xref: /llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp (revision 8e702735090388a3231a863e343f880d0f96fecb)
1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11 /// purpose of this pass is do some IR pattern matching to create ACLE
12 /// DSP intrinsics, which map on these 32-bit SIMD operations.
13 /// This pass runs only when unaligned accesses is supported/enabled.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "ARM.h"
18 #include "ARMSubtarget.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopAccessAnalysis.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicsARM.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/NoFolder.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 
38 using namespace llvm;
39 using namespace PatternMatch;
40 
41 #define DEBUG_TYPE "arm-parallel-dsp"
42 
43 STATISTIC(NumSMLAD , "Number of smlad instructions generated");
44 
45 static cl::opt<bool>
46 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
47                    cl::desc("Disable the ARM Parallel DSP pass"));
48 
49 static cl::opt<unsigned>
50 NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16),
51              cl::desc("Limit the number of loads analysed"));
52 
53 namespace {
54   struct MulCandidate;
55   class Reduction;
56 
57   using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>;
58   using MemInstList = SmallVectorImpl<LoadInst*>;
59   using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>;
60 
61   // 'MulCandidate' holds the multiplication instructions that are candidates
62   // for parallel execution.
63   struct MulCandidate {
64     Instruction   *Root;
65     Value*        LHS;
66     Value*        RHS;
67     bool          Exchange = false;
68     bool          Paired = false;
69     SmallVector<LoadInst*, 2> VecLd;    // Container for loads to widen.
70 
71     MulCandidate(Instruction *I, Value *lhs, Value *rhs) :
72       Root(I), LHS(lhs), RHS(rhs) { }
73 
74     bool HasTwoLoadInputs() const {
75       return isa<LoadInst>(LHS) && isa<LoadInst>(RHS);
76     }
77 
78     LoadInst *getBaseLoad() const {
79       return VecLd.front();
80     }
81   };
82 
83   /// Represent a sequence of multiply-accumulate operations with the aim to
84   /// perform the multiplications in parallel.
85   class Reduction {
86     Instruction     *Root = nullptr;
87     Value           *Acc = nullptr;
88     MulCandList     Muls;
89     MulPairList        MulPairs;
90     SetVector<Instruction*> Adds;
91 
92   public:
93     Reduction() = delete;
94 
95     Reduction (Instruction *Add) : Root(Add) { }
96 
97     /// Record an Add instruction that is a part of the this reduction.
98     void InsertAdd(Instruction *I) { Adds.insert(I); }
99 
100     /// Create MulCandidates, each rooted at a Mul instruction, that is a part
101     /// of this reduction.
102     void InsertMuls() {
103       auto GetMulOperand = [](Value *V) -> Instruction* {
104         if (auto *SExt = dyn_cast<SExtInst>(V)) {
105           if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0)))
106             if (I->getOpcode() == Instruction::Mul)
107               return I;
108         } else if (auto *I = dyn_cast<Instruction>(V)) {
109           if (I->getOpcode() == Instruction::Mul)
110             return I;
111         }
112         return nullptr;
113       };
114 
115       auto InsertMul = [this](Instruction *I) {
116         Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0);
117         Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0);
118         Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS));
119       };
120 
121       for (auto *Add : Adds) {
122         if (Add == Acc)
123           continue;
124         if (auto *Mul = GetMulOperand(Add->getOperand(0)))
125           InsertMul(Mul);
126         if (auto *Mul = GetMulOperand(Add->getOperand(1)))
127           InsertMul(Mul);
128       }
129     }
130 
131     /// Add the incoming accumulator value, returns true if a value had not
132     /// already been added. Returning false signals to the user that this
133     /// reduction already has a value to initialise the accumulator.
134     bool InsertAcc(Value *V) {
135       if (Acc)
136         return false;
137       Acc = V;
138       return true;
139     }
140 
141     /// Set two MulCandidates, rooted at muls, that can be executed as a single
142     /// parallel operation.
143     void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1,
144                     bool Exchange = false) {
145       LLVM_DEBUG(dbgs() << "Pairing:\n"
146                  << *Mul0->Root << "\n"
147                  << *Mul1->Root << "\n");
148       Mul0->Paired = true;
149       Mul1->Paired = true;
150       if (Exchange)
151         Mul1->Exchange = true;
152       MulPairs.push_back(std::make_pair(Mul0, Mul1));
153     }
154 
155     /// Return the add instruction which is the root of the reduction.
156     Instruction *getRoot() { return Root; }
157 
158     bool is64Bit() const { return Root->getType()->isIntegerTy(64); }
159 
160     Type *getType() const { return Root->getType(); }
161 
162     /// Return the incoming value to be accumulated. This maybe null.
163     Value *getAccumulator() { return Acc; }
164 
165     /// Return the set of adds that comprise the reduction.
166     SetVector<Instruction*> &getAdds() { return Adds; }
167 
168     /// Return the MulCandidate, rooted at mul instruction, that comprise the
169     /// the reduction.
170     MulCandList &getMuls() { return Muls; }
171 
172     /// Return the MulCandidate, rooted at mul instructions, that have been
173     /// paired for parallel execution.
174     MulPairList &getMulPairs() { return MulPairs; }
175 
176     /// To finalise, replace the uses of the root with the intrinsic call.
177     void UpdateRoot(Instruction *SMLAD) {
178       Root->replaceAllUsesWith(SMLAD);
179     }
180 
181     void dump() {
182       LLVM_DEBUG(dbgs() << "Reduction:\n";
183         for (auto *Add : Adds)
184           LLVM_DEBUG(dbgs() << *Add << "\n");
185         for (auto &Mul : Muls)
186           LLVM_DEBUG(dbgs() << *Mul->Root << "\n"
187                      << "  " << *Mul->LHS << "\n"
188                      << "  " << *Mul->RHS << "\n");
189         LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n")
190       );
191     }
192   };
193 
194   class WidenedLoad {
195     LoadInst *NewLd = nullptr;
196     SmallVector<LoadInst*, 4> Loads;
197 
198   public:
199     WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
200       : NewLd(Wide) {
201       append_range(Loads, Lds);
202     }
203     LoadInst *getLoad() {
204       return NewLd;
205     }
206   };
207 
208   class ARMParallelDSP : public FunctionPass {
209     ScalarEvolution   *SE;
210     AliasAnalysis     *AA;
211     TargetLibraryInfo *TLI;
212     DominatorTree     *DT;
213     const DataLayout  *DL;
214     Module            *M;
215     std::map<LoadInst*, LoadInst*> LoadPairs;
216     SmallPtrSet<LoadInst*, 4> OffsetLoads;
217     std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
218 
219     template<unsigned>
220     bool IsNarrowSequence(Value *V);
221     bool Search(Value *V, BasicBlock *BB, Reduction &R);
222     bool RecordMemoryOps(BasicBlock *BB);
223     void InsertParallelMACs(Reduction &Reduction);
224     bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
225     LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy);
226     bool CreateParallelPairs(Reduction &R);
227 
228     /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
229     /// Dual performs two signed 16x16-bit multiplications. It adds the
230     /// products to a 32-bit accumulate operand. Optionally, the instruction can
231     /// exchange the halfwords of the second operand before performing the
232     /// arithmetic.
233     bool MatchSMLAD(Function &F);
234 
235   public:
236     static char ID;
237 
238     ARMParallelDSP() : FunctionPass(ID) { }
239 
240     void getAnalysisUsage(AnalysisUsage &AU) const override {
241       FunctionPass::getAnalysisUsage(AU);
242       AU.addRequired<AssumptionCacheTracker>();
243       AU.addRequired<ScalarEvolutionWrapperPass>();
244       AU.addRequired<AAResultsWrapperPass>();
245       AU.addRequired<TargetLibraryInfoWrapperPass>();
246       AU.addRequired<DominatorTreeWrapperPass>();
247       AU.addRequired<TargetPassConfig>();
248       AU.addPreserved<ScalarEvolutionWrapperPass>();
249       AU.addPreserved<GlobalsAAWrapperPass>();
250       AU.setPreservesCFG();
251     }
252 
253     bool runOnFunction(Function &F) override {
254       if (DisableParallelDSP)
255         return false;
256       if (skipFunction(F))
257         return false;
258 
259       SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
260       AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
261       TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
262       DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
263       auto &TPC = getAnalysis<TargetPassConfig>();
264 
265       M = F.getParent();
266       DL = &M->getDataLayout();
267 
268       auto &TM = TPC.getTM<TargetMachine>();
269       auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
270 
271       if (!ST->allowsUnalignedMem()) {
272         LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
273                              "running pass ARMParallelDSP\n");
274         return false;
275       }
276 
277       if (!ST->hasDSP()) {
278         LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
279                              "ARMParallelDSP\n");
280         return false;
281       }
282 
283       if (!ST->isLittle()) {
284         LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
285                           << "ARMParallelDSP\n");
286         return false;
287       }
288 
289       LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
290       LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
291 
292       bool Changes = MatchSMLAD(F);
293       return Changes;
294     }
295   };
296 }
297 
298 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
299                                         MemInstList &VecMem) {
300   if (!Ld0 || !Ld1)
301     return false;
302 
303   if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
304     return false;
305 
306   LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
307     dbgs() << "Ld0:"; Ld0->dump();
308     dbgs() << "Ld1:"; Ld1->dump();
309   );
310 
311   VecMem.clear();
312   VecMem.push_back(Ld0);
313   VecMem.push_back(Ld1);
314   return true;
315 }
316 
317 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
318 // instructions, which is set to 16. So here we should collect all i8 and i16
319 // narrow operations.
320 // TODO: we currently only collect i16, and will support i8 later, so that's
321 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
322 template<unsigned MaxBitWidth>
323 bool ARMParallelDSP::IsNarrowSequence(Value *V) {
324   if (auto *SExt = dyn_cast<SExtInst>(V)) {
325     if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
326       return false;
327 
328     if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) {
329       // Check that this load could be paired.
330       return LoadPairs.count(Ld) || OffsetLoads.count(Ld);
331     }
332   }
333   return false;
334 }
335 
336 /// Iterate through the block and record base, offset pairs of loads which can
337 /// be widened into a single load.
338 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
339   SmallVector<LoadInst*, 8> Loads;
340   SmallVector<Instruction*, 8> Writes;
341   LoadPairs.clear();
342   WideLoads.clear();
343 
344   // Collect loads and instruction that may write to memory. For now we only
345   // record loads which are simple, sign-extended and have a single user.
346   // TODO: Allow zero-extended loads.
347   for (auto &I : *BB) {
348     if (I.mayWriteToMemory())
349       Writes.push_back(&I);
350     auto *Ld = dyn_cast<LoadInst>(&I);
351     if (!Ld || !Ld->isSimple() ||
352         !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
353       continue;
354     Loads.push_back(Ld);
355   }
356 
357   if (Loads.empty() || Loads.size() > NumLoadLimit)
358     return false;
359 
360   using InstSet = std::set<Instruction*>;
361   using DepMap = std::map<Instruction*, InstSet>;
362   DepMap RAWDeps;
363 
364   // Record any writes that may alias a load.
365   const auto Size = LocationSize::beforeOrAfterPointer();
366   for (auto *Write : Writes) {
367     for (auto *Read : Loads) {
368       MemoryLocation ReadLoc =
369         MemoryLocation(Read->getPointerOperand(), Size);
370 
371       if (!isModOrRefSet(AA->getModRefInfo(Write, ReadLoc)))
372         continue;
373       if (Write->comesBefore(Read))
374         RAWDeps[Read].insert(Write);
375     }
376   }
377 
378   // Check whether there's not a write between the two loads which would
379   // prevent them from being safely merged.
380   auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) {
381     bool BaseFirst = Base->comesBefore(Offset);
382     LoadInst *Dominator = BaseFirst ? Base : Offset;
383     LoadInst *Dominated = BaseFirst ? Offset : Base;
384 
385     if (RAWDeps.count(Dominated)) {
386       InstSet &WritesBefore = RAWDeps[Dominated];
387 
388       for (auto *Before : WritesBefore) {
389         // We can't move the second load backward, past a write, to merge
390         // with the first load.
391         if (Dominator->comesBefore(Before))
392           return false;
393       }
394     }
395     return true;
396   };
397 
398   // Record base, offset load pairs.
399   for (auto *Base : Loads) {
400     for (auto *Offset : Loads) {
401       if (Base == Offset || OffsetLoads.count(Offset))
402         continue;
403 
404       if (isConsecutiveAccess(Base, Offset, *DL, *SE) &&
405           SafeToPair(Base, Offset)) {
406         LoadPairs[Base] = Offset;
407         OffsetLoads.insert(Offset);
408         break;
409       }
410     }
411   }
412 
413   LLVM_DEBUG(if (!LoadPairs.empty()) {
414                dbgs() << "Consecutive load pairs:\n";
415                for (auto &MapIt : LoadPairs) {
416                  LLVM_DEBUG(dbgs() << *MapIt.first << ", "
417                             << *MapIt.second << "\n");
418                }
419              });
420   return LoadPairs.size() > 1;
421 }
422 
423 // Search recursively back through the operands to find a tree of values that
424 // form a multiply-accumulate chain. The search records the Add and Mul
425 // instructions that form the reduction and allows us to find a single value
426 // to be used as the initial input to the accumlator.
427 bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) {
428   // If we find a non-instruction, try to use it as the initial accumulator
429   // value. This may have already been found during the search in which case
430   // this function will return false, signaling a search fail.
431   auto *I = dyn_cast<Instruction>(V);
432   if (!I)
433     return R.InsertAcc(V);
434 
435   if (I->getParent() != BB)
436     return false;
437 
438   switch (I->getOpcode()) {
439   default:
440     break;
441   case Instruction::PHI:
442     // Could be the accumulator value.
443     return R.InsertAcc(V);
444   case Instruction::Add: {
445     // Adds should be adding together two muls, or another add and a mul to
446     // be within the mac chain. One of the operands may also be the
447     // accumulator value at which point we should stop searching.
448     R.InsertAdd(I);
449     Value *LHS = I->getOperand(0);
450     Value *RHS = I->getOperand(1);
451     bool ValidLHS = Search(LHS, BB, R);
452     bool ValidRHS = Search(RHS, BB, R);
453 
454     if (ValidLHS && ValidRHS)
455       return true;
456 
457     // Ensure we don't add the root as the incoming accumulator.
458     if (R.getRoot() == I)
459       return false;
460 
461     return R.InsertAcc(I);
462   }
463   case Instruction::Mul: {
464     Value *MulOp0 = I->getOperand(0);
465     Value *MulOp1 = I->getOperand(1);
466     return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1);
467   }
468   case Instruction::SExt:
469     return Search(I->getOperand(0), BB, R);
470   }
471   return false;
472 }
473 
474 // The pass needs to identify integer add/sub reductions of 16-bit vector
475 // multiplications.
476 // To use SMLAD:
477 // 1) we first need to find integer add then look for this pattern:
478 //
479 // acc0 = ...
480 // ld0 = load i16
481 // sext0 = sext i16 %ld0 to i32
482 // ld1 = load i16
483 // sext1 = sext i16 %ld1 to i32
484 // mul0 = mul %sext0, %sext1
485 // ld2 = load i16
486 // sext2 = sext i16 %ld2 to i32
487 // ld3 = load i16
488 // sext3 = sext i16 %ld3 to i32
489 // mul1 = mul i32 %sext2, %sext3
490 // add0 = add i32 %mul0, %acc0
491 // acc1 = add i32 %add0, %mul1
492 //
493 // Which can be selected to:
494 //
495 // ldr r0
496 // ldr r1
497 // smlad r2, r0, r1, r2
498 //
499 // If constants are used instead of loads, these will need to be hoisted
500 // out and into a register.
501 //
502 // If loop invariants are used instead of loads, these need to be packed
503 // before the loop begins.
504 //
505 bool ARMParallelDSP::MatchSMLAD(Function &F) {
506   bool Changed = false;
507 
508   for (auto &BB : F) {
509     SmallPtrSet<Instruction*, 4> AllAdds;
510     if (!RecordMemoryOps(&BB))
511       continue;
512 
513     for (Instruction &I : reverse(BB)) {
514       if (I.getOpcode() != Instruction::Add)
515         continue;
516 
517       if (AllAdds.count(&I))
518         continue;
519 
520       const auto *Ty = I.getType();
521       if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
522         continue;
523 
524       Reduction R(&I);
525       if (!Search(&I, &BB, R))
526         continue;
527 
528       R.InsertMuls();
529       LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump());
530 
531       if (!CreateParallelPairs(R))
532         continue;
533 
534       InsertParallelMACs(R);
535       Changed = true;
536       AllAdds.insert(R.getAdds().begin(), R.getAdds().end());
537       LLVM_DEBUG(dbgs() << "BB after inserting parallel MACs:\n" << BB);
538     }
539   }
540 
541   return Changed;
542 }
543 
544 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) {
545 
546   // Not enough mul operations to make a pair.
547   if (R.getMuls().size() < 2)
548     return false;
549 
550   // Check that the muls operate directly upon sign extended loads.
551   for (auto &MulCand : R.getMuls()) {
552     if (!MulCand->HasTwoLoadInputs())
553       return false;
554   }
555 
556   auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) {
557     // The first elements of each vector should be loads with sexts. If we
558     // find that its two pairs of consecutive loads, then these can be
559     // transformed into two wider loads and the users can be replaced with
560     // DSP intrinsics.
561     auto Ld0 = static_cast<LoadInst*>(PMul0->LHS);
562     auto Ld1 = static_cast<LoadInst*>(PMul1->LHS);
563     auto Ld2 = static_cast<LoadInst*>(PMul0->RHS);
564     auto Ld3 = static_cast<LoadInst*>(PMul1->RHS);
565 
566     // Check that each mul is operating on two different loads.
567     if (Ld0 == Ld2 || Ld1 == Ld3)
568       return false;
569 
570     if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
571       if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
572         LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
573         R.AddMulPair(PMul0, PMul1);
574         return true;
575       } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
576         LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
577         LLVM_DEBUG(dbgs() << "    exchanging Ld2 and Ld3\n");
578         R.AddMulPair(PMul0, PMul1, true);
579         return true;
580       }
581     } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
582                AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
583       LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
584       LLVM_DEBUG(dbgs() << "    exchanging Ld0 and Ld1\n");
585       LLVM_DEBUG(dbgs() << "    and swapping muls\n");
586       // Only the second operand can be exchanged, so swap the muls.
587       R.AddMulPair(PMul1, PMul0, true);
588       return true;
589     }
590     return false;
591   };
592 
593   MulCandList &Muls = R.getMuls();
594   const unsigned Elems = Muls.size();
595   for (unsigned i = 0; i < Elems; ++i) {
596     MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get());
597     if (PMul0->Paired)
598       continue;
599 
600     for (unsigned j = 0; j < Elems; ++j) {
601       if (i == j)
602         continue;
603 
604       MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get());
605       if (PMul1->Paired)
606         continue;
607 
608       const Instruction *Mul0 = PMul0->Root;
609       const Instruction *Mul1 = PMul1->Root;
610       if (Mul0 == Mul1)
611         continue;
612 
613       assert(PMul0 != PMul1 && "expected different chains");
614 
615       if (CanPair(R, PMul0, PMul1))
616         break;
617     }
618   }
619   return !R.getMulPairs().empty();
620 }
621 
622 void ARMParallelDSP::InsertParallelMACs(Reduction &R) {
623 
624   auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1,
625                          Value *Acc, bool Exchange,
626                          Instruction *InsertAfter) {
627     // Replace the reduction chain with an intrinsic call
628 
629     Value* Args[] = { WideLd0, WideLd1, Acc };
630     Function *SMLAD = nullptr;
631     if (Exchange)
632       SMLAD =
633           Acc->getType()->isIntegerTy(32)
634               ? Intrinsic::getOrInsertDeclaration(M, Intrinsic::arm_smladx)
635               : Intrinsic::getOrInsertDeclaration(M, Intrinsic::arm_smlaldx);
636     else
637       SMLAD = Acc->getType()->isIntegerTy(32)
638                   ? Intrinsic::getOrInsertDeclaration(M, Intrinsic::arm_smlad)
639                   : Intrinsic::getOrInsertDeclaration(M, Intrinsic::arm_smlald);
640 
641     IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
642                                 BasicBlock::iterator(InsertAfter));
643     Instruction *Call = Builder.CreateCall(SMLAD, Args);
644     NumSMLAD++;
645     return Call;
646   };
647 
648   // Return the instruction after the dominated instruction.
649   auto GetInsertPoint = [this](Value *A, Value *B) {
650     assert((isa<Instruction>(A) || isa<Instruction>(B)) &&
651            "expected at least one instruction");
652 
653     Value *V = nullptr;
654     if (!isa<Instruction>(A))
655       V = B;
656     else if (!isa<Instruction>(B))
657       V = A;
658     else
659       V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A;
660 
661     return &*++BasicBlock::iterator(cast<Instruction>(V));
662   };
663 
664   Value *Acc = R.getAccumulator();
665 
666   // For any muls that were discovered but not paired, accumulate their values
667   // as before.
668   IRBuilder<NoFolder> Builder(R.getRoot()->getParent());
669   MulCandList &MulCands = R.getMuls();
670   for (auto &MulCand : MulCands) {
671     if (MulCand->Paired)
672       continue;
673 
674     Instruction *Mul = cast<Instruction>(MulCand->Root);
675     LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n");
676 
677     if (R.getType() != Mul->getType()) {
678       assert(R.is64Bit() && "expected 64-bit result");
679       Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul));
680       Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType()));
681     }
682 
683     if (!Acc) {
684       Acc = Mul;
685       continue;
686     }
687 
688     // If Acc is the original incoming value to the reduction, it could be a
689     // phi. But the phi will dominate Mul, meaning that Mul will be the
690     // insertion point.
691     Builder.SetInsertPoint(GetInsertPoint(Mul, Acc));
692     Acc = Builder.CreateAdd(Mul, Acc);
693   }
694 
695   if (!Acc) {
696     Acc = R.is64Bit() ?
697       ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) :
698       ConstantInt::get(IntegerType::get(M->getContext(), 32), 0);
699   } else if (Acc->getType() != R.getType()) {
700     Builder.SetInsertPoint(R.getRoot());
701     Acc = Builder.CreateSExt(Acc, R.getType());
702   }
703 
704   // Roughly sort the mul pairs in their program order.
705   llvm::sort(R.getMulPairs(), [](auto &PairA, auto &PairB) {
706     const Instruction *A = PairA.first->Root;
707     const Instruction *B = PairB.first->Root;
708     return A->comesBefore(B);
709   });
710 
711   IntegerType *Ty = IntegerType::get(M->getContext(), 32);
712   for (auto &Pair : R.getMulPairs()) {
713     MulCandidate *LHSMul = Pair.first;
714     MulCandidate *RHSMul = Pair.second;
715     LoadInst *BaseLHS = LHSMul->getBaseLoad();
716     LoadInst *BaseRHS = RHSMul->getBaseLoad();
717     LoadInst *WideLHS = WideLoads.count(BaseLHS) ?
718       WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty);
719     LoadInst *WideRHS = WideLoads.count(BaseRHS) ?
720       WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty);
721 
722     Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS);
723     InsertAfter = GetInsertPoint(InsertAfter, Acc);
724     Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter);
725   }
726   R.UpdateRoot(cast<Instruction>(Acc));
727 }
728 
729 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads,
730                                          IntegerType *LoadTy) {
731   assert(Loads.size() == 2 && "currently only support widening two loads");
732 
733   LoadInst *Base = Loads[0];
734   LoadInst *Offset = Loads[1];
735 
736   Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back());
737   Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back());
738 
739   assert((BaseSExt && OffsetSExt)
740          && "Loads should have a single, extending, user");
741 
742   std::function<void(Value*, Value*)> MoveBefore =
743     [&](Value *A, Value *B) -> void {
744       if (!isa<Instruction>(A) || !isa<Instruction>(B))
745         return;
746 
747       auto *Source = cast<Instruction>(A);
748       auto *Sink = cast<Instruction>(B);
749 
750       if (DT->dominates(Source, Sink) ||
751           Source->getParent() != Sink->getParent() ||
752           isa<PHINode>(Source) || isa<PHINode>(Sink))
753         return;
754 
755       Source->moveBefore(Sink->getIterator());
756       for (auto &Op : Source->operands())
757         MoveBefore(Op, Source);
758     };
759 
760   // Insert the load at the point of the original dominating load.
761   LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset;
762   IRBuilder<NoFolder> IRB(DomLoad->getParent(),
763                           ++BasicBlock::iterator(DomLoad));
764 
765   // Create the wide load, while making sure to maintain the original alignment
766   // as this prevents ldrd from being generated when it could be illegal due to
767   // memory alignment.
768   Value *VecPtr = Base->getPointerOperand();
769   LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlign());
770 
771   // Make sure everything is in the correct order in the basic block.
772   MoveBefore(Base->getPointerOperand(), VecPtr);
773   MoveBefore(VecPtr, WideLoad);
774 
775   // From the wide load, create two values that equal the original two loads.
776   // Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
777   // TODO: Support big-endian as well.
778   Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType());
779   Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType());
780   BaseSExt->replaceAllUsesWith(NewBaseSExt);
781 
782   IntegerType *OffsetTy = cast<IntegerType>(Offset->getType());
783   Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth());
784   Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
785   Value *Trunc = IRB.CreateTrunc(Top, OffsetTy);
786   Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType());
787   OffsetSExt->replaceAllUsesWith(NewOffsetSExt);
788 
789   LLVM_DEBUG(dbgs() << "From Base and Offset:\n"
790              << *Base << "\n" << *Offset << "\n"
791              << "Created Wide Load:\n"
792              << *WideLoad << "\n"
793              << *Bottom << "\n"
794              << *NewBaseSExt << "\n"
795              << *Top << "\n"
796              << *Trunc << "\n"
797              << *NewOffsetSExt << "\n");
798   WideLoads.emplace(std::make_pair(Base,
799                                    std::make_unique<WidenedLoad>(Loads, WideLoad)));
800   return WideLoad;
801 }
802 
803 Pass *llvm::createARMParallelDSPPass() {
804   return new ARMParallelDSP();
805 }
806 
807 char ARMParallelDSP::ID = 0;
808 
809 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
810                 "Transform functions to use DSP intrinsics", false, false)
811 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
812                 "Transform functions to use DSP intrinsics", false, false)
813