1 //===- MipsConstantIslandPass.cpp - Emit Pc Relative loads ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass is used to make Pc relative loads of constants. 10 // For now, only Mips16 will use this. 11 // 12 // Loading constants inline is expensive on Mips16 and it's in general better 13 // to place the constant nearby in code space and then it can be loaded with a 14 // simple 16 bit load instruction. 15 // 16 // The constants can be not just numbers but addresses of functions and labels. 17 // This can be particularly helpful in static relocation mode for embedded 18 // non-linux targets. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "Mips.h" 23 #include "Mips16InstrInfo.h" 24 #include "MipsMachineFunction.h" 25 #include "MipsSubtarget.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineConstantPool.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <cassert> 52 #include <cstdint> 53 #include <iterator> 54 #include <vector> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "mips-constant-islands" 59 60 STATISTIC(NumCPEs, "Number of constpool entries"); 61 STATISTIC(NumSplit, "Number of uncond branches inserted"); 62 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 63 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 64 65 // FIXME: This option should be removed once it has received sufficient testing. 66 static cl::opt<bool> 67 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true), 68 cl::desc("Align constant islands in code")); 69 70 // Rather than do make check tests with huge amounts of code, we force 71 // the test to use this amount. 72 static cl::opt<int> ConstantIslandsSmallOffset( 73 "mips-constant-islands-small-offset", 74 cl::init(0), 75 cl::desc("Make small offsets be this amount for testing purposes"), 76 cl::Hidden); 77 78 // For testing purposes we tell it to not use relaxed load forms so that it 79 // will split blocks. 80 static cl::opt<bool> NoLoadRelaxation( 81 "mips-constant-islands-no-load-relaxation", 82 cl::init(false), 83 cl::desc("Don't relax loads to long loads - for testing purposes"), 84 cl::Hidden); 85 86 static unsigned int branchTargetOperand(MachineInstr *MI) { 87 switch (MI->getOpcode()) { 88 case Mips::Bimm16: 89 case Mips::BimmX16: 90 case Mips::Bteqz16: 91 case Mips::BteqzX16: 92 case Mips::Btnez16: 93 case Mips::BtnezX16: 94 case Mips::JalB16: 95 return 0; 96 case Mips::BeqzRxImm16: 97 case Mips::BeqzRxImmX16: 98 case Mips::BnezRxImm16: 99 case Mips::BnezRxImmX16: 100 return 1; 101 } 102 llvm_unreachable("Unknown branch type"); 103 } 104 105 static unsigned int longformBranchOpcode(unsigned int Opcode) { 106 switch (Opcode) { 107 case Mips::Bimm16: 108 case Mips::BimmX16: 109 return Mips::BimmX16; 110 case Mips::Bteqz16: 111 case Mips::BteqzX16: 112 return Mips::BteqzX16; 113 case Mips::Btnez16: 114 case Mips::BtnezX16: 115 return Mips::BtnezX16; 116 case Mips::JalB16: 117 return Mips::JalB16; 118 case Mips::BeqzRxImm16: 119 case Mips::BeqzRxImmX16: 120 return Mips::BeqzRxImmX16; 121 case Mips::BnezRxImm16: 122 case Mips::BnezRxImmX16: 123 return Mips::BnezRxImmX16; 124 } 125 llvm_unreachable("Unknown branch type"); 126 } 127 128 // FIXME: need to go through this whole constant islands port and check 129 // the math for branch ranges and clean this up and make some functions 130 // to calculate things that are done many times identically. 131 // Need to refactor some of the code to call this routine. 132 static unsigned int branchMaxOffsets(unsigned int Opcode) { 133 unsigned Bits, Scale; 134 switch (Opcode) { 135 case Mips::Bimm16: 136 Bits = 11; 137 Scale = 2; 138 break; 139 case Mips::BimmX16: 140 Bits = 16; 141 Scale = 2; 142 break; 143 case Mips::BeqzRxImm16: 144 Bits = 8; 145 Scale = 2; 146 break; 147 case Mips::BeqzRxImmX16: 148 Bits = 16; 149 Scale = 2; 150 break; 151 case Mips::BnezRxImm16: 152 Bits = 8; 153 Scale = 2; 154 break; 155 case Mips::BnezRxImmX16: 156 Bits = 16; 157 Scale = 2; 158 break; 159 case Mips::Bteqz16: 160 Bits = 8; 161 Scale = 2; 162 break; 163 case Mips::BteqzX16: 164 Bits = 16; 165 Scale = 2; 166 break; 167 case Mips::Btnez16: 168 Bits = 8; 169 Scale = 2; 170 break; 171 case Mips::BtnezX16: 172 Bits = 16; 173 Scale = 2; 174 break; 175 default: 176 llvm_unreachable("Unknown branch type"); 177 } 178 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 179 return MaxOffs; 180 } 181 182 namespace { 183 184 using Iter = MachineBasicBlock::iterator; 185 using ReverseIter = MachineBasicBlock::reverse_iterator; 186 187 /// MipsConstantIslands - Due to limited PC-relative displacements, Mips 188 /// requires constant pool entries to be scattered among the instructions 189 /// inside a function. To do this, it completely ignores the normal LLVM 190 /// constant pool; instead, it places constants wherever it feels like with 191 /// special instructions. 192 /// 193 /// The terminology used in this pass includes: 194 /// Islands - Clumps of constants placed in the function. 195 /// Water - Potential places where an island could be formed. 196 /// CPE - A constant pool entry that has been placed somewhere, which 197 /// tracks a list of users. 198 199 class MipsConstantIslands : public MachineFunctionPass { 200 /// BasicBlockInfo - Information about the offset and size of a single 201 /// basic block. 202 struct BasicBlockInfo { 203 /// Offset - Distance from the beginning of the function to the beginning 204 /// of this basic block. 205 /// 206 /// Offsets are computed assuming worst case padding before an aligned 207 /// block. This means that subtracting basic block offsets always gives a 208 /// conservative estimate of the real distance which may be smaller. 209 /// 210 /// Because worst case padding is used, the computed offset of an aligned 211 /// block may not actually be aligned. 212 unsigned Offset = 0; 213 214 /// Size - Size of the basic block in bytes. If the block contains 215 /// inline assembly, this is a worst case estimate. 216 /// 217 /// The size does not include any alignment padding whether from the 218 /// beginning of the block, or from an aligned jump table at the end. 219 unsigned Size = 0; 220 221 BasicBlockInfo() = default; 222 223 unsigned postOffset() const { return Offset + Size; } 224 }; 225 226 std::vector<BasicBlockInfo> BBInfo; 227 228 /// WaterList - A sorted list of basic blocks where islands could be placed 229 /// (i.e. blocks that don't fall through to the following block, due 230 /// to a return, unreachable, or unconditional branch). 231 std::vector<MachineBasicBlock*> WaterList; 232 233 /// NewWaterList - The subset of WaterList that was created since the 234 /// previous iteration by inserting unconditional branches. 235 SmallSet<MachineBasicBlock*, 4> NewWaterList; 236 237 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 238 239 /// CPUser - One user of a constant pool, keeping the machine instruction 240 /// pointer, the constant pool being referenced, and the max displacement 241 /// allowed from the instruction to the CP. The HighWaterMark records the 242 /// highest basic block where a new CPEntry can be placed. To ensure this 243 /// pass terminates, the CP entries are initially placed at the end of the 244 /// function and then move monotonically to lower addresses. The 245 /// exception to this rule is when the current CP entry for a particular 246 /// CPUser is out of range, but there is another CP entry for the same 247 /// constant value in range. We want to use the existing in-range CP 248 /// entry, but if it later moves out of range, the search for new water 249 /// should resume where it left off. The HighWaterMark is used to record 250 /// that point. 251 struct CPUser { 252 MachineInstr *MI; 253 MachineInstr *CPEMI; 254 MachineBasicBlock *HighWaterMark; 255 256 private: 257 unsigned MaxDisp; 258 unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions 259 // with different displacements 260 unsigned LongFormOpcode; 261 262 public: 263 bool NegOk; 264 265 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 266 bool neg, 267 unsigned longformmaxdisp, unsigned longformopcode) 268 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), 269 LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode), 270 NegOk(neg){ 271 HighWaterMark = CPEMI->getParent(); 272 } 273 274 /// getMaxDisp - Returns the maximum displacement supported by MI. 275 unsigned getMaxDisp() const { 276 unsigned xMaxDisp = ConstantIslandsSmallOffset? 277 ConstantIslandsSmallOffset: MaxDisp; 278 return xMaxDisp; 279 } 280 281 void setMaxDisp(unsigned val) { 282 MaxDisp = val; 283 } 284 285 unsigned getLongFormMaxDisp() const { 286 return LongFormMaxDisp; 287 } 288 289 unsigned getLongFormOpcode() const { 290 return LongFormOpcode; 291 } 292 }; 293 294 /// CPUsers - Keep track of all of the machine instructions that use various 295 /// constant pools and their max displacement. 296 std::vector<CPUser> CPUsers; 297 298 /// CPEntry - One per constant pool entry, keeping the machine instruction 299 /// pointer, the constpool index, and the number of CPUser's which 300 /// reference this entry. 301 struct CPEntry { 302 MachineInstr *CPEMI; 303 unsigned CPI; 304 unsigned RefCount; 305 306 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 307 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 308 }; 309 310 /// CPEntries - Keep track of all of the constant pool entry machine 311 /// instructions. For each original constpool index (i.e. those that 312 /// existed upon entry to this pass), it keeps a vector of entries. 313 /// Original elements are cloned as we go along; the clones are 314 /// put in the vector of the original element, but have distinct CPIs. 315 std::vector<std::vector<CPEntry>> CPEntries; 316 317 /// ImmBranch - One per immediate branch, keeping the machine instruction 318 /// pointer, conditional or unconditional, the max displacement, 319 /// and (if isCond is true) the corresponding unconditional branch 320 /// opcode. 321 struct ImmBranch { 322 MachineInstr *MI; 323 unsigned MaxDisp : 31; 324 bool isCond : 1; 325 int UncondBr; 326 327 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 328 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 329 }; 330 331 /// ImmBranches - Keep track of all the immediate branch instructions. 332 /// 333 std::vector<ImmBranch> ImmBranches; 334 335 /// HasFarJump - True if any far jump instruction has been emitted during 336 /// the branch fix up pass. 337 bool HasFarJump; 338 339 const MipsSubtarget *STI = nullptr; 340 const Mips16InstrInfo *TII; 341 MipsFunctionInfo *MFI; 342 MachineFunction *MF = nullptr; 343 MachineConstantPool *MCP = nullptr; 344 345 unsigned PICLabelUId; 346 bool PrescannedForConstants = false; 347 348 void initPICLabelUId(unsigned UId) { 349 PICLabelUId = UId; 350 } 351 352 unsigned createPICLabelUId() { 353 return PICLabelUId++; 354 } 355 356 public: 357 static char ID; 358 359 MipsConstantIslands() : MachineFunctionPass(ID) {} 360 361 StringRef getPassName() const override { return "Mips Constant Islands"; } 362 363 bool runOnMachineFunction(MachineFunction &F) override; 364 365 MachineFunctionProperties getRequiredProperties() const override { 366 return MachineFunctionProperties().set( 367 MachineFunctionProperties::Property::NoVRegs); 368 } 369 370 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs); 371 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 372 Align getCPEAlign(const MachineInstr &CPEMI); 373 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 374 unsigned getOffsetOf(MachineInstr *MI) const; 375 unsigned getUserOffset(CPUser&) const; 376 void dumpBBs(); 377 378 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 379 unsigned Disp, bool NegativeOK); 380 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 381 const CPUser &U); 382 383 void computeBlockSize(MachineBasicBlock *MBB); 384 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI); 385 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 386 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 387 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 388 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 389 int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset); 390 bool findAvailableWater(CPUser&U, unsigned UserOffset, 391 water_iterator &WaterIter); 392 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 393 MachineBasicBlock *&NewMBB); 394 bool handleConstantPoolUser(unsigned CPUserIndex); 395 void removeDeadCPEMI(MachineInstr *CPEMI); 396 bool removeUnusedCPEntries(); 397 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 398 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 399 bool DoDump = false); 400 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 401 CPUser &U, unsigned &Growth); 402 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 403 bool fixupImmediateBr(ImmBranch &Br); 404 bool fixupConditionalBr(ImmBranch &Br); 405 bool fixupUnconditionalBr(ImmBranch &Br); 406 407 void prescanForConstants(); 408 }; 409 410 } // end anonymous namespace 411 412 char MipsConstantIslands::ID = 0; 413 414 bool MipsConstantIslands::isOffsetInRange 415 (unsigned UserOffset, unsigned TrialOffset, 416 const CPUser &U) { 417 return isOffsetInRange(UserOffset, TrialOffset, 418 U.getMaxDisp(), U.NegOk); 419 } 420 421 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 422 /// print block size and offset information - debugging 423 LLVM_DUMP_METHOD void MipsConstantIslands::dumpBBs() { 424 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 425 const BasicBlockInfo &BBI = BBInfo[J]; 426 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 427 << format(" size=%#x\n", BBInfo[J].Size); 428 } 429 } 430 #endif 431 432 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) { 433 // The intention is for this to be a mips16 only pass for now 434 // FIXME: 435 MF = &mf; 436 MCP = mf.getConstantPool(); 437 STI = &mf.getSubtarget<MipsSubtarget>(); 438 LLVM_DEBUG(dbgs() << "constant island machine function " 439 << "\n"); 440 if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) { 441 return false; 442 } 443 TII = (const Mips16InstrInfo *)STI->getInstrInfo(); 444 MFI = MF->getInfo<MipsFunctionInfo>(); 445 LLVM_DEBUG(dbgs() << "constant island processing " 446 << "\n"); 447 // 448 // will need to make predermination if there is any constants we need to 449 // put in constant islands. TBD. 450 // 451 if (!PrescannedForConstants) prescanForConstants(); 452 453 HasFarJump = false; 454 // This pass invalidates liveness information when it splits basic blocks. 455 MF->getRegInfo().invalidateLiveness(); 456 457 // Renumber all of the machine basic blocks in the function, guaranteeing that 458 // the numbers agree with the position of the block in the function. 459 MF->RenumberBlocks(); 460 461 bool MadeChange = false; 462 463 // Perform the initial placement of the constant pool entries. To start with, 464 // we put them all at the end of the function. 465 std::vector<MachineInstr*> CPEMIs; 466 if (!MCP->isEmpty()) 467 doInitialPlacement(CPEMIs); 468 469 /// The next UID to take is the first unused one. 470 initPICLabelUId(CPEMIs.size()); 471 472 // Do the initial scan of the function, building up information about the 473 // sizes of each block, the location of all the water, and finding all of the 474 // constant pool users. 475 initializeFunctionInfo(CPEMIs); 476 CPEMIs.clear(); 477 LLVM_DEBUG(dumpBBs()); 478 479 /// Remove dead constant pool entries. 480 MadeChange |= removeUnusedCPEntries(); 481 482 // Iteratively place constant pool entries and fix up branches until there 483 // is no change. 484 unsigned NoCPIters = 0, NoBRIters = 0; 485 (void)NoBRIters; 486 while (true) { 487 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 488 bool CPChange = false; 489 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 490 CPChange |= handleConstantPoolUser(i); 491 if (CPChange && ++NoCPIters > 30) 492 report_fatal_error("Constant Island pass failed to converge!"); 493 LLVM_DEBUG(dumpBBs()); 494 495 // Clear NewWaterList now. If we split a block for branches, it should 496 // appear as "new water" for the next iteration of constant pool placement. 497 NewWaterList.clear(); 498 499 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 500 bool BRChange = false; 501 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 502 BRChange |= fixupImmediateBr(ImmBranches[i]); 503 if (BRChange && ++NoBRIters > 30) 504 report_fatal_error("Branch Fix Up pass failed to converge!"); 505 LLVM_DEBUG(dumpBBs()); 506 if (!CPChange && !BRChange) 507 break; 508 MadeChange = true; 509 } 510 511 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 512 513 BBInfo.clear(); 514 WaterList.clear(); 515 CPUsers.clear(); 516 CPEntries.clear(); 517 ImmBranches.clear(); 518 return MadeChange; 519 } 520 521 /// doInitialPlacement - Perform the initial placement of the constant pool 522 /// entries. To start with, we put them all at the end of the function. 523 void 524 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { 525 // Create the basic block to hold the CPE's. 526 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 527 MF->push_back(BB); 528 529 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 530 const Align MaxAlign = MCP->getConstantPoolAlign(); 531 532 // Mark the basic block as required by the const-pool. 533 // If AlignConstantIslands isn't set, use 4-byte alignment for everything. 534 BB->setAlignment(AlignConstantIslands ? MaxAlign : Align(4)); 535 536 // The function needs to be as aligned as the basic blocks. The linker may 537 // move functions around based on their alignment. 538 MF->ensureAlignment(BB->getAlignment()); 539 540 // Order the entries in BB by descending alignment. That ensures correct 541 // alignment of all entries as long as BB is sufficiently aligned. Keep 542 // track of the insertion point for each alignment. We are going to bucket 543 // sort the entries as they are created. 544 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1, 545 BB->end()); 546 547 // Add all of the constants from the constant pool to the end block, use an 548 // identity mapping of CPI's to CPE's. 549 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 550 551 const DataLayout &TD = MF->getDataLayout(); 552 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 553 unsigned Size = CPs[i].getSizeInBytes(TD); 554 assert(Size >= 4 && "Too small constant pool entry"); 555 Align Alignment = CPs[i].getAlign(); 556 // Verify that all constant pool entries are a multiple of their alignment. 557 // If not, we would have to pad them out so that instructions stay aligned. 558 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 559 560 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 561 unsigned LogAlign = Log2(Alignment); 562 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 563 564 MachineInstr *CPEMI = 565 BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY)) 566 .addImm(i).addConstantPoolIndex(i).addImm(Size); 567 568 CPEMIs.push_back(CPEMI); 569 570 // Ensure that future entries with higher alignment get inserted before 571 // CPEMI. This is bucket sort with iterators. 572 for (unsigned a = LogAlign + 1; a <= Log2(MaxAlign); ++a) 573 if (InsPoint[a] == InsAt) 574 InsPoint[a] = CPEMI; 575 // Add a new CPEntry, but no corresponding CPUser yet. 576 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 577 ++NumCPEs; 578 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 579 << Size << ", align = " << Alignment.value() << '\n'); 580 } 581 LLVM_DEBUG(BB->dump()); 582 } 583 584 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 585 /// into the block immediately after it. 586 static bool BBHasFallthrough(MachineBasicBlock *MBB) { 587 // Get the next machine basic block in the function. 588 MachineFunction::iterator MBBI = MBB->getIterator(); 589 // Can't fall off end of function. 590 if (std::next(MBBI) == MBB->getParent()->end()) 591 return false; 592 593 MachineBasicBlock *NextBB = &*std::next(MBBI); 594 return llvm::is_contained(MBB->successors(), NextBB); 595 } 596 597 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 598 /// look up the corresponding CPEntry. 599 MipsConstantIslands::CPEntry 600 *MipsConstantIslands::findConstPoolEntry(unsigned CPI, 601 const MachineInstr *CPEMI) { 602 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 603 // Number of entries per constpool index should be small, just do a 604 // linear search. 605 for (CPEntry &CPE : CPEs) { 606 if (CPE.CPEMI == CPEMI) 607 return &CPE; 608 } 609 return nullptr; 610 } 611 612 /// getCPEAlign - Returns the required alignment of the constant pool entry 613 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 614 Align MipsConstantIslands::getCPEAlign(const MachineInstr &CPEMI) { 615 assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY); 616 617 // Everything is 4-byte aligned unless AlignConstantIslands is set. 618 if (!AlignConstantIslands) 619 return Align(4); 620 621 unsigned CPI = CPEMI.getOperand(1).getIndex(); 622 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 623 return MCP->getConstants()[CPI].getAlign(); 624 } 625 626 /// initializeFunctionInfo - Do the initial scan of the function, building up 627 /// information about the sizes of each block, the location of all the water, 628 /// and finding all of the constant pool users. 629 void MipsConstantIslands:: 630 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 631 BBInfo.clear(); 632 BBInfo.resize(MF->getNumBlockIDs()); 633 634 // First thing, compute the size of all basic blocks, and see if the function 635 // has any inline assembly in it. If so, we have to be conservative about 636 // alignment assumptions, as we don't know for sure the size of any 637 // instructions in the inline assembly. 638 for (MachineBasicBlock &MBB : *MF) 639 computeBlockSize(&MBB); 640 641 // Compute block offsets. 642 adjustBBOffsetsAfter(&MF->front()); 643 644 // Now go back through the instructions and build up our data structures. 645 for (MachineBasicBlock &MBB : *MF) { 646 // If this block doesn't fall through into the next MBB, then this is 647 // 'water' that a constant pool island could be placed. 648 if (!BBHasFallthrough(&MBB)) 649 WaterList.push_back(&MBB); 650 for (MachineInstr &MI : MBB) { 651 if (MI.isDebugInstr()) 652 continue; 653 654 int Opc = MI.getOpcode(); 655 if (MI.isBranch()) { 656 bool isCond = false; 657 unsigned Bits = 0; 658 unsigned Scale = 1; 659 int UOpc = Opc; 660 switch (Opc) { 661 default: 662 continue; // Ignore other branches for now 663 case Mips::Bimm16: 664 Bits = 11; 665 Scale = 2; 666 isCond = false; 667 break; 668 case Mips::BimmX16: 669 Bits = 16; 670 Scale = 2; 671 isCond = false; 672 break; 673 case Mips::BeqzRxImm16: 674 UOpc=Mips::Bimm16; 675 Bits = 8; 676 Scale = 2; 677 isCond = true; 678 break; 679 case Mips::BeqzRxImmX16: 680 UOpc=Mips::Bimm16; 681 Bits = 16; 682 Scale = 2; 683 isCond = true; 684 break; 685 case Mips::BnezRxImm16: 686 UOpc=Mips::Bimm16; 687 Bits = 8; 688 Scale = 2; 689 isCond = true; 690 break; 691 case Mips::BnezRxImmX16: 692 UOpc=Mips::Bimm16; 693 Bits = 16; 694 Scale = 2; 695 isCond = true; 696 break; 697 case Mips::Bteqz16: 698 UOpc=Mips::Bimm16; 699 Bits = 8; 700 Scale = 2; 701 isCond = true; 702 break; 703 case Mips::BteqzX16: 704 UOpc=Mips::Bimm16; 705 Bits = 16; 706 Scale = 2; 707 isCond = true; 708 break; 709 case Mips::Btnez16: 710 UOpc=Mips::Bimm16; 711 Bits = 8; 712 Scale = 2; 713 isCond = true; 714 break; 715 case Mips::BtnezX16: 716 UOpc=Mips::Bimm16; 717 Bits = 16; 718 Scale = 2; 719 isCond = true; 720 break; 721 } 722 // Record this immediate branch. 723 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 724 ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc)); 725 } 726 727 if (Opc == Mips::CONSTPOOL_ENTRY) 728 continue; 729 730 // Scan the instructions for constant pool operands. 731 for (const MachineOperand &MO : MI.operands()) 732 if (MO.isCPI()) { 733 // We found one. The addressing mode tells us the max displacement 734 // from the PC that this instruction permits. 735 736 // Basic size info comes from the TSFlags field. 737 unsigned Bits = 0; 738 unsigned Scale = 1; 739 bool NegOk = false; 740 unsigned LongFormBits = 0; 741 unsigned LongFormScale = 0; 742 unsigned LongFormOpcode = 0; 743 switch (Opc) { 744 default: 745 llvm_unreachable("Unknown addressing mode for CP reference!"); 746 case Mips::LwRxPcTcp16: 747 Bits = 8; 748 Scale = 4; 749 LongFormOpcode = Mips::LwRxPcTcpX16; 750 LongFormBits = 14; 751 LongFormScale = 1; 752 break; 753 case Mips::LwRxPcTcpX16: 754 Bits = 14; 755 Scale = 1; 756 NegOk = true; 757 break; 758 } 759 // Remember that this is a user of a CP entry. 760 unsigned CPI = MO.getIndex(); 761 MachineInstr *CPEMI = CPEMIs[CPI]; 762 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 763 unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale; 764 CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs, 765 LongFormOpcode)); 766 767 // Increment corresponding CPEntry reference count. 768 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 769 assert(CPE && "Cannot find a corresponding CPEntry!"); 770 CPE->RefCount++; 771 772 // Instructions can only use one CP entry, don't bother scanning the 773 // rest of the operands. 774 break; 775 } 776 } 777 } 778 } 779 780 /// computeBlockSize - Compute the size and some alignment information for MBB. 781 /// This function updates BBInfo directly. 782 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 783 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 784 BBI.Size = 0; 785 786 for (const MachineInstr &MI : *MBB) 787 BBI.Size += TII->getInstSizeInBytes(MI); 788 } 789 790 /// getOffsetOf - Return the current offset of the specified machine instruction 791 /// from the start of the function. This offset changes as stuff is moved 792 /// around inside the function. 793 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const { 794 MachineBasicBlock *MBB = MI->getParent(); 795 796 // The offset is composed of two things: the sum of the sizes of all MBB's 797 // before this instruction's block, and the offset from the start of the block 798 // it is in. 799 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 800 801 // Sum instructions before MI in MBB. 802 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 803 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 804 Offset += TII->getInstSizeInBytes(*I); 805 } 806 return Offset; 807 } 808 809 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 810 /// ID. 811 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 812 const MachineBasicBlock *RHS) { 813 return LHS->getNumber() < RHS->getNumber(); 814 } 815 816 /// updateForInsertedWaterBlock - When a block is newly inserted into the 817 /// machine function, it upsets all of the block numbers. Renumber the blocks 818 /// and update the arrays that parallel this numbering. 819 void MipsConstantIslands::updateForInsertedWaterBlock 820 (MachineBasicBlock *NewBB) { 821 // Renumber the MBB's to keep them consecutive. 822 NewBB->getParent()->RenumberBlocks(NewBB); 823 824 // Insert an entry into BBInfo to align it properly with the (newly 825 // renumbered) block numbers. 826 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 827 828 // Next, update WaterList. Specifically, we need to add NewMBB as having 829 // available water after it. 830 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 831 WaterList.insert(IP, NewBB); 832 } 833 834 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const { 835 return getOffsetOf(U.MI); 836 } 837 838 /// Split the basic block containing MI into two blocks, which are joined by 839 /// an unconditional branch. Update data structures and renumber blocks to 840 /// account for this change and returns the newly created block. 841 MachineBasicBlock * 842 MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) { 843 MachineBasicBlock *OrigBB = MI.getParent(); 844 845 // Create a new MBB for the code after the OrigBB. 846 MachineBasicBlock *NewBB = 847 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 848 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 849 MF->insert(MBBI, NewBB); 850 851 // Splice the instructions starting with MI over to NewBB. 852 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 853 854 // Add an unconditional branch from OrigBB to NewBB. 855 // Note the new unconditional branch is not being recorded. 856 // There doesn't seem to be meaningful DebugInfo available; this doesn't 857 // correspond to anything in the source. 858 BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB); 859 ++NumSplit; 860 861 // Update the CFG. All succs of OrigBB are now succs of NewBB. 862 NewBB->transferSuccessors(OrigBB); 863 864 // OrigBB branches to NewBB. 865 OrigBB->addSuccessor(NewBB); 866 867 // Update internal data structures to account for the newly inserted MBB. 868 // This is almost the same as updateForInsertedWaterBlock, except that 869 // the Water goes after OrigBB, not NewBB. 870 MF->RenumberBlocks(NewBB); 871 872 // Insert an entry into BBInfo to align it properly with the (newly 873 // renumbered) block numbers. 874 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 875 876 // Next, update WaterList. Specifically, we need to add OrigMBB as having 877 // available water after it (but not if it's already there, which happens 878 // when splitting before a conditional branch that is followed by an 879 // unconditional branch - in that case we want to insert NewBB). 880 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 881 MachineBasicBlock* WaterBB = *IP; 882 if (WaterBB == OrigBB) 883 WaterList.insert(std::next(IP), NewBB); 884 else 885 WaterList.insert(IP, OrigBB); 886 NewWaterList.insert(OrigBB); 887 888 // Figure out how large the OrigBB is. As the first half of the original 889 // block, it cannot contain a tablejump. The size includes 890 // the new jump we added. (It should be possible to do this without 891 // recounting everything, but it's very confusing, and this is rarely 892 // executed.) 893 computeBlockSize(OrigBB); 894 895 // Figure out how large the NewMBB is. As the second half of the original 896 // block, it may contain a tablejump. 897 computeBlockSize(NewBB); 898 899 // All BBOffsets following these blocks must be modified. 900 adjustBBOffsetsAfter(OrigBB); 901 902 return NewBB; 903 } 904 905 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 906 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 907 /// constant pool entry). 908 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset, 909 unsigned TrialOffset, unsigned MaxDisp, 910 bool NegativeOK) { 911 if (UserOffset <= TrialOffset) { 912 // User before the Trial. 913 if (TrialOffset - UserOffset <= MaxDisp) 914 return true; 915 } else if (NegativeOK) { 916 if (UserOffset - TrialOffset <= MaxDisp) 917 return true; 918 } 919 return false; 920 } 921 922 /// isWaterInRange - Returns true if a CPE placed after the specified 923 /// Water (a basic block) will be in range for the specific MI. 924 /// 925 /// Compute how much the function will grow by inserting a CPE after Water. 926 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset, 927 MachineBasicBlock* Water, CPUser &U, 928 unsigned &Growth) { 929 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(); 930 unsigned NextBlockOffset; 931 Align NextBlockAlignment; 932 MachineFunction::const_iterator NextBlock = ++Water->getIterator(); 933 if (NextBlock == MF->end()) { 934 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 935 NextBlockAlignment = Align(1); 936 } else { 937 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 938 NextBlockAlignment = NextBlock->getAlignment(); 939 } 940 unsigned Size = U.CPEMI->getOperand(2).getImm(); 941 unsigned CPEEnd = CPEOffset + Size; 942 943 // The CPE may be able to hide in the alignment padding before the next 944 // block. It may also cause more padding to be required if it is more aligned 945 // that the next block. 946 if (CPEEnd > NextBlockOffset) { 947 Growth = CPEEnd - NextBlockOffset; 948 // Compute the padding that would go at the end of the CPE to align the next 949 // block. 950 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 951 952 // If the CPE is to be inserted before the instruction, that will raise 953 // the offset of the instruction. Also account for unknown alignment padding 954 // in blocks between CPE and the user. 955 if (CPEOffset < UserOffset) 956 UserOffset += Growth; 957 } else 958 // CPE fits in existing padding. 959 Growth = 0; 960 961 return isOffsetInRange(UserOffset, CPEOffset, U); 962 } 963 964 /// isCPEntryInRange - Returns true if the distance between specific MI and 965 /// specific ConstPool entry instruction can fit in MI's displacement field. 966 bool MipsConstantIslands::isCPEntryInRange 967 (MachineInstr *MI, unsigned UserOffset, 968 MachineInstr *CPEMI, unsigned MaxDisp, 969 bool NegOk, bool DoDump) { 970 unsigned CPEOffset = getOffsetOf(CPEMI); 971 972 if (DoDump) { 973 LLVM_DEBUG({ 974 unsigned Block = MI->getParent()->getNumber(); 975 const BasicBlockInfo &BBI = BBInfo[Block]; 976 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 977 << " max delta=" << MaxDisp 978 << format(" insn address=%#x", UserOffset) << " in " 979 << printMBBReference(*MI->getParent()) << ": " 980 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 981 << format("CPE address=%#x offset=%+d: ", CPEOffset, 982 int(CPEOffset - UserOffset)); 983 }); 984 } 985 986 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 987 } 988 989 #ifndef NDEBUG 990 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 991 /// unconditionally branches to its only successor. 992 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 993 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 994 return false; 995 MachineBasicBlock *Succ = *MBB->succ_begin(); 996 MachineBasicBlock *Pred = *MBB->pred_begin(); 997 MachineInstr *PredMI = &Pred->back(); 998 if (PredMI->getOpcode() == Mips::Bimm16) 999 return PredMI->getOperand(0).getMBB() == Succ; 1000 return false; 1001 } 1002 #endif 1003 1004 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1005 unsigned BBNum = BB->getNumber(); 1006 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1007 // Get the offset and known bits at the end of the layout predecessor. 1008 // Include the alignment of the current block. 1009 unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size; 1010 BBInfo[i].Offset = Offset; 1011 } 1012 } 1013 1014 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1015 /// and instruction CPEMI, and decrement its refcount. If the refcount 1016 /// becomes 0 remove the entry and instruction. Returns true if we removed 1017 /// the entry, false if we didn't. 1018 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1019 MachineInstr *CPEMI) { 1020 // Find the old entry. Eliminate it if it is no longer used. 1021 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1022 assert(CPE && "Unexpected!"); 1023 if (--CPE->RefCount == 0) { 1024 removeDeadCPEMI(CPEMI); 1025 CPE->CPEMI = nullptr; 1026 --NumCPEs; 1027 return true; 1028 } 1029 return false; 1030 } 1031 1032 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1033 /// if not, see if an in-range clone of the CPE is in range, and if so, 1034 /// change the data structures so the user references the clone. Returns: 1035 /// 0 = no existing entry found 1036 /// 1 = entry found, and there were no code insertions or deletions 1037 /// 2 = entry found, and there were code insertions or deletions 1038 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1039 { 1040 MachineInstr *UserMI = U.MI; 1041 MachineInstr *CPEMI = U.CPEMI; 1042 1043 // Check to see if the CPE is already in-range. 1044 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1045 true)) { 1046 LLVM_DEBUG(dbgs() << "In range\n"); 1047 return 1; 1048 } 1049 1050 // No. Look for previously created clones of the CPE that are in range. 1051 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1052 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1053 for (CPEntry &CPE : CPEs) { 1054 // We already tried this one 1055 if (CPE.CPEMI == CPEMI) 1056 continue; 1057 // Removing CPEs can leave empty entries, skip 1058 if (CPE.CPEMI == nullptr) 1059 continue; 1060 if (isCPEntryInRange(UserMI, UserOffset, CPE.CPEMI, U.getMaxDisp(), 1061 U.NegOk)) { 1062 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPE.CPI 1063 << "\n"); 1064 // Point the CPUser node to the replacement 1065 U.CPEMI = CPE.CPEMI; 1066 // Change the CPI in the instruction operand to refer to the clone. 1067 for (MachineOperand &MO : UserMI->operands()) 1068 if (MO.isCPI()) { 1069 MO.setIndex(CPE.CPI); 1070 break; 1071 } 1072 // Adjust the refcount of the clone... 1073 CPE.RefCount++; 1074 // ...and the original. If we didn't remove the old entry, none of the 1075 // addresses changed, so we don't need another pass. 1076 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1077 } 1078 } 1079 return 0; 1080 } 1081 1082 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1083 /// This version checks if the longer form of the instruction can be used to 1084 /// to satisfy things. 1085 /// if not, see if an in-range clone of the CPE is in range, and if so, 1086 /// change the data structures so the user references the clone. Returns: 1087 /// 0 = no existing entry found 1088 /// 1 = entry found, and there were no code insertions or deletions 1089 /// 2 = entry found, and there were code insertions or deletions 1090 int MipsConstantIslands::findLongFormInRangeCPEntry 1091 (CPUser& U, unsigned UserOffset) 1092 { 1093 MachineInstr *UserMI = U.MI; 1094 MachineInstr *CPEMI = U.CPEMI; 1095 1096 // Check to see if the CPE is already in-range. 1097 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, 1098 U.getLongFormMaxDisp(), U.NegOk, 1099 true)) { 1100 LLVM_DEBUG(dbgs() << "In range\n"); 1101 UserMI->setDesc(TII->get(U.getLongFormOpcode())); 1102 U.setMaxDisp(U.getLongFormMaxDisp()); 1103 return 2; // instruction is longer length now 1104 } 1105 1106 // No. Look for previously created clones of the CPE that are in range. 1107 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1108 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1109 for (CPEntry &CPE : CPEs) { 1110 // We already tried this one 1111 if (CPE.CPEMI == CPEMI) 1112 continue; 1113 // Removing CPEs can leave empty entries, skip 1114 if (CPE.CPEMI == nullptr) 1115 continue; 1116 if (isCPEntryInRange(UserMI, UserOffset, CPE.CPEMI, U.getLongFormMaxDisp(), 1117 U.NegOk)) { 1118 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPE.CPI 1119 << "\n"); 1120 // Point the CPUser node to the replacement 1121 U.CPEMI = CPE.CPEMI; 1122 // Change the CPI in the instruction operand to refer to the clone. 1123 for (MachineOperand &MO : UserMI->operands()) 1124 if (MO.isCPI()) { 1125 MO.setIndex(CPE.CPI); 1126 break; 1127 } 1128 // Adjust the refcount of the clone... 1129 CPE.RefCount++; 1130 // ...and the original. If we didn't remove the old entry, none of the 1131 // addresses changed, so we don't need another pass. 1132 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1133 } 1134 } 1135 return 0; 1136 } 1137 1138 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1139 /// the specific unconditional branch instruction. 1140 static inline unsigned getUnconditionalBrDisp(int Opc) { 1141 switch (Opc) { 1142 case Mips::Bimm16: 1143 return ((1<<10)-1)*2; 1144 case Mips::BimmX16: 1145 return ((1<<16)-1)*2; 1146 default: 1147 break; 1148 } 1149 return ((1<<16)-1)*2; 1150 } 1151 1152 /// findAvailableWater - Look for an existing entry in the WaterList in which 1153 /// we can place the CPE referenced from U so it's within range of U's MI. 1154 /// Returns true if found, false if not. If it returns true, WaterIter 1155 /// is set to the WaterList entry. 1156 /// To ensure that this pass 1157 /// terminates, the CPE location for a particular CPUser is only allowed to 1158 /// move to a lower address, so search backward from the end of the list and 1159 /// prefer the first water that is in range. 1160 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1161 water_iterator &WaterIter) { 1162 if (WaterList.empty()) 1163 return false; 1164 1165 unsigned BestGrowth = ~0u; 1166 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1167 --IP) { 1168 MachineBasicBlock* WaterBB = *IP; 1169 // Check if water is in range and is either at a lower address than the 1170 // current "high water mark" or a new water block that was created since 1171 // the previous iteration by inserting an unconditional branch. In the 1172 // latter case, we want to allow resetting the high water mark back to 1173 // this new water since we haven't seen it before. Inserting branches 1174 // should be relatively uncommon and when it does happen, we want to be 1175 // sure to take advantage of it for all the CPEs near that block, so that 1176 // we don't insert more branches than necessary. 1177 unsigned Growth; 1178 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1179 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1180 NewWaterList.count(WaterBB)) && Growth < BestGrowth) { 1181 // This is the least amount of required padding seen so far. 1182 BestGrowth = Growth; 1183 WaterIter = IP; 1184 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1185 << " Growth=" << Growth << '\n'); 1186 1187 // Keep looking unless it is perfect. 1188 if (BestGrowth == 0) 1189 return true; 1190 } 1191 if (IP == B) 1192 break; 1193 } 1194 return BestGrowth != ~0u; 1195 } 1196 1197 /// createNewWater - No existing WaterList entry will work for 1198 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1199 /// block is used if in range, and the conditional branch munged so control 1200 /// flow is correct. Otherwise the block is split to create a hole with an 1201 /// unconditional branch around it. In either case NewMBB is set to a 1202 /// block following which the new island can be inserted (the WaterList 1203 /// is not adjusted). 1204 void MipsConstantIslands::createNewWater(unsigned CPUserIndex, 1205 unsigned UserOffset, 1206 MachineBasicBlock *&NewMBB) { 1207 CPUser &U = CPUsers[CPUserIndex]; 1208 MachineInstr *UserMI = U.MI; 1209 MachineInstr *CPEMI = U.CPEMI; 1210 MachineBasicBlock *UserMBB = UserMI->getParent(); 1211 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1212 1213 // If the block does not end in an unconditional branch already, and if the 1214 // end of the block is within range, make new water there. 1215 if (BBHasFallthrough(UserMBB)) { 1216 // Size of branch to insert. 1217 unsigned Delta = 2; 1218 // Compute the offset where the CPE will begin. 1219 unsigned CPEOffset = UserBBI.postOffset() + Delta; 1220 1221 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1222 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1223 << format(", expected CPE offset %#x\n", CPEOffset)); 1224 NewMBB = &*++UserMBB->getIterator(); 1225 // Add an unconditional branch from UserMBB to fallthrough block. Record 1226 // it for branch lengthening; this new branch will not get out of range, 1227 // but if the preceding conditional branch is out of range, the targets 1228 // will be exchanged, and the altered branch may be out of range, so the 1229 // machinery has to know about it. 1230 int UncondBr = Mips::Bimm16; 1231 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1232 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1233 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1234 MaxDisp, false, UncondBr)); 1235 BBInfo[UserMBB->getNumber()].Size += Delta; 1236 adjustBBOffsetsAfter(UserMBB); 1237 return; 1238 } 1239 } 1240 1241 // What a big block. Find a place within the block to split it. 1242 1243 // Try to split the block so it's fully aligned. Compute the latest split 1244 // point where we can add a 4-byte branch instruction, and then align to 1245 // Align which is the largest possible alignment in the function. 1246 const Align Align = MF->getAlignment(); 1247 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); 1248 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1249 BaseInsertOffset)); 1250 1251 // The 4 in the following is for the unconditional branch we'll be inserting 1252 // Alignment of the island is handled 1253 // inside isOffsetInRange. 1254 BaseInsertOffset -= 4; 1255 1256 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1257 << " la=" << Log2(Align) << '\n'); 1258 1259 // This could point off the end of the block if we've already got constant 1260 // pool entries following this block; only the last one is in the water list. 1261 // Back past any possible branches (allow for a conditional and a maximally 1262 // long unconditional). 1263 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1264 BaseInsertOffset = UserBBI.postOffset() - 8; 1265 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1266 } 1267 unsigned EndInsertOffset = BaseInsertOffset + 4 + 1268 CPEMI->getOperand(2).getImm(); 1269 MachineBasicBlock::iterator MI = UserMI; 1270 ++MI; 1271 unsigned CPUIndex = CPUserIndex+1; 1272 unsigned NumCPUsers = CPUsers.size(); 1273 //MachineInstr *LastIT = 0; 1274 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1275 Offset < BaseInsertOffset; 1276 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1277 assert(MI != UserMBB->end() && "Fell off end of block"); 1278 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1279 CPUser &U = CPUsers[CPUIndex]; 1280 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1281 // Shift intertion point by one unit of alignment so it is within reach. 1282 BaseInsertOffset -= Align.value(); 1283 EndInsertOffset -= Align.value(); 1284 } 1285 // This is overly conservative, as we don't account for CPEMIs being 1286 // reused within the block, but it doesn't matter much. Also assume CPEs 1287 // are added in order with alignment padding. We may eventually be able 1288 // to pack the aligned CPEs better. 1289 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1290 CPUIndex++; 1291 } 1292 } 1293 1294 NewMBB = splitBlockBeforeInstr(*--MI); 1295 } 1296 1297 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1298 /// is out-of-range. If so, pick up the constant pool value and move it some 1299 /// place in-range. Return true if we changed any addresses (thus must run 1300 /// another pass of branch lengthening), false otherwise. 1301 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { 1302 CPUser &U = CPUsers[CPUserIndex]; 1303 MachineInstr *UserMI = U.MI; 1304 MachineInstr *CPEMI = U.CPEMI; 1305 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1306 unsigned Size = CPEMI->getOperand(2).getImm(); 1307 // Compute this only once, it's expensive. 1308 unsigned UserOffset = getUserOffset(U); 1309 1310 // See if the current entry is within range, or there is a clone of it 1311 // in range. 1312 int result = findInRangeCPEntry(U, UserOffset); 1313 if (result==1) return false; 1314 else if (result==2) return true; 1315 1316 // Look for water where we can place this CPE. 1317 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1318 MachineBasicBlock *NewMBB; 1319 water_iterator IP; 1320 if (findAvailableWater(U, UserOffset, IP)) { 1321 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1322 MachineBasicBlock *WaterBB = *IP; 1323 1324 // If the original WaterList entry was "new water" on this iteration, 1325 // propagate that to the new island. This is just keeping NewWaterList 1326 // updated to match the WaterList, which will be updated below. 1327 if (NewWaterList.erase(WaterBB)) 1328 NewWaterList.insert(NewIsland); 1329 1330 // The new CPE goes before the following block (NewMBB). 1331 NewMBB = &*++WaterBB->getIterator(); 1332 } else { 1333 // No water found. 1334 // we first see if a longer form of the instrucion could have reached 1335 // the constant. in that case we won't bother to split 1336 if (!NoLoadRelaxation) { 1337 result = findLongFormInRangeCPEntry(U, UserOffset); 1338 if (result != 0) return true; 1339 } 1340 LLVM_DEBUG(dbgs() << "No water found\n"); 1341 createNewWater(CPUserIndex, UserOffset, NewMBB); 1342 1343 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1344 // called while handling branches so that the water will be seen on the 1345 // next iteration for constant pools, but in this context, we don't want 1346 // it. Check for this so it will be removed from the WaterList. 1347 // Also remove any entry from NewWaterList. 1348 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1349 IP = llvm::find(WaterList, WaterBB); 1350 if (IP != WaterList.end()) 1351 NewWaterList.erase(WaterBB); 1352 1353 // We are adding new water. Update NewWaterList. 1354 NewWaterList.insert(NewIsland); 1355 } 1356 1357 // Remove the original WaterList entry; we want subsequent insertions in 1358 // this vicinity to go after the one we're about to insert. This 1359 // considerably reduces the number of times we have to move the same CPE 1360 // more than once and is also important to ensure the algorithm terminates. 1361 if (IP != WaterList.end()) 1362 WaterList.erase(IP); 1363 1364 // Okay, we know we can put an island before NewMBB now, do it! 1365 MF->insert(NewMBB->getIterator(), NewIsland); 1366 1367 // Update internal data structures to account for the newly inserted MBB. 1368 updateForInsertedWaterBlock(NewIsland); 1369 1370 // Decrement the old entry, and remove it if refcount becomes 0. 1371 decrementCPEReferenceCount(CPI, CPEMI); 1372 1373 // No existing clone of this CPE is within range. 1374 // We will be generating a new clone. Get a UID for it. 1375 unsigned ID = createPICLabelUId(); 1376 1377 // Now that we have an island to add the CPE to, clone the original CPE and 1378 // add it to the island. 1379 U.HighWaterMark = NewIsland; 1380 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY)) 1381 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1382 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1383 ++NumCPEs; 1384 1385 // Mark the basic block as aligned as required by the const-pool entry. 1386 NewIsland->setAlignment(getCPEAlign(*U.CPEMI)); 1387 1388 // Increase the size of the island block to account for the new entry. 1389 BBInfo[NewIsland->getNumber()].Size += Size; 1390 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1391 1392 // Finally, change the CPI in the instruction operand to be ID. 1393 for (MachineOperand &MO : UserMI->operands()) 1394 if (MO.isCPI()) { 1395 MO.setIndex(ID); 1396 break; 1397 } 1398 1399 LLVM_DEBUG( 1400 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1401 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1402 1403 return true; 1404 } 1405 1406 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1407 /// sizes and offsets of impacted basic blocks. 1408 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1409 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1410 unsigned Size = CPEMI->getOperand(2).getImm(); 1411 CPEMI->eraseFromParent(); 1412 BBInfo[CPEBB->getNumber()].Size -= Size; 1413 // All succeeding offsets have the current size value added in, fix this. 1414 if (CPEBB->empty()) { 1415 BBInfo[CPEBB->getNumber()].Size = 0; 1416 1417 // This block no longer needs to be aligned. 1418 CPEBB->setAlignment(Align(1)); 1419 } else { 1420 // Entries are sorted by descending alignment, so realign from the front. 1421 CPEBB->setAlignment(getCPEAlign(*CPEBB->begin())); 1422 } 1423 1424 adjustBBOffsetsAfter(CPEBB); 1425 // An island has only one predecessor BB and one successor BB. Check if 1426 // this BB's predecessor jumps directly to this BB's successor. This 1427 // shouldn't happen currently. 1428 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1429 // FIXME: remove the empty blocks after all the work is done? 1430 } 1431 1432 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1433 /// are zero. 1434 bool MipsConstantIslands::removeUnusedCPEntries() { 1435 unsigned MadeChange = false; 1436 for (std::vector<CPEntry> &CPEs : CPEntries) { 1437 for (CPEntry &CPE : CPEs) { 1438 if (CPE.RefCount == 0 && CPE.CPEMI) { 1439 removeDeadCPEMI(CPE.CPEMI); 1440 CPE.CPEMI = nullptr; 1441 MadeChange = true; 1442 } 1443 } 1444 } 1445 return MadeChange; 1446 } 1447 1448 /// isBBInRange - Returns true if the distance between specific MI and 1449 /// specific BB can fit in MI's displacement field. 1450 bool MipsConstantIslands::isBBInRange 1451 (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) { 1452 unsigned PCAdj = 4; 1453 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1454 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1455 1456 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB) 1457 << " from " << printMBBReference(*MI->getParent()) 1458 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) 1459 << " to " << DestOffset << " offset " 1460 << int(DestOffset - BrOffset) << "\t" << *MI); 1461 1462 if (BrOffset <= DestOffset) { 1463 // Branch before the Dest. 1464 if (DestOffset-BrOffset <= MaxDisp) 1465 return true; 1466 } else { 1467 if (BrOffset-DestOffset <= MaxDisp) 1468 return true; 1469 } 1470 return false; 1471 } 1472 1473 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1474 /// away to fit in its displacement field. 1475 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1476 MachineInstr *MI = Br.MI; 1477 unsigned TargetOperand = branchTargetOperand(MI); 1478 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB(); 1479 1480 // Check to see if the DestBB is already in-range. 1481 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1482 return false; 1483 1484 if (!Br.isCond) 1485 return fixupUnconditionalBr(Br); 1486 return fixupConditionalBr(Br); 1487 } 1488 1489 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1490 /// too far away to fit in its displacement field. If the LR register has been 1491 /// spilled in the epilogue, then we can use BL to implement a far jump. 1492 /// Otherwise, add an intermediate branch instruction to a branch. 1493 bool 1494 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1495 MachineInstr *MI = Br.MI; 1496 MachineBasicBlock *MBB = MI->getParent(); 1497 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1498 // Use BL to implement far jump. 1499 unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2; 1500 if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) { 1501 Br.MaxDisp = BimmX16MaxDisp; 1502 MI->setDesc(TII->get(Mips::BimmX16)); 1503 } 1504 else { 1505 // need to give the math a more careful look here 1506 // this is really a segment address and not 1507 // a PC relative address. FIXME. But I think that 1508 // just reducing the bits by 1 as I've done is correct. 1509 // The basic block we are branching too much be longword aligned. 1510 // we know that RA is saved because we always save it right now. 1511 // this requirement will be relaxed later but we also have an alternate 1512 // way to implement this that I will implement that does not need jal. 1513 // We should have a way to back out this alignment restriction 1514 // if we "can" later. but it is not harmful. 1515 // 1516 DestBB->setAlignment(Align(4)); 1517 Br.MaxDisp = ((1<<24)-1) * 2; 1518 MI->setDesc(TII->get(Mips::JalB16)); 1519 } 1520 BBInfo[MBB->getNumber()].Size += 2; 1521 adjustBBOffsetsAfter(MBB); 1522 HasFarJump = true; 1523 ++NumUBrFixed; 1524 1525 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1526 1527 return true; 1528 } 1529 1530 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1531 /// far away to fit in its displacement field. It is converted to an inverse 1532 /// conditional branch + an unconditional branch to the destination. 1533 bool 1534 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1535 MachineInstr *MI = Br.MI; 1536 unsigned TargetOperand = branchTargetOperand(MI); 1537 MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB(); 1538 unsigned Opcode = MI->getOpcode(); 1539 unsigned LongFormOpcode = longformBranchOpcode(Opcode); 1540 unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode); 1541 1542 // Check to see if the DestBB is already in-range. 1543 if (isBBInRange(MI, DestBB, LongFormMaxOff)) { 1544 Br.MaxDisp = LongFormMaxOff; 1545 MI->setDesc(TII->get(LongFormOpcode)); 1546 return true; 1547 } 1548 1549 // Add an unconditional branch to the destination and invert the branch 1550 // condition to jump over it: 1551 // bteqz L1 1552 // => 1553 // bnez L2 1554 // b L1 1555 // L2: 1556 1557 // If the branch is at the end of its MBB and that has a fall-through block, 1558 // direct the updated conditional branch to the fall-through block. Otherwise, 1559 // split the MBB before the next instruction. 1560 MachineBasicBlock *MBB = MI->getParent(); 1561 MachineInstr *BMI = &MBB->back(); 1562 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1563 unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode); 1564 1565 ++NumCBrFixed; 1566 if (BMI != MI) { 1567 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1568 BMI->isUnconditionalBranch()) { 1569 // Last MI in the BB is an unconditional branch. Can we simply invert the 1570 // condition and swap destinations: 1571 // beqz L1 1572 // b L2 1573 // => 1574 // bnez L2 1575 // b L1 1576 unsigned BMITargetOperand = branchTargetOperand(BMI); 1577 MachineBasicBlock *NewDest = 1578 BMI->getOperand(BMITargetOperand).getMBB(); 1579 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1580 LLVM_DEBUG( 1581 dbgs() << " Invert Bcc condition and swap its destination with " 1582 << *BMI); 1583 MI->setDesc(TII->get(OppositeBranchOpcode)); 1584 BMI->getOperand(BMITargetOperand).setMBB(DestBB); 1585 MI->getOperand(TargetOperand).setMBB(NewDest); 1586 return true; 1587 } 1588 } 1589 } 1590 1591 if (NeedSplit) { 1592 splitBlockBeforeInstr(*MI); 1593 // No need for the branch to the next block. We're adding an unconditional 1594 // branch to the destination. 1595 int delta = TII->getInstSizeInBytes(MBB->back()); 1596 BBInfo[MBB->getNumber()].Size -= delta; 1597 MBB->back().eraseFromParent(); 1598 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1599 } 1600 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1601 1602 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1603 << " also invert condition and change dest. to " 1604 << printMBBReference(*NextBB) << "\n"); 1605 1606 // Insert a new conditional branch and a new unconditional branch. 1607 // Also update the ImmBranch as well as adding a new entry for the new branch. 1608 if (MI->getNumExplicitOperands() == 2) { 1609 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode)) 1610 .addReg(MI->getOperand(0).getReg()) 1611 .addMBB(NextBB); 1612 } else { 1613 BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode)) 1614 .addMBB(NextBB); 1615 } 1616 Br.MI = &MBB->back(); 1617 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1618 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1619 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1620 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1621 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1622 1623 // Remove the old conditional branch. It may or may not still be in MBB. 1624 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1625 MI->eraseFromParent(); 1626 adjustBBOffsetsAfter(MBB); 1627 return true; 1628 } 1629 1630 void MipsConstantIslands::prescanForConstants() { 1631 for (MachineBasicBlock &B : *MF) { 1632 for (MachineInstr &MI : B) { 1633 switch (MI.getDesc().getOpcode()) { 1634 case Mips::LwConstant32: { 1635 PrescannedForConstants = true; 1636 LLVM_DEBUG(dbgs() << "constant island constant " << MI << "\n"); 1637 LLVM_DEBUG(dbgs() << "num operands " << MI.getNumOperands() << "\n"); 1638 MachineOperand &Literal = MI.getOperand(1); 1639 if (Literal.isImm()) { 1640 int64_t V = Literal.getImm(); 1641 LLVM_DEBUG(dbgs() << "literal " << V << "\n"); 1642 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext()); 1643 const Constant *C = ConstantInt::get(Int32Ty, V); 1644 unsigned index = MCP->getConstantPoolIndex(C, Align(4)); 1645 MI.getOperand(2).ChangeToImmediate(index); 1646 LLVM_DEBUG(dbgs() << "constant island constant " << MI << "\n"); 1647 MI.setDesc(TII->get(Mips::LwRxPcTcp16)); 1648 MI.removeOperand(1); 1649 MI.removeOperand(1); 1650 MI.addOperand(MachineOperand::CreateCPI(index, 0)); 1651 MI.addOperand(MachineOperand::CreateImm(4)); 1652 } 1653 break; 1654 } 1655 default: 1656 break; 1657 } 1658 } 1659 } 1660 } 1661 1662 /// Returns a pass that converts branches to long branches. 1663 FunctionPass *llvm::createMipsConstantIslandPass() { 1664 return new MipsConstantIslands(); 1665 } 1666