_MMR6:
395   case Mips::BGEZALC_MMR6:
396   case Mips::BEQZALC_MMR6:
397   case Mips::BGTZALC_MMR6:
398   case Mips::BLEZALC_MMR6:
399   case Mips::BLTZALC_MMR6:
400   case Mips::BNEZALC_MMR6:
401   case Mips::BNVC_MMR6:
402   case Mips::BOVC_MMR6:
403     return isInt<17>(BrOffset);
404 
405   case Mips::BEQC_MMR6:
406   case Mips::BNEC_MMR6:
407   case Mips::BGEC_MMR6:
408   case Mips::BGEUC_MMR6:
409   case Mips::BGEZC_MMR6:
410   case Mips::BGTZC_MMR6:
411   case Mips::BLEZC_MMR6:
412   case Mips::BLTC_MMR6:
413   case Mips::BLTUC_MMR6:
414   case Mips::BLTZC_MMR6:
415     return isInt<18>(BrOffset);
416 
417   case Mips::BEQZC_MMR6:
418   case Mips::BNEZC_MMR6:
419     return isInt<23>(BrOffset);
420 
421   // DSP branches.
422   case Mips::BPOSGE32:
423     return isInt<18>(BrOffset);
424   case Mips::BPOSGE32_MM:
425   case Mips::BPOSGE32C_MMR3:
426     return isInt<17>(BrOffset);
427 
428   // cnMIPS branches.
429   case Mips::BBIT0:
430   case Mips::BBIT032:
431   case Mips::BBIT1:
432   case Mips::BBIT132:
433     return isInt<18>(BrOffset);
434 
435   // MSA branches.
436   case Mips::BZ_B:
437   case Mips::BZ_H:
438   case Mips::BZ_W:
439   case Mips::BZ_D:
440   case Mips::BZ_V:
441   case Mips::BNZ_B:
442   case Mips::BNZ_H:
443   case Mips::BNZ_W:
444   case Mips::BNZ_D:
445   case Mips::BNZ_V:
446     return isInt<18>(BrOffset);
447   }
448 
449   llvm_unreachable("Unknown branch instruction!");
450 }
451 
452 /// Return the corresponding compact (no delay slot) form of a branch.
453 unsigned MipsInstrInfo::getEquivalentCompactForm(
454     const MachineBasicBlock::iterator I) const {
455   unsigned Opcode = I->getOpcode();
456   bool canUseShortMicroMipsCTI = false;
457 
458   if (Subtarget.inMicroMipsMode()) {
459     switch (Opcode) {
460     case Mips::BNE:
461     case Mips::BNE_MM:
462     case Mips::BEQ:
463     case Mips::BEQ_MM:
464     // microMIPS has NE,EQ branches that do not have delay slots provided one
465     // of the operands is zero.
466       if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg())
467         canUseShortMicroMipsCTI = true;
468       break;
469     // For microMIPS the PseudoReturn and PseudoIndirectBranch are always
470     // expanded to JR_MM, so they can be replaced with JRC16_MM.
471     case Mips::JR:
472     case Mips::PseudoReturn:
473     case Mips::PseudoIndirectBranch:
474       canUseShortMicroMipsCTI = true;
475       break;
476     }
477   }
478 
479   // MIPSR6 forbids both operands being the zero register.
480   if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) &&
481       (I->getOperand(0).isReg() &&
482        (I->getOperand(0).getReg() == Mips::ZERO ||
483         I->getOperand(0).getReg() == Mips::ZERO_64)) &&
484       (I->getOperand(1).isReg() &&
485        (I->getOperand(1).getReg() == Mips::ZERO ||
486         I->getOperand(1).getReg() == Mips::ZERO_64)))
487     return 0;
488 
489   if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) {
490     switch (Opcode) {
491     case Mips::B:
492       return Mips::BC;
493     case Mips::BAL:
494       return Mips::BALC;
495     case Mips::BEQ:
496     case Mips::BEQ_MM:
497       if (canUseShortMicroMipsCTI)
498         return Mips::BEQZC_MM;
499       else if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
500         return 0;
501       return Mips::BEQC;
502     case Mips::BNE:
503     case Mips::BNE_MM:
504       if (canUseShortMicroMipsCTI)
505         return Mips::BNEZC_MM;
506       else if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
507         return 0;
508       return Mips::BNEC;
509     case Mips::BGE:
510       if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
511         return 0;
512       return Mips::BGEC;
513     case Mips::BGEU:
514       if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
515         return 0;
516       return Mips::BGEUC;
517     case Mips::BGEZ:
518       return Mips::BGEZC;
519     case Mips::BGTZ:
520       return Mips::BGTZC;
521     case Mips::BLEZ:
522       return Mips::BLEZC;
523     case Mips::BLT:
524       if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
525         return 0;
526       return Mips::BLTC;
527     case Mips::BLTU:
528       if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
529         return 0;
530       return Mips::BLTUC;
531     case Mips::BLTZ:
532       return Mips::BLTZC;
533     case Mips::BEQ64:
534       if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
535         return 0;
536       return Mips::BEQC64;
537     case Mips::BNE64:
538       if (I->getOperand(0).getReg() == I->getOperand(1).getReg())
539         return 0;
540       return Mips::BNEC64;
541     case Mips::BGTZ64:
542       return Mips::BGTZC64;
543     case Mips::BGEZ64:
544       return Mips::BGEZC64;
545     case Mips::BLTZ64:
546       return Mips::BLTZC64;
547     case Mips::BLEZ64:
548       return Mips::BLEZC64;
549     // For MIPSR6, the instruction 'jic' can be used for these cases. Some
550     // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'.
551     case Mips::JR:
552     case Mips::PseudoIndirectBranchR6:
553     case Mips::PseudoReturn:
554     case Mips::TAILCALLR6REG:
555       if (canUseShortMicroMipsCTI)
556         return Mips::JRC16_MM;
557       return Mips::JIC;
558     case Mips::JALRPseudo:
559       return Mips::JIALC;
560     case Mips::JR64:
561     case Mips::PseudoIndirectBranch64R6:
562     case Mips::PseudoReturn64:
563     case Mips::TAILCALL64R6REG:
564       return Mips::JIC64;
565     case Mips::JALR64Pseudo:
566       return Mips::JIALC64;
567     default:
568       return 0;
569     }
570   }
571 
572   return 0;
573 }
574 
575 bool MipsInstrInfo::SafeAfterMflo(const MachineInstr &MI) const {
576   if (IsDIVMULT(MI.getOpcode()))
577     return false;
578 
579   return true;
580 }
581 
582 /// Predicate for distingushing between control transfer instructions and all
583 /// other instructions for handling forbidden slots. Consider inline assembly
584 /// as unsafe as well.
585 bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const {
586   if (MI.isInlineAsm())
587     return false;
588 
589   return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0;
590 }
591 
592 bool MipsInstrInfo::SafeInFPUDelaySlot(const MachineInstr &MIInSlot,
593                                        const MachineInstr &FPUMI) const {
594   if (MIInSlot.isInlineAsm())
595     return false;
596 
597   if (HasFPUDelaySlot(MIInSlot))
598     return false;
599 
600   switch (MIInSlot.getOpcode()) {
601   case Mips::BC1F:
602   case Mips::BC1FL:
603   case Mips::BC1T:
604   case Mips::BC1TL:
605     return false;
606   }
607 
608   for (const MachineOperand &Op : FPUMI.defs()) {
609     if (!Op.isReg())
610       continue;
611 
612     bool Reads, Writes;
613     std::tie(Reads, Writes) = MIInSlot.readsWritesVirtualRegister(Op.getReg());
614 
615     if (Reads || Writes)
616       return false;
617   }
618 
619   return true;
620 }
621 
622 /// Predicate for distinguishing instructions that are hazardous in a load delay
623 /// slot. Consider inline assembly as unsafe as well.
624 bool MipsInstrInfo::SafeInLoadDelaySlot(const MachineInstr &MIInSlot,
625                                         const MachineInstr &LoadMI) const {
626   if (MIInSlot.isInlineAsm())
627     return false;
628 
629   return !llvm::any_of(LoadMI.defs(), [&](const MachineOperand &Op) {
630     return Op.isReg() && MIInSlot.readsRegister(Op.getReg(), /*TRI=*/nullptr);
631   });
632 }
633 
634 bool MipsInstrInfo::IsMfloOrMfhi(const MachineInstr &MI) const {
635   if (IsMFLOMFHI(MI.getOpcode()))
636     return true;
637 
638   return false;
639 }
640 
641 /// Predicate for distingushing instructions that have forbidden slots.
642 bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const {
643   return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0;
644 }
645 
646 /// Predicate for distingushing instructions that have FPU delay slots.
647 bool MipsInstrInfo::HasFPUDelaySlot(const MachineInstr &MI) const {
648   switch (MI.getOpcode()) {
649   case Mips::MTC1:
650   case Mips::MFC1:
651   case Mips::MTC1_D64:
652   case Mips::MFC1_D64:
653   case Mips::DMTC1:
654   case Mips::DMFC1:
655   case Mips::FCMP_S32:
656   case Mips::FCMP_D32:
657   case Mips::FCMP_D64:
658     return true;
659 
660   default:
661     return false;
662   }
663 }
664 
665 /// Predicate for distingushing instructions that have load delay slots.
666 bool MipsInstrInfo::HasLoadDelaySlot(const MachineInstr &MI) const {
667   switch (MI.getOpcode()) {
668   case Mips::LB:
669   case Mips::LBu:
670   case Mips::LH:
671   case Mips::LHu:
672   case Mips::LW:
673   case Mips::LWR:
674   case Mips::LWL:
675     return true;
676   default:
677     return false;
678   }
679 }
680 
681 /// Return the number of bytes of code the specified instruction may be.
682 unsigned MipsInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
683   switch (MI.getOpcode()) {
684   default:
685     return MI.getDesc().getSize();
686   case  TargetOpcode::INLINEASM:
687   case  TargetOpcode::INLINEASM_BR: {       // Inline Asm: Variable size.
688     const MachineFunction *MF = MI.getParent()->getParent();
689     const char *AsmStr = MI.getOperand(0).getSymbolName();
690     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
691   }
692   case Mips::CONSTPOOL_ENTRY:
693     // If this machine instr is a constant pool entry, its size is recorded as
694     // operand #2.
695     return MI.getOperand(2).getImm();
696   }
697 }
698 
699 MachineInstrBuilder
700 MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc,
701                                   MachineBasicBlock::iterator I) const {
702   MachineInstrBuilder MIB;
703 
704   // Certain branches have two forms: e.g beq $1, $zero, dest vs beqz $1, dest
705   // Pick the zero form of the branch for readable assembly and for greater
706   // branch distance in non-microMIPS mode.
707   // Additional MIPSR6 does not permit the use of register $zero for compact
708   // branches.
709   // FIXME: Certain atomic sequences on mips64 generate 32bit references to
710   // Mips::ZERO, which is incorrect. This test should be updated to use
711   // Subtarget.getABI().GetZeroReg() when those atomic sequences and others
712   // are fixed.
713   int ZeroOperandPosition = -1;
714   bool BranchWithZeroOperand = false;
715   if (I->isBranch() && !I->isPseudo()) {
716     auto TRI = I->getParent()->getParent()->getSubtarget().getRegisterInfo();
717     ZeroOperandPosition = I->findRegisterUseOperandIdx(Mips::ZERO, TRI, false);
718     BranchWithZeroOperand = ZeroOperandPosition != -1;
719   }
720 
721   if (BranchWithZeroOperand) {
722     switch (NewOpc) {
723     case Mips::BEQC:
724       NewOpc = Mips::BEQZC;
725       break;
726     case Mips::BNEC:
727       NewOpc = Mips::BNEZC;
728       break;
729     case Mips::BGEC:
730       NewOpc = Mips::BGEZC;
731       break;
732     case Mips::BLTC:
733       NewOpc = Mips::BLTZC;
734       break;
735     case Mips::BEQC64:
736       NewOpc = Mips::BEQZC64;
737       break;
738     case Mips::BNEC64:
739       NewOpc = Mips::BNEZC64;
740       break;
741     }
742   }
743 
744   MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc));
745 
746   // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an
747   // immediate 0 as an operand and requires the removal of it's implicit-def %ra
748   // implicit operand as copying the implicit operations of the instructio we're
749   // looking at will give us the correct flags.
750   if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 ||
751       NewOpc == Mips::JIALC64) {
752 
753     if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64)
754       MIB->removeOperand(0);
755 
756     for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
757       MIB.add(I->getOperand(J));
758     }
759 
760     MIB.addImm(0);
761 
762     // If I has an MCSymbol operand (used by asm printer, to emit R_MIPS_JALR),
763     // add it to the new instruction.
764     for (unsigned J = I->getDesc().getNumOperands(), E = I->getNumOperands();
765          J < E; ++J) {
766       const MachineOperand &MO = I->getOperand(J);
767       if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR))
768         MIB.addSym(MO.getMCSymbol(), MipsII::MO_JALR);
769     }
770 
771 
772   } else {
773     for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) {
774       if (BranchWithZeroOperand && (unsigned)ZeroOperandPosition == J)
775         continue;
776 
777       MIB.add(I->getOperand(J));
778     }
779   }
780 
781   MIB.copyImplicitOps(*I);
782   MIB.cloneMemRefs(*I);
783   return MIB;
784 }
785 
786 bool MipsInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
787                                           unsigned &SrcOpIdx1,
788                                           unsigned &SrcOpIdx2) const {
789   assert(!MI.isBundle() &&
790          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
791 
792   const MCInstrDesc &MCID = MI.getDesc();
793   if (!MCID.isCommutable())
794     return false;
795 
796   switch (MI.getOpcode()) {
797   case Mips::DPADD_U_H:
798   case Mips::DPADD_U_W:
799   case Mips::DPADD_U_D:
800   case Mips::DPADD_S_H:
801   case Mips::DPADD_S_W:
802   case Mips::DPADD_S_D:
803     // The first operand is both input and output, so it should not commute
804     if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3))
805       return false;
806 
807     if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
808       return false;
809     return true;
810   }
811   return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
812 }
813 
814 // ins, ext, dext*, dins have the following constraints:
815 // X <= pos      <  Y
816 // X <  size     <= Y
817 // X <  pos+size <= Y
818 //
819 // dinsm and dinsu have the following constraints:
820 // X <= pos      <  Y
821 // X <= size     <= Y
822 // X <  pos+size <= Y
823 //
824 // The callee of verifyInsExtInstruction however gives the bounds of
825 // dins[um] like the other (d)ins (d)ext(um) instructions, so that this
826 // function doesn't have to vary it's behaviour based on the instruction
827 // being checked.
828 static bool verifyInsExtInstruction(const MachineInstr &MI, StringRef &ErrInfo,
829                                     const int64_t PosLow, const int64_t PosHigh,
830                                     const int64_t SizeLow,
831                                     const int64_t SizeHigh,
832                                     const int64_t BothLow,
833                                     const int64_t BothHigh) {
834   MachineOperand MOPos = MI.getOperand(2);
835   if (!MOPos.isImm()) {
836     ErrInfo = "Position is not an immediate!";
837     return false;
838   }
839   int64_t Pos = MOPos.getImm();
840   if (!((PosLow <= Pos) && (Pos < PosHigh))) {
841     ErrInfo = "Position operand is out of range!";
842     return false;
843   }
844 
845   MachineOperand MOSize = MI.getOperand(3);
846   if (!MOSize.isImm()) {
847     ErrInfo = "Size operand is not an immediate!";
848     return false;
849   }
850   int64_t Size = MOSize.getImm();
851   if (!((SizeLow < Size) && (Size <= SizeHigh))) {
852     ErrInfo = "Size operand is out of range!";
853     return false;
854   }
855 
856   if (!((BothLow < (Pos + Size)) && ((Pos + Size) <= BothHigh))) {
857     ErrInfo = "Position + Size is out of range!";
858     return false;
859   }
860 
861   return true;
862 }
863 
864 //  Perform target specific instruction verification.
865 bool MipsInstrInfo::verifyInstruction(const MachineInstr &MI,
866                                       StringRef &ErrInfo) const {
867   // Verify that ins and ext instructions are well formed.
868   switch (MI.getOpcode()) {
869     case Mips::EXT:
870     case Mips::EXT_MM:
871     case Mips::INS:
872     case Mips::INS_MM:
873     case Mips::DINS:
874       return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 32);
875     case Mips::DINSM:
876       // The ISA spec has a subtle difference between dinsm and dextm
877       // in that it says:
878       // 2 <= size <= 64 for 'dinsm' but 'dextm' has 32 < size <= 64.
879       // To make the bounds checks similar, the range 1 < size <= 64 is checked
880       // for 'dinsm'.
881       return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 1, 64, 32, 64);
882     case Mips::DINSU:
883       // The ISA spec has a subtle difference between dinsu and dextu in that
884       // the size range of dinsu is specified as 1 <= size <= 32 whereas size
885       // for dextu is 0 < size <= 32. The range checked for dinsu here is
886       // 0 < size <= 32, which is equivalent and similar to dextu.
887       return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64);
888     case Mips::DEXT:
889       return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 0, 32, 0, 63);
890     case Mips::DEXTM:
891       return verifyInsExtInstruction(MI, ErrInfo, 0, 32, 32, 64, 32, 64);
892     case Mips::DEXTU:
893       return verifyInsExtInstruction(MI, ErrInfo, 32, 64, 0, 32, 32, 64);
894     case Mips::TAILCALLREG:
895     case Mips::PseudoIndirectBranch:
896     case Mips::JR:
897     case Mips::JR64:
898     case Mips::JALR:
899     case Mips::JALR64:
900     case Mips::JALRPseudo:
901       if (!Subtarget.useIndirectJumpsHazard())
902         return true;
903 
904       ErrInfo = "invalid instruction when using jump guards!";
905       return false;
906     default:
907       return true;
908   }
909 
910   return true;
911 }
912 
913 std::pair<unsigned, unsigned>
914 MipsInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
915   return std::make_pair(TF, 0u);
916 }
917 
918 ArrayRef<std::pair<unsigned, const char*>>
919 MipsInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
920  using namespace MipsII;
921 
922  static const std::pair<unsigned, const char*> Flags[] = {
923     {MO_GOT,          "mips-got"},
924     {MO_GOT_CALL,     "mips-got-call"},
925     {MO_GPREL,        "mips-gprel"},
926     {MO_ABS_HI,       "mips-abs-hi"},
927     {MO_ABS_LO,       "mips-abs-lo"},
928     {MO_TLSGD,        "mips-tlsgd"},
929     {MO_TLSLDM,       "mips-tlsldm"},
930     {MO_DTPREL_HI,    "mips-dtprel-hi"},
931     {MO_DTPREL_LO,    "mips-dtprel-lo"},
932     {MO_GOTTPREL,     "mips-gottprel"},
933     {MO_TPREL_HI,     "mips-tprel-hi"},
934     {MO_TPREL_LO,     "mips-tprel-lo"},
935     {MO_GPOFF_HI,     "mips-gpoff-hi"},
936     {MO_GPOFF_LO,     "mips-gpoff-lo"},
937     {MO_GOT_DISP,     "mips-got-disp"},
938     {MO_GOT_PAGE,     "mips-got-page"},
939     {MO_GOT_OFST,     "mips-got-ofst"},
940     {MO_HIGHER,       "mips-higher"},
941     {MO_HIGHEST,      "mips-highest"},
942     {MO_GOT_HI16,     "mips-got-hi16"},
943     {MO_GOT_LO16,     "mips-got-lo16"},
944     {MO_CALL_HI16,    "mips-call-hi16"},
945     {MO_CALL_LO16,    "mips-call-lo16"},
946     {MO_JALR,         "mips-jalr"}
947   };
948  return ArrayRef(Flags);
949 }
950 
951 std::optional<ParamLoadedValue>
952 MipsInstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const {
953   DIExpression *Expr =
954       DIExpression::get(MI.getMF()->getFunction().getContext(), {});
955 
956   // TODO: Special MIPS instructions that need to be described separately.
957   if (auto RegImm = isAddImmediate(MI, Reg)) {
958     Register SrcReg = RegImm->Reg;
959     int64_t Offset = RegImm->Imm;
960     // When SrcReg is $zero, treat loaded value as immediate only.
961     // Ex. $a2 = ADDiu $zero, 10
962     if (SrcReg == Mips::ZERO || SrcReg == Mips::ZERO_64) {
963       return ParamLoadedValue(MI.getOperand(2), Expr);
964     }
965     Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
966     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
967   } else if (auto DestSrc = isCopyInstr(MI)) {
968     const MachineFunction *MF = MI.getMF();
969     const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
970     Register DestReg = DestSrc->Destination->getReg();
971     // TODO: Handle cases where the Reg is sub- or super-register of the
972     // DestReg.
973     if (TRI->isSuperRegister(Reg, DestReg) || TRI->isSubRegister(Reg, DestReg))
974       return std::nullopt;
975   }
976 
977   return TargetInstrInfo::describeLoadedValue(MI, Reg);
978 }
979 
980 std::optional<RegImmPair> MipsInstrInfo::isAddImmediate(const MachineInstr &MI,
981                                                         Register Reg) const {
982   // TODO: Handle cases where Reg is a super- or sub-register of the
983   // destination register.
984   const MachineOperand &Op0 = MI.getOperand(0);
985   if (!Op0.isReg() || Reg != Op0.getReg())
986     return std::nullopt;
987 
988   switch (MI.getOpcode()) {
989   case Mips::ADDiu:
990   case Mips::DADDiu: {
991     const MachineOperand &Dop = MI.getOperand(0);
992     const MachineOperand &Sop1 = MI.getOperand(1);
993     const MachineOperand &Sop2 = MI.getOperand(2);
994     // Value is sum of register and immediate. Immediate value could be
995     // global string address which is not supported.
996     if (Dop.isReg() && Sop1.isReg() && Sop2.isImm())
997       return RegImmPair{Sop1.getReg(), Sop2.getImm()};
998     // TODO: Handle case where Sop1 is a frame-index.
999   }
1000   }
1001   return std::nullopt;
1002 }
1003