1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DXILBitcodeWriter.h" 14 #include "DXILValueEnumerator.h" 15 #include "DirectXIRPasses/PointerTypeAnalysis.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/Bitcode/BitcodeCommon.h" 18 #include "llvm/Bitcode/BitcodeReader.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/Bitstream/BitCodes.h" 21 #include "llvm/Bitstream/BitstreamWriter.h" 22 #include "llvm/IR/Attributes.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Comdat.h" 25 #include "llvm/IR/Constant.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DebugLoc.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/InstrTypes.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/ModuleSummaryIndex.h" 44 #include "llvm/IR/Operator.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/UseListOrder.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/IR/ValueSymbolTable.h" 49 #include "llvm/Object/IRSymtab.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/ModRef.h" 52 #include "llvm/Support/SHA1.h" 53 #include "llvm/TargetParser/Triple.h" 54 55 namespace llvm { 56 namespace dxil { 57 58 // Generates an enum to use as an index in the Abbrev array of Metadata record. 59 enum MetadataAbbrev : unsigned { 60 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 61 #include "llvm/IR/Metadata.def" 62 LastPlusOne 63 }; 64 65 class DXILBitcodeWriter { 66 67 /// These are manifest constants used by the bitcode writer. They do not need 68 /// to be kept in sync with the reader, but need to be consistent within this 69 /// file. 70 enum { 71 // VALUE_SYMTAB_BLOCK abbrev id's. 72 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 73 VST_ENTRY_7_ABBREV, 74 VST_ENTRY_6_ABBREV, 75 VST_BBENTRY_6_ABBREV, 76 77 // CONSTANTS_BLOCK abbrev id's. 78 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 79 CONSTANTS_INTEGER_ABBREV, 80 CONSTANTS_CE_CAST_Abbrev, 81 CONSTANTS_NULL_Abbrev, 82 83 // FUNCTION_BLOCK abbrev id's. 84 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 85 FUNCTION_INST_BINOP_ABBREV, 86 FUNCTION_INST_BINOP_FLAGS_ABBREV, 87 FUNCTION_INST_CAST_ABBREV, 88 FUNCTION_INST_RET_VOID_ABBREV, 89 FUNCTION_INST_RET_VAL_ABBREV, 90 FUNCTION_INST_UNREACHABLE_ABBREV, 91 FUNCTION_INST_GEP_ABBREV, 92 }; 93 94 // Cache some types 95 Type *I8Ty; 96 Type *I8PtrTy; 97 98 /// The stream created and owned by the client. 99 BitstreamWriter &Stream; 100 101 StringTableBuilder &StrtabBuilder; 102 103 /// The Module to write to bitcode. 104 const Module &M; 105 106 /// Enumerates ids for all values in the module. 107 ValueEnumerator VE; 108 109 /// Map that holds the correspondence between GUIDs in the summary index, 110 /// that came from indirect call profiles, and a value id generated by this 111 /// class to use in the VST and summary block records. 112 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 113 114 /// Tracks the last value id recorded in the GUIDToValueMap. 115 unsigned GlobalValueId; 116 117 /// Saves the offset of the VSTOffset record that must eventually be 118 /// backpatched with the offset of the actual VST. 119 uint64_t VSTOffsetPlaceholder = 0; 120 121 /// Pointer to the buffer allocated by caller for bitcode writing. 122 const SmallVectorImpl<char> &Buffer; 123 124 /// The start bit of the identification block. 125 uint64_t BitcodeStartBit; 126 127 /// This maps values to their typed pointers 128 PointerTypeMap PointerMap; 129 130 public: 131 /// Constructs a ModuleBitcodeWriter object for the given Module, 132 /// writing to the provided \p Buffer. 133 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 134 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream) 135 : I8Ty(Type::getInt8Ty(M.getContext())), 136 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream), 137 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer), 138 BitcodeStartBit(Stream.GetCurrentBitNo()), 139 PointerMap(PointerTypeAnalysis::run(M)) { 140 GlobalValueId = VE.getValues().size(); 141 // Enumerate the typed pointers 142 for (auto El : PointerMap) 143 VE.EnumerateType(El.second); 144 } 145 146 /// Emit the current module to the bitstream. 147 void write(); 148 149 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind); 150 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 151 StringRef Str, unsigned AbbrevToUse); 152 static void writeIdentificationBlock(BitstreamWriter &Stream); 153 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V); 154 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A); 155 156 static unsigned getEncodedComdatSelectionKind(const Comdat &C); 157 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage); 158 static unsigned getEncodedLinkage(const GlobalValue &GV); 159 static unsigned getEncodedVisibility(const GlobalValue &GV); 160 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV); 161 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV); 162 static unsigned getEncodedCastOpcode(unsigned Opcode); 163 static unsigned getEncodedUnaryOpcode(unsigned Opcode); 164 static unsigned getEncodedBinaryOpcode(unsigned Opcode); 165 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op); 166 static unsigned getEncodedOrdering(AtomicOrdering Ordering); 167 static uint64_t getOptimizationFlags(const Value *V); 168 169 private: 170 void writeModuleVersion(); 171 void writePerModuleGlobalValueSummary(); 172 173 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 174 GlobalValueSummary *Summary, 175 unsigned ValueID, 176 unsigned FSCallsAbbrev, 177 unsigned FSCallsProfileAbbrev, 178 const Function &F); 179 void writeModuleLevelReferences(const GlobalVariable &V, 180 SmallVector<uint64_t, 64> &NameVals, 181 unsigned FSModRefsAbbrev, 182 unsigned FSModVTableRefsAbbrev); 183 184 void assignValueId(GlobalValue::GUID ValGUID) { 185 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 186 } 187 188 unsigned getValueId(GlobalValue::GUID ValGUID) { 189 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 190 // Expect that any GUID value had a value Id assigned by an 191 // earlier call to assignValueId. 192 assert(VMI != GUIDToValueIdMap.end() && 193 "GUID does not have assigned value Id"); 194 return VMI->second; 195 } 196 197 // Helper to get the valueId for the type of value recorded in VI. 198 unsigned getValueId(ValueInfo VI) { 199 if (!VI.haveGVs() || !VI.getValue()) 200 return getValueId(VI.getGUID()); 201 return VE.getValueID(VI.getValue()); 202 } 203 204 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 205 206 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 207 208 size_t addToStrtab(StringRef Str); 209 210 unsigned createDILocationAbbrev(); 211 unsigned createGenericDINodeAbbrev(); 212 213 void writeAttributeGroupTable(); 214 void writeAttributeTable(); 215 void writeTypeTable(); 216 void writeComdats(); 217 void writeValueSymbolTableForwardDecl(); 218 void writeModuleInfo(); 219 void writeValueAsMetadata(const ValueAsMetadata *MD, 220 SmallVectorImpl<uint64_t> &Record); 221 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 222 unsigned Abbrev); 223 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 224 unsigned &Abbrev); 225 void writeGenericDINode(const GenericDINode *N, 226 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { 227 llvm_unreachable("DXIL cannot contain GenericDI Nodes"); 228 } 229 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 230 unsigned Abbrev); 231 void writeDIGenericSubrange(const DIGenericSubrange *N, 232 SmallVectorImpl<uint64_t> &Record, 233 unsigned Abbrev) { 234 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes"); 235 } 236 void writeDIEnumerator(const DIEnumerator *N, 237 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 238 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIStringType(const DIStringType *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 242 llvm_unreachable("DXIL cannot contain DIStringType Nodes"); 243 } 244 void writeDIDerivedType(const DIDerivedType *N, 245 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 246 void writeDICompositeType(const DICompositeType *N, 247 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 248 void writeDISubroutineType(const DISubroutineType *N, 249 SmallVectorImpl<uint64_t> &Record, 250 unsigned Abbrev); 251 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 252 unsigned Abbrev); 253 void writeDICompileUnit(const DICompileUnit *N, 254 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 255 void writeDISubprogram(const DISubprogram *N, 256 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 257 void writeDILexicalBlock(const DILexicalBlock *N, 258 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 259 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 260 SmallVectorImpl<uint64_t> &Record, 261 unsigned Abbrev); 262 void writeDICommonBlock(const DICommonBlock *N, 263 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 264 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes"); 265 } 266 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 267 unsigned Abbrev); 268 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 269 unsigned Abbrev) { 270 llvm_unreachable("DXIL cannot contain DIMacro Nodes"); 271 } 272 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 273 unsigned Abbrev) { 274 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes"); 275 } 276 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 277 unsigned Abbrev) { 278 llvm_unreachable("DXIL cannot contain DIArgList Nodes"); 279 } 280 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 281 unsigned Abbrev) { 282 // DIAssignID is experimental feature to track variable location in IR.. 283 // FIXME: translate DIAssignID to debug info DXIL supports. 284 // See https://github.com/llvm/llvm-project/issues/58989 285 llvm_unreachable("DXIL cannot contain DIAssignID Nodes"); 286 } 287 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 288 unsigned Abbrev); 289 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 290 SmallVectorImpl<uint64_t> &Record, 291 unsigned Abbrev); 292 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 293 SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 void writeDIGlobalVariable(const DIGlobalVariable *N, 296 SmallVectorImpl<uint64_t> &Record, 297 unsigned Abbrev); 298 void writeDILocalVariable(const DILocalVariable *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 300 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev) { 302 llvm_unreachable("DXIL cannot contain DILabel Nodes"); 303 } 304 void writeDIExpression(const DIExpression *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 307 SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev) { 309 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes"); 310 } 311 void writeDIObjCProperty(const DIObjCProperty *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIImportedEntity(const DIImportedEntity *N, 314 SmallVectorImpl<uint64_t> &Record, 315 unsigned Abbrev); 316 unsigned createNamedMetadataAbbrev(); 317 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 318 unsigned createMetadataStringsAbbrev(); 319 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 320 SmallVectorImpl<uint64_t> &Record); 321 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 322 SmallVectorImpl<uint64_t> &Record, 323 std::vector<unsigned> *MDAbbrevs = nullptr, 324 std::vector<uint64_t> *IndexPos = nullptr); 325 void writeModuleMetadata(); 326 void writeFunctionMetadata(const Function &F); 327 void writeFunctionMetadataAttachment(const Function &F); 328 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 329 const GlobalObject &GO); 330 void writeModuleMetadataKinds(); 331 void writeOperandBundleTags(); 332 void writeSyncScopeNames(); 333 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 334 void writeModuleConstants(); 335 bool pushValueAndType(const Value *V, unsigned InstID, 336 SmallVectorImpl<unsigned> &Vals); 337 void writeOperandBundles(const CallBase &CB, unsigned InstID); 338 void pushValue(const Value *V, unsigned InstID, 339 SmallVectorImpl<unsigned> &Vals); 340 void pushValueSigned(const Value *V, unsigned InstID, 341 SmallVectorImpl<uint64_t> &Vals); 342 void writeInstruction(const Instruction &I, unsigned InstID, 343 SmallVectorImpl<unsigned> &Vals); 344 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 345 void writeGlobalValueSymbolTable( 346 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 347 void writeFunction(const Function &F); 348 void writeBlockInfo(); 349 350 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } 351 352 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 353 354 unsigned getTypeID(Type *T, const Value *V = nullptr); 355 /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject 356 /// 357 /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the 358 /// GlobalObject, but in the bitcode writer we need the pointer element type. 359 unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G); 360 }; 361 362 } // namespace dxil 363 } // namespace llvm 364 365 using namespace llvm; 366 using namespace llvm::dxil; 367 368 //////////////////////////////////////////////////////////////////////////////// 369 /// Begin dxil::BitcodeWriter Implementation 370 //////////////////////////////////////////////////////////////////////////////// 371 372 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 373 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 374 // Emit the file header. 375 Stream->Emit((unsigned)'B', 8); 376 Stream->Emit((unsigned)'C', 8); 377 Stream->Emit(0x0, 4); 378 Stream->Emit(0xC, 4); 379 Stream->Emit(0xE, 4); 380 Stream->Emit(0xD, 4); 381 } 382 383 dxil::BitcodeWriter::~BitcodeWriter() { } 384 385 /// Write the specified module to the specified output stream. 386 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) { 387 SmallVector<char, 0> Buffer; 388 Buffer.reserve(256 * 1024); 389 390 // If this is darwin or another generic macho target, reserve space for the 391 // header. 392 Triple TT(M.getTargetTriple()); 393 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 394 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 395 396 BitcodeWriter Writer(Buffer); 397 Writer.writeModule(M); 398 399 // Write the generated bitstream to "Out". 400 if (!Buffer.empty()) 401 Out.write((char *)&Buffer.front(), Buffer.size()); 402 } 403 404 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 405 Stream->EnterSubblock(Block, 3); 406 407 auto Abbv = std::make_shared<BitCodeAbbrev>(); 408 Abbv->Add(BitCodeAbbrevOp(Record)); 409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 410 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 411 412 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 413 414 Stream->ExitBlock(); 415 } 416 417 void BitcodeWriter::writeModule(const Module &M) { 418 419 // The Mods vector is used by irsymtab::build, which requires non-const 420 // Modules in case it needs to materialize metadata. But the bitcode writer 421 // requires that the module is materialized, so we can cast to non-const here, 422 // after checking that it is in fact materialized. 423 assert(M.isMaterialized()); 424 Mods.push_back(const_cast<Module *>(&M)); 425 426 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream); 427 ModuleWriter.write(); 428 } 429 430 //////////////////////////////////////////////////////////////////////////////// 431 /// Begin dxil::BitcodeWriterBase Implementation 432 //////////////////////////////////////////////////////////////////////////////// 433 434 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) { 435 switch (Opcode) { 436 default: 437 llvm_unreachable("Unknown cast instruction!"); 438 case Instruction::Trunc: 439 return bitc::CAST_TRUNC; 440 case Instruction::ZExt: 441 return bitc::CAST_ZEXT; 442 case Instruction::SExt: 443 return bitc::CAST_SEXT; 444 case Instruction::FPToUI: 445 return bitc::CAST_FPTOUI; 446 case Instruction::FPToSI: 447 return bitc::CAST_FPTOSI; 448 case Instruction::UIToFP: 449 return bitc::CAST_UITOFP; 450 case Instruction::SIToFP: 451 return bitc::CAST_SITOFP; 452 case Instruction::FPTrunc: 453 return bitc::CAST_FPTRUNC; 454 case Instruction::FPExt: 455 return bitc::CAST_FPEXT; 456 case Instruction::PtrToInt: 457 return bitc::CAST_PTRTOINT; 458 case Instruction::IntToPtr: 459 return bitc::CAST_INTTOPTR; 460 case Instruction::BitCast: 461 return bitc::CAST_BITCAST; 462 case Instruction::AddrSpaceCast: 463 return bitc::CAST_ADDRSPACECAST; 464 } 465 } 466 467 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) { 468 switch (Opcode) { 469 default: 470 llvm_unreachable("Unknown binary instruction!"); 471 case Instruction::FNeg: 472 return bitc::UNOP_FNEG; 473 } 474 } 475 476 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) { 477 switch (Opcode) { 478 default: 479 llvm_unreachable("Unknown binary instruction!"); 480 case Instruction::Add: 481 case Instruction::FAdd: 482 return bitc::BINOP_ADD; 483 case Instruction::Sub: 484 case Instruction::FSub: 485 return bitc::BINOP_SUB; 486 case Instruction::Mul: 487 case Instruction::FMul: 488 return bitc::BINOP_MUL; 489 case Instruction::UDiv: 490 return bitc::BINOP_UDIV; 491 case Instruction::FDiv: 492 case Instruction::SDiv: 493 return bitc::BINOP_SDIV; 494 case Instruction::URem: 495 return bitc::BINOP_UREM; 496 case Instruction::FRem: 497 case Instruction::SRem: 498 return bitc::BINOP_SREM; 499 case Instruction::Shl: 500 return bitc::BINOP_SHL; 501 case Instruction::LShr: 502 return bitc::BINOP_LSHR; 503 case Instruction::AShr: 504 return bitc::BINOP_ASHR; 505 case Instruction::And: 506 return bitc::BINOP_AND; 507 case Instruction::Or: 508 return bitc::BINOP_OR; 509 case Instruction::Xor: 510 return bitc::BINOP_XOR; 511 } 512 } 513 514 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) { 515 if (!T->isPointerTy() && 516 // For Constant, always check PointerMap to make sure OpaquePointer in 517 // things like constant struct/array works. 518 (!V || !isa<Constant>(V))) 519 return VE.getTypeID(T); 520 auto It = PointerMap.find(V); 521 if (It != PointerMap.end()) 522 return VE.getTypeID(It->second); 523 // For Constant, return T when cannot find in PointerMap. 524 // FIXME: support ConstantPointerNull which could map to more than one 525 // TypedPointerType. 526 // See https://github.com/llvm/llvm-project/issues/57942. 527 if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V)) 528 return VE.getTypeID(T); 529 return VE.getTypeID(I8PtrTy); 530 } 531 532 unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T, 533 const GlobalObject *G) { 534 auto It = PointerMap.find(G); 535 if (It != PointerMap.end()) { 536 TypedPointerType *PtrTy = cast<TypedPointerType>(It->second); 537 return VE.getTypeID(PtrTy->getElementType()); 538 } 539 return VE.getTypeID(T); 540 } 541 542 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 543 switch (Op) { 544 default: 545 llvm_unreachable("Unknown RMW operation!"); 546 case AtomicRMWInst::Xchg: 547 return bitc::RMW_XCHG; 548 case AtomicRMWInst::Add: 549 return bitc::RMW_ADD; 550 case AtomicRMWInst::Sub: 551 return bitc::RMW_SUB; 552 case AtomicRMWInst::And: 553 return bitc::RMW_AND; 554 case AtomicRMWInst::Nand: 555 return bitc::RMW_NAND; 556 case AtomicRMWInst::Or: 557 return bitc::RMW_OR; 558 case AtomicRMWInst::Xor: 559 return bitc::RMW_XOR; 560 case AtomicRMWInst::Max: 561 return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: 563 return bitc::RMW_MIN; 564 case AtomicRMWInst::UMax: 565 return bitc::RMW_UMAX; 566 case AtomicRMWInst::UMin: 567 return bitc::RMW_UMIN; 568 case AtomicRMWInst::FAdd: 569 return bitc::RMW_FADD; 570 case AtomicRMWInst::FSub: 571 return bitc::RMW_FSUB; 572 case AtomicRMWInst::FMax: 573 return bitc::RMW_FMAX; 574 case AtomicRMWInst::FMin: 575 return bitc::RMW_FMIN; 576 } 577 } 578 579 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) { 580 switch (Ordering) { 581 case AtomicOrdering::NotAtomic: 582 return bitc::ORDERING_NOTATOMIC; 583 case AtomicOrdering::Unordered: 584 return bitc::ORDERING_UNORDERED; 585 case AtomicOrdering::Monotonic: 586 return bitc::ORDERING_MONOTONIC; 587 case AtomicOrdering::Acquire: 588 return bitc::ORDERING_ACQUIRE; 589 case AtomicOrdering::Release: 590 return bitc::ORDERING_RELEASE; 591 case AtomicOrdering::AcquireRelease: 592 return bitc::ORDERING_ACQREL; 593 case AtomicOrdering::SequentiallyConsistent: 594 return bitc::ORDERING_SEQCST; 595 } 596 llvm_unreachable("Invalid ordering"); 597 } 598 599 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream, 600 unsigned Code, StringRef Str, 601 unsigned AbbrevToUse) { 602 SmallVector<unsigned, 64> Vals; 603 604 // Code: [strchar x N] 605 for (char C : Str) { 606 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 607 AbbrevToUse = 0; 608 Vals.push_back(C); 609 } 610 611 // Emit the finished record. 612 Stream.EmitRecord(Code, Vals, AbbrevToUse); 613 } 614 615 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) { 616 switch (Kind) { 617 case Attribute::Alignment: 618 return bitc::ATTR_KIND_ALIGNMENT; 619 case Attribute::AlwaysInline: 620 return bitc::ATTR_KIND_ALWAYS_INLINE; 621 case Attribute::Builtin: 622 return bitc::ATTR_KIND_BUILTIN; 623 case Attribute::ByVal: 624 return bitc::ATTR_KIND_BY_VAL; 625 case Attribute::Convergent: 626 return bitc::ATTR_KIND_CONVERGENT; 627 case Attribute::InAlloca: 628 return bitc::ATTR_KIND_IN_ALLOCA; 629 case Attribute::Cold: 630 return bitc::ATTR_KIND_COLD; 631 case Attribute::InlineHint: 632 return bitc::ATTR_KIND_INLINE_HINT; 633 case Attribute::InReg: 634 return bitc::ATTR_KIND_IN_REG; 635 case Attribute::JumpTable: 636 return bitc::ATTR_KIND_JUMP_TABLE; 637 case Attribute::MinSize: 638 return bitc::ATTR_KIND_MIN_SIZE; 639 case Attribute::Naked: 640 return bitc::ATTR_KIND_NAKED; 641 case Attribute::Nest: 642 return bitc::ATTR_KIND_NEST; 643 case Attribute::NoAlias: 644 return bitc::ATTR_KIND_NO_ALIAS; 645 case Attribute::NoBuiltin: 646 return bitc::ATTR_KIND_NO_BUILTIN; 647 case Attribute::NoDuplicate: 648 return bitc::ATTR_KIND_NO_DUPLICATE; 649 case Attribute::NoImplicitFloat: 650 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 651 case Attribute::NoInline: 652 return bitc::ATTR_KIND_NO_INLINE; 653 case Attribute::NonLazyBind: 654 return bitc::ATTR_KIND_NON_LAZY_BIND; 655 case Attribute::NonNull: 656 return bitc::ATTR_KIND_NON_NULL; 657 case Attribute::Dereferenceable: 658 return bitc::ATTR_KIND_DEREFERENCEABLE; 659 case Attribute::DereferenceableOrNull: 660 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 661 case Attribute::NoRedZone: 662 return bitc::ATTR_KIND_NO_RED_ZONE; 663 case Attribute::NoReturn: 664 return bitc::ATTR_KIND_NO_RETURN; 665 case Attribute::NoUnwind: 666 return bitc::ATTR_KIND_NO_UNWIND; 667 case Attribute::OptimizeForSize: 668 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 669 case Attribute::OptimizeNone: 670 return bitc::ATTR_KIND_OPTIMIZE_NONE; 671 case Attribute::ReadNone: 672 return bitc::ATTR_KIND_READ_NONE; 673 case Attribute::ReadOnly: 674 return bitc::ATTR_KIND_READ_ONLY; 675 case Attribute::Returned: 676 return bitc::ATTR_KIND_RETURNED; 677 case Attribute::ReturnsTwice: 678 return bitc::ATTR_KIND_RETURNS_TWICE; 679 case Attribute::SExt: 680 return bitc::ATTR_KIND_S_EXT; 681 case Attribute::StackAlignment: 682 return bitc::ATTR_KIND_STACK_ALIGNMENT; 683 case Attribute::StackProtect: 684 return bitc::ATTR_KIND_STACK_PROTECT; 685 case Attribute::StackProtectReq: 686 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 687 case Attribute::StackProtectStrong: 688 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 689 case Attribute::SafeStack: 690 return bitc::ATTR_KIND_SAFESTACK; 691 case Attribute::StructRet: 692 return bitc::ATTR_KIND_STRUCT_RET; 693 case Attribute::SanitizeAddress: 694 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 695 case Attribute::SanitizeThread: 696 return bitc::ATTR_KIND_SANITIZE_THREAD; 697 case Attribute::SanitizeMemory: 698 return bitc::ATTR_KIND_SANITIZE_MEMORY; 699 case Attribute::UWTable: 700 return bitc::ATTR_KIND_UW_TABLE; 701 case Attribute::ZExt: 702 return bitc::ATTR_KIND_Z_EXT; 703 case Attribute::EndAttrKinds: 704 llvm_unreachable("Can not encode end-attribute kinds marker."); 705 case Attribute::None: 706 llvm_unreachable("Can not encode none-attribute."); 707 case Attribute::EmptyKey: 708 case Attribute::TombstoneKey: 709 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 710 default: 711 llvm_unreachable("Trying to encode attribute not supported by DXIL. These " 712 "should be stripped in DXILPrepare"); 713 } 714 715 llvm_unreachable("Trying to encode unknown attribute"); 716 } 717 718 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, 719 uint64_t V) { 720 if ((int64_t)V >= 0) 721 Vals.push_back(V << 1); 722 else 723 Vals.push_back((-V << 1) | 1); 724 } 725 726 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, 727 const APInt &A) { 728 // We have an arbitrary precision integer value to write whose 729 // bit width is > 64. However, in canonical unsigned integer 730 // format it is likely that the high bits are going to be zero. 731 // So, we only write the number of active words. 732 unsigned NumWords = A.getActiveWords(); 733 const uint64_t *RawData = A.getRawData(); 734 for (unsigned i = 0; i < NumWords; i++) 735 emitSignedInt64(Vals, RawData[i]); 736 } 737 738 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) { 739 uint64_t Flags = 0; 740 741 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 742 if (OBO->hasNoSignedWrap()) 743 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 744 if (OBO->hasNoUnsignedWrap()) 745 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 746 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 747 if (PEO->isExact()) 748 Flags |= 1 << bitc::PEO_EXACT; 749 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 750 if (FPMO->hasAllowReassoc() || FPMO->hasAllowContract()) 751 Flags |= bitc::UnsafeAlgebra; 752 if (FPMO->hasNoNaNs()) 753 Flags |= bitc::NoNaNs; 754 if (FPMO->hasNoInfs()) 755 Flags |= bitc::NoInfs; 756 if (FPMO->hasNoSignedZeros()) 757 Flags |= bitc::NoSignedZeros; 758 if (FPMO->hasAllowReciprocal()) 759 Flags |= bitc::AllowReciprocal; 760 } 761 762 return Flags; 763 } 764 765 unsigned 766 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 767 switch (Linkage) { 768 case GlobalValue::ExternalLinkage: 769 return 0; 770 case GlobalValue::WeakAnyLinkage: 771 return 16; 772 case GlobalValue::AppendingLinkage: 773 return 2; 774 case GlobalValue::InternalLinkage: 775 return 3; 776 case GlobalValue::LinkOnceAnyLinkage: 777 return 18; 778 case GlobalValue::ExternalWeakLinkage: 779 return 7; 780 case GlobalValue::CommonLinkage: 781 return 8; 782 case GlobalValue::PrivateLinkage: 783 return 9; 784 case GlobalValue::WeakODRLinkage: 785 return 17; 786 case GlobalValue::LinkOnceODRLinkage: 787 return 19; 788 case GlobalValue::AvailableExternallyLinkage: 789 return 12; 790 } 791 llvm_unreachable("Invalid linkage"); 792 } 793 794 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) { 795 return getEncodedLinkage(GV.getLinkage()); 796 } 797 798 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) { 799 switch (GV.getVisibility()) { 800 case GlobalValue::DefaultVisibility: 801 return 0; 802 case GlobalValue::HiddenVisibility: 803 return 1; 804 case GlobalValue::ProtectedVisibility: 805 return 2; 806 } 807 llvm_unreachable("Invalid visibility"); 808 } 809 810 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) { 811 switch (GV.getDLLStorageClass()) { 812 case GlobalValue::DefaultStorageClass: 813 return 0; 814 case GlobalValue::DLLImportStorageClass: 815 return 1; 816 case GlobalValue::DLLExportStorageClass: 817 return 2; 818 } 819 llvm_unreachable("Invalid DLL storage class"); 820 } 821 822 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) { 823 switch (GV.getThreadLocalMode()) { 824 case GlobalVariable::NotThreadLocal: 825 return 0; 826 case GlobalVariable::GeneralDynamicTLSModel: 827 return 1; 828 case GlobalVariable::LocalDynamicTLSModel: 829 return 2; 830 case GlobalVariable::InitialExecTLSModel: 831 return 3; 832 case GlobalVariable::LocalExecTLSModel: 833 return 4; 834 } 835 llvm_unreachable("Invalid TLS model"); 836 } 837 838 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) { 839 switch (C.getSelectionKind()) { 840 case Comdat::Any: 841 return bitc::COMDAT_SELECTION_KIND_ANY; 842 case Comdat::ExactMatch: 843 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 844 case Comdat::Largest: 845 return bitc::COMDAT_SELECTION_KIND_LARGEST; 846 case Comdat::NoDeduplicate: 847 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 848 case Comdat::SameSize: 849 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 850 } 851 llvm_unreachable("Invalid selection kind"); 852 } 853 854 //////////////////////////////////////////////////////////////////////////////// 855 /// Begin DXILBitcodeWriter Implementation 856 //////////////////////////////////////////////////////////////////////////////// 857 858 void DXILBitcodeWriter::writeAttributeGroupTable() { 859 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 860 VE.getAttributeGroups(); 861 if (AttrGrps.empty()) 862 return; 863 864 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 865 866 SmallVector<uint64_t, 64> Record; 867 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 868 unsigned AttrListIndex = Pair.first; 869 AttributeSet AS = Pair.second; 870 Record.push_back(VE.getAttributeGroupID(Pair)); 871 Record.push_back(AttrListIndex); 872 873 for (Attribute Attr : AS) { 874 if (Attr.isEnumAttribute()) { 875 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 876 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 877 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 878 Record.push_back(0); 879 Record.push_back(Val); 880 } else if (Attr.isIntAttribute()) { 881 if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) { 882 MemoryEffects ME = Attr.getMemoryEffects(); 883 if (ME.doesNotAccessMemory()) { 884 Record.push_back(0); 885 Record.push_back(bitc::ATTR_KIND_READ_NONE); 886 } else { 887 if (ME.onlyReadsMemory()) { 888 Record.push_back(0); 889 Record.push_back(bitc::ATTR_KIND_READ_ONLY); 890 } 891 if (ME.onlyAccessesArgPointees()) { 892 Record.push_back(0); 893 Record.push_back(bitc::ATTR_KIND_ARGMEMONLY); 894 } 895 } 896 } else { 897 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); 898 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && 899 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); 900 Record.push_back(1); 901 Record.push_back(Val); 902 Record.push_back(Attr.getValueAsInt()); 903 } 904 } else { 905 StringRef Kind = Attr.getKindAsString(); 906 StringRef Val = Attr.getValueAsString(); 907 908 Record.push_back(Val.empty() ? 3 : 4); 909 Record.append(Kind.begin(), Kind.end()); 910 Record.push_back(0); 911 if (!Val.empty()) { 912 Record.append(Val.begin(), Val.end()); 913 Record.push_back(0); 914 } 915 } 916 } 917 918 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 919 Record.clear(); 920 } 921 922 Stream.ExitBlock(); 923 } 924 925 void DXILBitcodeWriter::writeAttributeTable() { 926 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 927 if (Attrs.empty()) 928 return; 929 930 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 931 932 SmallVector<uint64_t, 64> Record; 933 for (AttributeList AL : Attrs) { 934 for (unsigned i : AL.indexes()) { 935 AttributeSet AS = AL.getAttributes(i); 936 if (AS.hasAttributes()) 937 Record.push_back(VE.getAttributeGroupID({i, AS})); 938 } 939 940 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 941 Record.clear(); 942 } 943 944 Stream.ExitBlock(); 945 } 946 947 /// WriteTypeTable - Write out the type table for a module. 948 void DXILBitcodeWriter::writeTypeTable() { 949 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 950 951 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 952 SmallVector<uint64_t, 64> TypeVals; 953 954 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 955 956 // Abbrev for TYPE_CODE_POINTER. 957 auto Abbv = std::make_shared<BitCodeAbbrev>(); 958 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 960 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 961 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 962 963 // Abbrev for TYPE_CODE_FUNCTION. 964 Abbv = std::make_shared<BitCodeAbbrev>(); 965 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 969 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 970 971 // Abbrev for TYPE_CODE_STRUCT_ANON. 972 Abbv = std::make_shared<BitCodeAbbrev>(); 973 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 977 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 978 979 // Abbrev for TYPE_CODE_STRUCT_NAME. 980 Abbv = std::make_shared<BitCodeAbbrev>(); 981 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 984 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 985 986 // Abbrev for TYPE_CODE_STRUCT_NAMED. 987 Abbv = std::make_shared<BitCodeAbbrev>(); 988 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 992 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 993 994 // Abbrev for TYPE_CODE_ARRAY. 995 Abbv = std::make_shared<BitCodeAbbrev>(); 996 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 999 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1000 1001 // Emit an entry count so the reader can reserve space. 1002 TypeVals.push_back(TypeList.size()); 1003 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1004 TypeVals.clear(); 1005 1006 // Loop over all of the types, emitting each in turn. 1007 for (Type *T : TypeList) { 1008 int AbbrevToUse = 0; 1009 unsigned Code = 0; 1010 1011 switch (T->getTypeID()) { 1012 case Type::BFloatTyID: 1013 case Type::X86_AMXTyID: 1014 case Type::TokenTyID: 1015 case Type::TargetExtTyID: 1016 llvm_unreachable("These should never be used!!!"); 1017 break; 1018 case Type::VoidTyID: 1019 Code = bitc::TYPE_CODE_VOID; 1020 break; 1021 case Type::HalfTyID: 1022 Code = bitc::TYPE_CODE_HALF; 1023 break; 1024 case Type::FloatTyID: 1025 Code = bitc::TYPE_CODE_FLOAT; 1026 break; 1027 case Type::DoubleTyID: 1028 Code = bitc::TYPE_CODE_DOUBLE; 1029 break; 1030 case Type::X86_FP80TyID: 1031 Code = bitc::TYPE_CODE_X86_FP80; 1032 break; 1033 case Type::FP128TyID: 1034 Code = bitc::TYPE_CODE_FP128; 1035 break; 1036 case Type::PPC_FP128TyID: 1037 Code = bitc::TYPE_CODE_PPC_FP128; 1038 break; 1039 case Type::LabelTyID: 1040 Code = bitc::TYPE_CODE_LABEL; 1041 break; 1042 case Type::MetadataTyID: 1043 Code = bitc::TYPE_CODE_METADATA; 1044 break; 1045 case Type::IntegerTyID: 1046 // INTEGER: [width] 1047 Code = bitc::TYPE_CODE_INTEGER; 1048 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1049 break; 1050 case Type::TypedPointerTyID: { 1051 TypedPointerType *PTy = cast<TypedPointerType>(T); 1052 // POINTER: [pointee type, address space] 1053 Code = bitc::TYPE_CODE_POINTER; 1054 TypeVals.push_back(getTypeID(PTy->getElementType())); 1055 unsigned AddressSpace = PTy->getAddressSpace(); 1056 TypeVals.push_back(AddressSpace); 1057 if (AddressSpace == 0) 1058 AbbrevToUse = PtrAbbrev; 1059 break; 1060 } 1061 case Type::PointerTyID: { 1062 // POINTER: [pointee type, address space] 1063 // Emitting an empty struct type for the pointer's type allows this to be 1064 // order-independent. Non-struct types must be emitted in bitcode before 1065 // they can be referenced. 1066 TypeVals.push_back(false); 1067 Code = bitc::TYPE_CODE_OPAQUE; 1068 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, 1069 "dxilOpaquePtrReservedName", StructNameAbbrev); 1070 break; 1071 } 1072 case Type::FunctionTyID: { 1073 FunctionType *FT = cast<FunctionType>(T); 1074 // FUNCTION: [isvararg, retty, paramty x N] 1075 Code = bitc::TYPE_CODE_FUNCTION; 1076 TypeVals.push_back(FT->isVarArg()); 1077 TypeVals.push_back(getTypeID(FT->getReturnType())); 1078 for (Type *PTy : FT->params()) 1079 TypeVals.push_back(getTypeID(PTy)); 1080 AbbrevToUse = FunctionAbbrev; 1081 break; 1082 } 1083 case Type::StructTyID: { 1084 StructType *ST = cast<StructType>(T); 1085 // STRUCT: [ispacked, eltty x N] 1086 TypeVals.push_back(ST->isPacked()); 1087 // Output all of the element types. 1088 for (Type *ElTy : ST->elements()) 1089 TypeVals.push_back(getTypeID(ElTy)); 1090 1091 if (ST->isLiteral()) { 1092 Code = bitc::TYPE_CODE_STRUCT_ANON; 1093 AbbrevToUse = StructAnonAbbrev; 1094 } else { 1095 if (ST->isOpaque()) { 1096 Code = bitc::TYPE_CODE_OPAQUE; 1097 } else { 1098 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1099 AbbrevToUse = StructNamedAbbrev; 1100 } 1101 1102 // Emit the name if it is present. 1103 if (!ST->getName().empty()) 1104 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1105 StructNameAbbrev); 1106 } 1107 break; 1108 } 1109 case Type::ArrayTyID: { 1110 ArrayType *AT = cast<ArrayType>(T); 1111 // ARRAY: [numelts, eltty] 1112 Code = bitc::TYPE_CODE_ARRAY; 1113 TypeVals.push_back(AT->getNumElements()); 1114 TypeVals.push_back(getTypeID(AT->getElementType())); 1115 AbbrevToUse = ArrayAbbrev; 1116 break; 1117 } 1118 case Type::FixedVectorTyID: 1119 case Type::ScalableVectorTyID: { 1120 VectorType *VT = cast<VectorType>(T); 1121 // VECTOR [numelts, eltty] 1122 Code = bitc::TYPE_CODE_VECTOR; 1123 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1124 TypeVals.push_back(getTypeID(VT->getElementType())); 1125 break; 1126 } 1127 } 1128 1129 // Emit the finished record. 1130 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1131 TypeVals.clear(); 1132 } 1133 1134 Stream.ExitBlock(); 1135 } 1136 1137 void DXILBitcodeWriter::writeComdats() { 1138 SmallVector<uint16_t, 64> Vals; 1139 for (const Comdat *C : VE.getComdats()) { 1140 // COMDAT: [selection_kind, name] 1141 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1142 size_t Size = C->getName().size(); 1143 assert(isUInt<16>(Size)); 1144 Vals.push_back(Size); 1145 for (char Chr : C->getName()) 1146 Vals.push_back((unsigned char)Chr); 1147 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1148 Vals.clear(); 1149 } 1150 } 1151 1152 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {} 1153 1154 /// Emit top-level description of module, including target triple, inline asm, 1155 /// descriptors for global variables, and function prototype info. 1156 /// Returns the bit offset to backpatch with the location of the real VST. 1157 void DXILBitcodeWriter::writeModuleInfo() { 1158 // Emit various pieces of data attached to a module. 1159 if (!M.getTargetTriple().empty()) 1160 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1161 0 /*TODO*/); 1162 const std::string &DL = M.getDataLayoutStr(); 1163 if (!DL.empty()) 1164 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1165 if (!M.getModuleInlineAsm().empty()) 1166 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1167 0 /*TODO*/); 1168 1169 // Emit information about sections and GC, computing how many there are. Also 1170 // compute the maximum alignment value. 1171 std::map<std::string, unsigned> SectionMap; 1172 std::map<std::string, unsigned> GCMap; 1173 MaybeAlign MaxAlignment; 1174 unsigned MaxGlobalType = 0; 1175 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1176 if (A) 1177 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1178 }; 1179 for (const GlobalVariable &GV : M.globals()) { 1180 UpdateMaxAlignment(GV.getAlign()); 1181 // Use getGlobalObjectValueTypeID to look up the enumerated type ID for 1182 // Global Variable types. 1183 MaxGlobalType = std::max( 1184 MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1185 if (GV.hasSection()) { 1186 // Give section names unique ID's. 1187 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1188 if (!Entry) { 1189 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, 1190 GV.getSection(), 0 /*TODO*/); 1191 Entry = SectionMap.size(); 1192 } 1193 } 1194 } 1195 for (const Function &F : M) { 1196 UpdateMaxAlignment(F.getAlign()); 1197 if (F.hasSection()) { 1198 // Give section names unique ID's. 1199 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1200 if (!Entry) { 1201 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1202 0 /*TODO*/); 1203 Entry = SectionMap.size(); 1204 } 1205 } 1206 if (F.hasGC()) { 1207 // Same for GC names. 1208 unsigned &Entry = GCMap[F.getGC()]; 1209 if (!Entry) { 1210 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1211 0 /*TODO*/); 1212 Entry = GCMap.size(); 1213 } 1214 } 1215 } 1216 1217 // Emit abbrev for globals, now that we know # sections and max alignment. 1218 unsigned SimpleGVarAbbrev = 0; 1219 if (!M.global_empty()) { 1220 // Add an abbrev for common globals with no visibility or thread 1221 // localness. 1222 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1223 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1225 Log2_32_Ceil(MaxGlobalType + 1))); 1226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1227 //| explicitType << 1 1228 //| constant 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1231 if (!MaxAlignment) // Alignment. 1232 Abbv->Add(BitCodeAbbrevOp(0)); 1233 else { 1234 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1236 Log2_32_Ceil(MaxEncAlignment + 1))); 1237 } 1238 if (SectionMap.empty()) // Section. 1239 Abbv->Add(BitCodeAbbrevOp(0)); 1240 else 1241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1242 Log2_32_Ceil(SectionMap.size() + 1))); 1243 // Don't bother emitting vis + thread local. 1244 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1245 } 1246 1247 // Emit the global variable information. 1248 SmallVector<unsigned, 64> Vals; 1249 for (const GlobalVariable &GV : M.globals()) { 1250 unsigned AbbrevToUse = 0; 1251 1252 // GLOBALVAR: [type, isconst, initid, 1253 // linkage, alignment, section, visibility, threadlocal, 1254 // unnamed_addr, externally_initialized, dllstorageclass, 1255 // comdat] 1256 Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV)); 1257 Vals.push_back( 1258 GV.getType()->getAddressSpace() << 2 | 2 | 1259 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with 1260 // unsigned int and bool 1261 Vals.push_back( 1262 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); 1263 Vals.push_back(getEncodedLinkage(GV)); 1264 Vals.push_back(getEncodedAlign(GV.getAlign())); 1265 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1266 : 0); 1267 if (GV.isThreadLocal() || 1268 GV.getVisibility() != GlobalValue::DefaultVisibility || 1269 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1270 GV.isExternallyInitialized() || 1271 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1272 GV.hasComdat()) { 1273 Vals.push_back(getEncodedVisibility(GV)); 1274 Vals.push_back(getEncodedThreadLocalMode(GV)); 1275 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1276 Vals.push_back(GV.isExternallyInitialized()); 1277 Vals.push_back(getEncodedDLLStorageClass(GV)); 1278 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1279 } else { 1280 AbbrevToUse = SimpleGVarAbbrev; 1281 } 1282 1283 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1284 Vals.clear(); 1285 } 1286 1287 // Emit the function proto information. 1288 for (const Function &F : M) { 1289 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 1290 // section, visibility, gc, unnamed_addr, prologuedata, 1291 // dllstorageclass, comdat, prefixdata, personalityfn] 1292 Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F)); 1293 Vals.push_back(F.getCallingConv()); 1294 Vals.push_back(F.isDeclaration()); 1295 Vals.push_back(getEncodedLinkage(F)); 1296 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1297 Vals.push_back(getEncodedAlign(F.getAlign())); 1298 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1299 : 0); 1300 Vals.push_back(getEncodedVisibility(F)); 1301 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1302 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1303 Vals.push_back( 1304 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); 1305 Vals.push_back(getEncodedDLLStorageClass(F)); 1306 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1307 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1308 : 0); 1309 Vals.push_back( 1310 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1311 1312 unsigned AbbrevToUse = 0; 1313 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1314 Vals.clear(); 1315 } 1316 1317 // Emit the alias information. 1318 for (const GlobalAlias &A : M.aliases()) { 1319 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1320 Vals.push_back(getTypeID(A.getValueType(), &A)); 1321 Vals.push_back(VE.getValueID(A.getAliasee())); 1322 Vals.push_back(getEncodedLinkage(A)); 1323 Vals.push_back(getEncodedVisibility(A)); 1324 Vals.push_back(getEncodedDLLStorageClass(A)); 1325 Vals.push_back(getEncodedThreadLocalMode(A)); 1326 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); 1327 unsigned AbbrevToUse = 0; 1328 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); 1329 Vals.clear(); 1330 } 1331 } 1332 1333 void DXILBitcodeWriter::writeValueAsMetadata( 1334 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1335 // Mimic an MDNode with a value as one operand. 1336 Value *V = MD->getValue(); 1337 Type *Ty = V->getType(); 1338 if (Function *F = dyn_cast<Function>(V)) 1339 Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace()); 1340 else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 1341 Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace()); 1342 Record.push_back(getTypeID(Ty, V)); 1343 Record.push_back(VE.getValueID(V)); 1344 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1345 Record.clear(); 1346 } 1347 1348 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N, 1349 SmallVectorImpl<uint64_t> &Record, 1350 unsigned Abbrev) { 1351 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1352 Metadata *MD = N->getOperand(i); 1353 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1354 "Unexpected function-local metadata"); 1355 Record.push_back(VE.getMetadataOrNullID(MD)); 1356 } 1357 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1358 : bitc::METADATA_NODE, 1359 Record, Abbrev); 1360 Record.clear(); 1361 } 1362 1363 void DXILBitcodeWriter::writeDILocation(const DILocation *N, 1364 SmallVectorImpl<uint64_t> &Record, 1365 unsigned &Abbrev) { 1366 if (!Abbrev) 1367 Abbrev = createDILocationAbbrev(); 1368 Record.push_back(N->isDistinct()); 1369 Record.push_back(N->getLine()); 1370 Record.push_back(N->getColumn()); 1371 Record.push_back(VE.getMetadataID(N->getScope())); 1372 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1373 1374 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1375 Record.clear(); 1376 } 1377 1378 static uint64_t rotateSign(APInt Val) { 1379 int64_t I = Val.getSExtValue(); 1380 uint64_t U = I; 1381 return I < 0 ? ~(U << 1) : U << 1; 1382 } 1383 1384 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N, 1385 SmallVectorImpl<uint64_t> &Record, 1386 unsigned Abbrev) { 1387 Record.push_back(N->isDistinct()); 1388 1389 // TODO: Do we need to handle DIExpression here? What about cases where Count 1390 // isn't specified but UpperBound and such are? 1391 ConstantInt *Count = dyn_cast<ConstantInt *>(N->getCount()); 1392 assert(Count && "Count is missing or not ConstantInt"); 1393 Record.push_back(Count->getValue().getSExtValue()); 1394 1395 // TODO: Similarly, DIExpression is allowed here now 1396 DISubrange::BoundType LowerBound = N->getLowerBound(); 1397 assert((LowerBound.isNull() || isa<ConstantInt *>(LowerBound)) && 1398 "Lower bound provided but not ConstantInt"); 1399 Record.push_back( 1400 LowerBound ? rotateSign(cast<ConstantInt *>(LowerBound)->getValue()) : 0); 1401 1402 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1403 Record.clear(); 1404 } 1405 1406 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1407 SmallVectorImpl<uint64_t> &Record, 1408 unsigned Abbrev) { 1409 Record.push_back(N->isDistinct()); 1410 Record.push_back(rotateSign(N->getValue())); 1411 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1412 1413 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1414 Record.clear(); 1415 } 1416 1417 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1418 SmallVectorImpl<uint64_t> &Record, 1419 unsigned Abbrev) { 1420 Record.push_back(N->isDistinct()); 1421 Record.push_back(N->getTag()); 1422 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1423 Record.push_back(N->getSizeInBits()); 1424 Record.push_back(N->getAlignInBits()); 1425 Record.push_back(N->getEncoding()); 1426 1427 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1428 Record.clear(); 1429 } 1430 1431 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1432 SmallVectorImpl<uint64_t> &Record, 1433 unsigned Abbrev) { 1434 Record.push_back(N->isDistinct()); 1435 Record.push_back(N->getTag()); 1436 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1437 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1438 Record.push_back(N->getLine()); 1439 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1440 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1441 Record.push_back(N->getSizeInBits()); 1442 Record.push_back(N->getAlignInBits()); 1443 Record.push_back(N->getOffsetInBits()); 1444 Record.push_back(N->getFlags()); 1445 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1446 1447 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1448 Record.clear(); 1449 } 1450 1451 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N, 1452 SmallVectorImpl<uint64_t> &Record, 1453 unsigned Abbrev) { 1454 Record.push_back(N->isDistinct()); 1455 Record.push_back(N->getTag()); 1456 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1457 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1458 Record.push_back(N->getLine()); 1459 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1460 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1461 Record.push_back(N->getSizeInBits()); 1462 Record.push_back(N->getAlignInBits()); 1463 Record.push_back(N->getOffsetInBits()); 1464 Record.push_back(N->getFlags()); 1465 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1466 Record.push_back(N->getRuntimeLang()); 1467 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1468 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1469 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1470 1471 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1472 Record.clear(); 1473 } 1474 1475 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N, 1476 SmallVectorImpl<uint64_t> &Record, 1477 unsigned Abbrev) { 1478 Record.push_back(N->isDistinct()); 1479 Record.push_back(N->getFlags()); 1480 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1481 1482 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1483 Record.clear(); 1484 } 1485 1486 void DXILBitcodeWriter::writeDIFile(const DIFile *N, 1487 SmallVectorImpl<uint64_t> &Record, 1488 unsigned Abbrev) { 1489 Record.push_back(N->isDistinct()); 1490 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1491 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1492 1493 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1494 Record.clear(); 1495 } 1496 1497 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1498 SmallVectorImpl<uint64_t> &Record, 1499 unsigned Abbrev) { 1500 Record.push_back(N->isDistinct()); 1501 Record.push_back(N->getSourceLanguage()); 1502 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1503 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1504 Record.push_back(N->isOptimized()); 1505 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1506 Record.push_back(N->getRuntimeVersion()); 1507 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1508 Record.push_back(N->getEmissionKind()); 1509 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1510 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1511 Record.push_back(/* subprograms */ 0); 1512 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1513 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1514 Record.push_back(N->getDWOId()); 1515 1516 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1517 Record.clear(); 1518 } 1519 1520 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1521 SmallVectorImpl<uint64_t> &Record, 1522 unsigned Abbrev) { 1523 Record.push_back(N->isDistinct()); 1524 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1525 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1526 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1527 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1528 Record.push_back(N->getLine()); 1529 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1530 Record.push_back(N->isLocalToUnit()); 1531 Record.push_back(N->isDefinition()); 1532 Record.push_back(N->getScopeLine()); 1533 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1534 Record.push_back(N->getVirtuality()); 1535 Record.push_back(N->getVirtualIndex()); 1536 Record.push_back(N->getFlags()); 1537 Record.push_back(N->isOptimized()); 1538 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1539 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1540 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1542 1543 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1544 Record.clear(); 1545 } 1546 1547 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1548 SmallVectorImpl<uint64_t> &Record, 1549 unsigned Abbrev) { 1550 Record.push_back(N->isDistinct()); 1551 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1552 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1553 Record.push_back(N->getLine()); 1554 Record.push_back(N->getColumn()); 1555 1556 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1557 Record.clear(); 1558 } 1559 1560 void DXILBitcodeWriter::writeDILexicalBlockFile( 1561 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1562 unsigned Abbrev) { 1563 Record.push_back(N->isDistinct()); 1564 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1565 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1566 Record.push_back(N->getDiscriminator()); 1567 1568 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1569 Record.clear(); 1570 } 1571 1572 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N, 1573 SmallVectorImpl<uint64_t> &Record, 1574 unsigned Abbrev) { 1575 Record.push_back(N->isDistinct()); 1576 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1578 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1579 Record.push_back(/* line number */ 0); 1580 1581 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1582 Record.clear(); 1583 } 1584 1585 void DXILBitcodeWriter::writeDIModule(const DIModule *N, 1586 SmallVectorImpl<uint64_t> &Record, 1587 unsigned Abbrev) { 1588 Record.push_back(N->isDistinct()); 1589 for (auto &I : N->operands()) 1590 Record.push_back(VE.getMetadataOrNullID(I)); 1591 1592 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1593 Record.clear(); 1594 } 1595 1596 void DXILBitcodeWriter::writeDITemplateTypeParameter( 1597 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1598 unsigned Abbrev) { 1599 Record.push_back(N->isDistinct()); 1600 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1601 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1602 1603 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1604 Record.clear(); 1605 } 1606 1607 void DXILBitcodeWriter::writeDITemplateValueParameter( 1608 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1609 unsigned Abbrev) { 1610 Record.push_back(N->isDistinct()); 1611 Record.push_back(N->getTag()); 1612 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1613 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1614 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1615 1616 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1617 Record.clear(); 1618 } 1619 1620 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N, 1621 SmallVectorImpl<uint64_t> &Record, 1622 unsigned Abbrev) { 1623 Record.push_back(N->isDistinct()); 1624 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1625 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1626 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1627 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1628 Record.push_back(N->getLine()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1630 Record.push_back(N->isLocalToUnit()); 1631 Record.push_back(N->isDefinition()); 1632 Record.push_back(/* N->getRawVariable() */ 0); 1633 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1634 1635 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N, 1640 SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 Record.push_back(N->isDistinct()); 1643 Record.push_back(N->getTag()); 1644 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1645 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1646 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1647 Record.push_back(N->getLine()); 1648 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1649 Record.push_back(N->getArg()); 1650 Record.push_back(N->getFlags()); 1651 1652 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1653 Record.clear(); 1654 } 1655 1656 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N, 1657 SmallVectorImpl<uint64_t> &Record, 1658 unsigned Abbrev) { 1659 Record.reserve(N->getElements().size() + 1); 1660 1661 Record.push_back(N->isDistinct()); 1662 Record.append(N->elements_begin(), N->elements_end()); 1663 1664 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1665 Record.clear(); 1666 } 1667 1668 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1669 SmallVectorImpl<uint64_t> &Record, 1670 unsigned Abbrev) { 1671 llvm_unreachable("DXIL does not support objc!!!"); 1672 } 1673 1674 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N, 1675 SmallVectorImpl<uint64_t> &Record, 1676 unsigned Abbrev) { 1677 Record.push_back(N->isDistinct()); 1678 Record.push_back(N->getTag()); 1679 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1680 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1681 Record.push_back(N->getLine()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1683 1684 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1685 Record.clear(); 1686 } 1687 1688 unsigned DXILBitcodeWriter::createDILocationAbbrev() { 1689 // Abbrev for METADATA_LOCATION. 1690 // 1691 // Assume the column is usually under 128, and always output the inlined-at 1692 // location (it's never more expensive than building an array size 1). 1693 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1694 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1700 return Stream.EmitAbbrev(std::move(Abbv)); 1701 } 1702 1703 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() { 1704 // Abbrev for METADATA_GENERIC_DEBUG. 1705 // 1706 // Assume the column is usually under 128, and always output the inlined-at 1707 // location (it's never more expensive than building an array size 1). 1708 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1709 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1716 return Stream.EmitAbbrev(std::move(Abbv)); 1717 } 1718 1719 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs, 1720 SmallVectorImpl<uint64_t> &Record, 1721 std::vector<unsigned> *MDAbbrevs, 1722 std::vector<uint64_t> *IndexPos) { 1723 if (MDs.empty()) 1724 return; 1725 1726 // Initialize MDNode abbreviations. 1727 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1728 #include "llvm/IR/Metadata.def" 1729 1730 for (const Metadata *MD : MDs) { 1731 if (IndexPos) 1732 IndexPos->push_back(Stream.GetCurrentBitNo()); 1733 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1734 assert(N->isResolved() && "Expected forward references to be resolved"); 1735 1736 switch (N->getMetadataID()) { 1737 default: 1738 llvm_unreachable("Invalid MDNode subclass"); 1739 #define HANDLE_MDNODE_LEAF(CLASS) \ 1740 case Metadata::CLASS##Kind: \ 1741 if (MDAbbrevs) \ 1742 write##CLASS(cast<CLASS>(N), Record, \ 1743 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1744 else \ 1745 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1746 continue; 1747 #include "llvm/IR/Metadata.def" 1748 } 1749 } 1750 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1751 } 1752 } 1753 1754 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() { 1755 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1756 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); 1757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1759 return Stream.EmitAbbrev(std::move(Abbv)); 1760 } 1761 1762 void DXILBitcodeWriter::writeMetadataStrings( 1763 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1764 if (Strings.empty()) 1765 return; 1766 1767 unsigned MDSAbbrev = createMetadataStringsAbbrev(); 1768 1769 for (const Metadata *MD : Strings) { 1770 const MDString *MDS = cast<MDString>(MD); 1771 // Code: [strchar x N] 1772 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1773 1774 // Emit the finished record. 1775 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev); 1776 Record.clear(); 1777 } 1778 } 1779 1780 void DXILBitcodeWriter::writeModuleMetadata() { 1781 if (!VE.hasMDs() && M.named_metadata_empty()) 1782 return; 1783 1784 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5); 1785 1786 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1787 // block and load any metadata. 1788 std::vector<unsigned> MDAbbrevs; 1789 1790 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1791 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1792 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1793 createGenericDINodeAbbrev(); 1794 1795 unsigned NameAbbrev = 0; 1796 if (!M.named_metadata_empty()) { 1797 // Abbrev for METADATA_NAME. 1798 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); 1799 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1802 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1803 } 1804 1805 SmallVector<uint64_t, 64> Record; 1806 writeMetadataStrings(VE.getMDStrings(), Record); 1807 1808 std::vector<uint64_t> IndexPos; 1809 IndexPos.reserve(VE.getNonMDStrings().size()); 1810 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1811 1812 // Write named metadata. 1813 for (const NamedMDNode &NMD : M.named_metadata()) { 1814 // Write name. 1815 StringRef Str = NMD.getName(); 1816 Record.append(Str.bytes_begin(), Str.bytes_end()); 1817 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1818 Record.clear(); 1819 1820 // Write named metadata operands. 1821 for (const MDNode *N : NMD.operands()) 1822 Record.push_back(VE.getMetadataID(N)); 1823 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1824 Record.clear(); 1825 } 1826 1827 Stream.ExitBlock(); 1828 } 1829 1830 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) { 1831 if (!VE.hasMDs()) 1832 return; 1833 1834 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1835 SmallVector<uint64_t, 64> Record; 1836 writeMetadataStrings(VE.getMDStrings(), Record); 1837 writeMetadataRecords(VE.getNonMDStrings(), Record); 1838 Stream.ExitBlock(); 1839 } 1840 1841 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1842 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1843 1844 SmallVector<uint64_t, 64> Record; 1845 1846 // Write metadata attachments 1847 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1848 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1849 F.getAllMetadata(MDs); 1850 if (!MDs.empty()) { 1851 for (const auto &I : MDs) { 1852 Record.push_back(I.first); 1853 Record.push_back(VE.getMetadataID(I.second)); 1854 } 1855 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1856 Record.clear(); 1857 } 1858 1859 for (const BasicBlock &BB : F) 1860 for (const Instruction &I : BB) { 1861 MDs.clear(); 1862 I.getAllMetadataOtherThanDebugLoc(MDs); 1863 1864 // If no metadata, ignore instruction. 1865 if (MDs.empty()) 1866 continue; 1867 1868 Record.push_back(VE.getInstructionID(&I)); 1869 1870 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1871 Record.push_back(MDs[i].first); 1872 Record.push_back(VE.getMetadataID(MDs[i].second)); 1873 } 1874 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1875 Record.clear(); 1876 } 1877 1878 Stream.ExitBlock(); 1879 } 1880 1881 void DXILBitcodeWriter::writeModuleMetadataKinds() { 1882 SmallVector<uint64_t, 64> Record; 1883 1884 // Write metadata kinds 1885 // METADATA_KIND - [n x [id, name]] 1886 SmallVector<StringRef, 8> Names; 1887 M.getMDKindNames(Names); 1888 1889 if (Names.empty()) 1890 return; 1891 1892 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1893 1894 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1895 Record.push_back(MDKindID); 1896 StringRef KName = Names[MDKindID]; 1897 Record.append(KName.begin(), KName.end()); 1898 1899 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1900 Record.clear(); 1901 } 1902 1903 Stream.ExitBlock(); 1904 } 1905 1906 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 1907 bool isGlobal) { 1908 if (FirstVal == LastVal) 1909 return; 1910 1911 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1912 1913 unsigned AggregateAbbrev = 0; 1914 unsigned String8Abbrev = 0; 1915 unsigned CString7Abbrev = 0; 1916 unsigned CString6Abbrev = 0; 1917 // If this is a constant pool for the module, emit module-specific abbrevs. 1918 if (isGlobal) { 1919 // Abbrev for CST_CODE_AGGREGATE. 1920 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1921 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1923 Abbv->Add( 1924 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1))); 1925 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1926 1927 // Abbrev for CST_CODE_STRING. 1928 Abbv = std::make_shared<BitCodeAbbrev>(); 1929 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1932 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1933 // Abbrev for CST_CODE_CSTRING. 1934 Abbv = std::make_shared<BitCodeAbbrev>(); 1935 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1938 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1939 // Abbrev for CST_CODE_CSTRING. 1940 Abbv = std::make_shared<BitCodeAbbrev>(); 1941 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1944 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 1945 } 1946 1947 SmallVector<uint64_t, 64> Record; 1948 1949 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1950 Type *LastTy = nullptr; 1951 for (unsigned i = FirstVal; i != LastVal; ++i) { 1952 const Value *V = Vals[i].first; 1953 // If we need to switch types, do so now. 1954 if (V->getType() != LastTy) { 1955 LastTy = V->getType(); 1956 Record.push_back(getTypeID(LastTy, V)); 1957 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1958 CONSTANTS_SETTYPE_ABBREV); 1959 Record.clear(); 1960 } 1961 1962 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1963 Record.push_back(unsigned(IA->hasSideEffects()) | 1964 unsigned(IA->isAlignStack()) << 1 | 1965 unsigned(IA->getDialect() & 1) << 2); 1966 1967 // Add the asm string. 1968 const std::string &AsmStr = IA->getAsmString(); 1969 Record.push_back(AsmStr.size()); 1970 Record.append(AsmStr.begin(), AsmStr.end()); 1971 1972 // Add the constraint string. 1973 const std::string &ConstraintStr = IA->getConstraintString(); 1974 Record.push_back(ConstraintStr.size()); 1975 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1976 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1977 Record.clear(); 1978 continue; 1979 } 1980 const Constant *C = cast<Constant>(V); 1981 unsigned Code = -1U; 1982 unsigned AbbrevToUse = 0; 1983 if (C->isNullValue()) { 1984 Code = bitc::CST_CODE_NULL; 1985 } else if (isa<UndefValue>(C)) { 1986 Code = bitc::CST_CODE_UNDEF; 1987 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1988 if (IV->getBitWidth() <= 64) { 1989 uint64_t V = IV->getSExtValue(); 1990 emitSignedInt64(Record, V); 1991 Code = bitc::CST_CODE_INTEGER; 1992 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1993 } else { // Wide integers, > 64 bits in size. 1994 // We have an arbitrary precision integer value to write whose 1995 // bit width is > 64. However, in canonical unsigned integer 1996 // format it is likely that the high bits are going to be zero. 1997 // So, we only write the number of active words. 1998 unsigned NWords = IV->getValue().getActiveWords(); 1999 const uint64_t *RawWords = IV->getValue().getRawData(); 2000 for (unsigned i = 0; i != NWords; ++i) { 2001 emitSignedInt64(Record, RawWords[i]); 2002 } 2003 Code = bitc::CST_CODE_WIDE_INTEGER; 2004 } 2005 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2006 Code = bitc::CST_CODE_FLOAT; 2007 Type *Ty = CFP->getType(); 2008 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2009 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2010 } else if (Ty->isX86_FP80Ty()) { 2011 // api needed to prevent premature destruction 2012 // bits are not in the same order as a normal i80 APInt, compensate. 2013 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2014 const uint64_t *p = api.getRawData(); 2015 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2016 Record.push_back(p[0] & 0xffffLL); 2017 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2018 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2019 const uint64_t *p = api.getRawData(); 2020 Record.push_back(p[0]); 2021 Record.push_back(p[1]); 2022 } else { 2023 assert(0 && "Unknown FP type!"); 2024 } 2025 } else if (isa<ConstantDataSequential>(C) && 2026 cast<ConstantDataSequential>(C)->isString()) { 2027 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2028 // Emit constant strings specially. 2029 unsigned NumElts = Str->getNumElements(); 2030 // If this is a null-terminated string, use the denser CSTRING encoding. 2031 if (Str->isCString()) { 2032 Code = bitc::CST_CODE_CSTRING; 2033 --NumElts; // Don't encode the null, which isn't allowed by char6. 2034 } else { 2035 Code = bitc::CST_CODE_STRING; 2036 AbbrevToUse = String8Abbrev; 2037 } 2038 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2039 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2040 for (unsigned i = 0; i != NumElts; ++i) { 2041 unsigned char V = Str->getElementAsInteger(i); 2042 Record.push_back(V); 2043 isCStr7 &= (V & 128) == 0; 2044 if (isCStrChar6) 2045 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2046 } 2047 2048 if (isCStrChar6) 2049 AbbrevToUse = CString6Abbrev; 2050 else if (isCStr7) 2051 AbbrevToUse = CString7Abbrev; 2052 } else if (const ConstantDataSequential *CDS = 2053 dyn_cast<ConstantDataSequential>(C)) { 2054 Code = bitc::CST_CODE_DATA; 2055 Type *EltTy = CDS->getElementType(); 2056 if (isa<IntegerType>(EltTy)) { 2057 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2058 Record.push_back(CDS->getElementAsInteger(i)); 2059 } else if (EltTy->isFloatTy()) { 2060 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2061 union { 2062 float F; 2063 uint32_t I; 2064 }; 2065 F = CDS->getElementAsFloat(i); 2066 Record.push_back(I); 2067 } 2068 } else { 2069 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 2070 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2071 union { 2072 double F; 2073 uint64_t I; 2074 }; 2075 F = CDS->getElementAsDouble(i); 2076 Record.push_back(I); 2077 } 2078 } 2079 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 2080 isa<ConstantVector>(C)) { 2081 Code = bitc::CST_CODE_AGGREGATE; 2082 for (const Value *Op : C->operands()) 2083 Record.push_back(VE.getValueID(Op)); 2084 AbbrevToUse = AggregateAbbrev; 2085 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2086 switch (CE->getOpcode()) { 2087 default: 2088 if (Instruction::isCast(CE->getOpcode())) { 2089 Code = bitc::CST_CODE_CE_CAST; 2090 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2091 Record.push_back( 2092 getTypeID(C->getOperand(0)->getType(), C->getOperand(0))); 2093 Record.push_back(VE.getValueID(C->getOperand(0))); 2094 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2095 } else { 2096 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2097 Code = bitc::CST_CODE_CE_BINOP; 2098 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2099 Record.push_back(VE.getValueID(C->getOperand(0))); 2100 Record.push_back(VE.getValueID(C->getOperand(1))); 2101 uint64_t Flags = getOptimizationFlags(CE); 2102 if (Flags != 0) 2103 Record.push_back(Flags); 2104 } 2105 break; 2106 case Instruction::GetElementPtr: { 2107 Code = bitc::CST_CODE_CE_GEP; 2108 const auto *GO = cast<GEPOperator>(C); 2109 if (GO->isInBounds()) 2110 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2111 Record.push_back(getTypeID(GO->getSourceElementType())); 2112 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2113 Record.push_back( 2114 getTypeID(C->getOperand(i)->getType(), C->getOperand(i))); 2115 Record.push_back(VE.getValueID(C->getOperand(i))); 2116 } 2117 break; 2118 } 2119 case Instruction::Select: 2120 Code = bitc::CST_CODE_CE_SELECT; 2121 Record.push_back(VE.getValueID(C->getOperand(0))); 2122 Record.push_back(VE.getValueID(C->getOperand(1))); 2123 Record.push_back(VE.getValueID(C->getOperand(2))); 2124 break; 2125 case Instruction::ExtractElement: 2126 Code = bitc::CST_CODE_CE_EXTRACTELT; 2127 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2128 Record.push_back(VE.getValueID(C->getOperand(0))); 2129 Record.push_back(getTypeID(C->getOperand(1)->getType())); 2130 Record.push_back(VE.getValueID(C->getOperand(1))); 2131 break; 2132 case Instruction::InsertElement: 2133 Code = bitc::CST_CODE_CE_INSERTELT; 2134 Record.push_back(VE.getValueID(C->getOperand(0))); 2135 Record.push_back(VE.getValueID(C->getOperand(1))); 2136 Record.push_back(getTypeID(C->getOperand(2)->getType())); 2137 Record.push_back(VE.getValueID(C->getOperand(2))); 2138 break; 2139 case Instruction::ShuffleVector: 2140 // If the return type and argument types are the same, this is a 2141 // standard shufflevector instruction. If the types are different, 2142 // then the shuffle is widening or truncating the input vectors, and 2143 // the argument type must also be encoded. 2144 if (C->getType() == C->getOperand(0)->getType()) { 2145 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2146 } else { 2147 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2148 Record.push_back(getTypeID(C->getOperand(0)->getType())); 2149 } 2150 Record.push_back(VE.getValueID(C->getOperand(0))); 2151 Record.push_back(VE.getValueID(C->getOperand(1))); 2152 Record.push_back(VE.getValueID(C->getOperand(2))); 2153 break; 2154 } 2155 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2156 Code = bitc::CST_CODE_BLOCKADDRESS; 2157 Record.push_back(getTypeID(BA->getFunction()->getType())); 2158 Record.push_back(VE.getValueID(BA->getFunction())); 2159 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2160 } else { 2161 #ifndef NDEBUG 2162 C->dump(); 2163 #endif 2164 llvm_unreachable("Unknown constant!"); 2165 } 2166 Stream.EmitRecord(Code, Record, AbbrevToUse); 2167 Record.clear(); 2168 } 2169 2170 Stream.ExitBlock(); 2171 } 2172 2173 void DXILBitcodeWriter::writeModuleConstants() { 2174 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2175 2176 // Find the first constant to emit, which is the first non-globalvalue value. 2177 // We know globalvalues have been emitted by WriteModuleInfo. 2178 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2179 if (!isa<GlobalValue>(Vals[i].first)) { 2180 writeConstants(i, Vals.size(), true); 2181 return; 2182 } 2183 } 2184 } 2185 2186 /// pushValueAndType - The file has to encode both the value and type id for 2187 /// many values, because we need to know what type to create for forward 2188 /// references. However, most operands are not forward references, so this type 2189 /// field is not needed. 2190 /// 2191 /// This function adds V's value ID to Vals. If the value ID is higher than the 2192 /// instruction ID, then it is a forward reference, and it also includes the 2193 /// type ID. The value ID that is written is encoded relative to the InstID. 2194 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2195 SmallVectorImpl<unsigned> &Vals) { 2196 unsigned ValID = VE.getValueID(V); 2197 // Make encoding relative to the InstID. 2198 Vals.push_back(InstID - ValID); 2199 if (ValID >= InstID) { 2200 Vals.push_back(getTypeID(V->getType(), V)); 2201 return true; 2202 } 2203 return false; 2204 } 2205 2206 /// pushValue - Like pushValueAndType, but where the type of the value is 2207 /// omitted (perhaps it was already encoded in an earlier operand). 2208 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2209 SmallVectorImpl<unsigned> &Vals) { 2210 unsigned ValID = VE.getValueID(V); 2211 Vals.push_back(InstID - ValID); 2212 } 2213 2214 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2215 SmallVectorImpl<uint64_t> &Vals) { 2216 unsigned ValID = VE.getValueID(V); 2217 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2218 emitSignedInt64(Vals, diff); 2219 } 2220 2221 /// WriteInstruction - Emit an instruction 2222 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, 2223 SmallVectorImpl<unsigned> &Vals) { 2224 unsigned Code = 0; 2225 unsigned AbbrevToUse = 0; 2226 VE.setInstructionID(&I); 2227 switch (I.getOpcode()) { 2228 default: 2229 if (Instruction::isCast(I.getOpcode())) { 2230 Code = bitc::FUNC_CODE_INST_CAST; 2231 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2232 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV; 2233 Vals.push_back(getTypeID(I.getType(), &I)); 2234 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2235 } else { 2236 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2237 Code = bitc::FUNC_CODE_INST_BINOP; 2238 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2239 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV; 2240 pushValue(I.getOperand(1), InstID, Vals); 2241 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2242 uint64_t Flags = getOptimizationFlags(&I); 2243 if (Flags != 0) { 2244 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV) 2245 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV; 2246 Vals.push_back(Flags); 2247 } 2248 } 2249 break; 2250 2251 case Instruction::GetElementPtr: { 2252 Code = bitc::FUNC_CODE_INST_GEP; 2253 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV; 2254 auto &GEPInst = cast<GetElementPtrInst>(I); 2255 Vals.push_back(GEPInst.isInBounds()); 2256 Vals.push_back(getTypeID(GEPInst.getSourceElementType())); 2257 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2258 pushValueAndType(I.getOperand(i), InstID, Vals); 2259 break; 2260 } 2261 case Instruction::ExtractValue: { 2262 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2263 pushValueAndType(I.getOperand(0), InstID, Vals); 2264 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2265 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2266 break; 2267 } 2268 case Instruction::InsertValue: { 2269 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2270 pushValueAndType(I.getOperand(0), InstID, Vals); 2271 pushValueAndType(I.getOperand(1), InstID, Vals); 2272 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2273 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2274 break; 2275 } 2276 case Instruction::Select: 2277 Code = bitc::FUNC_CODE_INST_VSELECT; 2278 pushValueAndType(I.getOperand(1), InstID, Vals); 2279 pushValue(I.getOperand(2), InstID, Vals); 2280 pushValueAndType(I.getOperand(0), InstID, Vals); 2281 break; 2282 case Instruction::ExtractElement: 2283 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2284 pushValueAndType(I.getOperand(0), InstID, Vals); 2285 pushValueAndType(I.getOperand(1), InstID, Vals); 2286 break; 2287 case Instruction::InsertElement: 2288 Code = bitc::FUNC_CODE_INST_INSERTELT; 2289 pushValueAndType(I.getOperand(0), InstID, Vals); 2290 pushValue(I.getOperand(1), InstID, Vals); 2291 pushValueAndType(I.getOperand(2), InstID, Vals); 2292 break; 2293 case Instruction::ShuffleVector: 2294 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2295 pushValueAndType(I.getOperand(0), InstID, Vals); 2296 pushValue(I.getOperand(1), InstID, Vals); 2297 pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID, 2298 Vals); 2299 break; 2300 case Instruction::ICmp: 2301 case Instruction::FCmp: { 2302 // compare returning Int1Ty or vector of Int1Ty 2303 Code = bitc::FUNC_CODE_INST_CMP2; 2304 pushValueAndType(I.getOperand(0), InstID, Vals); 2305 pushValue(I.getOperand(1), InstID, Vals); 2306 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2307 uint64_t Flags = getOptimizationFlags(&I); 2308 if (Flags != 0) 2309 Vals.push_back(Flags); 2310 break; 2311 } 2312 2313 case Instruction::Ret: { 2314 Code = bitc::FUNC_CODE_INST_RET; 2315 unsigned NumOperands = I.getNumOperands(); 2316 if (NumOperands == 0) 2317 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV; 2318 else if (NumOperands == 1) { 2319 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2320 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV; 2321 } else { 2322 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2323 pushValueAndType(I.getOperand(i), InstID, Vals); 2324 } 2325 } break; 2326 case Instruction::Br: { 2327 Code = bitc::FUNC_CODE_INST_BR; 2328 const BranchInst &II = cast<BranchInst>(I); 2329 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2330 if (II.isConditional()) { 2331 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2332 pushValue(II.getCondition(), InstID, Vals); 2333 } 2334 } break; 2335 case Instruction::Switch: { 2336 Code = bitc::FUNC_CODE_INST_SWITCH; 2337 const SwitchInst &SI = cast<SwitchInst>(I); 2338 Vals.push_back(getTypeID(SI.getCondition()->getType())); 2339 pushValue(SI.getCondition(), InstID, Vals); 2340 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2341 for (auto Case : SI.cases()) { 2342 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2343 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2344 } 2345 } break; 2346 case Instruction::IndirectBr: 2347 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2348 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2349 // Encode the address operand as relative, but not the basic blocks. 2350 pushValue(I.getOperand(0), InstID, Vals); 2351 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2352 Vals.push_back(VE.getValueID(I.getOperand(i))); 2353 break; 2354 2355 case Instruction::Invoke: { 2356 const InvokeInst *II = cast<InvokeInst>(&I); 2357 const Value *Callee = II->getCalledOperand(); 2358 FunctionType *FTy = II->getFunctionType(); 2359 Code = bitc::FUNC_CODE_INST_INVOKE; 2360 2361 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2362 Vals.push_back(II->getCallingConv() | 1 << 13); 2363 Vals.push_back(VE.getValueID(II->getNormalDest())); 2364 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2365 Vals.push_back(getTypeID(FTy)); 2366 pushValueAndType(Callee, InstID, Vals); 2367 2368 // Emit value #'s for the fixed parameters. 2369 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2370 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2371 2372 // Emit type/value pairs for varargs params. 2373 if (FTy->isVarArg()) { 2374 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e; 2375 ++i) 2376 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2377 } 2378 break; 2379 } 2380 case Instruction::Resume: 2381 Code = bitc::FUNC_CODE_INST_RESUME; 2382 pushValueAndType(I.getOperand(0), InstID, Vals); 2383 break; 2384 case Instruction::Unreachable: 2385 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2386 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV; 2387 break; 2388 2389 case Instruction::PHI: { 2390 const PHINode &PN = cast<PHINode>(I); 2391 Code = bitc::FUNC_CODE_INST_PHI; 2392 // With the newer instruction encoding, forward references could give 2393 // negative valued IDs. This is most common for PHIs, so we use 2394 // signed VBRs. 2395 SmallVector<uint64_t, 128> Vals64; 2396 Vals64.push_back(getTypeID(PN.getType())); 2397 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2398 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2399 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2400 } 2401 // Emit a Vals64 vector and exit. 2402 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2403 Vals64.clear(); 2404 return; 2405 } 2406 2407 case Instruction::LandingPad: { 2408 const LandingPadInst &LP = cast<LandingPadInst>(I); 2409 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2410 Vals.push_back(getTypeID(LP.getType())); 2411 Vals.push_back(LP.isCleanup()); 2412 Vals.push_back(LP.getNumClauses()); 2413 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2414 if (LP.isCatch(I)) 2415 Vals.push_back(LandingPadInst::Catch); 2416 else 2417 Vals.push_back(LandingPadInst::Filter); 2418 pushValueAndType(LP.getClause(I), InstID, Vals); 2419 } 2420 break; 2421 } 2422 2423 case Instruction::Alloca: { 2424 Code = bitc::FUNC_CODE_INST_ALLOCA; 2425 const AllocaInst &AI = cast<AllocaInst>(I); 2426 Vals.push_back(getTypeID(AI.getAllocatedType())); 2427 Vals.push_back(getTypeID(I.getOperand(0)->getType())); 2428 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2429 unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1; 2430 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2431 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2432 AlignRecord |= 1 << 6; 2433 Vals.push_back(AlignRecord); 2434 break; 2435 } 2436 2437 case Instruction::Load: 2438 if (cast<LoadInst>(I).isAtomic()) { 2439 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2440 pushValueAndType(I.getOperand(0), InstID, Vals); 2441 } else { 2442 Code = bitc::FUNC_CODE_INST_LOAD; 2443 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2444 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV; 2445 } 2446 Vals.push_back(getTypeID(I.getType())); 2447 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1); 2448 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2449 if (cast<LoadInst>(I).isAtomic()) { 2450 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2451 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2452 } 2453 break; 2454 case Instruction::Store: 2455 if (cast<StoreInst>(I).isAtomic()) 2456 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2457 else 2458 Code = bitc::FUNC_CODE_INST_STORE; 2459 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2460 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2461 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1); 2462 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2463 if (cast<StoreInst>(I).isAtomic()) { 2464 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2465 Vals.push_back( 2466 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2467 } 2468 break; 2469 case Instruction::AtomicCmpXchg: 2470 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2471 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2472 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2473 pushValue(I.getOperand(2), InstID, Vals); // newval. 2474 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2475 Vals.push_back( 2476 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2477 Vals.push_back( 2478 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2479 Vals.push_back( 2480 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2481 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2482 break; 2483 case Instruction::AtomicRMW: 2484 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2485 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2486 pushValue(I.getOperand(1), InstID, Vals); // val. 2487 Vals.push_back( 2488 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2489 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2490 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2491 Vals.push_back( 2492 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2493 break; 2494 case Instruction::Fence: 2495 Code = bitc::FUNC_CODE_INST_FENCE; 2496 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2497 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2498 break; 2499 case Instruction::Call: { 2500 const CallInst &CI = cast<CallInst>(I); 2501 FunctionType *FTy = CI.getFunctionType(); 2502 2503 Code = bitc::FUNC_CODE_INST_CALL; 2504 2505 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2506 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 2507 unsigned(CI.isMustTailCall()) << 14 | 1 << 15); 2508 Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction())); 2509 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 2510 2511 // Emit value #'s for the fixed parameters. 2512 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2513 // Check for labels (can happen with asm labels). 2514 if (FTy->getParamType(i)->isLabelTy()) 2515 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2516 else 2517 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2518 } 2519 2520 // Emit type/value pairs for varargs params. 2521 if (FTy->isVarArg()) { 2522 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 2523 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2524 } 2525 break; 2526 } 2527 case Instruction::VAArg: 2528 Code = bitc::FUNC_CODE_INST_VAARG; 2529 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty 2530 pushValue(I.getOperand(0), InstID, Vals); // valist. 2531 Vals.push_back(getTypeID(I.getType())); // restype. 2532 break; 2533 } 2534 2535 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2536 Vals.clear(); 2537 } 2538 2539 // Emit names for globals/functions etc. 2540 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable( 2541 const ValueSymbolTable &VST) { 2542 if (VST.empty()) 2543 return; 2544 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2545 2546 SmallVector<unsigned, 64> NameVals; 2547 2548 // HLSL Change 2549 // Read the named values from a sorted list instead of the original list 2550 // to ensure the binary is the same no matter what values ever existed. 2551 SmallVector<const ValueName *, 16> SortedTable; 2552 2553 for (auto &VI : VST) { 2554 SortedTable.push_back(VI.second->getValueName()); 2555 } 2556 // The keys are unique, so there shouldn't be stability issues. 2557 llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) { 2558 return A->first() < B->first(); 2559 }); 2560 2561 for (const ValueName *SI : SortedTable) { 2562 auto &Name = *SI; 2563 2564 // Figure out the encoding to use for the name. 2565 bool is7Bit = true; 2566 bool isChar6 = true; 2567 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength(); 2568 C != E; ++C) { 2569 if (isChar6) 2570 isChar6 = BitCodeAbbrevOp::isChar6(*C); 2571 if ((unsigned char)*C & 128) { 2572 is7Bit = false; 2573 break; // don't bother scanning the rest. 2574 } 2575 } 2576 2577 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2578 2579 // VST_ENTRY: [valueid, namechar x N] 2580 // VST_BBENTRY: [bbid, namechar x N] 2581 unsigned Code; 2582 if (isa<BasicBlock>(SI->getValue())) { 2583 Code = bitc::VST_CODE_BBENTRY; 2584 if (isChar6) 2585 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2586 } else { 2587 Code = bitc::VST_CODE_ENTRY; 2588 if (isChar6) 2589 AbbrevToUse = VST_ENTRY_6_ABBREV; 2590 else if (is7Bit) 2591 AbbrevToUse = VST_ENTRY_7_ABBREV; 2592 } 2593 2594 NameVals.push_back(VE.getValueID(SI->getValue())); 2595 for (const char *P = Name.getKeyData(), 2596 *E = Name.getKeyData() + Name.getKeyLength(); 2597 P != E; ++P) 2598 NameVals.push_back((unsigned char)*P); 2599 2600 // Emit the finished record. 2601 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2602 NameVals.clear(); 2603 } 2604 Stream.ExitBlock(); 2605 } 2606 2607 /// Emit a function body to the module stream. 2608 void DXILBitcodeWriter::writeFunction(const Function &F) { 2609 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2610 VE.incorporateFunction(F); 2611 2612 SmallVector<unsigned, 64> Vals; 2613 2614 // Emit the number of basic blocks, so the reader can create them ahead of 2615 // time. 2616 Vals.push_back(VE.getBasicBlocks().size()); 2617 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2618 Vals.clear(); 2619 2620 // If there are function-local constants, emit them now. 2621 unsigned CstStart, CstEnd; 2622 VE.getFunctionConstantRange(CstStart, CstEnd); 2623 writeConstants(CstStart, CstEnd, false); 2624 2625 // If there is function-local metadata, emit it now. 2626 writeFunctionMetadata(F); 2627 2628 // Keep a running idea of what the instruction ID is. 2629 unsigned InstID = CstEnd; 2630 2631 bool NeedsMetadataAttachment = F.hasMetadata(); 2632 2633 DILocation *LastDL = nullptr; 2634 2635 // Finally, emit all the instructions, in order. 2636 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2637 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; 2638 ++I) { 2639 writeInstruction(*I, InstID, Vals); 2640 2641 if (!I->getType()->isVoidTy()) 2642 ++InstID; 2643 2644 // If the instruction has metadata, write a metadata attachment later. 2645 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2646 2647 // If the instruction has a debug location, emit it. 2648 DILocation *DL = I->getDebugLoc(); 2649 if (!DL) 2650 continue; 2651 2652 if (DL == LastDL) { 2653 // Just repeat the same debug loc as last time. 2654 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2655 continue; 2656 } 2657 2658 Vals.push_back(DL->getLine()); 2659 Vals.push_back(DL->getColumn()); 2660 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2661 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2662 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2663 Vals.clear(); 2664 2665 LastDL = DL; 2666 } 2667 2668 // Emit names for all the instructions etc. 2669 if (auto *Symtab = F.getValueSymbolTable()) 2670 writeFunctionLevelValueSymbolTable(*Symtab); 2671 2672 if (NeedsMetadataAttachment) 2673 writeFunctionMetadataAttachment(F); 2674 2675 VE.purgeFunction(); 2676 Stream.ExitBlock(); 2677 } 2678 2679 // Emit blockinfo, which defines the standard abbreviations etc. 2680 void DXILBitcodeWriter::writeBlockInfo() { 2681 // We only want to emit block info records for blocks that have multiple 2682 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2683 // Other blocks can define their abbrevs inline. 2684 Stream.EnterBlockInfoBlock(); 2685 2686 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2687 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2692 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2693 std::move(Abbv)) != VST_ENTRY_8_ABBREV) 2694 assert(false && "Unexpected abbrev ordering!"); 2695 } 2696 2697 { // 7-bit fixed width VST_ENTRY strings. 2698 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2699 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2703 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2704 std::move(Abbv)) != VST_ENTRY_7_ABBREV) 2705 assert(false && "Unexpected abbrev ordering!"); 2706 } 2707 { // 6-bit char6 VST_ENTRY strings. 2708 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2709 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2713 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2714 std::move(Abbv)) != VST_ENTRY_6_ABBREV) 2715 assert(false && "Unexpected abbrev ordering!"); 2716 } 2717 { // 6-bit char6 VST_BBENTRY strings. 2718 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2719 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2723 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2724 std::move(Abbv)) != VST_BBENTRY_6_ABBREV) 2725 assert(false && "Unexpected abbrev ordering!"); 2726 } 2727 2728 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2729 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2730 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2732 VE.computeBitsRequiredForTypeIndices())); 2733 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2734 CONSTANTS_SETTYPE_ABBREV) 2735 assert(false && "Unexpected abbrev ordering!"); 2736 } 2737 2738 { // INTEGER abbrev for CONSTANTS_BLOCK. 2739 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2740 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2742 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2743 CONSTANTS_INTEGER_ABBREV) 2744 assert(false && "Unexpected abbrev ordering!"); 2745 } 2746 2747 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2748 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2749 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2752 VE.computeBitsRequiredForTypeIndices())); 2753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2754 2755 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2756 CONSTANTS_CE_CAST_Abbrev) 2757 assert(false && "Unexpected abbrev ordering!"); 2758 } 2759 { // NULL abbrev for CONSTANTS_BLOCK. 2760 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2761 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2762 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != 2763 CONSTANTS_NULL_Abbrev) 2764 assert(false && "Unexpected abbrev ordering!"); 2765 } 2766 2767 // FIXME: This should only use space for first class types! 2768 2769 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2770 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2771 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2774 VE.computeBitsRequiredForTypeIndices())); 2775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2777 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2778 (unsigned)FUNCTION_INST_LOAD_ABBREV) 2779 assert(false && "Unexpected abbrev ordering!"); 2780 } 2781 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2782 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2783 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2787 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2788 (unsigned)FUNCTION_INST_BINOP_ABBREV) 2789 assert(false && "Unexpected abbrev ordering!"); 2790 } 2791 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2792 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2793 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2798 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2799 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV) 2800 assert(false && "Unexpected abbrev ordering!"); 2801 } 2802 { // INST_CAST abbrev for FUNCTION_BLOCK. 2803 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2804 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2807 VE.computeBitsRequiredForTypeIndices())); 2808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2809 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2810 (unsigned)FUNCTION_INST_CAST_ABBREV) 2811 assert(false && "Unexpected abbrev ordering!"); 2812 } 2813 2814 { // INST_RET abbrev for FUNCTION_BLOCK. 2815 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2816 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2817 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2818 (unsigned)FUNCTION_INST_RET_VOID_ABBREV) 2819 assert(false && "Unexpected abbrev ordering!"); 2820 } 2821 { // INST_RET abbrev for FUNCTION_BLOCK. 2822 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2823 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2825 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2826 (unsigned)FUNCTION_INST_RET_VAL_ABBREV) 2827 assert(false && "Unexpected abbrev ordering!"); 2828 } 2829 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2830 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2831 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2832 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2833 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV) 2834 assert(false && "Unexpected abbrev ordering!"); 2835 } 2836 { 2837 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2838 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2841 Log2_32_Ceil(VE.getTypes().size() + 1))); 2842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2844 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != 2845 (unsigned)FUNCTION_INST_GEP_ABBREV) 2846 assert(false && "Unexpected abbrev ordering!"); 2847 } 2848 2849 Stream.ExitBlock(); 2850 } 2851 2852 void DXILBitcodeWriter::writeModuleVersion() { 2853 // VERSION: [version#] 2854 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1}); 2855 } 2856 2857 /// WriteModule - Emit the specified module to the bitstream. 2858 void DXILBitcodeWriter::write() { 2859 // The identification block is new since llvm-3.7, but the old bitcode reader 2860 // will skip it. 2861 // writeIdentificationBlock(Stream); 2862 2863 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2864 2865 // It is redundant to fully-specify this here, but nice to make it explicit 2866 // so that it is clear the DXIL module version is different. 2867 DXILBitcodeWriter::writeModuleVersion(); 2868 2869 // Emit blockinfo, which defines the standard abbreviations etc. 2870 writeBlockInfo(); 2871 2872 // Emit information about attribute groups. 2873 writeAttributeGroupTable(); 2874 2875 // Emit information about parameter attributes. 2876 writeAttributeTable(); 2877 2878 // Emit information describing all of the types in the module. 2879 writeTypeTable(); 2880 2881 writeComdats(); 2882 2883 // Emit top-level description of module, including target triple, inline asm, 2884 // descriptors for global variables, and function prototype info. 2885 writeModuleInfo(); 2886 2887 // Emit constants. 2888 writeModuleConstants(); 2889 2890 // Emit metadata. 2891 writeModuleMetadataKinds(); 2892 2893 // Emit metadata. 2894 writeModuleMetadata(); 2895 2896 // Emit names for globals/functions etc. 2897 // DXIL uses the same format for module-level value symbol table as for the 2898 // function level table. 2899 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable()); 2900 2901 // Emit function bodies. 2902 for (const Function &F : M) 2903 if (!F.isDeclaration()) 2904 writeFunction(F); 2905 2906 Stream.ExitBlock(); 2907 } 2908