1 //===- lib/MC/ARMELFStreamer.cpp - ELF Object Output for ARM --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file assembles .s files and emits ARM ELF .o object files. Different 10 // from generic ELF streamer in emitting mapping symbols ($a, $t and $d) to 11 // delimit regions of data and code. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMMCTargetDesc.h" 16 #include "ARMUnwindOpAsm.h" 17 #include "Utils/ARMBaseInfo.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/ELF.h" 25 #include "llvm/MC/MCAsmBackend.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCAssembler.h" 28 #include "llvm/MC/MCCodeEmitter.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCELFObjectWriter.h" 31 #include "llvm/MC/MCELFStreamer.h" 32 #include "llvm/MC/MCExpr.h" 33 #include "llvm/MC/MCFixup.h" 34 #include "llvm/MC/MCFragment.h" 35 #include "llvm/MC/MCInst.h" 36 #include "llvm/MC/MCInstPrinter.h" 37 #include "llvm/MC/MCObjectFileInfo.h" 38 #include "llvm/MC/MCObjectWriter.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/MC/MCSection.h" 41 #include "llvm/MC/MCSectionELF.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSubtargetInfo.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCSymbolELF.h" 46 #include "llvm/MC/SectionKind.h" 47 #include "llvm/Support/ARMBuildAttributes.h" 48 #include "llvm/Support/ARMEHABI.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <cassert> 54 #include <climits> 55 #include <cstdint> 56 #include <string> 57 58 using namespace llvm; 59 60 static std::string GetAEABIUnwindPersonalityName(unsigned Index) { 61 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && 62 "Invalid personality index"); 63 return (Twine("__aeabi_unwind_cpp_pr") + Twine(Index)).str(); 64 } 65 66 namespace { 67 68 class ARMELFStreamer; 69 70 class ARMTargetAsmStreamer : public ARMTargetStreamer { 71 formatted_raw_ostream &OS; 72 MCInstPrinter &InstPrinter; 73 bool IsVerboseAsm; 74 75 void emitFnStart() override; 76 void emitFnEnd() override; 77 void emitCantUnwind() override; 78 void emitPersonality(const MCSymbol *Personality) override; 79 void emitPersonalityIndex(unsigned Index) override; 80 void emitHandlerData() override; 81 void emitSetFP(MCRegister FpReg, MCRegister SpReg, 82 int64_t Offset = 0) override; 83 void emitMovSP(MCRegister Reg, int64_t Offset = 0) override; 84 void emitPad(int64_t Offset) override; 85 void emitRegSave(const SmallVectorImpl<MCRegister> &RegList, 86 bool isVector) override; 87 void emitUnwindRaw(int64_t Offset, 88 const SmallVectorImpl<uint8_t> &Opcodes) override; 89 90 void switchVendor(StringRef Vendor) override; 91 void emitAttribute(unsigned Attribute, unsigned Value) override; 92 void emitTextAttribute(unsigned Attribute, StringRef String) override; 93 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 94 StringRef StringValue) override; 95 void emitArch(ARM::ArchKind Arch) override; 96 void emitArchExtension(uint64_t ArchExt) override; 97 void emitObjectArch(ARM::ArchKind Arch) override; 98 void emitFPU(ARM::FPUKind FPU) override; 99 void emitInst(uint32_t Inst, char Suffix = '\0') override; 100 void finishAttributeSection() override; 101 102 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 103 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 104 105 void emitARMWinCFIAllocStack(unsigned Size, bool Wide) override; 106 void emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) override; 107 void emitARMWinCFISaveSP(unsigned Reg) override; 108 void emitARMWinCFISaveFRegs(unsigned First, unsigned Last) override; 109 void emitARMWinCFISaveLR(unsigned Offset) override; 110 void emitARMWinCFIPrologEnd(bool Fragment) override; 111 void emitARMWinCFINop(bool Wide) override; 112 void emitARMWinCFIEpilogStart(unsigned Condition) override; 113 void emitARMWinCFIEpilogEnd() override; 114 void emitARMWinCFICustom(unsigned Opcode) override; 115 116 public: 117 ARMTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS, 118 MCInstPrinter &InstPrinter); 119 }; 120 121 ARMTargetAsmStreamer::ARMTargetAsmStreamer(MCStreamer &S, 122 formatted_raw_ostream &OS, 123 MCInstPrinter &InstPrinter) 124 : ARMTargetStreamer(S), OS(OS), InstPrinter(InstPrinter), 125 IsVerboseAsm(S.isVerboseAsm()) {} 126 127 void ARMTargetAsmStreamer::emitFnStart() { OS << "\t.fnstart\n"; } 128 void ARMTargetAsmStreamer::emitFnEnd() { OS << "\t.fnend\n"; } 129 void ARMTargetAsmStreamer::emitCantUnwind() { OS << "\t.cantunwind\n"; } 130 131 void ARMTargetAsmStreamer::emitPersonality(const MCSymbol *Personality) { 132 OS << "\t.personality " << Personality->getName() << '\n'; 133 } 134 135 void ARMTargetAsmStreamer::emitPersonalityIndex(unsigned Index) { 136 OS << "\t.personalityindex " << Index << '\n'; 137 } 138 139 void ARMTargetAsmStreamer::emitHandlerData() { OS << "\t.handlerdata\n"; } 140 141 void ARMTargetAsmStreamer::emitSetFP(MCRegister FpReg, MCRegister SpReg, 142 int64_t Offset) { 143 OS << "\t.setfp\t"; 144 InstPrinter.printRegName(OS, FpReg); 145 OS << ", "; 146 InstPrinter.printRegName(OS, SpReg); 147 if (Offset) 148 OS << ", #" << Offset; 149 OS << '\n'; 150 } 151 152 void ARMTargetAsmStreamer::emitMovSP(MCRegister Reg, int64_t Offset) { 153 assert((Reg != ARM::SP && Reg != ARM::PC) && 154 "the operand of .movsp cannot be either sp or pc"); 155 156 OS << "\t.movsp\t"; 157 InstPrinter.printRegName(OS, Reg); 158 if (Offset) 159 OS << ", #" << Offset; 160 OS << '\n'; 161 } 162 163 void ARMTargetAsmStreamer::emitPad(int64_t Offset) { 164 OS << "\t.pad\t#" << Offset << '\n'; 165 } 166 167 void ARMTargetAsmStreamer::emitRegSave( 168 const SmallVectorImpl<MCRegister> &RegList, bool isVector) { 169 assert(RegList.size() && "RegList should not be empty"); 170 if (isVector) 171 OS << "\t.vsave\t{"; 172 else 173 OS << "\t.save\t{"; 174 175 InstPrinter.printRegName(OS, RegList[0]); 176 177 for (unsigned i = 1, e = RegList.size(); i != e; ++i) { 178 OS << ", "; 179 InstPrinter.printRegName(OS, RegList[i]); 180 } 181 182 OS << "}\n"; 183 } 184 185 void ARMTargetAsmStreamer::switchVendor(StringRef Vendor) {} 186 187 void ARMTargetAsmStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 188 OS << "\t.eabi_attribute\t" << Attribute << ", " << Twine(Value); 189 if (IsVerboseAsm) { 190 StringRef Name = ELFAttrs::attrTypeAsString( 191 Attribute, ARMBuildAttrs::getARMAttributeTags()); 192 if (!Name.empty()) 193 OS << "\t@ " << Name; 194 } 195 OS << "\n"; 196 } 197 198 void ARMTargetAsmStreamer::emitTextAttribute(unsigned Attribute, 199 StringRef String) { 200 switch (Attribute) { 201 case ARMBuildAttrs::CPU_name: 202 OS << "\t.cpu\t" << String.lower(); 203 break; 204 default: 205 OS << "\t.eabi_attribute\t" << Attribute << ", \""; 206 if (Attribute == ARMBuildAttrs::also_compatible_with) 207 OS.write_escaped(String); 208 else 209 OS << String; 210 OS << "\""; 211 if (IsVerboseAsm) { 212 StringRef Name = ELFAttrs::attrTypeAsString( 213 Attribute, ARMBuildAttrs::getARMAttributeTags()); 214 if (!Name.empty()) 215 OS << "\t@ " << Name; 216 } 217 break; 218 } 219 OS << "\n"; 220 } 221 222 void ARMTargetAsmStreamer::emitIntTextAttribute(unsigned Attribute, 223 unsigned IntValue, 224 StringRef StringValue) { 225 switch (Attribute) { 226 default: llvm_unreachable("unsupported multi-value attribute in asm mode"); 227 case ARMBuildAttrs::compatibility: 228 OS << "\t.eabi_attribute\t" << Attribute << ", " << IntValue; 229 if (!StringValue.empty()) 230 OS << ", \"" << StringValue << "\""; 231 if (IsVerboseAsm) 232 OS << "\t@ " 233 << ELFAttrs::attrTypeAsString(Attribute, 234 ARMBuildAttrs::getARMAttributeTags()); 235 break; 236 } 237 OS << "\n"; 238 } 239 240 void ARMTargetAsmStreamer::emitArch(ARM::ArchKind Arch) { 241 OS << "\t.arch\t" << ARM::getArchName(Arch) << "\n"; 242 } 243 244 void ARMTargetAsmStreamer::emitArchExtension(uint64_t ArchExt) { 245 OS << "\t.arch_extension\t" << ARM::getArchExtName(ArchExt) << "\n"; 246 } 247 248 void ARMTargetAsmStreamer::emitObjectArch(ARM::ArchKind Arch) { 249 OS << "\t.object_arch\t" << ARM::getArchName(Arch) << '\n'; 250 } 251 252 void ARMTargetAsmStreamer::emitFPU(ARM::FPUKind FPU) { 253 OS << "\t.fpu\t" << ARM::getFPUName(FPU) << "\n"; 254 } 255 256 void ARMTargetAsmStreamer::finishAttributeSection() {} 257 258 void ARMTargetAsmStreamer::annotateTLSDescriptorSequence( 259 const MCSymbolRefExpr *S) { 260 OS << "\t.tlsdescseq\t" << S->getSymbol().getName() << "\n"; 261 } 262 263 void ARMTargetAsmStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 264 const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo(); 265 266 OS << "\t.thumb_set\t"; 267 Symbol->print(OS, MAI); 268 OS << ", "; 269 Value->print(OS, MAI); 270 OS << '\n'; 271 } 272 273 void ARMTargetAsmStreamer::emitInst(uint32_t Inst, char Suffix) { 274 OS << "\t.inst"; 275 if (Suffix) 276 OS << "." << Suffix; 277 OS << "\t0x" << Twine::utohexstr(Inst) << "\n"; 278 } 279 280 void ARMTargetAsmStreamer::emitUnwindRaw(int64_t Offset, 281 const SmallVectorImpl<uint8_t> &Opcodes) { 282 OS << "\t.unwind_raw " << Offset; 283 for (uint8_t Opcode : Opcodes) 284 OS << ", 0x" << Twine::utohexstr(Opcode); 285 OS << '\n'; 286 } 287 288 void ARMTargetAsmStreamer::emitARMWinCFIAllocStack(unsigned Size, bool Wide) { 289 if (Wide) 290 OS << "\t.seh_stackalloc_w\t" << Size << "\n"; 291 else 292 OS << "\t.seh_stackalloc\t" << Size << "\n"; 293 } 294 295 static void printRegs(formatted_raw_ostream &OS, ListSeparator &LS, int First, 296 int Last) { 297 if (First != Last) 298 OS << LS << "r" << First << "-r" << Last; 299 else 300 OS << LS << "r" << First; 301 } 302 303 void ARMTargetAsmStreamer::emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) { 304 if (Wide) 305 OS << "\t.seh_save_regs_w\t"; 306 else 307 OS << "\t.seh_save_regs\t"; 308 ListSeparator LS; 309 int First = -1; 310 OS << "{"; 311 for (int I = 0; I <= 12; I++) { 312 if (Mask & (1 << I)) { 313 if (First < 0) 314 First = I; 315 } else { 316 if (First >= 0) { 317 printRegs(OS, LS, First, I - 1); 318 First = -1; 319 } 320 } 321 } 322 if (First >= 0) 323 printRegs(OS, LS, First, 12); 324 if (Mask & (1 << 14)) 325 OS << LS << "lr"; 326 OS << "}\n"; 327 } 328 329 void ARMTargetAsmStreamer::emitARMWinCFISaveSP(unsigned Reg) { 330 OS << "\t.seh_save_sp\tr" << Reg << "\n"; 331 } 332 333 void ARMTargetAsmStreamer::emitARMWinCFISaveFRegs(unsigned First, 334 unsigned Last) { 335 if (First != Last) 336 OS << "\t.seh_save_fregs\t{d" << First << "-d" << Last << "}\n"; 337 else 338 OS << "\t.seh_save_fregs\t{d" << First << "}\n"; 339 } 340 341 void ARMTargetAsmStreamer::emitARMWinCFISaveLR(unsigned Offset) { 342 OS << "\t.seh_save_lr\t" << Offset << "\n"; 343 } 344 345 void ARMTargetAsmStreamer::emitARMWinCFIPrologEnd(bool Fragment) { 346 if (Fragment) 347 OS << "\t.seh_endprologue_fragment\n"; 348 else 349 OS << "\t.seh_endprologue\n"; 350 } 351 352 void ARMTargetAsmStreamer::emitARMWinCFINop(bool Wide) { 353 if (Wide) 354 OS << "\t.seh_nop_w\n"; 355 else 356 OS << "\t.seh_nop\n"; 357 } 358 359 void ARMTargetAsmStreamer::emitARMWinCFIEpilogStart(unsigned Condition) { 360 if (Condition == ARMCC::AL) 361 OS << "\t.seh_startepilogue\n"; 362 else 363 OS << "\t.seh_startepilogue_cond\t" 364 << ARMCondCodeToString(static_cast<ARMCC::CondCodes>(Condition)) << "\n"; 365 } 366 367 void ARMTargetAsmStreamer::emitARMWinCFIEpilogEnd() { 368 OS << "\t.seh_endepilogue\n"; 369 } 370 371 void ARMTargetAsmStreamer::emitARMWinCFICustom(unsigned Opcode) { 372 int I; 373 for (I = 3; I > 0; I--) 374 if (Opcode & (0xffu << (8 * I))) 375 break; 376 ListSeparator LS; 377 OS << "\t.seh_custom\t"; 378 for (; I >= 0; I--) 379 OS << LS << ((Opcode >> (8 * I)) & 0xff); 380 OS << "\n"; 381 } 382 383 class ARMTargetELFStreamer : public ARMTargetStreamer { 384 private: 385 StringRef CurrentVendor; 386 ARM::FPUKind FPU = ARM::FK_INVALID; 387 ARM::ArchKind Arch = ARM::ArchKind::INVALID; 388 ARM::ArchKind EmittedArch = ARM::ArchKind::INVALID; 389 390 MCSection *AttributeSection = nullptr; 391 392 void emitArchDefaultAttributes(); 393 void emitFPUDefaultAttributes(); 394 395 ARMELFStreamer &getStreamer(); 396 397 void emitFnStart() override; 398 void emitFnEnd() override; 399 void emitCantUnwind() override; 400 void emitPersonality(const MCSymbol *Personality) override; 401 void emitPersonalityIndex(unsigned Index) override; 402 void emitHandlerData() override; 403 void emitSetFP(MCRegister FpReg, MCRegister SpReg, 404 int64_t Offset = 0) override; 405 void emitMovSP(MCRegister Reg, int64_t Offset = 0) override; 406 void emitPad(int64_t Offset) override; 407 void emitRegSave(const SmallVectorImpl<MCRegister> &RegList, 408 bool isVector) override; 409 void emitUnwindRaw(int64_t Offset, 410 const SmallVectorImpl<uint8_t> &Opcodes) override; 411 412 void switchVendor(StringRef Vendor) override; 413 void emitAttribute(unsigned Attribute, unsigned Value) override; 414 void emitTextAttribute(unsigned Attribute, StringRef String) override; 415 void emitIntTextAttribute(unsigned Attribute, unsigned IntValue, 416 StringRef StringValue) override; 417 void emitArch(ARM::ArchKind Arch) override; 418 void emitObjectArch(ARM::ArchKind Arch) override; 419 void emitFPU(ARM::FPUKind FPU) override; 420 void emitInst(uint32_t Inst, char Suffix = '\0') override; 421 void finishAttributeSection() override; 422 void emitLabel(MCSymbol *Symbol) override; 423 424 void annotateTLSDescriptorSequence(const MCSymbolRefExpr *SRE) override; 425 void emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) override; 426 427 // Reset state between object emissions 428 void reset() override; 429 430 void finish() override; 431 432 public: 433 ARMTargetELFStreamer(MCStreamer &S) 434 : ARMTargetStreamer(S), CurrentVendor("aeabi") {} 435 }; 436 437 /// Extend the generic ELFStreamer class so that it can emit mapping symbols at 438 /// the appropriate points in the object files. These symbols are defined in the 439 /// ARM ELF ABI: infocenter.arm.com/help/topic/com.arm.../IHI0044D_aaelf.pdf. 440 /// 441 /// In brief: $a, $t or $d should be emitted at the start of each contiguous 442 /// region of ARM code, Thumb code or data in a section. In practice, this 443 /// emission does not rely on explicit assembler directives but on inherent 444 /// properties of the directives doing the emission (e.g. ".byte" is data, "add 445 /// r0, r0, r0" an instruction). 446 /// 447 /// As a result this system is orthogonal to the DataRegion infrastructure used 448 /// by MachO. Beware! 449 class ARMELFStreamer : public MCELFStreamer { 450 public: 451 friend class ARMTargetELFStreamer; 452 453 ARMELFStreamer(MCContext &Context, std::unique_ptr<MCAsmBackend> TAB, 454 std::unique_ptr<MCObjectWriter> OW, 455 std::unique_ptr<MCCodeEmitter> Emitter, bool IsThumb, 456 bool IsAndroid) 457 : MCELFStreamer(Context, std::move(TAB), std::move(OW), 458 std::move(Emitter)), 459 IsThumb(IsThumb), IsAndroid(IsAndroid) { 460 EHReset(); 461 } 462 463 ~ARMELFStreamer() override = default; 464 465 // ARM exception handling directives 466 void emitFnStart(); 467 void emitFnEnd(); 468 void emitCantUnwind(); 469 void emitPersonality(const MCSymbol *Per); 470 void emitPersonalityIndex(unsigned index); 471 void emitHandlerData(); 472 void emitSetFP(MCRegister NewFpReg, MCRegister NewSpReg, int64_t Offset = 0); 473 void emitMovSP(MCRegister Reg, int64_t Offset = 0); 474 void emitPad(int64_t Offset); 475 void emitRegSave(const SmallVectorImpl<MCRegister> &RegList, bool isVector); 476 void emitUnwindRaw(int64_t Offset, const SmallVectorImpl<uint8_t> &Opcodes); 477 void emitFill(const MCExpr &NumBytes, uint64_t FillValue, 478 SMLoc Loc) override { 479 emitDataMappingSymbol(); 480 MCObjectStreamer::emitFill(NumBytes, FillValue, Loc); 481 } 482 483 void changeSection(MCSection *Section, uint32_t Subsection) override { 484 LastMappingSymbols[getCurrentSection().first] = std::move(LastEMSInfo); 485 MCELFStreamer::changeSection(Section, Subsection); 486 auto LastMappingSymbol = LastMappingSymbols.find(Section); 487 if (LastMappingSymbol != LastMappingSymbols.end()) { 488 LastEMSInfo = std::move(LastMappingSymbol->second); 489 return; 490 } 491 LastEMSInfo.reset(new ElfMappingSymbolInfo); 492 } 493 494 /// This function is the one used to emit instruction data into the ELF 495 /// streamer. We override it to add the appropriate mapping symbol if 496 /// necessary. 497 void emitInstruction(const MCInst &Inst, 498 const MCSubtargetInfo &STI) override { 499 if (IsThumb) 500 EmitThumbMappingSymbol(); 501 else 502 EmitARMMappingSymbol(); 503 504 MCELFStreamer::emitInstruction(Inst, STI); 505 } 506 507 void emitInst(uint32_t Inst, char Suffix) { 508 unsigned Size; 509 char Buffer[4]; 510 const bool LittleEndian = getContext().getAsmInfo()->isLittleEndian(); 511 512 switch (Suffix) { 513 case '\0': 514 Size = 4; 515 516 assert(!IsThumb); 517 EmitARMMappingSymbol(); 518 for (unsigned II = 0, IE = Size; II != IE; II++) { 519 const unsigned I = LittleEndian ? (Size - II - 1) : II; 520 Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT); 521 } 522 523 break; 524 case 'n': 525 case 'w': 526 Size = (Suffix == 'n' ? 2 : 4); 527 528 assert(IsThumb); 529 EmitThumbMappingSymbol(); 530 // Thumb wide instructions are emitted as a pair of 16-bit words of the 531 // appropriate endianness. 532 for (unsigned II = 0, IE = Size; II != IE; II = II + 2) { 533 const unsigned I0 = LittleEndian ? II + 0 : II + 1; 534 const unsigned I1 = LittleEndian ? II + 1 : II + 0; 535 Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT); 536 Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT); 537 } 538 539 break; 540 default: 541 llvm_unreachable("Invalid Suffix"); 542 } 543 544 MCELFStreamer::emitBytes(StringRef(Buffer, Size)); 545 } 546 547 /// This is one of the functions used to emit data into an ELF section, so the 548 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 549 /// necessary. 550 void emitBytes(StringRef Data) override { 551 emitDataMappingSymbol(); 552 MCELFStreamer::emitBytes(Data); 553 } 554 555 void FlushPendingMappingSymbol() { 556 if (!LastEMSInfo->hasInfo()) 557 return; 558 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 559 emitMappingSymbol("$d", *EMS->F, EMS->Offset); 560 EMS->resetInfo(); 561 } 562 563 /// This is one of the functions used to emit data into an ELF section, so the 564 /// ARM streamer overrides it to add the appropriate mapping symbol ($d) if 565 /// necessary. 566 void emitValueImpl(const MCExpr *Value, unsigned Size, SMLoc Loc) override { 567 if (const MCSymbolRefExpr *SRE = dyn_cast_or_null<MCSymbolRefExpr>(Value)) { 568 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_SBREL && !(Size == 4)) { 569 getContext().reportError(Loc, "relocated expression must be 32-bit"); 570 return; 571 } 572 getOrCreateDataFragment(); 573 } 574 575 emitDataMappingSymbol(); 576 MCELFStreamer::emitValueImpl(Value, Size, Loc); 577 } 578 579 void emitAssemblerFlag(MCAssemblerFlag Flag) override { 580 MCELFStreamer::emitAssemblerFlag(Flag); 581 582 switch (Flag) { 583 case MCAF_SyntaxUnified: 584 return; // no-op here. 585 case MCAF_Code16: 586 IsThumb = true; 587 return; // Change to Thumb mode 588 case MCAF_Code32: 589 IsThumb = false; 590 return; // Change to ARM mode 591 case MCAF_Code64: 592 return; 593 case MCAF_SubsectionsViaSymbols: 594 return; 595 } 596 } 597 598 /// If a label is defined before the .type directive sets the label's type 599 /// then the label can't be recorded as thumb function when the label is 600 /// defined. We override emitSymbolAttribute() which is called as part of the 601 /// parsing of .type so that if the symbol has already been defined we can 602 /// record the label as Thumb. FIXME: there is a corner case where the state 603 /// is changed in between the label definition and the .type directive, this 604 /// is not expected to occur in practice and handling it would require the 605 /// backend to track IsThumb for every label. 606 bool emitSymbolAttribute(MCSymbol *Symbol, MCSymbolAttr Attribute) override { 607 bool Val = MCELFStreamer::emitSymbolAttribute(Symbol, Attribute); 608 609 if (!IsThumb) 610 return Val; 611 612 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 613 if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) && 614 Symbol->isDefined()) 615 getAssembler().setIsThumbFunc(Symbol); 616 617 return Val; 618 }; 619 620 private: 621 enum ElfMappingSymbol { 622 EMS_None, 623 EMS_ARM, 624 EMS_Thumb, 625 EMS_Data 626 }; 627 628 struct ElfMappingSymbolInfo { 629 void resetInfo() { 630 F = nullptr; 631 Offset = 0; 632 } 633 bool hasInfo() { return F != nullptr; } 634 MCDataFragment *F = nullptr; 635 uint64_t Offset = 0; 636 ElfMappingSymbol State = EMS_None; 637 }; 638 639 void emitDataMappingSymbol() { 640 if (LastEMSInfo->State == EMS_Data) 641 return; 642 else if (LastEMSInfo->State == EMS_None) { 643 // This is a tentative symbol, it won't really be emitted until it's 644 // actually needed. 645 ElfMappingSymbolInfo *EMS = LastEMSInfo.get(); 646 auto *DF = dyn_cast_or_null<MCDataFragment>(getCurrentFragment()); 647 if (!DF) 648 return; 649 EMS->F = DF; 650 EMS->Offset = DF->getContents().size(); 651 LastEMSInfo->State = EMS_Data; 652 return; 653 } 654 EmitMappingSymbol("$d"); 655 LastEMSInfo->State = EMS_Data; 656 } 657 658 void EmitThumbMappingSymbol() { 659 if (LastEMSInfo->State == EMS_Thumb) 660 return; 661 FlushPendingMappingSymbol(); 662 EmitMappingSymbol("$t"); 663 LastEMSInfo->State = EMS_Thumb; 664 } 665 666 void EmitARMMappingSymbol() { 667 if (LastEMSInfo->State == EMS_ARM) 668 return; 669 FlushPendingMappingSymbol(); 670 EmitMappingSymbol("$a"); 671 LastEMSInfo->State = EMS_ARM; 672 } 673 674 void EmitMappingSymbol(StringRef Name) { 675 auto *Symbol = cast<MCSymbolELF>(getContext().createLocalSymbol(Name)); 676 emitLabel(Symbol); 677 678 Symbol->setType(ELF::STT_NOTYPE); 679 Symbol->setBinding(ELF::STB_LOCAL); 680 } 681 682 void emitMappingSymbol(StringRef Name, MCDataFragment &F, uint64_t Offset) { 683 auto *Symbol = cast<MCSymbolELF>(getContext().createLocalSymbol(Name)); 684 emitLabelAtPos(Symbol, SMLoc(), F, Offset); 685 Symbol->setType(ELF::STT_NOTYPE); 686 Symbol->setBinding(ELF::STB_LOCAL); 687 } 688 689 void emitThumbFunc(MCSymbol *Func) override { 690 getAssembler().setIsThumbFunc(Func); 691 emitSymbolAttribute(Func, MCSA_ELF_TypeFunction); 692 } 693 694 // Helper functions for ARM exception handling directives 695 void EHReset(); 696 697 // Reset state between object emissions 698 void reset() override; 699 700 void EmitPersonalityFixup(StringRef Name); 701 void FlushPendingOffset(); 702 void FlushUnwindOpcodes(bool NoHandlerData); 703 704 void SwitchToEHSection(StringRef Prefix, unsigned Type, unsigned Flags, 705 SectionKind Kind, const MCSymbol &Fn); 706 void SwitchToExTabSection(const MCSymbol &FnStart); 707 void SwitchToExIdxSection(const MCSymbol &FnStart); 708 709 void EmitFixup(const MCExpr *Expr, MCFixupKind Kind); 710 711 bool IsThumb; 712 bool IsAndroid; 713 714 DenseMap<const MCSection *, std::unique_ptr<ElfMappingSymbolInfo>> 715 LastMappingSymbols; 716 717 std::unique_ptr<ElfMappingSymbolInfo> LastEMSInfo; 718 719 // ARM Exception Handling Frame Information 720 MCSymbol *ExTab; 721 MCSymbol *FnStart; 722 const MCSymbol *Personality; 723 unsigned PersonalityIndex; 724 MCRegister FPReg; // Frame pointer register 725 int64_t FPOffset; // Offset: (final frame pointer) - (initial $sp) 726 int64_t SPOffset; // Offset: (final $sp) - (initial $sp) 727 int64_t PendingOffset; // Offset: (final $sp) - (emitted $sp) 728 bool UsedFP; 729 bool CantUnwind; 730 SmallVector<uint8_t, 64> Opcodes; 731 UnwindOpcodeAssembler UnwindOpAsm; 732 }; 733 734 } // end anonymous namespace 735 736 ARMELFStreamer &ARMTargetELFStreamer::getStreamer() { 737 return static_cast<ARMELFStreamer &>(Streamer); 738 } 739 740 void ARMTargetELFStreamer::emitFnStart() { getStreamer().emitFnStart(); } 741 void ARMTargetELFStreamer::emitFnEnd() { getStreamer().emitFnEnd(); } 742 void ARMTargetELFStreamer::emitCantUnwind() { getStreamer().emitCantUnwind(); } 743 744 void ARMTargetELFStreamer::emitPersonality(const MCSymbol *Personality) { 745 getStreamer().emitPersonality(Personality); 746 } 747 748 void ARMTargetELFStreamer::emitPersonalityIndex(unsigned Index) { 749 getStreamer().emitPersonalityIndex(Index); 750 } 751 752 void ARMTargetELFStreamer::emitHandlerData() { 753 getStreamer().emitHandlerData(); 754 } 755 756 void ARMTargetELFStreamer::emitSetFP(MCRegister FpReg, MCRegister SpReg, 757 int64_t Offset) { 758 getStreamer().emitSetFP(FpReg, SpReg, Offset); 759 } 760 761 void ARMTargetELFStreamer::emitMovSP(MCRegister Reg, int64_t Offset) { 762 getStreamer().emitMovSP(Reg, Offset); 763 } 764 765 void ARMTargetELFStreamer::emitPad(int64_t Offset) { 766 getStreamer().emitPad(Offset); 767 } 768 769 void ARMTargetELFStreamer::emitRegSave( 770 const SmallVectorImpl<MCRegister> &RegList, bool isVector) { 771 getStreamer().emitRegSave(RegList, isVector); 772 } 773 774 void ARMTargetELFStreamer::emitUnwindRaw(int64_t Offset, 775 const SmallVectorImpl<uint8_t> &Opcodes) { 776 getStreamer().emitUnwindRaw(Offset, Opcodes); 777 } 778 779 void ARMTargetELFStreamer::switchVendor(StringRef Vendor) { 780 assert(!Vendor.empty() && "Vendor cannot be empty."); 781 782 if (CurrentVendor == Vendor) 783 return; 784 785 if (!CurrentVendor.empty()) 786 finishAttributeSection(); 787 788 assert(getStreamer().Contents.empty() && 789 ".ARM.attributes should be flushed before changing vendor"); 790 CurrentVendor = Vendor; 791 792 } 793 794 void ARMTargetELFStreamer::emitAttribute(unsigned Attribute, unsigned Value) { 795 getStreamer().setAttributeItem(Attribute, Value, 796 /* OverwriteExisting= */ true); 797 } 798 799 void ARMTargetELFStreamer::emitTextAttribute(unsigned Attribute, 800 StringRef Value) { 801 getStreamer().setAttributeItem(Attribute, Value, 802 /* OverwriteExisting= */ true); 803 } 804 805 void ARMTargetELFStreamer::emitIntTextAttribute(unsigned Attribute, 806 unsigned IntValue, 807 StringRef StringValue) { 808 getStreamer().setAttributeItems(Attribute, IntValue, StringValue, 809 /* OverwriteExisting= */ true); 810 } 811 812 void ARMTargetELFStreamer::emitArch(ARM::ArchKind Value) { 813 Arch = Value; 814 } 815 816 void ARMTargetELFStreamer::emitObjectArch(ARM::ArchKind Value) { 817 EmittedArch = Value; 818 } 819 820 void ARMTargetELFStreamer::emitArchDefaultAttributes() { 821 using namespace ARMBuildAttrs; 822 ARMELFStreamer &S = getStreamer(); 823 824 S.setAttributeItem(CPU_name, ARM::getCPUAttr(Arch), false); 825 826 if (EmittedArch == ARM::ArchKind::INVALID) 827 S.setAttributeItem(CPU_arch, ARM::getArchAttr(Arch), false); 828 else 829 S.setAttributeItem(CPU_arch, ARM::getArchAttr(EmittedArch), false); 830 831 switch (Arch) { 832 case ARM::ArchKind::ARMV4: 833 S.setAttributeItem(ARM_ISA_use, Allowed, false); 834 break; 835 836 case ARM::ArchKind::ARMV4T: 837 case ARM::ArchKind::ARMV5T: 838 case ARM::ArchKind::XSCALE: 839 case ARM::ArchKind::ARMV5TE: 840 case ARM::ArchKind::ARMV6: 841 S.setAttributeItem(ARM_ISA_use, Allowed, false); 842 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 843 break; 844 845 case ARM::ArchKind::ARMV6T2: 846 S.setAttributeItem(ARM_ISA_use, Allowed, false); 847 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 848 break; 849 850 case ARM::ArchKind::ARMV6K: 851 case ARM::ArchKind::ARMV6KZ: 852 S.setAttributeItem(ARM_ISA_use, Allowed, false); 853 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 854 S.setAttributeItem(Virtualization_use, AllowTZ, false); 855 break; 856 857 case ARM::ArchKind::ARMV6M: 858 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 859 break; 860 861 case ARM::ArchKind::ARMV7A: 862 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 863 S.setAttributeItem(ARM_ISA_use, Allowed, false); 864 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 865 break; 866 867 case ARM::ArchKind::ARMV7R: 868 S.setAttributeItem(CPU_arch_profile, RealTimeProfile, false); 869 S.setAttributeItem(ARM_ISA_use, Allowed, false); 870 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 871 break; 872 873 case ARM::ArchKind::ARMV7EM: 874 case ARM::ArchKind::ARMV7M: 875 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 876 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 877 break; 878 879 case ARM::ArchKind::ARMV8A: 880 case ARM::ArchKind::ARMV8_1A: 881 case ARM::ArchKind::ARMV8_2A: 882 case ARM::ArchKind::ARMV8_3A: 883 case ARM::ArchKind::ARMV8_4A: 884 case ARM::ArchKind::ARMV8_5A: 885 case ARM::ArchKind::ARMV8_6A: 886 case ARM::ArchKind::ARMV8_7A: 887 case ARM::ArchKind::ARMV8_8A: 888 case ARM::ArchKind::ARMV8_9A: 889 case ARM::ArchKind::ARMV9A: 890 case ARM::ArchKind::ARMV9_1A: 891 case ARM::ArchKind::ARMV9_2A: 892 case ARM::ArchKind::ARMV9_3A: 893 case ARM::ArchKind::ARMV9_4A: 894 case ARM::ArchKind::ARMV9_5A: 895 case ARM::ArchKind::ARMV9_6A: 896 S.setAttributeItem(CPU_arch_profile, ApplicationProfile, false); 897 S.setAttributeItem(ARM_ISA_use, Allowed, false); 898 S.setAttributeItem(THUMB_ISA_use, AllowThumb32, false); 899 S.setAttributeItem(MPextension_use, Allowed, false); 900 S.setAttributeItem(Virtualization_use, AllowTZVirtualization, false); 901 break; 902 903 case ARM::ArchKind::ARMV8MBaseline: 904 case ARM::ArchKind::ARMV8MMainline: 905 S.setAttributeItem(THUMB_ISA_use, AllowThumbDerived, false); 906 S.setAttributeItem(CPU_arch_profile, MicroControllerProfile, false); 907 break; 908 909 case ARM::ArchKind::IWMMXT: 910 S.setAttributeItem(ARM_ISA_use, Allowed, false); 911 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 912 S.setAttributeItem(WMMX_arch, AllowWMMXv1, false); 913 break; 914 915 case ARM::ArchKind::IWMMXT2: 916 S.setAttributeItem(ARM_ISA_use, Allowed, false); 917 S.setAttributeItem(THUMB_ISA_use, Allowed, false); 918 S.setAttributeItem(WMMX_arch, AllowWMMXv2, false); 919 break; 920 921 default: 922 report_fatal_error("Unknown Arch: " + Twine(ARM::getArchName(Arch))); 923 break; 924 } 925 } 926 927 void ARMTargetELFStreamer::emitFPU(ARM::FPUKind Value) { FPU = Value; } 928 929 void ARMTargetELFStreamer::emitFPUDefaultAttributes() { 930 ARMELFStreamer &S = getStreamer(); 931 932 switch (FPU) { 933 case ARM::FK_VFP: 934 case ARM::FK_VFPV2: 935 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv2, 936 /* OverwriteExisting= */ false); 937 break; 938 939 case ARM::FK_VFPV3: 940 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 941 /* OverwriteExisting= */ false); 942 break; 943 944 case ARM::FK_VFPV3_FP16: 945 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 946 /* OverwriteExisting= */ false); 947 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 948 /* OverwriteExisting= */ false); 949 break; 950 951 case ARM::FK_VFPV3_D16: 952 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 953 /* OverwriteExisting= */ false); 954 break; 955 956 case ARM::FK_VFPV3_D16_FP16: 957 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 958 /* OverwriteExisting= */ false); 959 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 960 /* OverwriteExisting= */ false); 961 break; 962 963 case ARM::FK_VFPV3XD: 964 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 965 /* OverwriteExisting= */ false); 966 break; 967 case ARM::FK_VFPV3XD_FP16: 968 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3B, 969 /* OverwriteExisting= */ false); 970 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 971 /* OverwriteExisting= */ false); 972 break; 973 974 case ARM::FK_VFPV4: 975 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 976 /* OverwriteExisting= */ false); 977 break; 978 979 // ABI_HardFP_use is handled in ARMAsmPrinter, so _SP_D16 is treated the same 980 // as _D16 here. 981 case ARM::FK_FPV4_SP_D16: 982 case ARM::FK_VFPV4_D16: 983 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4B, 984 /* OverwriteExisting= */ false); 985 break; 986 987 case ARM::FK_FP_ARMV8: 988 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 989 /* OverwriteExisting= */ false); 990 break; 991 992 // FPV5_D16 is identical to FP_ARMV8 except for the number of D registers, so 993 // uses the FP_ARMV8_D16 build attribute. 994 case ARM::FK_FPV5_SP_D16: 995 case ARM::FK_FPV5_D16: 996 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one 997 // FPU, but there are two different names for it depending on the CPU. 998 case ARM::FK_FP_ARMV8_FULLFP16_SP_D16: 999 case ARM::FK_FP_ARMV8_FULLFP16_D16: 1000 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8B, 1001 /* OverwriteExisting= */ false); 1002 break; 1003 1004 case ARM::FK_NEON: 1005 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 1006 /* OverwriteExisting= */ false); 1007 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1008 ARMBuildAttrs::AllowNeon, 1009 /* OverwriteExisting= */ false); 1010 break; 1011 1012 case ARM::FK_NEON_FP16: 1013 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv3A, 1014 /* OverwriteExisting= */ false); 1015 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1016 ARMBuildAttrs::AllowNeon, 1017 /* OverwriteExisting= */ false); 1018 S.setAttributeItem(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP, 1019 /* OverwriteExisting= */ false); 1020 break; 1021 1022 case ARM::FK_NEON_VFPV4: 1023 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPv4A, 1024 /* OverwriteExisting= */ false); 1025 S.setAttributeItem(ARMBuildAttrs::Advanced_SIMD_arch, 1026 ARMBuildAttrs::AllowNeon2, 1027 /* OverwriteExisting= */ false); 1028 break; 1029 1030 case ARM::FK_NEON_FP_ARMV8: 1031 case ARM::FK_CRYPTO_NEON_FP_ARMV8: 1032 S.setAttributeItem(ARMBuildAttrs::FP_arch, ARMBuildAttrs::AllowFPARMv8A, 1033 /* OverwriteExisting= */ false); 1034 // 'Advanced_SIMD_arch' must be emitted not here, but within 1035 // ARMAsmPrinter::emitAttributes(), depending on hasV8Ops() and hasV8_1a() 1036 break; 1037 1038 case ARM::FK_SOFTVFP: 1039 case ARM::FK_NONE: 1040 break; 1041 1042 default: 1043 report_fatal_error("Unknown FPU: " + Twine(FPU)); 1044 break; 1045 } 1046 } 1047 1048 void ARMTargetELFStreamer::finishAttributeSection() { 1049 ARMELFStreamer &S = getStreamer(); 1050 1051 if (FPU != ARM::FK_INVALID) 1052 emitFPUDefaultAttributes(); 1053 1054 if (Arch != ARM::ArchKind::INVALID) 1055 emitArchDefaultAttributes(); 1056 1057 if (S.Contents.empty()) 1058 return; 1059 1060 auto LessTag = [](const MCELFStreamer::AttributeItem &LHS, 1061 const MCELFStreamer::AttributeItem &RHS) -> bool { 1062 // The conformance tag must be emitted first when serialised into an 1063 // object file. Specifically, the addenda to the ARM ABI states that 1064 // (2.3.7.4): 1065 // 1066 // "To simplify recognition by consumers in the common case of claiming 1067 // conformity for the whole file, this tag should be emitted first in a 1068 // file-scope sub-subsection of the first public subsection of the 1069 // attributes section." 1070 // 1071 // So it is special-cased in this comparison predicate when the 1072 // attributes are sorted in finishAttributeSection(). 1073 return (RHS.Tag != ARMBuildAttrs::conformance) && 1074 ((LHS.Tag == ARMBuildAttrs::conformance) || (LHS.Tag < RHS.Tag)); 1075 }; 1076 llvm::sort(S.Contents, LessTag); 1077 1078 S.emitAttributesSection(CurrentVendor, ".ARM.attributes", 1079 ELF::SHT_ARM_ATTRIBUTES, AttributeSection); 1080 1081 FPU = ARM::FK_INVALID; 1082 } 1083 1084 void ARMTargetELFStreamer::emitLabel(MCSymbol *Symbol) { 1085 ARMELFStreamer &Streamer = getStreamer(); 1086 if (!Streamer.IsThumb) 1087 return; 1088 1089 Streamer.getAssembler().registerSymbol(*Symbol); 1090 unsigned Type = cast<MCSymbolELF>(Symbol)->getType(); 1091 if (Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC) 1092 Streamer.emitThumbFunc(Symbol); 1093 } 1094 1095 void ARMTargetELFStreamer::annotateTLSDescriptorSequence( 1096 const MCSymbolRefExpr *S) { 1097 getStreamer().EmitFixup(S, FK_Data_4); 1098 } 1099 1100 void ARMTargetELFStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) { 1101 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(Value)) { 1102 const MCSymbol &Sym = SRE->getSymbol(); 1103 if (!Sym.isDefined()) { 1104 getStreamer().emitAssignment(Symbol, Value); 1105 return; 1106 } 1107 } 1108 1109 getStreamer().emitThumbFunc(Symbol); 1110 getStreamer().emitAssignment(Symbol, Value); 1111 } 1112 1113 void ARMTargetELFStreamer::emitInst(uint32_t Inst, char Suffix) { 1114 getStreamer().emitInst(Inst, Suffix); 1115 } 1116 1117 void ARMTargetELFStreamer::reset() { AttributeSection = nullptr; } 1118 1119 void ARMTargetELFStreamer::finish() { 1120 ARMTargetStreamer::finish(); 1121 finishAttributeSection(); 1122 1123 // The mix of execute-only and non-execute-only at link time is 1124 // non-execute-only. To avoid the empty implicitly created .text 1125 // section from making the whole .text section non-execute-only, we 1126 // mark it execute-only if it is empty and there is at least one 1127 // execute-only section in the object. 1128 MCContext &Ctx = getStreamer().getContext(); 1129 auto &Asm = getStreamer().getAssembler(); 1130 if (any_of(Asm, [](const MCSection &Sec) { 1131 return cast<MCSectionELF>(Sec).getFlags() & ELF::SHF_ARM_PURECODE; 1132 })) { 1133 auto *Text = 1134 static_cast<MCSectionELF *>(Ctx.getObjectFileInfo()->getTextSection()); 1135 for (auto &F : *Text) 1136 if (auto *DF = dyn_cast<MCDataFragment>(&F)) 1137 if (!DF->getContents().empty()) 1138 return; 1139 Text->setFlags(Text->getFlags() | ELF::SHF_ARM_PURECODE); 1140 } 1141 } 1142 1143 void ARMELFStreamer::reset() { 1144 MCTargetStreamer &TS = *getTargetStreamer(); 1145 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1146 ATS.reset(); 1147 MCELFStreamer::reset(); 1148 LastMappingSymbols.clear(); 1149 LastEMSInfo.reset(); 1150 // MCELFStreamer clear's the assembler's e_flags. However, for 1151 // arm we manually set the ABI version on streamer creation, so 1152 // do the same here 1153 getWriter().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1154 } 1155 1156 inline void ARMELFStreamer::SwitchToEHSection(StringRef Prefix, 1157 unsigned Type, 1158 unsigned Flags, 1159 SectionKind Kind, 1160 const MCSymbol &Fn) { 1161 const MCSectionELF &FnSection = 1162 static_cast<const MCSectionELF &>(Fn.getSection()); 1163 1164 // Create the name for new section 1165 StringRef FnSecName(FnSection.getName()); 1166 SmallString<128> EHSecName(Prefix); 1167 if (FnSecName != ".text") { 1168 EHSecName += FnSecName; 1169 } 1170 1171 // Get .ARM.extab or .ARM.exidx section 1172 const MCSymbolELF *Group = FnSection.getGroup(); 1173 if (Group) 1174 Flags |= ELF::SHF_GROUP; 1175 MCSectionELF *EHSection = getContext().getELFSection( 1176 EHSecName, Type, Flags, 0, Group, /*IsComdat=*/true, 1177 FnSection.getUniqueID(), 1178 static_cast<const MCSymbolELF *>(FnSection.getBeginSymbol())); 1179 1180 assert(EHSection && "Failed to get the required EH section"); 1181 1182 // Switch to .ARM.extab or .ARM.exidx section 1183 switchSection(EHSection); 1184 emitValueToAlignment(Align(4), 0, 1, 0); 1185 } 1186 1187 inline void ARMELFStreamer::SwitchToExTabSection(const MCSymbol &FnStart) { 1188 SwitchToEHSection(".ARM.extab", ELF::SHT_PROGBITS, ELF::SHF_ALLOC, 1189 SectionKind::getData(), FnStart); 1190 } 1191 1192 inline void ARMELFStreamer::SwitchToExIdxSection(const MCSymbol &FnStart) { 1193 SwitchToEHSection(".ARM.exidx", ELF::SHT_ARM_EXIDX, 1194 ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER, 1195 SectionKind::getData(), FnStart); 1196 } 1197 1198 void ARMELFStreamer::EmitFixup(const MCExpr *Expr, MCFixupKind Kind) { 1199 MCDataFragment *Frag = getOrCreateDataFragment(); 1200 Frag->getFixups().push_back(MCFixup::create(Frag->getContents().size(), Expr, 1201 Kind)); 1202 } 1203 1204 void ARMELFStreamer::EHReset() { 1205 ExTab = nullptr; 1206 FnStart = nullptr; 1207 Personality = nullptr; 1208 PersonalityIndex = ARM::EHABI::NUM_PERSONALITY_INDEX; 1209 FPReg = ARM::SP; 1210 FPOffset = 0; 1211 SPOffset = 0; 1212 PendingOffset = 0; 1213 UsedFP = false; 1214 CantUnwind = false; 1215 1216 Opcodes.clear(); 1217 UnwindOpAsm.Reset(); 1218 } 1219 1220 void ARMELFStreamer::emitFnStart() { 1221 assert(FnStart == nullptr); 1222 FnStart = getContext().createTempSymbol(); 1223 emitLabel(FnStart); 1224 } 1225 1226 void ARMELFStreamer::emitFnEnd() { 1227 assert(FnStart && ".fnstart must precedes .fnend"); 1228 1229 // Emit unwind opcodes if there is no .handlerdata directive 1230 if (!ExTab && !CantUnwind) 1231 FlushUnwindOpcodes(true); 1232 1233 // Emit the exception index table entry 1234 SwitchToExIdxSection(*FnStart); 1235 1236 // The EHABI requires a dependency preserving R_ARM_NONE relocation to the 1237 // personality routine to protect it from an arbitrary platform's static 1238 // linker garbage collection. We disable this for Android where the unwinder 1239 // is either dynamically linked or directly references the personality 1240 // routine. 1241 if (PersonalityIndex < ARM::EHABI::NUM_PERSONALITY_INDEX && !IsAndroid) 1242 EmitPersonalityFixup(GetAEABIUnwindPersonalityName(PersonalityIndex)); 1243 1244 const MCSymbolRefExpr *FnStartRef = 1245 MCSymbolRefExpr::create(FnStart, 1246 MCSymbolRefExpr::VK_ARM_PREL31, 1247 getContext()); 1248 1249 emitValue(FnStartRef, 4); 1250 1251 if (CantUnwind) { 1252 emitInt32(ARM::EHABI::EXIDX_CANTUNWIND); 1253 } else if (ExTab) { 1254 // Emit a reference to the unwind opcodes in the ".ARM.extab" section. 1255 const MCSymbolRefExpr *ExTabEntryRef = 1256 MCSymbolRefExpr::create(ExTab, 1257 MCSymbolRefExpr::VK_ARM_PREL31, 1258 getContext()); 1259 emitValue(ExTabEntryRef, 4); 1260 } else { 1261 // For the __aeabi_unwind_cpp_pr0, we have to emit the unwind opcodes in 1262 // the second word of exception index table entry. The size of the unwind 1263 // opcodes should always be 4 bytes. 1264 assert(PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0 && 1265 "Compact model must use __aeabi_unwind_cpp_pr0 as personality"); 1266 assert(Opcodes.size() == 4u && 1267 "Unwind opcode size for __aeabi_unwind_cpp_pr0 must be equal to 4"); 1268 uint64_t Intval = Opcodes[0] | 1269 Opcodes[1] << 8 | 1270 Opcodes[2] << 16 | 1271 Opcodes[3] << 24; 1272 emitIntValue(Intval, Opcodes.size()); 1273 } 1274 1275 // Switch to the section containing FnStart 1276 switchSection(&FnStart->getSection()); 1277 1278 // Clean exception handling frame information 1279 EHReset(); 1280 } 1281 1282 void ARMELFStreamer::emitCantUnwind() { CantUnwind = true; } 1283 1284 // Add the R_ARM_NONE fixup at the same position 1285 void ARMELFStreamer::EmitPersonalityFixup(StringRef Name) { 1286 const MCSymbol *PersonalitySym = getContext().getOrCreateSymbol(Name); 1287 1288 const MCSymbolRefExpr *PersonalityRef = MCSymbolRefExpr::create( 1289 PersonalitySym, MCSymbolRefExpr::VK_ARM_NONE, getContext()); 1290 1291 visitUsedExpr(*PersonalityRef); 1292 MCDataFragment *DF = getOrCreateDataFragment(); 1293 DF->getFixups().push_back(MCFixup::create(DF->getContents().size(), 1294 PersonalityRef, 1295 MCFixup::getKindForSize(4, false))); 1296 } 1297 1298 void ARMELFStreamer::FlushPendingOffset() { 1299 if (PendingOffset != 0) { 1300 UnwindOpAsm.EmitSPOffset(-PendingOffset); 1301 PendingOffset = 0; 1302 } 1303 } 1304 1305 void ARMELFStreamer::FlushUnwindOpcodes(bool NoHandlerData) { 1306 // Emit the unwind opcode to restore $sp. 1307 if (UsedFP) { 1308 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1309 int64_t LastRegSaveSPOffset = SPOffset - PendingOffset; 1310 UnwindOpAsm.EmitSPOffset(LastRegSaveSPOffset - FPOffset); 1311 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1312 } else { 1313 FlushPendingOffset(); 1314 } 1315 1316 // Finalize the unwind opcode sequence 1317 UnwindOpAsm.Finalize(PersonalityIndex, Opcodes); 1318 1319 // For compact model 0, we have to emit the unwind opcodes in the .ARM.exidx 1320 // section. Thus, we don't have to create an entry in the .ARM.extab 1321 // section. 1322 if (NoHandlerData && PersonalityIndex == ARM::EHABI::AEABI_UNWIND_CPP_PR0) 1323 return; 1324 1325 // Switch to .ARM.extab section. 1326 SwitchToExTabSection(*FnStart); 1327 1328 // Create .ARM.extab label for offset in .ARM.exidx 1329 assert(!ExTab); 1330 ExTab = getContext().createTempSymbol(); 1331 emitLabel(ExTab); 1332 1333 // Emit personality 1334 if (Personality) { 1335 const MCSymbolRefExpr *PersonalityRef = 1336 MCSymbolRefExpr::create(Personality, 1337 MCSymbolRefExpr::VK_ARM_PREL31, 1338 getContext()); 1339 1340 emitValue(PersonalityRef, 4); 1341 } 1342 1343 // Emit unwind opcodes 1344 assert((Opcodes.size() % 4) == 0 && 1345 "Unwind opcode size for __aeabi_cpp_unwind_pr0 must be multiple of 4"); 1346 for (unsigned I = 0; I != Opcodes.size(); I += 4) { 1347 uint64_t Intval = Opcodes[I] | 1348 Opcodes[I + 1] << 8 | 1349 Opcodes[I + 2] << 16 | 1350 Opcodes[I + 3] << 24; 1351 emitInt32(Intval); 1352 } 1353 1354 // According to ARM EHABI section 9.2, if the __aeabi_unwind_cpp_pr1() or 1355 // __aeabi_unwind_cpp_pr2() is used, then the handler data must be emitted 1356 // after the unwind opcodes. The handler data consists of several 32-bit 1357 // words, and should be terminated by zero. 1358 // 1359 // In case that the .handlerdata directive is not specified by the 1360 // programmer, we should emit zero to terminate the handler data. 1361 if (NoHandlerData && !Personality) 1362 emitInt32(0); 1363 } 1364 1365 void ARMELFStreamer::emitHandlerData() { FlushUnwindOpcodes(false); } 1366 1367 void ARMELFStreamer::emitPersonality(const MCSymbol *Per) { 1368 Personality = Per; 1369 UnwindOpAsm.setPersonality(Per); 1370 } 1371 1372 void ARMELFStreamer::emitPersonalityIndex(unsigned Index) { 1373 assert(Index < ARM::EHABI::NUM_PERSONALITY_INDEX && "invalid index"); 1374 PersonalityIndex = Index; 1375 } 1376 1377 void ARMELFStreamer::emitSetFP(MCRegister NewFPReg, MCRegister NewSPReg, 1378 int64_t Offset) { 1379 assert((NewSPReg == ARM::SP || NewSPReg == FPReg) && 1380 "the operand of .setfp directive should be either $sp or $fp"); 1381 1382 UsedFP = true; 1383 FPReg = NewFPReg; 1384 1385 if (NewSPReg == ARM::SP) 1386 FPOffset = SPOffset + Offset; 1387 else 1388 FPOffset += Offset; 1389 } 1390 1391 void ARMELFStreamer::emitMovSP(MCRegister Reg, int64_t Offset) { 1392 assert((Reg != ARM::SP && Reg != ARM::PC) && 1393 "the operand of .movsp cannot be either sp or pc"); 1394 assert(FPReg == ARM::SP && "current FP must be SP"); 1395 1396 FlushPendingOffset(); 1397 1398 FPReg = Reg; 1399 FPOffset = SPOffset + Offset; 1400 1401 const MCRegisterInfo *MRI = getContext().getRegisterInfo(); 1402 UnwindOpAsm.EmitSetSP(MRI->getEncodingValue(FPReg)); 1403 } 1404 1405 void ARMELFStreamer::emitPad(int64_t Offset) { 1406 // Track the change of the $sp offset 1407 SPOffset -= Offset; 1408 1409 // To squash multiple .pad directives, we should delay the unwind opcode 1410 // until the .save, .vsave, .handlerdata, or .fnend directives. 1411 PendingOffset -= Offset; 1412 } 1413 1414 static std::pair<unsigned, unsigned> 1415 collectHWRegs(const MCRegisterInfo &MRI, unsigned Idx, 1416 const SmallVectorImpl<MCRegister> &RegList, bool IsVector, 1417 uint32_t &Mask_) { 1418 uint32_t Mask = 0; 1419 unsigned Count = 0; 1420 while (Idx > 0) { 1421 MCRegister Reg = RegList[Idx - 1]; 1422 if (Reg == ARM::RA_AUTH_CODE) 1423 break; 1424 unsigned RegEnc = MRI.getEncodingValue(Reg); 1425 assert(RegEnc < (IsVector ? 32U : 16U) && "Register out of range"); 1426 unsigned Bit = (1u << RegEnc); 1427 if ((Mask & Bit) == 0) { 1428 Mask |= Bit; 1429 ++Count; 1430 } 1431 --Idx; 1432 } 1433 1434 Mask_ = Mask; 1435 return {Idx, Count}; 1436 } 1437 1438 void ARMELFStreamer::emitRegSave(const SmallVectorImpl<MCRegister> &RegList, 1439 bool IsVector) { 1440 uint32_t Mask; 1441 unsigned Idx, Count; 1442 const MCRegisterInfo &MRI = *getContext().getRegisterInfo(); 1443 1444 // Collect the registers in the register list. Issue unwinding instructions in 1445 // three parts: ordinary hardware registers, return address authentication 1446 // code pseudo register, the rest of the registers. The RA PAC is kept in an 1447 // architectural register (usually r12), but we treat it as a special case in 1448 // order to distinguish between that register containing RA PAC or a general 1449 // value. 1450 Idx = RegList.size(); 1451 while (Idx > 0) { 1452 std::tie(Idx, Count) = collectHWRegs(MRI, Idx, RegList, IsVector, Mask); 1453 if (Count) { 1454 // Track the change the $sp offset: For the .save directive, the 1455 // corresponding push instruction will decrease the $sp by (4 * Count). 1456 // For the .vsave directive, the corresponding vpush instruction will 1457 // decrease $sp by (8 * Count). 1458 SPOffset -= Count * (IsVector ? 8 : 4); 1459 1460 // Emit the opcode 1461 FlushPendingOffset(); 1462 if (IsVector) 1463 UnwindOpAsm.EmitVFPRegSave(Mask); 1464 else 1465 UnwindOpAsm.EmitRegSave(Mask); 1466 } else if (Idx > 0 && RegList[Idx - 1] == ARM::RA_AUTH_CODE) { 1467 --Idx; 1468 SPOffset -= 4; 1469 FlushPendingOffset(); 1470 UnwindOpAsm.EmitRegSave(0); 1471 } 1472 } 1473 } 1474 1475 void ARMELFStreamer::emitUnwindRaw(int64_t Offset, 1476 const SmallVectorImpl<uint8_t> &Opcodes) { 1477 FlushPendingOffset(); 1478 SPOffset = SPOffset - Offset; 1479 UnwindOpAsm.EmitRaw(Opcodes); 1480 } 1481 1482 namespace llvm { 1483 1484 MCTargetStreamer *createARMTargetAsmStreamer(MCStreamer &S, 1485 formatted_raw_ostream &OS, 1486 MCInstPrinter *InstPrint) { 1487 return new ARMTargetAsmStreamer(S, OS, *InstPrint); 1488 } 1489 1490 MCTargetStreamer *createARMNullTargetStreamer(MCStreamer &S) { 1491 return new ARMTargetStreamer(S); 1492 } 1493 1494 MCTargetStreamer *createARMObjectTargetELFStreamer(MCStreamer &S) { 1495 return new ARMTargetELFStreamer(S); 1496 } 1497 1498 MCELFStreamer *createARMELFStreamer(MCContext &Context, 1499 std::unique_ptr<MCAsmBackend> TAB, 1500 std::unique_ptr<MCObjectWriter> OW, 1501 std::unique_ptr<MCCodeEmitter> Emitter, 1502 bool IsThumb, bool IsAndroid) { 1503 ARMELFStreamer *S = 1504 new ARMELFStreamer(Context, std::move(TAB), std::move(OW), 1505 std::move(Emitter), IsThumb, IsAndroid); 1506 // FIXME: This should eventually end up somewhere else where more 1507 // intelligent flag decisions can be made. For now we are just maintaining 1508 // the status quo for ARM and setting EF_ARM_EABI_VER5 as the default. 1509 S->getWriter().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5); 1510 1511 return S; 1512 } 1513 1514 } // end namespace llvm 1515