xref: /llvm-project/llvm/lib/Target/Mips/MipsConstantIslandPass.cpp (revision 73e89cf66d4b88d568ff4c718ae7bf55588ef2be)
1 //===- MipsConstantIslandPass.cpp - Emit Pc Relative loads ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass is used to make Pc relative loads of constants.
10 // For now, only Mips16 will use this.
11 //
12 // Loading constants inline is expensive on Mips16 and it's in general better
13 // to place the constant nearby in code space and then it can be loaded with a
14 // simple 16 bit load instruction.
15 //
16 // The constants can be not just numbers but addresses of functions and labels.
17 // This can be particularly helpful in static relocation mode for embedded
18 // non-linux targets.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "Mips.h"
23 #include "Mips16InstrInfo.h"
24 #include "MipsMachineFunction.h"
25 #include "MipsSubtarget.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineConstantPool.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <cassert>
52 #include <cstdint>
53 #include <iterator>
54 #include <vector>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "mips-constant-islands"
59 
60 STATISTIC(NumCPEs,       "Number of constpool entries");
61 STATISTIC(NumSplit,      "Number of uncond branches inserted");
62 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
63 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
64 
65 // FIXME: This option should be removed once it has received sufficient testing.
66 static cl::opt<bool>
67 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
68           cl::desc("Align constant islands in code"));
69 
70 // Rather than do make check tests with huge amounts of code, we force
71 // the test to use this amount.
72 static cl::opt<int> ConstantIslandsSmallOffset(
73   "mips-constant-islands-small-offset",
74   cl::init(0),
75   cl::desc("Make small offsets be this amount for testing purposes"),
76   cl::Hidden);
77 
78 // For testing purposes we tell it to not use relaxed load forms so that it
79 // will split blocks.
80 static cl::opt<bool> NoLoadRelaxation(
81   "mips-constant-islands-no-load-relaxation",
82   cl::init(false),
83   cl::desc("Don't relax loads to long loads - for testing purposes"),
84   cl::Hidden);
85 
86 static unsigned int branchTargetOperand(MachineInstr *MI) {
87   switch (MI->getOpcode()) {
88   case Mips::Bimm16:
89   case Mips::BimmX16:
90   case Mips::Bteqz16:
91   case Mips::BteqzX16:
92   case Mips::Btnez16:
93   case Mips::BtnezX16:
94   case Mips::JalB16:
95     return 0;
96   case Mips::BeqzRxImm16:
97   case Mips::BeqzRxImmX16:
98   case Mips::BnezRxImm16:
99   case Mips::BnezRxImmX16:
100     return 1;
101   }
102   llvm_unreachable("Unknown branch type");
103 }
104 
105 static unsigned int longformBranchOpcode(unsigned int Opcode) {
106   switch (Opcode) {
107   case Mips::Bimm16:
108   case Mips::BimmX16:
109     return Mips::BimmX16;
110   case Mips::Bteqz16:
111   case Mips::BteqzX16:
112     return Mips::BteqzX16;
113   case Mips::Btnez16:
114   case Mips::BtnezX16:
115     return Mips::BtnezX16;
116   case Mips::JalB16:
117     return Mips::JalB16;
118   case Mips::BeqzRxImm16:
119   case Mips::BeqzRxImmX16:
120     return Mips::BeqzRxImmX16;
121   case Mips::BnezRxImm16:
122   case Mips::BnezRxImmX16:
123     return Mips::BnezRxImmX16;
124   }
125   llvm_unreachable("Unknown branch type");
126 }
127 
128 // FIXME: need to go through this whole constant islands port and check
129 // the math for branch ranges and clean this up and make some functions
130 // to calculate things that are done many times identically.
131 // Need to refactor some of the code to call this routine.
132 static unsigned int branchMaxOffsets(unsigned int Opcode) {
133   unsigned Bits, Scale;
134   switch (Opcode) {
135     case Mips::Bimm16:
136       Bits = 11;
137       Scale = 2;
138       break;
139     case Mips::BimmX16:
140       Bits = 16;
141       Scale = 2;
142       break;
143     case Mips::BeqzRxImm16:
144       Bits = 8;
145       Scale = 2;
146       break;
147     case Mips::BeqzRxImmX16:
148       Bits = 16;
149       Scale = 2;
150       break;
151     case Mips::BnezRxImm16:
152       Bits = 8;
153       Scale = 2;
154       break;
155     case Mips::BnezRxImmX16:
156       Bits = 16;
157       Scale = 2;
158       break;
159     case Mips::Bteqz16:
160       Bits = 8;
161       Scale = 2;
162       break;
163     case Mips::BteqzX16:
164       Bits = 16;
165       Scale = 2;
166       break;
167     case Mips::Btnez16:
168       Bits = 8;
169       Scale = 2;
170       break;
171     case Mips::BtnezX16:
172       Bits = 16;
173       Scale = 2;
174       break;
175     default:
176       llvm_unreachable("Unknown branch type");
177   }
178   unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
179   return MaxOffs;
180 }
181 
182 namespace {
183 
184   using Iter = MachineBasicBlock::iterator;
185   using ReverseIter = MachineBasicBlock::reverse_iterator;
186 
187   /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
188   /// requires constant pool entries to be scattered among the instructions
189   /// inside a function.  To do this, it completely ignores the normal LLVM
190   /// constant pool; instead, it places constants wherever it feels like with
191   /// special instructions.
192   ///
193   /// The terminology used in this pass includes:
194   ///   Islands - Clumps of constants placed in the function.
195   ///   Water   - Potential places where an island could be formed.
196   ///   CPE     - A constant pool entry that has been placed somewhere, which
197   ///             tracks a list of users.
198 
199   class MipsConstantIslands : public MachineFunctionPass {
200     /// BasicBlockInfo - Information about the offset and size of a single
201     /// basic block.
202     struct BasicBlockInfo {
203       /// Offset - Distance from the beginning of the function to the beginning
204       /// of this basic block.
205       ///
206       /// Offsets are computed assuming worst case padding before an aligned
207       /// block. This means that subtracting basic block offsets always gives a
208       /// conservative estimate of the real distance which may be smaller.
209       ///
210       /// Because worst case padding is used, the computed offset of an aligned
211       /// block may not actually be aligned.
212       unsigned Offset = 0;
213 
214       /// Size - Size of the basic block in bytes.  If the block contains
215       /// inline assembly, this is a worst case estimate.
216       ///
217       /// The size does not include any alignment padding whether from the
218       /// beginning of the block, or from an aligned jump table at the end.
219       unsigned Size = 0;
220 
221       BasicBlockInfo() = default;
222 
223       unsigned postOffset() const { return Offset + Size; }
224     };
225 
226     std::vector<BasicBlockInfo> BBInfo;
227 
228     /// WaterList - A sorted list of basic blocks where islands could be placed
229     /// (i.e. blocks that don't fall through to the following block, due
230     /// to a return, unreachable, or unconditional branch).
231     std::vector<MachineBasicBlock*> WaterList;
232 
233     /// NewWaterList - The subset of WaterList that was created since the
234     /// previous iteration by inserting unconditional branches.
235     SmallSet<MachineBasicBlock*, 4> NewWaterList;
236 
237     using water_iterator = std::vector<MachineBasicBlock *>::iterator;
238 
239     /// CPUser - One user of a constant pool, keeping the machine instruction
240     /// pointer, the constant pool being referenced, and the max displacement
241     /// allowed from the instruction to the CP.  The HighWaterMark records the
242     /// highest basic block where a new CPEntry can be placed.  To ensure this
243     /// pass terminates, the CP entries are initially placed at the end of the
244     /// function and then move monotonically to lower addresses.  The
245     /// exception to this rule is when the current CP entry for a particular
246     /// CPUser is out of range, but there is another CP entry for the same
247     /// constant value in range.  We want to use the existing in-range CP
248     /// entry, but if it later moves out of range, the search for new water
249     /// should resume where it left off.  The HighWaterMark is used to record
250     /// that point.
251     struct CPUser {
252       MachineInstr *MI;
253       MachineInstr *CPEMI;
254       MachineBasicBlock *HighWaterMark;
255 
256     private:
257       unsigned MaxDisp;
258       unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
259                                 // with different displacements
260       unsigned LongFormOpcode;
261 
262     public:
263       bool NegOk;
264 
265       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
266              bool neg,
267              unsigned longformmaxdisp, unsigned longformopcode)
268         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
269           LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
270           NegOk(neg){
271         HighWaterMark = CPEMI->getParent();
272       }
273 
274       /// getMaxDisp - Returns the maximum displacement supported by MI.
275       unsigned getMaxDisp() const {
276         unsigned xMaxDisp = ConstantIslandsSmallOffset?
277                             ConstantIslandsSmallOffset: MaxDisp;
278         return xMaxDisp;
279       }
280 
281       void setMaxDisp(unsigned val) {
282         MaxDisp = val;
283       }
284 
285       unsigned getLongFormMaxDisp() const {
286         return LongFormMaxDisp;
287       }
288 
289       unsigned getLongFormOpcode() const {
290           return LongFormOpcode;
291       }
292     };
293 
294     /// CPUsers - Keep track of all of the machine instructions that use various
295     /// constant pools and their max displacement.
296     std::vector<CPUser> CPUsers;
297 
298   /// CPEntry - One per constant pool entry, keeping the machine instruction
299   /// pointer, the constpool index, and the number of CPUser's which
300   /// reference this entry.
301   struct CPEntry {
302     MachineInstr *CPEMI;
303     unsigned CPI;
304     unsigned RefCount;
305 
306     CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
307       : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
308   };
309 
310   /// CPEntries - Keep track of all of the constant pool entry machine
311   /// instructions. For each original constpool index (i.e. those that
312   /// existed upon entry to this pass), it keeps a vector of entries.
313   /// Original elements are cloned as we go along; the clones are
314   /// put in the vector of the original element, but have distinct CPIs.
315   std::vector<std::vector<CPEntry>> CPEntries;
316 
317   /// ImmBranch - One per immediate branch, keeping the machine instruction
318   /// pointer, conditional or unconditional, the max displacement,
319   /// and (if isCond is true) the corresponding unconditional branch
320   /// opcode.
321   struct ImmBranch {
322     MachineInstr *MI;
323     unsigned MaxDisp : 31;
324     bool isCond : 1;
325     int UncondBr;
326 
327     ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
328       : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
329   };
330 
331   /// ImmBranches - Keep track of all the immediate branch instructions.
332   ///
333   std::vector<ImmBranch> ImmBranches;
334 
335   /// HasFarJump - True if any far jump instruction has been emitted during
336   /// the branch fix up pass.
337   bool HasFarJump;
338 
339   const MipsSubtarget *STI = nullptr;
340   const Mips16InstrInfo *TII;
341   MipsFunctionInfo *MFI;
342   MachineFunction *MF = nullptr;
343   MachineConstantPool *MCP = nullptr;
344 
345   unsigned PICLabelUId;
346   bool PrescannedForConstants = false;
347 
348   void initPICLabelUId(unsigned UId) {
349     PICLabelUId = UId;
350   }
351 
352   unsigned createPICLabelUId() {
353     return PICLabelUId++;
354   }
355 
356   public:
357     static char ID;
358 
359     MipsConstantIslands() : MachineFunctionPass(ID) {}
360 
361     StringRef getPassName() const override { return "Mips Constant Islands"; }
362 
363     bool runOnMachineFunction(MachineFunction &F) override;
364 
365     MachineFunctionProperties getRequiredProperties() const override {
366       return MachineFunctionProperties().set(
367           MachineFunctionProperties::Property::NoVRegs);
368     }
369 
370     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
371     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
372     Align getCPEAlign(const MachineInstr &CPEMI);
373     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
374     unsigned getOffsetOf(MachineInstr *MI) const;
375     unsigned getUserOffset(CPUser&) const;
376     void dumpBBs();
377 
378     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
379                          unsigned Disp, bool NegativeOK);
380     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
381                          const CPUser &U);
382 
383     void computeBlockSize(MachineBasicBlock *MBB);
384     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI);
385     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
386     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
387     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
388     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
389     int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
390     bool findAvailableWater(CPUser&U, unsigned UserOffset,
391                             water_iterator &WaterIter);
392     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
393                         MachineBasicBlock *&NewMBB);
394     bool handleConstantPoolUser(unsigned CPUserIndex);
395     void removeDeadCPEMI(MachineInstr *CPEMI);
396     bool removeUnusedCPEntries();
397     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
398                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
399                           bool DoDump = false);
400     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
401                         CPUser &U, unsigned &Growth);
402     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
403     bool fixupImmediateBr(ImmBranch &Br);
404     bool fixupConditionalBr(ImmBranch &Br);
405     bool fixupUnconditionalBr(ImmBranch &Br);
406 
407     void prescanForConstants();
408   };
409 
410 } // end anonymous namespace
411 
412 char MipsConstantIslands::ID = 0;
413 
414 bool MipsConstantIslands::isOffsetInRange
415   (unsigned UserOffset, unsigned TrialOffset,
416    const CPUser &U) {
417   return isOffsetInRange(UserOffset, TrialOffset,
418                          U.getMaxDisp(), U.NegOk);
419 }
420 
421 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
422 /// print block size and offset information - debugging
423 LLVM_DUMP_METHOD void MipsConstantIslands::dumpBBs() {
424   for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
425     const BasicBlockInfo &BBI = BBInfo[J];
426     dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
427            << format(" size=%#x\n", BBInfo[J].Size);
428   }
429 }
430 #endif
431 
432 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
433   // The intention is for this to be a mips16 only pass for now
434   // FIXME:
435   MF = &mf;
436   MCP = mf.getConstantPool();
437   STI = &mf.getSubtarget<MipsSubtarget>();
438   LLVM_DEBUG(dbgs() << "constant island machine function "
439                     << "\n");
440   if (!STI->inMips16Mode() || !MipsSubtarget::useConstantIslands()) {
441     return false;
442   }
443   TII = (const Mips16InstrInfo *)STI->getInstrInfo();
444   MFI = MF->getInfo<MipsFunctionInfo>();
445   LLVM_DEBUG(dbgs() << "constant island processing "
446                     << "\n");
447   //
448   // will need to make predermination if there is any constants we need to
449   // put in constant islands. TBD.
450   //
451   if (!PrescannedForConstants) prescanForConstants();
452 
453   HasFarJump = false;
454   // This pass invalidates liveness information when it splits basic blocks.
455   MF->getRegInfo().invalidateLiveness();
456 
457   // Renumber all of the machine basic blocks in the function, guaranteeing that
458   // the numbers agree with the position of the block in the function.
459   MF->RenumberBlocks();
460 
461   bool MadeChange = false;
462 
463   // Perform the initial placement of the constant pool entries.  To start with,
464   // we put them all at the end of the function.
465   std::vector<MachineInstr*> CPEMIs;
466   if (!MCP->isEmpty())
467     doInitialPlacement(CPEMIs);
468 
469   /// The next UID to take is the first unused one.
470   initPICLabelUId(CPEMIs.size());
471 
472   // Do the initial scan of the function, building up information about the
473   // sizes of each block, the location of all the water, and finding all of the
474   // constant pool users.
475   initializeFunctionInfo(CPEMIs);
476   CPEMIs.clear();
477   LLVM_DEBUG(dumpBBs());
478 
479   /// Remove dead constant pool entries.
480   MadeChange |= removeUnusedCPEntries();
481 
482   // Iteratively place constant pool entries and fix up branches until there
483   // is no change.
484   unsigned NoCPIters = 0, NoBRIters = 0;
485   (void)NoBRIters;
486   while (true) {
487     LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
488     bool CPChange = false;
489     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
490       CPChange |= handleConstantPoolUser(i);
491     if (CPChange && ++NoCPIters > 30)
492       report_fatal_error("Constant Island pass failed to converge!");
493     LLVM_DEBUG(dumpBBs());
494 
495     // Clear NewWaterList now.  If we split a block for branches, it should
496     // appear as "new water" for the next iteration of constant pool placement.
497     NewWaterList.clear();
498 
499     LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
500     bool BRChange = false;
501     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
502       BRChange |= fixupImmediateBr(ImmBranches[i]);
503     if (BRChange && ++NoBRIters > 30)
504       report_fatal_error("Branch Fix Up pass failed to converge!");
505     LLVM_DEBUG(dumpBBs());
506     if (!CPChange && !BRChange)
507       break;
508     MadeChange = true;
509   }
510 
511   LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
512 
513   BBInfo.clear();
514   WaterList.clear();
515   CPUsers.clear();
516   CPEntries.clear();
517   ImmBranches.clear();
518   return MadeChange;
519 }
520 
521 /// doInitialPlacement - Perform the initial placement of the constant pool
522 /// entries.  To start with, we put them all at the end of the function.
523 void
524 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
525   // Create the basic block to hold the CPE's.
526   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
527   MF->push_back(BB);
528 
529   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
530   const Align MaxAlign = MCP->getConstantPoolAlign();
531 
532   // Mark the basic block as required by the const-pool.
533   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
534   BB->setAlignment(AlignConstantIslands ? MaxAlign : Align(4));
535 
536   // The function needs to be as aligned as the basic blocks. The linker may
537   // move functions around based on their alignment.
538   MF->ensureAlignment(BB->getAlignment());
539 
540   // Order the entries in BB by descending alignment.  That ensures correct
541   // alignment of all entries as long as BB is sufficiently aligned.  Keep
542   // track of the insertion point for each alignment.  We are going to bucket
543   // sort the entries as they are created.
544   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(Log2(MaxAlign) + 1,
545                                                        BB->end());
546 
547   // Add all of the constants from the constant pool to the end block, use an
548   // identity mapping of CPI's to CPE's.
549   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
550 
551   const DataLayout &TD = MF->getDataLayout();
552   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
553     unsigned Size = CPs[i].getSizeInBytes(TD);
554     assert(Size >= 4 && "Too small constant pool entry");
555     Align Alignment = CPs[i].getAlign();
556     // Verify that all constant pool entries are a multiple of their alignment.
557     // If not, we would have to pad them out so that instructions stay aligned.
558     assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!");
559 
560     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
561     unsigned LogAlign = Log2(Alignment);
562     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
563 
564     MachineInstr *CPEMI =
565       BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
566         .addImm(i).addConstantPoolIndex(i).addImm(Size);
567 
568     CPEMIs.push_back(CPEMI);
569 
570     // Ensure that future entries with higher alignment get inserted before
571     // CPEMI. This is bucket sort with iterators.
572     for (unsigned a = LogAlign + 1; a <= Log2(MaxAlign); ++a)
573       if (InsPoint[a] == InsAt)
574         InsPoint[a] = CPEMI;
575     // Add a new CPEntry, but no corresponding CPUser yet.
576     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
577     ++NumCPEs;
578     LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
579                       << Size << ", align = " << Alignment.value() << '\n');
580   }
581   LLVM_DEBUG(BB->dump());
582 }
583 
584 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
585 /// into the block immediately after it.
586 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
587   // Get the next machine basic block in the function.
588   MachineFunction::iterator MBBI = MBB->getIterator();
589   // Can't fall off end of function.
590   if (std::next(MBBI) == MBB->getParent()->end())
591     return false;
592 
593   MachineBasicBlock *NextBB = &*std::next(MBBI);
594   return llvm::is_contained(MBB->successors(), NextBB);
595 }
596 
597 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
598 /// look up the corresponding CPEntry.
599 MipsConstantIslands::CPEntry
600 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
601                                         const MachineInstr *CPEMI) {
602   std::vector<CPEntry> &CPEs = CPEntries[CPI];
603   // Number of entries per constpool index should be small, just do a
604   // linear search.
605   for (CPEntry &CPE : CPEs) {
606     if (CPE.CPEMI == CPEMI)
607       return &CPE;
608   }
609   return nullptr;
610 }
611 
612 /// getCPEAlign - Returns the required alignment of the constant pool entry
613 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
614 Align MipsConstantIslands::getCPEAlign(const MachineInstr &CPEMI) {
615   assert(CPEMI.getOpcode() == Mips::CONSTPOOL_ENTRY);
616 
617   // Everything is 4-byte aligned unless AlignConstantIslands is set.
618   if (!AlignConstantIslands)
619     return Align(4);
620 
621   unsigned CPI = CPEMI.getOperand(1).getIndex();
622   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
623   return MCP->getConstants()[CPI].getAlign();
624 }
625 
626 /// initializeFunctionInfo - Do the initial scan of the function, building up
627 /// information about the sizes of each block, the location of all the water,
628 /// and finding all of the constant pool users.
629 void MipsConstantIslands::
630 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
631   BBInfo.clear();
632   BBInfo.resize(MF->getNumBlockIDs());
633 
634   // First thing, compute the size of all basic blocks, and see if the function
635   // has any inline assembly in it. If so, we have to be conservative about
636   // alignment assumptions, as we don't know for sure the size of any
637   // instructions in the inline assembly.
638   for (MachineBasicBlock &MBB : *MF)
639     computeBlockSize(&MBB);
640 
641   // Compute block offsets.
642   adjustBBOffsetsAfter(&MF->front());
643 
644   // Now go back through the instructions and build up our data structures.
645   for (MachineBasicBlock &MBB : *MF) {
646     // If this block doesn't fall through into the next MBB, then this is
647     // 'water' that a constant pool island could be placed.
648     if (!BBHasFallthrough(&MBB))
649       WaterList.push_back(&MBB);
650     for (MachineInstr &MI : MBB) {
651       if (MI.isDebugInstr())
652         continue;
653 
654       int Opc = MI.getOpcode();
655       if (MI.isBranch()) {
656         bool isCond = false;
657         unsigned Bits = 0;
658         unsigned Scale = 1;
659         int UOpc = Opc;
660         switch (Opc) {
661         default:
662           continue;  // Ignore other branches for now
663         case Mips::Bimm16:
664           Bits = 11;
665           Scale = 2;
666           isCond = false;
667           break;
668         case Mips::BimmX16:
669           Bits = 16;
670           Scale = 2;
671           isCond = false;
672           break;
673         case Mips::BeqzRxImm16:
674           UOpc=Mips::Bimm16;
675           Bits = 8;
676           Scale = 2;
677           isCond = true;
678           break;
679         case Mips::BeqzRxImmX16:
680           UOpc=Mips::Bimm16;
681           Bits = 16;
682           Scale = 2;
683           isCond = true;
684           break;
685         case Mips::BnezRxImm16:
686           UOpc=Mips::Bimm16;
687           Bits = 8;
688           Scale = 2;
689           isCond = true;
690           break;
691         case Mips::BnezRxImmX16:
692           UOpc=Mips::Bimm16;
693           Bits = 16;
694           Scale = 2;
695           isCond = true;
696           break;
697         case Mips::Bteqz16:
698           UOpc=Mips::Bimm16;
699           Bits = 8;
700           Scale = 2;
701           isCond = true;
702           break;
703         case Mips::BteqzX16:
704           UOpc=Mips::Bimm16;
705           Bits = 16;
706           Scale = 2;
707           isCond = true;
708           break;
709         case Mips::Btnez16:
710           UOpc=Mips::Bimm16;
711           Bits = 8;
712           Scale = 2;
713           isCond = true;
714           break;
715         case Mips::BtnezX16:
716           UOpc=Mips::Bimm16;
717           Bits = 16;
718           Scale = 2;
719           isCond = true;
720           break;
721         }
722         // Record this immediate branch.
723         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
724         ImmBranches.push_back(ImmBranch(&MI, MaxOffs, isCond, UOpc));
725       }
726 
727       if (Opc == Mips::CONSTPOOL_ENTRY)
728         continue;
729 
730       // Scan the instructions for constant pool operands.
731       for (const MachineOperand &MO : MI.operands())
732         if (MO.isCPI()) {
733           // We found one.  The addressing mode tells us the max displacement
734           // from the PC that this instruction permits.
735 
736           // Basic size info comes from the TSFlags field.
737           unsigned Bits = 0;
738           unsigned Scale = 1;
739           bool NegOk = false;
740           unsigned LongFormBits = 0;
741           unsigned LongFormScale = 0;
742           unsigned LongFormOpcode = 0;
743           switch (Opc) {
744           default:
745             llvm_unreachable("Unknown addressing mode for CP reference!");
746           case Mips::LwRxPcTcp16:
747             Bits = 8;
748             Scale = 4;
749             LongFormOpcode = Mips::LwRxPcTcpX16;
750             LongFormBits = 14;
751             LongFormScale = 1;
752             break;
753           case Mips::LwRxPcTcpX16:
754             Bits = 14;
755             Scale = 1;
756             NegOk = true;
757             break;
758           }
759           // Remember that this is a user of a CP entry.
760           unsigned CPI = MO.getIndex();
761           MachineInstr *CPEMI = CPEMIs[CPI];
762           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
763           unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
764           CPUsers.push_back(CPUser(&MI, CPEMI, MaxOffs, NegOk, LongFormMaxOffs,
765                                    LongFormOpcode));
766 
767           // Increment corresponding CPEntry reference count.
768           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
769           assert(CPE && "Cannot find a corresponding CPEntry!");
770           CPE->RefCount++;
771 
772           // Instructions can only use one CP entry, don't bother scanning the
773           // rest of the operands.
774           break;
775         }
776     }
777   }
778 }
779 
780 /// computeBlockSize - Compute the size and some alignment information for MBB.
781 /// This function updates BBInfo directly.
782 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
783   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
784   BBI.Size = 0;
785 
786   for (const MachineInstr &MI : *MBB)
787     BBI.Size += TII->getInstSizeInBytes(MI);
788 }
789 
790 /// getOffsetOf - Return the current offset of the specified machine instruction
791 /// from the start of the function.  This offset changes as stuff is moved
792 /// around inside the function.
793 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
794   MachineBasicBlock *MBB = MI->getParent();
795 
796   // The offset is composed of two things: the sum of the sizes of all MBB's
797   // before this instruction's block, and the offset from the start of the block
798   // it is in.
799   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
800 
801   // Sum instructions before MI in MBB.
802   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
803     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
804     Offset += TII->getInstSizeInBytes(*I);
805   }
806   return Offset;
807 }
808 
809 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
810 /// ID.
811 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
812                               const MachineBasicBlock *RHS) {
813   return LHS->getNumber() < RHS->getNumber();
814 }
815 
816 /// updateForInsertedWaterBlock - When a block is newly inserted into the
817 /// machine function, it upsets all of the block numbers.  Renumber the blocks
818 /// and update the arrays that parallel this numbering.
819 void MipsConstantIslands::updateForInsertedWaterBlock
820   (MachineBasicBlock *NewBB) {
821   // Renumber the MBB's to keep them consecutive.
822   NewBB->getParent()->RenumberBlocks(NewBB);
823 
824   // Insert an entry into BBInfo to align it properly with the (newly
825   // renumbered) block numbers.
826   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
827 
828   // Next, update WaterList.  Specifically, we need to add NewMBB as having
829   // available water after it.
830   water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
831   WaterList.insert(IP, NewBB);
832 }
833 
834 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
835   return getOffsetOf(U.MI);
836 }
837 
838 /// Split the basic block containing MI into two blocks, which are joined by
839 /// an unconditional branch.  Update data structures and renumber blocks to
840 /// account for this change and returns the newly created block.
841 MachineBasicBlock *
842 MipsConstantIslands::splitBlockBeforeInstr(MachineInstr &MI) {
843   MachineBasicBlock *OrigBB = MI.getParent();
844 
845   // Create a new MBB for the code after the OrigBB.
846   MachineBasicBlock *NewBB =
847     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
848   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
849   MF->insert(MBBI, NewBB);
850 
851   // Splice the instructions starting with MI over to NewBB.
852   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
853 
854   // Add an unconditional branch from OrigBB to NewBB.
855   // Note the new unconditional branch is not being recorded.
856   // There doesn't seem to be meaningful DebugInfo available; this doesn't
857   // correspond to anything in the source.
858   BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
859   ++NumSplit;
860 
861   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
862   NewBB->transferSuccessors(OrigBB);
863 
864   // OrigBB branches to NewBB.
865   OrigBB->addSuccessor(NewBB);
866 
867   // Update internal data structures to account for the newly inserted MBB.
868   // This is almost the same as updateForInsertedWaterBlock, except that
869   // the Water goes after OrigBB, not NewBB.
870   MF->RenumberBlocks(NewBB);
871 
872   // Insert an entry into BBInfo to align it properly with the (newly
873   // renumbered) block numbers.
874   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
875 
876   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
877   // available water after it (but not if it's already there, which happens
878   // when splitting before a conditional branch that is followed by an
879   // unconditional branch - in that case we want to insert NewBB).
880   water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
881   MachineBasicBlock* WaterBB = *IP;
882   if (WaterBB == OrigBB)
883     WaterList.insert(std::next(IP), NewBB);
884   else
885     WaterList.insert(IP, OrigBB);
886   NewWaterList.insert(OrigBB);
887 
888   // Figure out how large the OrigBB is.  As the first half of the original
889   // block, it cannot contain a tablejump.  The size includes
890   // the new jump we added.  (It should be possible to do this without
891   // recounting everything, but it's very confusing, and this is rarely
892   // executed.)
893   computeBlockSize(OrigBB);
894 
895   // Figure out how large the NewMBB is.  As the second half of the original
896   // block, it may contain a tablejump.
897   computeBlockSize(NewBB);
898 
899   // All BBOffsets following these blocks must be modified.
900   adjustBBOffsetsAfter(OrigBB);
901 
902   return NewBB;
903 }
904 
905 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
906 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
907 /// constant pool entry).
908 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
909                                          unsigned TrialOffset, unsigned MaxDisp,
910                                          bool NegativeOK) {
911   if (UserOffset <= TrialOffset) {
912     // User before the Trial.
913     if (TrialOffset - UserOffset <= MaxDisp)
914       return true;
915   } else if (NegativeOK) {
916     if (UserOffset - TrialOffset <= MaxDisp)
917       return true;
918   }
919   return false;
920 }
921 
922 /// isWaterInRange - Returns true if a CPE placed after the specified
923 /// Water (a basic block) will be in range for the specific MI.
924 ///
925 /// Compute how much the function will grow by inserting a CPE after Water.
926 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
927                                         MachineBasicBlock* Water, CPUser &U,
928                                         unsigned &Growth) {
929   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset();
930   unsigned NextBlockOffset;
931   Align NextBlockAlignment;
932   MachineFunction::const_iterator NextBlock = ++Water->getIterator();
933   if (NextBlock == MF->end()) {
934     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
935     NextBlockAlignment = Align(1);
936   } else {
937     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
938     NextBlockAlignment = NextBlock->getAlignment();
939   }
940   unsigned Size = U.CPEMI->getOperand(2).getImm();
941   unsigned CPEEnd = CPEOffset + Size;
942 
943   // The CPE may be able to hide in the alignment padding before the next
944   // block. It may also cause more padding to be required if it is more aligned
945   // that the next block.
946   if (CPEEnd > NextBlockOffset) {
947     Growth = CPEEnd - NextBlockOffset;
948     // Compute the padding that would go at the end of the CPE to align the next
949     // block.
950     Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
951 
952     // If the CPE is to be inserted before the instruction, that will raise
953     // the offset of the instruction. Also account for unknown alignment padding
954     // in blocks between CPE and the user.
955     if (CPEOffset < UserOffset)
956       UserOffset += Growth;
957   } else
958     // CPE fits in existing padding.
959     Growth = 0;
960 
961   return isOffsetInRange(UserOffset, CPEOffset, U);
962 }
963 
964 /// isCPEntryInRange - Returns true if the distance between specific MI and
965 /// specific ConstPool entry instruction can fit in MI's displacement field.
966 bool MipsConstantIslands::isCPEntryInRange
967   (MachineInstr *MI, unsigned UserOffset,
968    MachineInstr *CPEMI, unsigned MaxDisp,
969    bool NegOk, bool DoDump) {
970   unsigned CPEOffset  = getOffsetOf(CPEMI);
971 
972   if (DoDump) {
973     LLVM_DEBUG({
974       unsigned Block = MI->getParent()->getNumber();
975       const BasicBlockInfo &BBI = BBInfo[Block];
976       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
977              << " max delta=" << MaxDisp
978              << format(" insn address=%#x", UserOffset) << " in "
979              << printMBBReference(*MI->getParent()) << ": "
980              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
981              << format("CPE address=%#x offset=%+d: ", CPEOffset,
982                        int(CPEOffset - UserOffset));
983     });
984   }
985 
986   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
987 }
988 
989 #ifndef NDEBUG
990 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
991 /// unconditionally branches to its only successor.
992 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
993   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
994     return false;
995   MachineBasicBlock *Succ = *MBB->succ_begin();
996   MachineBasicBlock *Pred = *MBB->pred_begin();
997   MachineInstr *PredMI = &Pred->back();
998   if (PredMI->getOpcode() == Mips::Bimm16)
999     return PredMI->getOperand(0).getMBB() == Succ;
1000   return false;
1001 }
1002 #endif
1003 
1004 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1005   unsigned BBNum = BB->getNumber();
1006   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1007     // Get the offset and known bits at the end of the layout predecessor.
1008     // Include the alignment of the current block.
1009     unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
1010     BBInfo[i].Offset = Offset;
1011   }
1012 }
1013 
1014 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1015 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1016 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1017 /// the entry, false if we didn't.
1018 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1019                                                     MachineInstr *CPEMI) {
1020   // Find the old entry. Eliminate it if it is no longer used.
1021   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1022   assert(CPE && "Unexpected!");
1023   if (--CPE->RefCount == 0) {
1024     removeDeadCPEMI(CPEMI);
1025     CPE->CPEMI = nullptr;
1026     --NumCPEs;
1027     return true;
1028   }
1029   return false;
1030 }
1031 
1032 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1033 /// if not, see if an in-range clone of the CPE is in range, and if so,
1034 /// change the data structures so the user references the clone.  Returns:
1035 /// 0 = no existing entry found
1036 /// 1 = entry found, and there were no code insertions or deletions
1037 /// 2 = entry found, and there were code insertions or deletions
1038 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1039 {
1040   MachineInstr *UserMI = U.MI;
1041   MachineInstr *CPEMI  = U.CPEMI;
1042 
1043   // Check to see if the CPE is already in-range.
1044   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1045                        true)) {
1046     LLVM_DEBUG(dbgs() << "In range\n");
1047     return 1;
1048   }
1049 
1050   // No.  Look for previously created clones of the CPE that are in range.
1051   unsigned CPI = CPEMI->getOperand(1).getIndex();
1052   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1053   for (CPEntry &CPE : CPEs) {
1054     // We already tried this one
1055     if (CPE.CPEMI == CPEMI)
1056       continue;
1057     // Removing CPEs can leave empty entries, skip
1058     if (CPE.CPEMI == nullptr)
1059       continue;
1060     if (isCPEntryInRange(UserMI, UserOffset, CPE.CPEMI, U.getMaxDisp(),
1061                          U.NegOk)) {
1062       LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPE.CPI
1063                         << "\n");
1064       // Point the CPUser node to the replacement
1065       U.CPEMI = CPE.CPEMI;
1066       // Change the CPI in the instruction operand to refer to the clone.
1067       for (MachineOperand &MO : UserMI->operands())
1068         if (MO.isCPI()) {
1069           MO.setIndex(CPE.CPI);
1070           break;
1071         }
1072       // Adjust the refcount of the clone...
1073       CPE.RefCount++;
1074       // ...and the original.  If we didn't remove the old entry, none of the
1075       // addresses changed, so we don't need another pass.
1076       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1077     }
1078   }
1079   return 0;
1080 }
1081 
1082 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1083 /// This version checks if the longer form of the instruction can be used to
1084 /// to satisfy things.
1085 /// if not, see if an in-range clone of the CPE is in range, and if so,
1086 /// change the data structures so the user references the clone.  Returns:
1087 /// 0 = no existing entry found
1088 /// 1 = entry found, and there were no code insertions or deletions
1089 /// 2 = entry found, and there were code insertions or deletions
1090 int MipsConstantIslands::findLongFormInRangeCPEntry
1091   (CPUser& U, unsigned UserOffset)
1092 {
1093   MachineInstr *UserMI = U.MI;
1094   MachineInstr *CPEMI  = U.CPEMI;
1095 
1096   // Check to see if the CPE is already in-range.
1097   if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1098                        U.getLongFormMaxDisp(), U.NegOk,
1099                        true)) {
1100     LLVM_DEBUG(dbgs() << "In range\n");
1101     UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1102     U.setMaxDisp(U.getLongFormMaxDisp());
1103     return 2;  // instruction is longer length now
1104   }
1105 
1106   // No.  Look for previously created clones of the CPE that are in range.
1107   unsigned CPI = CPEMI->getOperand(1).getIndex();
1108   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1109   for (CPEntry &CPE : CPEs) {
1110     // We already tried this one
1111     if (CPE.CPEMI == CPEMI)
1112       continue;
1113     // Removing CPEs can leave empty entries, skip
1114     if (CPE.CPEMI == nullptr)
1115       continue;
1116     if (isCPEntryInRange(UserMI, UserOffset, CPE.CPEMI, U.getLongFormMaxDisp(),
1117                          U.NegOk)) {
1118       LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPE.CPI
1119                         << "\n");
1120       // Point the CPUser node to the replacement
1121       U.CPEMI = CPE.CPEMI;
1122       // Change the CPI in the instruction operand to refer to the clone.
1123       for (MachineOperand &MO : UserMI->operands())
1124         if (MO.isCPI()) {
1125           MO.setIndex(CPE.CPI);
1126           break;
1127         }
1128       // Adjust the refcount of the clone...
1129       CPE.RefCount++;
1130       // ...and the original.  If we didn't remove the old entry, none of the
1131       // addresses changed, so we don't need another pass.
1132       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1133     }
1134   }
1135   return 0;
1136 }
1137 
1138 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1139 /// the specific unconditional branch instruction.
1140 static inline unsigned getUnconditionalBrDisp(int Opc) {
1141   switch (Opc) {
1142   case Mips::Bimm16:
1143     return ((1<<10)-1)*2;
1144   case Mips::BimmX16:
1145     return ((1<<16)-1)*2;
1146   default:
1147     break;
1148   }
1149   return ((1<<16)-1)*2;
1150 }
1151 
1152 /// findAvailableWater - Look for an existing entry in the WaterList in which
1153 /// we can place the CPE referenced from U so it's within range of U's MI.
1154 /// Returns true if found, false if not.  If it returns true, WaterIter
1155 /// is set to the WaterList entry.
1156 /// To ensure that this pass
1157 /// terminates, the CPE location for a particular CPUser is only allowed to
1158 /// move to a lower address, so search backward from the end of the list and
1159 /// prefer the first water that is in range.
1160 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1161                                       water_iterator &WaterIter) {
1162   if (WaterList.empty())
1163     return false;
1164 
1165   unsigned BestGrowth = ~0u;
1166   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1167        --IP) {
1168     MachineBasicBlock* WaterBB = *IP;
1169     // Check if water is in range and is either at a lower address than the
1170     // current "high water mark" or a new water block that was created since
1171     // the previous iteration by inserting an unconditional branch.  In the
1172     // latter case, we want to allow resetting the high water mark back to
1173     // this new water since we haven't seen it before.  Inserting branches
1174     // should be relatively uncommon and when it does happen, we want to be
1175     // sure to take advantage of it for all the CPEs near that block, so that
1176     // we don't insert more branches than necessary.
1177     unsigned Growth;
1178     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1179         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1180          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1181       // This is the least amount of required padding seen so far.
1182       BestGrowth = Growth;
1183       WaterIter = IP;
1184       LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1185                         << " Growth=" << Growth << '\n');
1186 
1187       // Keep looking unless it is perfect.
1188       if (BestGrowth == 0)
1189         return true;
1190     }
1191     if (IP == B)
1192       break;
1193   }
1194   return BestGrowth != ~0u;
1195 }
1196 
1197 /// createNewWater - No existing WaterList entry will work for
1198 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1199 /// block is used if in range, and the conditional branch munged so control
1200 /// flow is correct.  Otherwise the block is split to create a hole with an
1201 /// unconditional branch around it.  In either case NewMBB is set to a
1202 /// block following which the new island can be inserted (the WaterList
1203 /// is not adjusted).
1204 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1205                                         unsigned UserOffset,
1206                                         MachineBasicBlock *&NewMBB) {
1207   CPUser &U = CPUsers[CPUserIndex];
1208   MachineInstr *UserMI = U.MI;
1209   MachineInstr *CPEMI  = U.CPEMI;
1210   MachineBasicBlock *UserMBB = UserMI->getParent();
1211   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1212 
1213   // If the block does not end in an unconditional branch already, and if the
1214   // end of the block is within range, make new water there.
1215   if (BBHasFallthrough(UserMBB)) {
1216     // Size of branch to insert.
1217     unsigned Delta = 2;
1218     // Compute the offset where the CPE will begin.
1219     unsigned CPEOffset = UserBBI.postOffset() + Delta;
1220 
1221     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1222       LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1223                         << format(", expected CPE offset %#x\n", CPEOffset));
1224       NewMBB = &*++UserMBB->getIterator();
1225       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1226       // it for branch lengthening; this new branch will not get out of range,
1227       // but if the preceding conditional branch is out of range, the targets
1228       // will be exchanged, and the altered branch may be out of range, so the
1229       // machinery has to know about it.
1230       int UncondBr = Mips::Bimm16;
1231       BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1232       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1233       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1234                                       MaxDisp, false, UncondBr));
1235       BBInfo[UserMBB->getNumber()].Size += Delta;
1236       adjustBBOffsetsAfter(UserMBB);
1237       return;
1238     }
1239   }
1240 
1241   // What a big block.  Find a place within the block to split it.
1242 
1243   // Try to split the block so it's fully aligned.  Compute the latest split
1244   // point where we can add a 4-byte branch instruction, and then align to
1245   // Align which is the largest possible alignment in the function.
1246   const Align Align = MF->getAlignment();
1247   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1248   LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1249                               BaseInsertOffset));
1250 
1251   // The 4 in the following is for the unconditional branch we'll be inserting
1252   // Alignment of the island is handled
1253   // inside isOffsetInRange.
1254   BaseInsertOffset -= 4;
1255 
1256   LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1257                     << " la=" << Log2(Align) << '\n');
1258 
1259   // This could point off the end of the block if we've already got constant
1260   // pool entries following this block; only the last one is in the water list.
1261   // Back past any possible branches (allow for a conditional and a maximally
1262   // long unconditional).
1263   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1264     BaseInsertOffset = UserBBI.postOffset() - 8;
1265     LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1266   }
1267   unsigned EndInsertOffset = BaseInsertOffset + 4 +
1268     CPEMI->getOperand(2).getImm();
1269   MachineBasicBlock::iterator MI = UserMI;
1270   ++MI;
1271   unsigned CPUIndex = CPUserIndex+1;
1272   unsigned NumCPUsers = CPUsers.size();
1273   //MachineInstr *LastIT = 0;
1274   for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1275        Offset < BaseInsertOffset;
1276        Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1277     assert(MI != UserMBB->end() && "Fell off end of block");
1278     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1279       CPUser &U = CPUsers[CPUIndex];
1280       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1281         // Shift intertion point by one unit of alignment so it is within reach.
1282         BaseInsertOffset -= Align.value();
1283         EndInsertOffset -= Align.value();
1284       }
1285       // This is overly conservative, as we don't account for CPEMIs being
1286       // reused within the block, but it doesn't matter much.  Also assume CPEs
1287       // are added in order with alignment padding.  We may eventually be able
1288       // to pack the aligned CPEs better.
1289       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1290       CPUIndex++;
1291     }
1292   }
1293 
1294   NewMBB = splitBlockBeforeInstr(*--MI);
1295 }
1296 
1297 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1298 /// is out-of-range.  If so, pick up the constant pool value and move it some
1299 /// place in-range.  Return true if we changed any addresses (thus must run
1300 /// another pass of branch lengthening), false otherwise.
1301 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1302   CPUser &U = CPUsers[CPUserIndex];
1303   MachineInstr *UserMI = U.MI;
1304   MachineInstr *CPEMI  = U.CPEMI;
1305   unsigned CPI = CPEMI->getOperand(1).getIndex();
1306   unsigned Size = CPEMI->getOperand(2).getImm();
1307   // Compute this only once, it's expensive.
1308   unsigned UserOffset = getUserOffset(U);
1309 
1310   // See if the current entry is within range, or there is a clone of it
1311   // in range.
1312   int result = findInRangeCPEntry(U, UserOffset);
1313   if (result==1) return false;
1314   else if (result==2) return true;
1315 
1316   // Look for water where we can place this CPE.
1317   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1318   MachineBasicBlock *NewMBB;
1319   water_iterator IP;
1320   if (findAvailableWater(U, UserOffset, IP)) {
1321     LLVM_DEBUG(dbgs() << "Found water in range\n");
1322     MachineBasicBlock *WaterBB = *IP;
1323 
1324     // If the original WaterList entry was "new water" on this iteration,
1325     // propagate that to the new island.  This is just keeping NewWaterList
1326     // updated to match the WaterList, which will be updated below.
1327     if (NewWaterList.erase(WaterBB))
1328       NewWaterList.insert(NewIsland);
1329 
1330     // The new CPE goes before the following block (NewMBB).
1331     NewMBB = &*++WaterBB->getIterator();
1332   } else {
1333     // No water found.
1334     // we first see if a longer form of the instrucion could have reached
1335     // the constant. in that case we won't bother to split
1336     if (!NoLoadRelaxation) {
1337       result = findLongFormInRangeCPEntry(U, UserOffset);
1338       if (result != 0) return true;
1339     }
1340     LLVM_DEBUG(dbgs() << "No water found\n");
1341     createNewWater(CPUserIndex, UserOffset, NewMBB);
1342 
1343     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1344     // called while handling branches so that the water will be seen on the
1345     // next iteration for constant pools, but in this context, we don't want
1346     // it.  Check for this so it will be removed from the WaterList.
1347     // Also remove any entry from NewWaterList.
1348     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1349     IP = llvm::find(WaterList, WaterBB);
1350     if (IP != WaterList.end())
1351       NewWaterList.erase(WaterBB);
1352 
1353     // We are adding new water.  Update NewWaterList.
1354     NewWaterList.insert(NewIsland);
1355   }
1356 
1357   // Remove the original WaterList entry; we want subsequent insertions in
1358   // this vicinity to go after the one we're about to insert.  This
1359   // considerably reduces the number of times we have to move the same CPE
1360   // more than once and is also important to ensure the algorithm terminates.
1361   if (IP != WaterList.end())
1362     WaterList.erase(IP);
1363 
1364   // Okay, we know we can put an island before NewMBB now, do it!
1365   MF->insert(NewMBB->getIterator(), NewIsland);
1366 
1367   // Update internal data structures to account for the newly inserted MBB.
1368   updateForInsertedWaterBlock(NewIsland);
1369 
1370   // Decrement the old entry, and remove it if refcount becomes 0.
1371   decrementCPEReferenceCount(CPI, CPEMI);
1372 
1373   // No existing clone of this CPE is within range.
1374   // We will be generating a new clone.  Get a UID for it.
1375   unsigned ID = createPICLabelUId();
1376 
1377   // Now that we have an island to add the CPE to, clone the original CPE and
1378   // add it to the island.
1379   U.HighWaterMark = NewIsland;
1380   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1381                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1382   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1383   ++NumCPEs;
1384 
1385   // Mark the basic block as aligned as required by the const-pool entry.
1386   NewIsland->setAlignment(getCPEAlign(*U.CPEMI));
1387 
1388   // Increase the size of the island block to account for the new entry.
1389   BBInfo[NewIsland->getNumber()].Size += Size;
1390   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1391 
1392   // Finally, change the CPI in the instruction operand to be ID.
1393   for (MachineOperand &MO : UserMI->operands())
1394     if (MO.isCPI()) {
1395       MO.setIndex(ID);
1396       break;
1397     }
1398 
1399   LLVM_DEBUG(
1400       dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1401              << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1402 
1403   return true;
1404 }
1405 
1406 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1407 /// sizes and offsets of impacted basic blocks.
1408 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1409   MachineBasicBlock *CPEBB = CPEMI->getParent();
1410   unsigned Size = CPEMI->getOperand(2).getImm();
1411   CPEMI->eraseFromParent();
1412   BBInfo[CPEBB->getNumber()].Size -= Size;
1413   // All succeeding offsets have the current size value added in, fix this.
1414   if (CPEBB->empty()) {
1415     BBInfo[CPEBB->getNumber()].Size = 0;
1416 
1417     // This block no longer needs to be aligned.
1418     CPEBB->setAlignment(Align(1));
1419   } else {
1420     // Entries are sorted by descending alignment, so realign from the front.
1421     CPEBB->setAlignment(getCPEAlign(*CPEBB->begin()));
1422   }
1423 
1424   adjustBBOffsetsAfter(CPEBB);
1425   // An island has only one predecessor BB and one successor BB. Check if
1426   // this BB's predecessor jumps directly to this BB's successor. This
1427   // shouldn't happen currently.
1428   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1429   // FIXME: remove the empty blocks after all the work is done?
1430 }
1431 
1432 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1433 /// are zero.
1434 bool MipsConstantIslands::removeUnusedCPEntries() {
1435   unsigned MadeChange = false;
1436   for (std::vector<CPEntry> &CPEs : CPEntries) {
1437     for (CPEntry &CPE : CPEs) {
1438       if (CPE.RefCount == 0 && CPE.CPEMI) {
1439         removeDeadCPEMI(CPE.CPEMI);
1440         CPE.CPEMI = nullptr;
1441         MadeChange = true;
1442       }
1443     }
1444   }
1445   return MadeChange;
1446 }
1447 
1448 /// isBBInRange - Returns true if the distance between specific MI and
1449 /// specific BB can fit in MI's displacement field.
1450 bool MipsConstantIslands::isBBInRange
1451   (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1452   unsigned PCAdj = 4;
1453   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1454   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1455 
1456   LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
1457                     << " from " << printMBBReference(*MI->getParent())
1458                     << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
1459                     << " to " << DestOffset << " offset "
1460                     << int(DestOffset - BrOffset) << "\t" << *MI);
1461 
1462   if (BrOffset <= DestOffset) {
1463     // Branch before the Dest.
1464     if (DestOffset-BrOffset <= MaxDisp)
1465       return true;
1466   } else {
1467     if (BrOffset-DestOffset <= MaxDisp)
1468       return true;
1469   }
1470   return false;
1471 }
1472 
1473 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1474 /// away to fit in its displacement field.
1475 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1476   MachineInstr *MI = Br.MI;
1477   unsigned TargetOperand = branchTargetOperand(MI);
1478   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1479 
1480   // Check to see if the DestBB is already in-range.
1481   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1482     return false;
1483 
1484   if (!Br.isCond)
1485     return fixupUnconditionalBr(Br);
1486   return fixupConditionalBr(Br);
1487 }
1488 
1489 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1490 /// too far away to fit in its displacement field. If the LR register has been
1491 /// spilled in the epilogue, then we can use BL to implement a far jump.
1492 /// Otherwise, add an intermediate branch instruction to a branch.
1493 bool
1494 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1495   MachineInstr *MI = Br.MI;
1496   MachineBasicBlock *MBB = MI->getParent();
1497   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1498   // Use BL to implement far jump.
1499   unsigned BimmX16MaxDisp = ((1 << 16)-1) * 2;
1500   if (isBBInRange(MI, DestBB, BimmX16MaxDisp)) {
1501     Br.MaxDisp = BimmX16MaxDisp;
1502     MI->setDesc(TII->get(Mips::BimmX16));
1503   }
1504   else {
1505     // need to give the math a more careful look here
1506     // this is really a segment address and not
1507     // a PC relative address. FIXME. But I think that
1508     // just reducing the bits by 1 as I've done is correct.
1509     // The basic block we are branching too much be longword aligned.
1510     // we know that RA is saved because we always save it right now.
1511     // this requirement will be relaxed later but we also have an alternate
1512     // way to implement this that I will implement that does not need jal.
1513     // We should have a way to back out this alignment restriction
1514     // if we "can" later. but it is not harmful.
1515     //
1516     DestBB->setAlignment(Align(4));
1517     Br.MaxDisp = ((1<<24)-1) * 2;
1518     MI->setDesc(TII->get(Mips::JalB16));
1519   }
1520   BBInfo[MBB->getNumber()].Size += 2;
1521   adjustBBOffsetsAfter(MBB);
1522   HasFarJump = true;
1523   ++NumUBrFixed;
1524 
1525   LLVM_DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1526 
1527   return true;
1528 }
1529 
1530 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1531 /// far away to fit in its displacement field. It is converted to an inverse
1532 /// conditional branch + an unconditional branch to the destination.
1533 bool
1534 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1535   MachineInstr *MI = Br.MI;
1536   unsigned TargetOperand = branchTargetOperand(MI);
1537   MachineBasicBlock *DestBB = MI->getOperand(TargetOperand).getMBB();
1538   unsigned Opcode = MI->getOpcode();
1539   unsigned LongFormOpcode = longformBranchOpcode(Opcode);
1540   unsigned LongFormMaxOff = branchMaxOffsets(LongFormOpcode);
1541 
1542   // Check to see if the DestBB is already in-range.
1543   if (isBBInRange(MI, DestBB, LongFormMaxOff)) {
1544     Br.MaxDisp = LongFormMaxOff;
1545     MI->setDesc(TII->get(LongFormOpcode));
1546     return true;
1547   }
1548 
1549   // Add an unconditional branch to the destination and invert the branch
1550   // condition to jump over it:
1551   // bteqz L1
1552   // =>
1553   // bnez L2
1554   // b   L1
1555   // L2:
1556 
1557   // If the branch is at the end of its MBB and that has a fall-through block,
1558   // direct the updated conditional branch to the fall-through block. Otherwise,
1559   // split the MBB before the next instruction.
1560   MachineBasicBlock *MBB = MI->getParent();
1561   MachineInstr *BMI = &MBB->back();
1562   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1563   unsigned OppositeBranchOpcode = TII->getOppositeBranchOpc(Opcode);
1564 
1565   ++NumCBrFixed;
1566   if (BMI != MI) {
1567     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1568         BMI->isUnconditionalBranch()) {
1569       // Last MI in the BB is an unconditional branch. Can we simply invert the
1570       // condition and swap destinations:
1571       // beqz L1
1572       // b   L2
1573       // =>
1574       // bnez L2
1575       // b   L1
1576       unsigned BMITargetOperand = branchTargetOperand(BMI);
1577       MachineBasicBlock *NewDest =
1578         BMI->getOperand(BMITargetOperand).getMBB();
1579       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1580         LLVM_DEBUG(
1581             dbgs() << "  Invert Bcc condition and swap its destination with "
1582                    << *BMI);
1583         MI->setDesc(TII->get(OppositeBranchOpcode));
1584         BMI->getOperand(BMITargetOperand).setMBB(DestBB);
1585         MI->getOperand(TargetOperand).setMBB(NewDest);
1586         return true;
1587       }
1588     }
1589   }
1590 
1591   if (NeedSplit) {
1592     splitBlockBeforeInstr(*MI);
1593     // No need for the branch to the next block. We're adding an unconditional
1594     // branch to the destination.
1595     int delta = TII->getInstSizeInBytes(MBB->back());
1596     BBInfo[MBB->getNumber()].Size -= delta;
1597     MBB->back().eraseFromParent();
1598     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1599   }
1600   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1601 
1602   LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*DestBB)
1603                     << " also invert condition and change dest. to "
1604                     << printMBBReference(*NextBB) << "\n");
1605 
1606   // Insert a new conditional branch and a new unconditional branch.
1607   // Also update the ImmBranch as well as adding a new entry for the new branch.
1608   if (MI->getNumExplicitOperands() == 2) {
1609     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1610            .addReg(MI->getOperand(0).getReg())
1611            .addMBB(NextBB);
1612   } else {
1613     BuildMI(MBB, DebugLoc(), TII->get(OppositeBranchOpcode))
1614            .addMBB(NextBB);
1615   }
1616   Br.MI = &MBB->back();
1617   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1618   BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1619   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1620   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1621   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1622 
1623   // Remove the old conditional branch.  It may or may not still be in MBB.
1624   BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1625   MI->eraseFromParent();
1626   adjustBBOffsetsAfter(MBB);
1627   return true;
1628 }
1629 
1630 void MipsConstantIslands::prescanForConstants() {
1631   for (MachineBasicBlock &B : *MF) {
1632     for (MachineInstr &MI : B) {
1633       switch (MI.getDesc().getOpcode()) {
1634       case Mips::LwConstant32: {
1635         PrescannedForConstants = true;
1636         LLVM_DEBUG(dbgs() << "constant island constant " << MI << "\n");
1637         LLVM_DEBUG(dbgs() << "num operands " << MI.getNumOperands() << "\n");
1638         MachineOperand &Literal = MI.getOperand(1);
1639         if (Literal.isImm()) {
1640           int64_t V = Literal.getImm();
1641           LLVM_DEBUG(dbgs() << "literal " << V << "\n");
1642           Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
1643           const Constant *C = ConstantInt::get(Int32Ty, V);
1644           unsigned index = MCP->getConstantPoolIndex(C, Align(4));
1645           MI.getOperand(2).ChangeToImmediate(index);
1646           LLVM_DEBUG(dbgs() << "constant island constant " << MI << "\n");
1647           MI.setDesc(TII->get(Mips::LwRxPcTcp16));
1648           MI.removeOperand(1);
1649           MI.removeOperand(1);
1650           MI.addOperand(MachineOperand::CreateCPI(index, 0));
1651           MI.addOperand(MachineOperand::CreateImm(4));
1652         }
1653         break;
1654       }
1655       default:
1656         break;
1657       }
1658     }
1659   }
1660 }
1661 
1662 /// Returns a pass that converts branches to long branches.
1663 FunctionPass *llvm::createMipsConstantIslandPass() {
1664   return new MipsConstantIslands();
1665 }
1666