xref: /llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp (revision 9d9c5619a5156a5be6ee5e5fd45924b26a85626e)
1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // This file contains the ARM implementation of TargetFrameLowering class.
14 //
15 // On ARM, stack frames are structured as follows:
16 //
17 // The stack grows downward.
18 //
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
22 //
23 // At function entry, the "frame" looks as follows:
24 //
25 // |                                   | Higher address
26 // |-----------------------------------|
27 // |                                   |
28 // | arguments passed on the stack     |
29 // |                                   |
30 // |-----------------------------------| <- sp
31 // |                                   | Lower address
32 //
33 //
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
38 //
39 // |                                   | Higher address
40 // |-----------------------------------|
41 // |                                   |
42 // | arguments passed on the stack     |
43 // |                                   |
44 // |-----------------------------------| <- (sp at function entry)
45 // |                                   |
46 // | varargs from registers            |
47 // |                                   |
48 // |-----------------------------------|
49 // |                                   |
50 // | prev_lr                           |
51 // | prev_fp                           |
52 // | (a.k.a. "frame record")           |
53 // |                                   |
54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
55 // |                                   |
56 // | callee-saved gpr registers        |
57 // |                                   |
58 // |-----------------------------------|
59 // |                                   |
60 // | callee-saved fp/simd regs         |
61 // |                                   |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.8-byte.alignment.....|  compile time; if present)
66 // |-----------------------------------|
67 // |                                   |
68 // | local variables of fixed size     |
69 // | including spill slots             |
70 // |-----------------------------------| <- base pointer (not defined by ABI,
71 // |.variable-sized.local.variables....|       LLVM chooses r6)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................|  compile time)
74 // |-----------------------------------| <- sp
75 // |                                   | Lower address
76 //
77 //
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
84 //
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 //   variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 //   more-than-default alignment requirements.
91 //
92 // In some cases when a base pointer is not strictly needed, it is generated
93 // anyway when offsets from the frame pointer to access local variables become
94 // so large that the offset can't be encoded in the immediate fields of loads
95 // or stores.
96 //
97 // The frame pointer might be chosen to be r7 or r11, depending on the target
98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
99 // details.
100 //
101 // Outgoing function arguments must be at the bottom of the stack frame when
102 // calling another function. If we do not have variable-sized stack objects, we
103 // can allocate a "reserved call frame" area at the bottom of the local
104 // variable area, large enough for all outgoing calls. If we do have VLAs, then
105 // the stack pointer must be decremented and incremented around each call to
106 // make space for the arguments below the VLAs.
107 //
108 //===----------------------------------------------------------------------===//
109 
110 #include "ARMFrameLowering.h"
111 #include "ARMBaseInstrInfo.h"
112 #include "ARMBaseRegisterInfo.h"
113 #include "ARMConstantPoolValue.h"
114 #include "ARMMachineFunctionInfo.h"
115 #include "ARMSubtarget.h"
116 #include "MCTargetDesc/ARMAddressingModes.h"
117 #include "MCTargetDesc/ARMBaseInfo.h"
118 #include "Utils/ARMBaseInfo.h"
119 #include "llvm/ADT/BitVector.h"
120 #include "llvm/ADT/STLExtras.h"
121 #include "llvm/ADT/SmallPtrSet.h"
122 #include "llvm/ADT/SmallVector.h"
123 #include "llvm/CodeGen/MachineBasicBlock.h"
124 #include "llvm/CodeGen/MachineConstantPool.h"
125 #include "llvm/CodeGen/MachineFrameInfo.h"
126 #include "llvm/CodeGen/MachineFunction.h"
127 #include "llvm/CodeGen/MachineInstr.h"
128 #include "llvm/CodeGen/MachineInstrBuilder.h"
129 #include "llvm/CodeGen/MachineJumpTableInfo.h"
130 #include "llvm/CodeGen/MachineModuleInfo.h"
131 #include "llvm/CodeGen/MachineOperand.h"
132 #include "llvm/CodeGen/MachineRegisterInfo.h"
133 #include "llvm/CodeGen/RegisterScavenging.h"
134 #include "llvm/CodeGen/TargetInstrInfo.h"
135 #include "llvm/CodeGen/TargetOpcodes.h"
136 #include "llvm/CodeGen/TargetRegisterInfo.h"
137 #include "llvm/CodeGen/TargetSubtargetInfo.h"
138 #include "llvm/IR/Attributes.h"
139 #include "llvm/IR/CallingConv.h"
140 #include "llvm/IR/DebugLoc.h"
141 #include "llvm/IR/Function.h"
142 #include "llvm/MC/MCAsmInfo.h"
143 #include "llvm/MC/MCContext.h"
144 #include "llvm/MC/MCDwarf.h"
145 #include "llvm/MC/MCInstrDesc.h"
146 #include "llvm/MC/MCRegisterInfo.h"
147 #include "llvm/Support/CodeGen.h"
148 #include "llvm/Support/CommandLine.h"
149 #include "llvm/Support/Compiler.h"
150 #include "llvm/Support/Debug.h"
151 #include "llvm/Support/ErrorHandling.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include "llvm/Target/TargetOptions.h"
155 #include <algorithm>
156 #include <cassert>
157 #include <cstddef>
158 #include <cstdint>
159 #include <iterator>
160 #include <utility>
161 #include <vector>
162 
163 #define DEBUG_TYPE "arm-frame-lowering"
164 
165 using namespace llvm;
166 
167 static cl::opt<bool>
168 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
169                      cl::desc("Align ARM NEON spills in prolog and epilog"));
170 
171 static MachineBasicBlock::iterator
172 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
173                         unsigned NumAlignedDPRCS2Regs);
174 
175 enum class SpillArea {
176   GPRCS1,
177   GPRCS2,
178   DPRCS1,
179   DPRCS2,
180   GPRCS3,
181   FPCXT,
182 };
183 
184 /// Get the spill area that Reg should be saved into in the prologue.
185 SpillArea getSpillArea(Register Reg,
186                        ARMSubtarget::PushPopSplitVariation Variation,
187                        unsigned NumAlignedDPRCS2Regs,
188                        const ARMBaseRegisterInfo *RegInfo) {
189   // NoSplit:
190   // push {r0-r12, lr}   GPRCS1
191   // vpush {r8-d15}      DPRCS1
192   //
193   // SplitR7:
194   // push {r0-r7, lr}    GPRCS1
195   // push {r8-r12}       GPRCS2
196   // vpush {r8-d15}      DPRCS1
197   //
198   // SplitR11WindowsSEH:
199   // push {r0-r10, r12}  GPRCS1
200   // vpush {r8-d15}      DPRCS1
201   // push {r11, lr}      GPRCS3
202   //
203   // SplitR11AAPCSSignRA:
204   // push {r0-r10, r12}  GPRSC1
205   // push {r11, lr}      GPRCS2
206   // vpush {r8-d15}      DPRCS1
207 
208   // If FPCXTNS is spilled (for CMSE secure entryfunctions), it is always at
209   // the top of the stack frame.
210   // The DPRCS2 region is used for ABIs which only guarantee 4-byte alignment
211   // of SP. If used, it will be below the other save areas, after the stack has
212   // been re-aligned.
213 
214   switch (Reg) {
215   default:
216     dbgs() << "Don't know where to spill " << printReg(Reg, RegInfo) << "\n";
217     llvm_unreachable("Don't know where to spill this register");
218     break;
219 
220   case ARM::FPCXTNS:
221     return SpillArea::FPCXT;
222 
223   case ARM::R0:
224   case ARM::R1:
225   case ARM::R2:
226   case ARM::R3:
227   case ARM::R4:
228   case ARM::R5:
229   case ARM::R6:
230   case ARM::R7:
231     return SpillArea::GPRCS1;
232 
233   case ARM::R8:
234   case ARM::R9:
235   case ARM::R10:
236     if (Variation == ARMSubtarget::SplitR7)
237       return SpillArea::GPRCS2;
238     else
239       return SpillArea::GPRCS1;
240 
241   case ARM::R11:
242     if (Variation == ARMSubtarget::SplitR7 ||
243         Variation == ARMSubtarget::SplitR11AAPCSSignRA)
244       return SpillArea::GPRCS2;
245     if (Variation == ARMSubtarget::SplitR11WindowsSEH)
246       return SpillArea::GPRCS3;
247 
248     return SpillArea::GPRCS1;
249 
250   case ARM::R12:
251     if (Variation == ARMSubtarget::SplitR7)
252       return SpillArea::GPRCS2;
253     else
254       return SpillArea::GPRCS1;
255 
256   case ARM::LR:
257     if (Variation == ARMSubtarget::SplitR11AAPCSSignRA)
258       return SpillArea::GPRCS2;
259     if (Variation == ARMSubtarget::SplitR11WindowsSEH)
260       return SpillArea::GPRCS3;
261 
262     return SpillArea::GPRCS1;
263 
264   case ARM::D0:
265   case ARM::D1:
266   case ARM::D2:
267   case ARM::D3:
268   case ARM::D4:
269   case ARM::D5:
270   case ARM::D6:
271   case ARM::D7:
272     return SpillArea::DPRCS1;
273 
274   case ARM::D8:
275   case ARM::D9:
276   case ARM::D10:
277   case ARM::D11:
278   case ARM::D12:
279   case ARM::D13:
280   case ARM::D14:
281   case ARM::D15:
282     if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
283       return SpillArea::DPRCS2;
284     else
285       return SpillArea::DPRCS1;
286 
287   case ARM::D16:
288   case ARM::D17:
289   case ARM::D18:
290   case ARM::D19:
291   case ARM::D20:
292   case ARM::D21:
293   case ARM::D22:
294   case ARM::D23:
295   case ARM::D24:
296   case ARM::D25:
297   case ARM::D26:
298   case ARM::D27:
299   case ARM::D28:
300   case ARM::D29:
301   case ARM::D30:
302   case ARM::D31:
303     return SpillArea::DPRCS1;
304   }
305 }
306 
307 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
308     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
309       STI(sti) {}
310 
311 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
312   // iOS always has a FP for backtracking, force other targets to keep their FP
313   // when doing FastISel. The emitted code is currently superior, and in cases
314   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
315   return MF.getSubtarget<ARMSubtarget>().useFastISel();
316 }
317 
318 /// Returns true if the target can safely skip saving callee-saved registers
319 /// for noreturn nounwind functions.
320 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
321   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
322          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
323          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
324 
325   // Frame pointer and link register are not treated as normal CSR, thus we
326   // can always skip CSR saves for nonreturning functions.
327   return true;
328 }
329 
330 /// hasFPImpl - Return true if the specified function should have a dedicated
331 /// frame pointer register.  This is true if the function has variable sized
332 /// allocas or if frame pointer elimination is disabled.
333 bool ARMFrameLowering::hasFPImpl(const MachineFunction &MF) const {
334   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
335   const MachineFrameInfo &MFI = MF.getFrameInfo();
336 
337   // Check to see if the target want to forcibly keep frame pointer.
338   if (keepFramePointer(MF))
339     return true;
340 
341   // ABI-required frame pointer.
342   if (MF.getTarget().Options.DisableFramePointerElim(MF))
343     return true;
344 
345   // Frame pointer required for use within this function.
346   return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
347           MFI.isFrameAddressTaken());
348 }
349 
350 /// isFPReserved - Return true if the frame pointer register should be
351 /// considered a reserved register on the scope of the specified function.
352 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const {
353   return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF);
354 }
355 
356 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
357 /// not required, we reserve argument space for call sites in the function
358 /// immediately on entry to the current function.  This eliminates the need for
359 /// add/sub sp brackets around call sites.  Returns true if the call frame is
360 /// included as part of the stack frame.
361 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
362   const MachineFrameInfo &MFI = MF.getFrameInfo();
363   unsigned CFSize = MFI.getMaxCallFrameSize();
364   // It's not always a good idea to include the call frame as part of the
365   // stack frame. ARM (especially Thumb) has small immediate offset to
366   // address the stack frame. So a large call frame can cause poor codegen
367   // and may even makes it impossible to scavenge a register.
368   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
369     return false;
370 
371   return !MFI.hasVarSizedObjects();
372 }
373 
374 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
375 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
376 /// is not sufficient here since we still may reference some objects via SP
377 /// even when FP is available in Thumb2 mode.
378 bool
379 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
380   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
381 }
382 
383 // Returns how much of the incoming argument stack area we should clean up in an
384 // epilogue. For the C calling convention this will be 0, for guaranteed tail
385 // call conventions it can be positive (a normal return or a tail call to a
386 // function that uses less stack space for arguments) or negative (for a tail
387 // call to a function that needs more stack space than us for arguments).
388 static int getArgumentStackToRestore(MachineFunction &MF,
389                                      MachineBasicBlock &MBB) {
390   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
391   bool IsTailCallReturn = false;
392   if (MBB.end() != MBBI) {
393     unsigned RetOpcode = MBBI->getOpcode();
394     IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
395                        RetOpcode == ARM::TCRETURNri ||
396                        RetOpcode == ARM::TCRETURNrinotr12;
397   }
398   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
399 
400   int ArgumentPopSize = 0;
401   if (IsTailCallReturn) {
402     MachineOperand &StackAdjust = MBBI->getOperand(1);
403 
404     // For a tail-call in a callee-pops-arguments environment, some or all of
405     // the stack may actually be in use for the call's arguments, this is
406     // calculated during LowerCall and consumed here...
407     ArgumentPopSize = StackAdjust.getImm();
408   } else {
409     // ... otherwise the amount to pop is *all* of the argument space,
410     // conveniently stored in the MachineFunctionInfo by
411     // LowerFormalArguments. This will, of course, be zero for the C calling
412     // convention.
413     ArgumentPopSize = AFI->getArgumentStackToRestore();
414   }
415 
416   return ArgumentPopSize;
417 }
418 
419 static bool needsWinCFI(const MachineFunction &MF) {
420   const Function &F = MF.getFunction();
421   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
422          F.needsUnwindTableEntry();
423 }
424 
425 // Given a load or a store instruction, generate an appropriate unwinding SEH
426 // code on Windows.
427 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI,
428                                              const TargetInstrInfo &TII,
429                                              unsigned Flags) {
430   unsigned Opc = MBBI->getOpcode();
431   MachineBasicBlock *MBB = MBBI->getParent();
432   MachineFunction &MF = *MBB->getParent();
433   DebugLoc DL = MBBI->getDebugLoc();
434   MachineInstrBuilder MIB;
435   const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>();
436   const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
437 
438   Flags |= MachineInstr::NoMerge;
439 
440   switch (Opc) {
441   default:
442     report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc));
443     break;
444   case ARM::t2ADDri:   // add.w r11, sp, #xx
445   case ARM::t2ADDri12: // add.w r11, sp, #xx
446   case ARM::t2MOVTi16: // movt  r4, #xx
447   case ARM::tBL:       // bl __chkstk
448     // These are harmless if used for just setting up a frame pointer,
449     // but that frame pointer can't be relied upon for unwinding, unless
450     // set up with SEH_SaveSP.
451     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
452               .addImm(/*Wide=*/1)
453               .setMIFlags(Flags);
454     break;
455 
456   case ARM::t2MOVi16: { // mov(w) r4, #xx
457     bool Wide = MBBI->getOperand(1).getImm() >= 256;
458     if (!Wide) {
459       MachineInstrBuilder NewInstr =
460           BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags());
461       NewInstr.add(MBBI->getOperand(0));
462       NewInstr.add(t1CondCodeOp(/*isDead=*/true));
463       for (MachineOperand &MO : llvm::drop_begin(MBBI->operands()))
464         NewInstr.add(MO);
465       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
466       MBB->erase(MBBI);
467       MBBI = NewMBBI;
468     }
469     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags);
470     break;
471   }
472 
473   case ARM::tBLXr: // blx r12 (__chkstk)
474     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
475               .addImm(/*Wide=*/0)
476               .setMIFlags(Flags);
477     break;
478 
479   case ARM::t2MOVi32imm: // movw+movt
480     // This pseudo instruction expands into two mov instructions. If the
481     // second operand is a symbol reference, this will stay as two wide
482     // instructions, movw+movt. If they're immediates, the first one can
483     // end up as a narrow mov though.
484     // As two SEH instructions are appended here, they won't get interleaved
485     // between the two final movw/movt instructions, but it doesn't make any
486     // practical difference.
487     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
488               .addImm(/*Wide=*/1)
489               .setMIFlags(Flags);
490     MBB->insertAfter(MBBI, MIB);
491     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
492               .addImm(/*Wide=*/1)
493               .setMIFlags(Flags);
494     break;
495 
496   case ARM::t2STR_PRE:
497     if (MBBI->getOperand(0).getReg() == ARM::SP &&
498         MBBI->getOperand(2).getReg() == ARM::SP &&
499         MBBI->getOperand(3).getImm() == -4) {
500       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
501       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
502                 .addImm(1ULL << Reg)
503                 .addImm(/*Wide=*/1)
504                 .setMIFlags(Flags);
505     } else {
506       report_fatal_error("No matching SEH Opcode for t2STR_PRE");
507     }
508     break;
509 
510   case ARM::t2LDR_POST:
511     if (MBBI->getOperand(1).getReg() == ARM::SP &&
512         MBBI->getOperand(2).getReg() == ARM::SP &&
513         MBBI->getOperand(3).getImm() == 4) {
514       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
515       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
516                 .addImm(1ULL << Reg)
517                 .addImm(/*Wide=*/1)
518                 .setMIFlags(Flags);
519     } else {
520       report_fatal_error("No matching SEH Opcode for t2LDR_POST");
521     }
522     break;
523 
524   case ARM::t2LDMIA_RET:
525   case ARM::t2LDMIA_UPD:
526   case ARM::t2STMDB_UPD: {
527     unsigned Mask = 0;
528     bool Wide = false;
529     for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
530       const MachineOperand &MO = MBBI->getOperand(i);
531       if (!MO.isReg() || MO.isImplicit())
532         continue;
533       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
534       if (Reg == 15)
535         Reg = 14;
536       if (Reg >= 8 && Reg <= 13)
537         Wide = true;
538       else if (Opc == ARM::t2LDMIA_UPD && Reg == 14)
539         Wide = true;
540       Mask |= 1 << Reg;
541     }
542     if (!Wide) {
543       unsigned NewOpc;
544       switch (Opc) {
545       case ARM::t2LDMIA_RET:
546         NewOpc = ARM::tPOP_RET;
547         break;
548       case ARM::t2LDMIA_UPD:
549         NewOpc = ARM::tPOP;
550         break;
551       case ARM::t2STMDB_UPD:
552         NewOpc = ARM::tPUSH;
553         break;
554       default:
555         llvm_unreachable("");
556       }
557       MachineInstrBuilder NewInstr =
558           BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags());
559       for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
560         NewInstr.add(MBBI->getOperand(i));
561       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
562       MBB->erase(MBBI);
563       MBBI = NewMBBI;
564     }
565     unsigned SEHOpc =
566         (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs;
567     MIB = BuildMI(MF, DL, TII.get(SEHOpc))
568               .addImm(Mask)
569               .addImm(Wide ? 1 : 0)
570               .setMIFlags(Flags);
571     break;
572   }
573   case ARM::VSTMDDB_UPD:
574   case ARM::VLDMDIA_UPD: {
575     int First = -1, Last = 0;
576     for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) {
577       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
578       if (First == -1)
579         First = Reg;
580       Last = Reg;
581     }
582     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs))
583               .addImm(First)
584               .addImm(Last)
585               .setMIFlags(Flags);
586     break;
587   }
588   case ARM::tSUBspi:
589   case ARM::tADDspi:
590     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
591               .addImm(MBBI->getOperand(2).getImm() * 4)
592               .addImm(/*Wide=*/0)
593               .setMIFlags(Flags);
594     break;
595   case ARM::t2SUBspImm:
596   case ARM::t2SUBspImm12:
597   case ARM::t2ADDspImm:
598   case ARM::t2ADDspImm12:
599     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
600               .addImm(MBBI->getOperand(2).getImm())
601               .addImm(/*Wide=*/1)
602               .setMIFlags(Flags);
603     break;
604 
605   case ARM::tMOVr:
606     if (MBBI->getOperand(1).getReg() == ARM::SP &&
607         (Flags & MachineInstr::FrameSetup)) {
608       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
609       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
610                 .addImm(Reg)
611                 .setMIFlags(Flags);
612     } else if (MBBI->getOperand(0).getReg() == ARM::SP &&
613                (Flags & MachineInstr::FrameDestroy)) {
614       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
615       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
616                 .addImm(Reg)
617                 .setMIFlags(Flags);
618     } else {
619       report_fatal_error("No SEH Opcode for MOV");
620     }
621     break;
622 
623   case ARM::tBX_RET:
624   case ARM::TCRETURNri:
625   case ARM::TCRETURNrinotr12:
626     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
627               .addImm(/*Wide=*/0)
628               .setMIFlags(Flags);
629     break;
630 
631   case ARM::TCRETURNdi:
632     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
633               .addImm(/*Wide=*/1)
634               .setMIFlags(Flags);
635     break;
636   }
637   return MBB->insertAfter(MBBI, MIB);
638 }
639 
640 static MachineBasicBlock::iterator
641 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) {
642   if (MBBI == MBB.begin())
643     return MachineBasicBlock::iterator();
644   return std::prev(MBBI);
645 }
646 
647 static void insertSEHRange(MachineBasicBlock &MBB,
648                            MachineBasicBlock::iterator Start,
649                            const MachineBasicBlock::iterator &End,
650                            const ARMBaseInstrInfo &TII, unsigned MIFlags) {
651   if (Start.isValid())
652     Start = std::next(Start);
653   else
654     Start = MBB.begin();
655 
656   for (auto MI = Start; MI != End;) {
657     auto Next = std::next(MI);
658     // Check if this instruction already has got a SEH opcode added. In that
659     // case, don't do this generic mapping.
660     if (Next != End && isSEHInstruction(*Next)) {
661       MI = std::next(Next);
662       while (MI != End && isSEHInstruction(*MI))
663         ++MI;
664       continue;
665     }
666     insertSEH(MI, TII, MIFlags);
667     MI = Next;
668   }
669 }
670 
671 static void emitRegPlusImmediate(
672     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
673     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
674     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
675     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
676   if (isARM)
677     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
678                             Pred, PredReg, TII, MIFlags);
679   else
680     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
681                            Pred, PredReg, TII, MIFlags);
682 }
683 
684 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
685                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
686                          const ARMBaseInstrInfo &TII, int NumBytes,
687                          unsigned MIFlags = MachineInstr::NoFlags,
688                          ARMCC::CondCodes Pred = ARMCC::AL,
689                          unsigned PredReg = 0) {
690   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
691                        MIFlags, Pred, PredReg);
692 }
693 
694 static int sizeOfSPAdjustment(const MachineInstr &MI) {
695   int RegSize;
696   switch (MI.getOpcode()) {
697   case ARM::VSTMDDB_UPD:
698     RegSize = 8;
699     break;
700   case ARM::STMDB_UPD:
701   case ARM::t2STMDB_UPD:
702     RegSize = 4;
703     break;
704   case ARM::t2STR_PRE:
705   case ARM::STR_PRE_IMM:
706     return 4;
707   default:
708     llvm_unreachable("Unknown push or pop like instruction");
709   }
710 
711   int count = 0;
712   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
713   // pred) so the list starts at 4.
714   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
715     count += RegSize;
716   return count;
717 }
718 
719 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
720                                       size_t StackSizeInBytes) {
721   const MachineFrameInfo &MFI = MF.getFrameInfo();
722   const Function &F = MF.getFunction();
723   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
724 
725   StackProbeSize =
726       F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize);
727   return (StackSizeInBytes >= StackProbeSize) &&
728          !F.hasFnAttribute("no-stack-arg-probe");
729 }
730 
731 namespace {
732 
733 struct StackAdjustingInsts {
734   struct InstInfo {
735     MachineBasicBlock::iterator I;
736     unsigned SPAdjust;
737     bool BeforeFPSet;
738 
739 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
740     void dump() {
741       dbgs() << "  " << (BeforeFPSet ? "before-fp " : "          ")
742              << "sp-adjust=" << SPAdjust;
743       I->dump();
744     }
745 #endif
746   };
747 
748   SmallVector<InstInfo, 4> Insts;
749 
750   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
751                bool BeforeFPSet = false) {
752     InstInfo Info = {I, SPAdjust, BeforeFPSet};
753     Insts.push_back(Info);
754   }
755 
756   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
757     auto Info =
758         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
759     assert(Info != Insts.end() && "invalid sp adjusting instruction");
760     Info->SPAdjust += ExtraBytes;
761   }
762 
763   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
764                          const ARMBaseInstrInfo &TII, bool HasFP) {
765     MachineFunction &MF = *MBB.getParent();
766     unsigned CFAOffset = 0;
767     for (auto &Info : Insts) {
768       if (HasFP && !Info.BeforeFPSet)
769         return;
770 
771       CFAOffset += Info.SPAdjust;
772       unsigned CFIIndex = MF.addFrameInst(
773           MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
774       BuildMI(MBB, std::next(Info.I), dl,
775               TII.get(TargetOpcode::CFI_INSTRUCTION))
776               .addCFIIndex(CFIIndex)
777               .setMIFlags(MachineInstr::FrameSetup);
778     }
779   }
780 
781 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
782   void dump() {
783     dbgs() << "StackAdjustingInsts:\n";
784     for (auto &Info : Insts)
785       Info.dump();
786   }
787 #endif
788 };
789 
790 } // end anonymous namespace
791 
792 /// Emit an instruction sequence that will align the address in
793 /// register Reg by zero-ing out the lower bits.  For versions of the
794 /// architecture that support Neon, this must be done in a single
795 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
796 /// single instruction. That function only gets called when optimizing
797 /// spilling of D registers on a core with the Neon instruction set
798 /// present.
799 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
800                                      const TargetInstrInfo &TII,
801                                      MachineBasicBlock &MBB,
802                                      MachineBasicBlock::iterator MBBI,
803                                      const DebugLoc &DL, const unsigned Reg,
804                                      const Align Alignment,
805                                      const bool MustBeSingleInstruction) {
806   const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
807   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
808   const unsigned AlignMask = Alignment.value() - 1U;
809   const unsigned NrBitsToZero = Log2(Alignment);
810   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
811   if (!AFI->isThumbFunction()) {
812     // if the BFC instruction is available, use that to zero the lower
813     // bits:
814     //   bfc Reg, #0, log2(Alignment)
815     // otherwise use BIC, if the mask to zero the required number of bits
816     // can be encoded in the bic immediate field
817     //   bic Reg, Reg, Alignment-1
818     // otherwise, emit
819     //   lsr Reg, Reg, log2(Alignment)
820     //   lsl Reg, Reg, log2(Alignment)
821     if (CanUseBFC) {
822       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
823           .addReg(Reg, RegState::Kill)
824           .addImm(~AlignMask)
825           .add(predOps(ARMCC::AL));
826     } else if (AlignMask <= 255) {
827       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
828           .addReg(Reg, RegState::Kill)
829           .addImm(AlignMask)
830           .add(predOps(ARMCC::AL))
831           .add(condCodeOp());
832     } else {
833       assert(!MustBeSingleInstruction &&
834              "Shouldn't call emitAligningInstructions demanding a single "
835              "instruction to be emitted for large stack alignment for a target "
836              "without BFC.");
837       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
838           .addReg(Reg, RegState::Kill)
839           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
840           .add(predOps(ARMCC::AL))
841           .add(condCodeOp());
842       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
843           .addReg(Reg, RegState::Kill)
844           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
845           .add(predOps(ARMCC::AL))
846           .add(condCodeOp());
847     }
848   } else {
849     // Since this is only reached for Thumb-2 targets, the BFC instruction
850     // should always be available.
851     assert(CanUseBFC);
852     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
853         .addReg(Reg, RegState::Kill)
854         .addImm(~AlignMask)
855         .add(predOps(ARMCC::AL));
856   }
857 }
858 
859 /// We need the offset of the frame pointer relative to other MachineFrameInfo
860 /// offsets which are encoded relative to SP at function begin.
861 /// See also emitPrologue() for how the FP is set up.
862 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
863 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
864 /// this to produce a conservative estimate that we check in an assert() later.
865 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI,
866                           const MachineFunction &MF) {
867   ARMSubtarget::PushPopSplitVariation PushPopSplit =
868       STI.getPushPopSplitVariation(MF);
869   // For Thumb1, push.w isn't available, so the first push will always push
870   // r7 and lr onto the stack first.
871   if (AFI.isThumb1OnlyFunction())
872     return -AFI.getArgRegsSaveSize() - (2 * 4);
873   // This is a conservative estimation: Assume the frame pointer being r7 and
874   // pc("r15") up to r8 getting spilled before (= 8 registers).
875   int MaxRegBytes = 8 * 4;
876   if (PushPopSplit == ARMSubtarget::SplitR11AAPCSSignRA)
877     // Here, r11 can be stored below all of r4-r15.
878     MaxRegBytes = 11 * 4;
879   if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH) {
880     // Here, r11 can be stored below all of r4-r15 plus d8-d15.
881     MaxRegBytes = 11 * 4 + 8 * 8;
882   }
883   int FPCXTSaveSize =
884       (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
885   return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes;
886 }
887 
888 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
889                                     MachineBasicBlock &MBB) const {
890   MachineBasicBlock::iterator MBBI = MBB.begin();
891   MachineFrameInfo  &MFI = MF.getFrameInfo();
892   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
893   MCContext &Context = MF.getContext();
894   const TargetMachine &TM = MF.getTarget();
895   const MCRegisterInfo *MRI = Context.getRegisterInfo();
896   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
897   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
898   assert(!AFI->isThumb1OnlyFunction() &&
899          "This emitPrologue does not support Thumb1!");
900   bool isARM = !AFI->isThumbFunction();
901   Align Alignment = STI.getFrameLowering()->getStackAlign();
902   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
903   unsigned NumBytes = MFI.getStackSize();
904   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
905   int FPCXTSaveSize = 0;
906   bool NeedsWinCFI = needsWinCFI(MF);
907   ARMSubtarget::PushPopSplitVariation PushPopSplit =
908       STI.getPushPopSplitVariation(MF);
909 
910   LLVM_DEBUG(dbgs() << "Emitting prologue for " << MF.getName() << "\n");
911 
912   // Debug location must be unknown since the first debug location is used
913   // to determine the end of the prologue.
914   DebugLoc dl;
915 
916   Register FramePtr = RegInfo->getFrameRegister(MF);
917 
918   // Determine the sizes of each callee-save spill areas and record which frame
919   // belongs to which callee-save spill areas.
920   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCS1Size = 0, GPRCS3Size = 0,
921            DPRCS2Size = 0;
922   int FramePtrSpillFI = 0;
923   int D8SpillFI = 0;
924 
925   // All calls are tail calls in GHC calling conv, and functions have no
926   // prologue/epilogue.
927   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
928     return;
929 
930   StackAdjustingInsts DefCFAOffsetCandidates;
931   bool HasFP = hasFP(MF);
932 
933   if (!AFI->hasStackFrame() &&
934       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
935     if (NumBytes != 0) {
936       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
937                    MachineInstr::FrameSetup);
938       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
939     }
940     if (!NeedsWinCFI)
941       DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
942     if (NeedsWinCFI && MBBI != MBB.begin()) {
943       insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup);
944       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd))
945           .setMIFlag(MachineInstr::FrameSetup);
946       MF.setHasWinCFI(true);
947     }
948     return;
949   }
950 
951   // Determine spill area sizes, and some important frame indices.
952   SpillArea FramePtrSpillArea = SpillArea::GPRCS1;
953   bool BeforeFPPush = true;
954   for (const CalleeSavedInfo &I : CSI) {
955     Register Reg = I.getReg();
956     int FI = I.getFrameIdx();
957 
958     SpillArea Area = getSpillArea(Reg, PushPopSplit,
959                                   AFI->getNumAlignedDPRCS2Regs(), RegInfo);
960 
961     if (Reg == FramePtr) {
962       FramePtrSpillFI = FI;
963       FramePtrSpillArea = Area;
964     }
965     if (Reg == ARM::D8)
966       D8SpillFI = FI;
967 
968     switch (Area) {
969     case SpillArea::FPCXT:
970       FPCXTSaveSize += 4;
971       break;
972     case SpillArea::GPRCS1:
973       GPRCS1Size += 4;
974       break;
975     case SpillArea::GPRCS2:
976       GPRCS2Size += 4;
977       break;
978     case SpillArea::DPRCS1:
979       DPRCS1Size += 8;
980       break;
981     case SpillArea::GPRCS3:
982       GPRCS3Size += 4;
983       break;
984     case SpillArea::DPRCS2:
985       DPRCS2Size += 4;
986       break;
987     }
988   }
989 
990   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push,
991                               DPRCS1Push, GPRCS3Push;
992 
993   // Move past the PAC computation.
994   if (AFI->shouldSignReturnAddress())
995     LastPush = MBBI++;
996 
997   // Move past FPCXT area.
998   if (FPCXTSaveSize > 0) {
999     LastPush = MBBI++;
1000     DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, BeforeFPPush);
1001   }
1002 
1003   // Allocate the vararg register save area.
1004   if (ArgRegsSaveSize) {
1005     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
1006                  MachineInstr::FrameSetup);
1007     LastPush = std::prev(MBBI);
1008     DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, BeforeFPPush);
1009   }
1010 
1011   // Move past area 1.
1012   if (GPRCS1Size > 0) {
1013     GPRCS1Push = LastPush = MBBI++;
1014     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, BeforeFPPush);
1015     if (FramePtrSpillArea == SpillArea::GPRCS1)
1016       BeforeFPPush = false;
1017   }
1018 
1019   // Determine starting offsets of spill areas. These offsets are all positive
1020   // offsets from the bottom of the lowest-addressed callee-save area
1021   // (excluding DPRCS2, which is th the re-aligned stack region) to the bottom
1022   // of the spill area in question.
1023   unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
1024   unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
1025   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
1026 
1027   Align DPRAlign = DPRCS1Size ? std::min(Align(8), Alignment) : Align(4);
1028   unsigned DPRGapSize =
1029       (ArgRegsSaveSize + FPCXTSaveSize + GPRCS1Size + GPRCS2Size) %
1030       DPRAlign.value();
1031 
1032   unsigned DPRCS1Offset = GPRCS2Offset - DPRGapSize - DPRCS1Size;
1033 
1034   if (HasFP) {
1035     // Offset from the CFA to the saved frame pointer, will be negative.
1036     [[maybe_unused]] int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
1037     LLVM_DEBUG(dbgs() << "FramePtrSpillFI: " << FramePtrSpillFI
1038                       << ", FPOffset: " << FPOffset << "\n");
1039     assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset &&
1040            "Max FP estimation is wrong");
1041     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
1042                                 NumBytes);
1043   }
1044   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
1045   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
1046   AFI->setDPRCalleeSavedArea1Offset(DPRCS1Offset);
1047 
1048   // Move past area 2.
1049   if (GPRCS2Size > 0) {
1050     assert(PushPopSplit != ARMSubtarget::SplitR11WindowsSEH);
1051     GPRCS2Push = LastPush = MBBI++;
1052     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size, BeforeFPPush);
1053     if (FramePtrSpillArea == SpillArea::GPRCS2)
1054       BeforeFPPush = false;
1055   }
1056 
1057   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
1058   // .cfi_offset operations will reflect that.
1059   if (DPRGapSize) {
1060     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
1061     if (LastPush != MBB.end() &&
1062         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
1063       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
1064     else {
1065       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
1066                    MachineInstr::FrameSetup);
1067       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize, BeforeFPPush);
1068     }
1069   }
1070 
1071   // Move past DPRCS1Size.
1072   if (DPRCS1Size > 0) {
1073     // Since vpush register list cannot have gaps, there may be multiple vpush
1074     // instructions in the prologue.
1075     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
1076       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI),
1077                                      BeforeFPPush);
1078       DPRCS1Push = LastPush = MBBI++;
1079     }
1080   }
1081 
1082   // Move past the aligned DPRCS2 area.
1083   if (DPRCS2Size > 0) {
1084     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
1085     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
1086     // leaves the stack pointer pointing to the DPRCS2 area.
1087     //
1088     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
1089     NumBytes += MFI.getObjectOffset(D8SpillFI);
1090   } else
1091     NumBytes = DPRCS1Offset;
1092 
1093   // Move GPRCS3, if using using SplitR11WindowsSEH.
1094   if (GPRCS3Size > 0) {
1095     assert(PushPopSplit == ARMSubtarget::SplitR11WindowsSEH);
1096     GPRCS3Push = LastPush = MBBI++;
1097     DefCFAOffsetCandidates.addInst(LastPush, GPRCS3Size, BeforeFPPush);
1098     if (FramePtrSpillArea == SpillArea::GPRCS3)
1099       BeforeFPPush = false;
1100   }
1101 
1102   bool NeedsWinCFIStackAlloc = NeedsWinCFI;
1103   if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH && HasFP)
1104     NeedsWinCFIStackAlloc = false;
1105 
1106   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
1107     uint32_t NumWords = NumBytes >> 2;
1108 
1109     if (NumWords < 65536) {
1110       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
1111           .addImm(NumWords)
1112           .setMIFlags(MachineInstr::FrameSetup)
1113           .add(predOps(ARMCC::AL));
1114     } else {
1115       // Split into two instructions here, instead of using t2MOVi32imm,
1116       // to allow inserting accurate SEH instructions (including accurate
1117       // instruction size for each of them).
1118       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
1119           .addImm(NumWords & 0xffff)
1120           .setMIFlags(MachineInstr::FrameSetup)
1121           .add(predOps(ARMCC::AL));
1122       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4)
1123           .addReg(ARM::R4)
1124           .addImm(NumWords >> 16)
1125           .setMIFlags(MachineInstr::FrameSetup)
1126           .add(predOps(ARMCC::AL));
1127     }
1128 
1129     switch (TM.getCodeModel()) {
1130     case CodeModel::Tiny:
1131       llvm_unreachable("Tiny code model not available on ARM.");
1132     case CodeModel::Small:
1133     case CodeModel::Medium:
1134     case CodeModel::Kernel:
1135       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
1136           .add(predOps(ARMCC::AL))
1137           .addExternalSymbol("__chkstk")
1138           .addReg(ARM::R4, RegState::Implicit)
1139           .setMIFlags(MachineInstr::FrameSetup);
1140       break;
1141     case CodeModel::Large:
1142       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
1143         .addExternalSymbol("__chkstk")
1144         .setMIFlags(MachineInstr::FrameSetup);
1145 
1146       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
1147           .add(predOps(ARMCC::AL))
1148           .addReg(ARM::R12, RegState::Kill)
1149           .addReg(ARM::R4, RegState::Implicit)
1150           .setMIFlags(MachineInstr::FrameSetup);
1151       break;
1152     }
1153 
1154     MachineInstrBuilder Instr, SEH;
1155     Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
1156                 .addReg(ARM::SP, RegState::Kill)
1157                 .addReg(ARM::R4, RegState::Kill)
1158                 .setMIFlags(MachineInstr::FrameSetup)
1159                 .add(predOps(ARMCC::AL))
1160                 .add(condCodeOp());
1161     if (NeedsWinCFIStackAlloc) {
1162       SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc))
1163                 .addImm(NumBytes)
1164                 .addImm(/*Wide=*/1)
1165                 .setMIFlags(MachineInstr::FrameSetup);
1166       MBB.insertAfter(Instr, SEH);
1167     }
1168     NumBytes = 0;
1169   }
1170 
1171   if (NumBytes) {
1172     // Adjust SP after all the callee-save spills.
1173     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
1174         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
1175       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
1176     else {
1177       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
1178                    MachineInstr::FrameSetup);
1179       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
1180     }
1181 
1182     if (HasFP && isARM)
1183       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
1184       // Note it's not safe to do this in Thumb2 mode because it would have
1185       // taken two instructions:
1186       // mov sp, r7
1187       // sub sp, #24
1188       // If an interrupt is taken between the two instructions, then sp is in
1189       // an inconsistent state (pointing to the middle of callee-saved area).
1190       // The interrupt handler can end up clobbering the registers.
1191       AFI->setShouldRestoreSPFromFP(true);
1192   }
1193 
1194   // Set FP to point to the stack slot that contains the previous FP.
1195   // For iOS, FP is R7, which has now been stored in spill area 1.
1196   // Otherwise, if this is not iOS, all the callee-saved registers go
1197   // into spill area 1, including the FP in R11.  In either case, it
1198   // is in area one and the adjustment needs to take place just after
1199   // that push.
1200   MachineBasicBlock::iterator AfterPush;
1201   if (HasFP) {
1202     MachineBasicBlock::iterator FPPushInst;
1203     // Offset from SP immediately after the push which saved the FP to the FP
1204     // save slot.
1205     int64_t FPOffsetAfterPush;
1206     switch (FramePtrSpillArea) {
1207     case SpillArea::GPRCS1:
1208       FPPushInst = GPRCS1Push;
1209       FPOffsetAfterPush = MFI.getObjectOffset(FramePtrSpillFI) +
1210                           ArgRegsSaveSize + FPCXTSaveSize +
1211                           sizeOfSPAdjustment(*FPPushInst);
1212       LLVM_DEBUG(dbgs() << "Frame pointer in GPRCS1, offset "
1213                         << FPOffsetAfterPush << "  after that push\n");
1214       break;
1215     case SpillArea::GPRCS2:
1216       FPPushInst = GPRCS2Push;
1217       FPOffsetAfterPush = MFI.getObjectOffset(FramePtrSpillFI) +
1218                           ArgRegsSaveSize + FPCXTSaveSize + GPRCS1Size +
1219                           sizeOfSPAdjustment(*FPPushInst);
1220       LLVM_DEBUG(dbgs() << "Frame pointer in GPRCS2, offset "
1221                         << FPOffsetAfterPush << "  after that push\n");
1222       break;
1223     case SpillArea::GPRCS3:
1224       FPPushInst = GPRCS3Push;
1225       FPOffsetAfterPush = MFI.getObjectOffset(FramePtrSpillFI) +
1226                           ArgRegsSaveSize + FPCXTSaveSize + GPRCS1Size +
1227                           GPRCS2Size + DPRCS1Size + DPRGapSize +
1228                           sizeOfSPAdjustment(*FPPushInst);
1229       LLVM_DEBUG(dbgs() << "Frame pointer in GPRCS3, offset "
1230                         << FPOffsetAfterPush << "  after that push\n");
1231       break;
1232     default:
1233       llvm_unreachable("frame pointer in unknown spill area");
1234       break;
1235     }
1236     AfterPush = std::next(FPPushInst);
1237     if (PushPopSplit == ARMSubtarget::SplitR11WindowsSEH)
1238       assert(FPOffsetAfterPush == 0);
1239 
1240     // Emit the MOV or ADD to set up the frame pointer register.
1241     emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1242                          FramePtr, ARM::SP, FPOffsetAfterPush,
1243                          MachineInstr::FrameSetup);
1244 
1245     if (!NeedsWinCFI) {
1246       // Emit DWARF info to find the CFA using the frame pointer from this
1247       // point onward.
1248       if (FPOffsetAfterPush != 0) {
1249         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1250             nullptr, MRI->getDwarfRegNum(FramePtr, true),
1251             -MFI.getObjectOffset(FramePtrSpillFI)));
1252         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1253             .addCFIIndex(CFIIndex)
1254             .setMIFlags(MachineInstr::FrameSetup);
1255       } else {
1256         unsigned CFIIndex =
1257             MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
1258                 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
1259         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1260             .addCFIIndex(CFIIndex)
1261             .setMIFlags(MachineInstr::FrameSetup);
1262       }
1263     }
1264   }
1265 
1266   // Emit a SEH opcode indicating the prologue end. The rest of the prologue
1267   // instructions below don't need to be replayed to unwind the stack.
1268   if (NeedsWinCFI && MBBI != MBB.begin()) {
1269     MachineBasicBlock::iterator End = MBBI;
1270     if (HasFP && PushPopSplit == ARMSubtarget::SplitR11WindowsSEH)
1271       End = AfterPush;
1272     insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup);
1273     BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd))
1274         .setMIFlag(MachineInstr::FrameSetup);
1275     MF.setHasWinCFI(true);
1276   }
1277 
1278   // Now that the prologue's actual instructions are finalised, we can insert
1279   // the necessary DWARF cf instructions to describe the situation. Start by
1280   // recording where each register ended up:
1281   if (!NeedsWinCFI) {
1282     for (const auto &Entry : reverse(CSI)) {
1283       Register Reg = Entry.getReg();
1284       int FI = Entry.getFrameIdx();
1285       MachineBasicBlock::iterator CFIPos;
1286       switch (getSpillArea(Reg, PushPopSplit, AFI->getNumAlignedDPRCS2Regs(),
1287                            RegInfo)) {
1288       case SpillArea::GPRCS1:
1289         CFIPos = std::next(GPRCS1Push);
1290         break;
1291       case SpillArea::GPRCS2:
1292         CFIPos = std::next(GPRCS2Push);
1293         break;
1294       case SpillArea::DPRCS1:
1295         CFIPos = std::next(DPRCS1Push);
1296         break;
1297       case SpillArea::GPRCS3:
1298         CFIPos = std::next(GPRCS3Push);
1299         break;
1300       case SpillArea::FPCXT:
1301       case SpillArea::DPRCS2:
1302         // FPCXT and DPRCS2 are not represented in the DWARF info.
1303         break;
1304       }
1305 
1306       if (CFIPos.isValid()) {
1307         int CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1308             nullptr,
1309             MRI->getDwarfRegNum(Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg,
1310                                 true),
1311             MFI.getObjectOffset(FI)));
1312         BuildMI(MBB, CFIPos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1313             .addCFIIndex(CFIIndex)
1314             .setMIFlags(MachineInstr::FrameSetup);
1315       }
1316     }
1317   }
1318 
1319   // Now we can emit descriptions of where the canonical frame address was
1320   // throughout the process. If we have a frame pointer, it takes over the job
1321   // half-way through, so only the first few .cfi_def_cfa_offset instructions
1322   // actually get emitted.
1323   if (!NeedsWinCFI) {
1324     LLVM_DEBUG(DefCFAOffsetCandidates.dump());
1325     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
1326   }
1327 
1328   if (STI.isTargetELF() && hasFP(MF))
1329     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
1330                             AFI->getFramePtrSpillOffset());
1331 
1332   AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
1333   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
1334   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
1335   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
1336   AFI->setDPRCalleeSavedArea1Size(DPRCS1Size);
1337   AFI->setGPRCalleeSavedArea3Size(GPRCS3Size);
1338 
1339   // If we need dynamic stack realignment, do it here. Be paranoid and make
1340   // sure if we also have VLAs, we have a base pointer for frame access.
1341   // If aligned NEON registers were spilled, the stack has already been
1342   // realigned.
1343   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
1344     Align MaxAlign = MFI.getMaxAlign();
1345     assert(!AFI->isThumb1OnlyFunction());
1346     if (!AFI->isThumbFunction()) {
1347       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
1348                                false);
1349     } else {
1350       // We cannot use sp as source/dest register here, thus we're using r4 to
1351       // perform the calculations. We're emitting the following sequence:
1352       // mov r4, sp
1353       // -- use emitAligningInstructions to produce best sequence to zero
1354       // -- out lower bits in r4
1355       // mov sp, r4
1356       // FIXME: It will be better just to find spare register here.
1357       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
1358           .addReg(ARM::SP, RegState::Kill)
1359           .add(predOps(ARMCC::AL));
1360       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
1361                                false);
1362       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1363           .addReg(ARM::R4, RegState::Kill)
1364           .add(predOps(ARMCC::AL));
1365     }
1366 
1367     AFI->setShouldRestoreSPFromFP(true);
1368   }
1369 
1370   // If we need a base pointer, set it up here. It's whatever the value
1371   // of the stack pointer is at this point. Any variable size objects
1372   // will be allocated after this, so we can still use the base pointer
1373   // to reference locals.
1374   // FIXME: Clarify FrameSetup flags here.
1375   if (RegInfo->hasBasePointer(MF)) {
1376     if (isARM)
1377       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
1378           .addReg(ARM::SP)
1379           .add(predOps(ARMCC::AL))
1380           .add(condCodeOp());
1381     else
1382       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
1383           .addReg(ARM::SP)
1384           .add(predOps(ARMCC::AL));
1385   }
1386 
1387   // If the frame has variable sized objects then the epilogue must restore
1388   // the sp from fp. We can assume there's an FP here since hasFP already
1389   // checks for hasVarSizedObjects.
1390   if (MFI.hasVarSizedObjects())
1391     AFI->setShouldRestoreSPFromFP(true);
1392 }
1393 
1394 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
1395                                     MachineBasicBlock &MBB) const {
1396   MachineFrameInfo &MFI = MF.getFrameInfo();
1397   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1398   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1399   const ARMBaseInstrInfo &TII =
1400       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1401   assert(!AFI->isThumb1OnlyFunction() &&
1402          "This emitEpilogue does not support Thumb1!");
1403   bool isARM = !AFI->isThumbFunction();
1404   ARMSubtarget::PushPopSplitVariation PushPopSplit =
1405       STI.getPushPopSplitVariation(MF);
1406 
1407   LLVM_DEBUG(dbgs() << "Emitting epilogue for " << MF.getName() << "\n");
1408 
1409   // Amount of stack space we reserved next to incoming args for either
1410   // varargs registers or stack arguments in tail calls made by this function.
1411   unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
1412 
1413   // How much of the stack used by incoming arguments this function is expected
1414   // to restore in this particular epilogue.
1415   int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
1416   int NumBytes = (int)MFI.getStackSize();
1417   Register FramePtr = RegInfo->getFrameRegister(MF);
1418 
1419   // All calls are tail calls in GHC calling conv, and functions have no
1420   // prologue/epilogue.
1421   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1422     return;
1423 
1424   // First put ourselves on the first (from top) terminator instructions.
1425   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1426   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1427 
1428   MachineBasicBlock::iterator RangeStart;
1429   if (!AFI->hasStackFrame()) {
1430     if (MF.hasWinCFI()) {
1431       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1432           .setMIFlag(MachineInstr::FrameDestroy);
1433       RangeStart = initMBBRange(MBB, MBBI);
1434     }
1435 
1436     if (NumBytes + IncomingArgStackToRestore != 0)
1437       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1438                    NumBytes + IncomingArgStackToRestore,
1439                    MachineInstr::FrameDestroy);
1440   } else {
1441     // Unwind MBBI to point to first LDR / VLDRD.
1442     if (MBBI != MBB.begin()) {
1443       do {
1444         --MBBI;
1445       } while (MBBI != MBB.begin() &&
1446                MBBI->getFlag(MachineInstr::FrameDestroy));
1447       if (!MBBI->getFlag(MachineInstr::FrameDestroy))
1448         ++MBBI;
1449     }
1450 
1451     if (MF.hasWinCFI()) {
1452       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1453           .setMIFlag(MachineInstr::FrameDestroy);
1454       RangeStart = initMBBRange(MBB, MBBI);
1455     }
1456 
1457     // Move SP to start of FP callee save spill area.
1458     NumBytes -=
1459         (ReservedArgStack + AFI->getFPCXTSaveAreaSize() +
1460          AFI->getGPRCalleeSavedArea1Size() + AFI->getGPRCalleeSavedArea2Size() +
1461          AFI->getDPRCalleeSavedGapSize() + AFI->getDPRCalleeSavedArea1Size() +
1462          AFI->getGPRCalleeSavedArea3Size());
1463 
1464     // Reset SP based on frame pointer only if the stack frame extends beyond
1465     // frame pointer stack slot or target is ELF and the function has FP.
1466     if (AFI->shouldRestoreSPFromFP()) {
1467       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
1468       if (NumBytes) {
1469         if (isARM)
1470           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
1471                                   ARMCC::AL, 0, TII,
1472                                   MachineInstr::FrameDestroy);
1473         else {
1474           // It's not possible to restore SP from FP in a single instruction.
1475           // For iOS, this looks like:
1476           // mov sp, r7
1477           // sub sp, #24
1478           // This is bad, if an interrupt is taken after the mov, sp is in an
1479           // inconsistent state.
1480           // Use the first callee-saved register as a scratch register.
1481           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
1482                  "No scratch register to restore SP from FP!");
1483           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
1484                                  ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
1485           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1486               .addReg(ARM::R4)
1487               .add(predOps(ARMCC::AL))
1488               .setMIFlag(MachineInstr::FrameDestroy);
1489         }
1490       } else {
1491         // Thumb2 or ARM.
1492         if (isARM)
1493           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
1494               .addReg(FramePtr)
1495               .add(predOps(ARMCC::AL))
1496               .add(condCodeOp())
1497               .setMIFlag(MachineInstr::FrameDestroy);
1498         else
1499           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1500               .addReg(FramePtr)
1501               .add(predOps(ARMCC::AL))
1502               .setMIFlag(MachineInstr::FrameDestroy);
1503       }
1504     } else if (NumBytes &&
1505                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
1506       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
1507                    MachineInstr::FrameDestroy);
1508 
1509     // Increment past our save areas.
1510     if (AFI->getGPRCalleeSavedArea3Size()) {
1511       assert(PushPopSplit == ARMSubtarget::SplitR11WindowsSEH);
1512       (void)PushPopSplit;
1513       MBBI++;
1514     }
1515 
1516     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedArea1Size()) {
1517       MBBI++;
1518       // Since vpop register list cannot have gaps, there may be multiple vpop
1519       // instructions in the epilogue.
1520       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
1521         MBBI++;
1522     }
1523     if (AFI->getDPRCalleeSavedGapSize()) {
1524       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1525              "unexpected DPR alignment gap");
1526       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1527                    MachineInstr::FrameDestroy);
1528     }
1529 
1530     if (AFI->getGPRCalleeSavedArea2Size()) {
1531       assert(PushPopSplit != ARMSubtarget::SplitR11WindowsSEH);
1532       (void)PushPopSplit;
1533       MBBI++;
1534     }
1535     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1536 
1537     if (ReservedArgStack || IncomingArgStackToRestore) {
1538       assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1539              "attempting to restore negative stack amount");
1540       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1541                    ReservedArgStack + IncomingArgStackToRestore,
1542                    MachineInstr::FrameDestroy);
1543     }
1544 
1545     // Validate PAC, It should have been already popped into R12. For CMSE entry
1546     // function, the validation instruction is emitted during expansion of the
1547     // tBXNS_RET, since the validation must use the value of SP at function
1548     // entry, before saving, resp. after restoring, FPCXTNS.
1549     if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
1550       BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
1551   }
1552 
1553   if (MF.hasWinCFI()) {
1554     insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy);
1555     BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd))
1556         .setMIFlag(MachineInstr::FrameDestroy);
1557   }
1558 }
1559 
1560 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1561 /// debug info.  It's the same as what we use for resolving the code-gen
1562 /// references for now.  FIXME: This can go wrong when references are
1563 /// SP-relative and simple call frames aren't used.
1564 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1565                                                      int FI,
1566                                                      Register &FrameReg) const {
1567   return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1568 }
1569 
1570 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1571                                                  int FI, Register &FrameReg,
1572                                                  int SPAdj) const {
1573   const MachineFrameInfo &MFI = MF.getFrameInfo();
1574   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1575       MF.getSubtarget().getRegisterInfo());
1576   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1577   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1578   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1579   bool isFixed = MFI.isFixedObjectIndex(FI);
1580 
1581   FrameReg = ARM::SP;
1582   Offset += SPAdj;
1583 
1584   // SP can move around if there are allocas.  We may also lose track of SP
1585   // when emergency spilling inside a non-reserved call frame setup.
1586   bool hasMovingSP = !hasReservedCallFrame(MF);
1587 
1588   // When dynamically realigning the stack, use the frame pointer for
1589   // parameters, and the stack/base pointer for locals.
1590   if (RegInfo->hasStackRealignment(MF)) {
1591     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1592     if (isFixed) {
1593       FrameReg = RegInfo->getFrameRegister(MF);
1594       Offset = FPOffset;
1595     } else if (hasMovingSP) {
1596       assert(RegInfo->hasBasePointer(MF) &&
1597              "VLAs and dynamic stack alignment, but missing base pointer!");
1598       FrameReg = RegInfo->getBaseRegister();
1599       Offset -= SPAdj;
1600     }
1601     return Offset;
1602   }
1603 
1604   // If there is a frame pointer, use it when we can.
1605   if (hasFP(MF) && AFI->hasStackFrame()) {
1606     // Use frame pointer to reference fixed objects. Use it for locals if
1607     // there are VLAs (and thus the SP isn't reliable as a base).
1608     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1609       FrameReg = RegInfo->getFrameRegister(MF);
1610       return FPOffset;
1611     } else if (hasMovingSP) {
1612       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1613       if (AFI->isThumb2Function()) {
1614         // Try to use the frame pointer if we can, else use the base pointer
1615         // since it's available. This is handy for the emergency spill slot, in
1616         // particular.
1617         if (FPOffset >= -255 && FPOffset < 0) {
1618           FrameReg = RegInfo->getFrameRegister(MF);
1619           return FPOffset;
1620         }
1621       }
1622     } else if (AFI->isThumbFunction()) {
1623       // Prefer SP to base pointer, if the offset is suitably aligned and in
1624       // range as the effective range of the immediate offset is bigger when
1625       // basing off SP.
1626       // Use  add <rd>, sp, #<imm8>
1627       //      ldr <rd>, [sp, #<imm8>]
1628       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1629         return Offset;
1630       // In Thumb2 mode, the negative offset is very limited. Try to avoid
1631       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1632       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1633         FrameReg = RegInfo->getFrameRegister(MF);
1634         return FPOffset;
1635       }
1636     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1637       // Otherwise, use SP or FP, whichever is closer to the stack slot.
1638       FrameReg = RegInfo->getFrameRegister(MF);
1639       return FPOffset;
1640     }
1641   }
1642   // Use the base pointer if we have one.
1643   // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1644   // That can happen if we forced a base pointer for a large call frame.
1645   if (RegInfo->hasBasePointer(MF)) {
1646     FrameReg = RegInfo->getBaseRegister();
1647     Offset -= SPAdj;
1648   }
1649   return Offset;
1650 }
1651 
1652 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1653                                     MachineBasicBlock::iterator MI,
1654                                     ArrayRef<CalleeSavedInfo> CSI,
1655                                     unsigned StmOpc, unsigned StrOpc,
1656                                     bool NoGap,
1657                                     function_ref<bool(unsigned)> Func) const {
1658   MachineFunction &MF = *MBB.getParent();
1659   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1660   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1661 
1662   DebugLoc DL;
1663 
1664   using RegAndKill = std::pair<unsigned, bool>;
1665 
1666   SmallVector<RegAndKill, 4> Regs;
1667   unsigned i = CSI.size();
1668   while (i != 0) {
1669     unsigned LastReg = 0;
1670     for (; i != 0; --i) {
1671       Register Reg = CSI[i-1].getReg();
1672       if (!Func(Reg))
1673         continue;
1674 
1675       const MachineRegisterInfo &MRI = MF.getRegInfo();
1676       bool isLiveIn = MRI.isLiveIn(Reg);
1677       if (!isLiveIn && !MRI.isReserved(Reg))
1678         MBB.addLiveIn(Reg);
1679       // If NoGap is true, push consecutive registers and then leave the rest
1680       // for other instructions. e.g.
1681       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1682       if (NoGap && LastReg && LastReg != Reg-1)
1683         break;
1684       LastReg = Reg;
1685       // Do not set a kill flag on values that are also marked as live-in. This
1686       // happens with the @llvm-returnaddress intrinsic and with arguments
1687       // passed in callee saved registers.
1688       // Omitting the kill flags is conservatively correct even if the live-in
1689       // is not used after all.
1690       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1691     }
1692 
1693     if (Regs.empty())
1694       continue;
1695 
1696     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1697       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1698     });
1699 
1700     if (Regs.size() > 1 || StrOpc== 0) {
1701       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1702                                     .addReg(ARM::SP)
1703                                     .setMIFlags(MachineInstr::FrameSetup)
1704                                     .add(predOps(ARMCC::AL));
1705       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1706         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1707     } else if (Regs.size() == 1) {
1708       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1709           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1710           .addReg(ARM::SP)
1711           .setMIFlags(MachineInstr::FrameSetup)
1712           .addImm(-4)
1713           .add(predOps(ARMCC::AL));
1714     }
1715     Regs.clear();
1716 
1717     // Put any subsequent vpush instructions before this one: they will refer to
1718     // higher register numbers so need to be pushed first in order to preserve
1719     // monotonicity.
1720     if (MI != MBB.begin())
1721       --MI;
1722   }
1723 }
1724 
1725 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1726                                    MachineBasicBlock::iterator MI,
1727                                    MutableArrayRef<CalleeSavedInfo> CSI,
1728                                    unsigned LdmOpc, unsigned LdrOpc,
1729                                    bool isVarArg, bool NoGap,
1730                                    function_ref<bool(unsigned)> Func) const {
1731   MachineFunction &MF = *MBB.getParent();
1732   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1733   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1734   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1735   bool hasPAC = AFI->shouldSignReturnAddress();
1736   DebugLoc DL;
1737   bool isTailCall = false;
1738   bool isInterrupt = false;
1739   bool isTrap = false;
1740   bool isCmseEntry = false;
1741   ARMSubtarget::PushPopSplitVariation PushPopSplit =
1742       STI.getPushPopSplitVariation(MF);
1743   if (MBB.end() != MI) {
1744     DL = MI->getDebugLoc();
1745     unsigned RetOpcode = MI->getOpcode();
1746     isTailCall =
1747         (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri ||
1748          RetOpcode == ARM::TCRETURNrinotr12);
1749     isInterrupt =
1750         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1751     isTrap =
1752         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1753         RetOpcode == ARM::tTRAP;
1754     isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1755   }
1756 
1757   SmallVector<unsigned, 4> Regs;
1758   unsigned i = CSI.size();
1759   while (i != 0) {
1760     unsigned LastReg = 0;
1761     bool DeleteRet = false;
1762     for (; i != 0; --i) {
1763       CalleeSavedInfo &Info = CSI[i-1];
1764       Register Reg = Info.getReg();
1765       if (!Func(Reg))
1766         continue;
1767 
1768       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1769           !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1770           STI.hasV5TOps() && MBB.succ_empty() && !hasPAC &&
1771           (PushPopSplit != ARMSubtarget::SplitR11WindowsSEH &&
1772            PushPopSplit != ARMSubtarget::SplitR11AAPCSSignRA)) {
1773         Reg = ARM::PC;
1774         // Fold the return instruction into the LDM.
1775         DeleteRet = true;
1776         LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1777       }
1778 
1779       // If NoGap is true, pop consecutive registers and then leave the rest
1780       // for other instructions. e.g.
1781       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1782       if (NoGap && LastReg && LastReg != Reg-1)
1783         break;
1784 
1785       LastReg = Reg;
1786       Regs.push_back(Reg);
1787     }
1788 
1789     if (Regs.empty())
1790       continue;
1791 
1792     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1793       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1794     });
1795 
1796     if (Regs.size() > 1 || LdrOpc == 0) {
1797       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1798                                     .addReg(ARM::SP)
1799                                     .add(predOps(ARMCC::AL))
1800                                     .setMIFlags(MachineInstr::FrameDestroy);
1801       for (unsigned Reg : Regs)
1802         MIB.addReg(Reg, getDefRegState(true));
1803       if (DeleteRet) {
1804         if (MI != MBB.end()) {
1805           MIB.copyImplicitOps(*MI);
1806           MI->eraseFromParent();
1807         }
1808       }
1809       MI = MIB;
1810     } else if (Regs.size() == 1) {
1811       // If we adjusted the reg to PC from LR above, switch it back here. We
1812       // only do that for LDM.
1813       if (Regs[0] == ARM::PC)
1814         Regs[0] = ARM::LR;
1815       MachineInstrBuilder MIB =
1816         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1817           .addReg(ARM::SP, RegState::Define)
1818           .addReg(ARM::SP)
1819           .setMIFlags(MachineInstr::FrameDestroy);
1820       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1821       // that refactoring is complete (eventually).
1822       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1823         MIB.addReg(0);
1824         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1825       } else
1826         MIB.addImm(4);
1827       MIB.add(predOps(ARMCC::AL));
1828     }
1829     Regs.clear();
1830 
1831     // Put any subsequent vpop instructions after this one: they will refer to
1832     // higher register numbers so need to be popped afterwards.
1833     if (MI != MBB.end())
1834       ++MI;
1835   }
1836 }
1837 
1838 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1839 /// starting from d8.  Also insert stack realignment code and leave the stack
1840 /// pointer pointing to the d8 spill slot.
1841 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1842                                     MachineBasicBlock::iterator MI,
1843                                     unsigned NumAlignedDPRCS2Regs,
1844                                     ArrayRef<CalleeSavedInfo> CSI,
1845                                     const TargetRegisterInfo *TRI) {
1846   MachineFunction &MF = *MBB.getParent();
1847   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1848   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1849   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1850   MachineFrameInfo &MFI = MF.getFrameInfo();
1851 
1852   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1853   // stack slot layout backwards, this can actually mean that the d-reg stack
1854   // slot offsets can be wrong. The offset for d8 will always be correct.
1855   for (const CalleeSavedInfo &I : CSI) {
1856     unsigned DNum = I.getReg() - ARM::D8;
1857     if (DNum > NumAlignedDPRCS2Regs - 1)
1858       continue;
1859     int FI = I.getFrameIdx();
1860     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1861     // registers will be 8-byte aligned.
1862     MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1863 
1864     // The stack slot for D8 needs to be maximally aligned because this is
1865     // actually the point where we align the stack pointer.  MachineFrameInfo
1866     // computes all offsets relative to the incoming stack pointer which is a
1867     // bit weird when realigning the stack.  Any extra padding for this
1868     // over-alignment is not realized because the code inserted below adjusts
1869     // the stack pointer by numregs * 8 before aligning the stack pointer.
1870     if (DNum == 0)
1871       MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1872   }
1873 
1874   // Move the stack pointer to the d8 spill slot, and align it at the same
1875   // time. Leave the stack slot address in the scratch register r4.
1876   //
1877   //   sub r4, sp, #numregs * 8
1878   //   bic r4, r4, #align - 1
1879   //   mov sp, r4
1880   //
1881   bool isThumb = AFI->isThumbFunction();
1882   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1883   AFI->setShouldRestoreSPFromFP(true);
1884 
1885   // sub r4, sp, #numregs * 8
1886   // The immediate is <= 64, so it doesn't need any special encoding.
1887   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1888   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1889       .addReg(ARM::SP)
1890       .addImm(8 * NumAlignedDPRCS2Regs)
1891       .add(predOps(ARMCC::AL))
1892       .add(condCodeOp());
1893 
1894   Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1895   // We must set parameter MustBeSingleInstruction to true, since
1896   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1897   // stack alignment.  Luckily, this can always be done since all ARM
1898   // architecture versions that support Neon also support the BFC
1899   // instruction.
1900   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1901 
1902   // mov sp, r4
1903   // The stack pointer must be adjusted before spilling anything, otherwise
1904   // the stack slots could be clobbered by an interrupt handler.
1905   // Leave r4 live, it is used below.
1906   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1907   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1908                                 .addReg(ARM::R4)
1909                                 .add(predOps(ARMCC::AL));
1910   if (!isThumb)
1911     MIB.add(condCodeOp());
1912 
1913   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1914   // r4 holds the stack slot address.
1915   unsigned NextReg = ARM::D8;
1916 
1917   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1918   // The writeback is only needed when emitting two vst1.64 instructions.
1919   if (NumAlignedDPRCS2Regs >= 6) {
1920     MCRegister SupReg =
1921         TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass);
1922     MBB.addLiveIn(SupReg);
1923     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1924         .addReg(ARM::R4, RegState::Kill)
1925         .addImm(16)
1926         .addReg(NextReg)
1927         .addReg(SupReg, RegState::ImplicitKill)
1928         .add(predOps(ARMCC::AL));
1929     NextReg += 4;
1930     NumAlignedDPRCS2Regs -= 4;
1931   }
1932 
1933   // We won't modify r4 beyond this point.  It currently points to the next
1934   // register to be spilled.
1935   unsigned R4BaseReg = NextReg;
1936 
1937   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1938   if (NumAlignedDPRCS2Regs >= 4) {
1939     MCRegister SupReg =
1940         TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass);
1941     MBB.addLiveIn(SupReg);
1942     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1943         .addReg(ARM::R4)
1944         .addImm(16)
1945         .addReg(NextReg)
1946         .addReg(SupReg, RegState::ImplicitKill)
1947         .add(predOps(ARMCC::AL));
1948     NextReg += 4;
1949     NumAlignedDPRCS2Regs -= 4;
1950   }
1951 
1952   // 16-byte aligned vst1.64 with 2 d-regs.
1953   if (NumAlignedDPRCS2Regs >= 2) {
1954     MCRegister SupReg =
1955         TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QPRRegClass);
1956     MBB.addLiveIn(SupReg);
1957     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1958         .addReg(ARM::R4)
1959         .addImm(16)
1960         .addReg(SupReg)
1961         .add(predOps(ARMCC::AL));
1962     NextReg += 2;
1963     NumAlignedDPRCS2Regs -= 2;
1964   }
1965 
1966   // Finally, use a vanilla vstr.64 for the odd last register.
1967   if (NumAlignedDPRCS2Regs) {
1968     MBB.addLiveIn(NextReg);
1969     // vstr.64 uses addrmode5 which has an offset scale of 4.
1970     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1971         .addReg(NextReg)
1972         .addReg(ARM::R4)
1973         .addImm((NextReg - R4BaseReg) * 2)
1974         .add(predOps(ARMCC::AL));
1975   }
1976 
1977   // The last spill instruction inserted should kill the scratch register r4.
1978   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1979 }
1980 
1981 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1982 /// iterator to the following instruction.
1983 static MachineBasicBlock::iterator
1984 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1985                         unsigned NumAlignedDPRCS2Regs) {
1986   //   sub r4, sp, #numregs * 8
1987   //   bic r4, r4, #align - 1
1988   //   mov sp, r4
1989   ++MI; ++MI; ++MI;
1990   assert(MI->mayStore() && "Expecting spill instruction");
1991 
1992   // These switches all fall through.
1993   switch(NumAlignedDPRCS2Regs) {
1994   case 7:
1995     ++MI;
1996     assert(MI->mayStore() && "Expecting spill instruction");
1997     [[fallthrough]];
1998   default:
1999     ++MI;
2000     assert(MI->mayStore() && "Expecting spill instruction");
2001     [[fallthrough]];
2002   case 1:
2003   case 2:
2004   case 4:
2005     assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag");
2006     ++MI;
2007   }
2008   return MI;
2009 }
2010 
2011 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
2012 /// starting from d8.  These instructions are assumed to execute while the
2013 /// stack is still aligned, unlike the code inserted by emitPopInst.
2014 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
2015                                       MachineBasicBlock::iterator MI,
2016                                       unsigned NumAlignedDPRCS2Regs,
2017                                       ArrayRef<CalleeSavedInfo> CSI,
2018                                       const TargetRegisterInfo *TRI) {
2019   MachineFunction &MF = *MBB.getParent();
2020   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2021   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
2022   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
2023 
2024   // Find the frame index assigned to d8.
2025   int D8SpillFI = 0;
2026   for (const CalleeSavedInfo &I : CSI)
2027     if (I.getReg() == ARM::D8) {
2028       D8SpillFI = I.getFrameIdx();
2029       break;
2030     }
2031 
2032   // Materialize the address of the d8 spill slot into the scratch register r4.
2033   // This can be fairly complicated if the stack frame is large, so just use
2034   // the normal frame index elimination mechanism to do it.  This code runs as
2035   // the initial part of the epilog where the stack and base pointers haven't
2036   // been changed yet.
2037   bool isThumb = AFI->isThumbFunction();
2038   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
2039 
2040   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
2041   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
2042       .addFrameIndex(D8SpillFI)
2043       .addImm(0)
2044       .add(predOps(ARMCC::AL))
2045       .add(condCodeOp());
2046 
2047   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
2048   unsigned NextReg = ARM::D8;
2049 
2050   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
2051   if (NumAlignedDPRCS2Regs >= 6) {
2052     MCRegister SupReg =
2053         TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass);
2054     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
2055         .addReg(ARM::R4, RegState::Define)
2056         .addReg(ARM::R4, RegState::Kill)
2057         .addImm(16)
2058         .addReg(SupReg, RegState::ImplicitDefine)
2059         .add(predOps(ARMCC::AL));
2060     NextReg += 4;
2061     NumAlignedDPRCS2Regs -= 4;
2062   }
2063 
2064   // We won't modify r4 beyond this point.  It currently points to the next
2065   // register to be spilled.
2066   unsigned R4BaseReg = NextReg;
2067 
2068   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
2069   if (NumAlignedDPRCS2Regs >= 4) {
2070     MCRegister SupReg =
2071         TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QQPRRegClass);
2072     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
2073         .addReg(ARM::R4)
2074         .addImm(16)
2075         .addReg(SupReg, RegState::ImplicitDefine)
2076         .add(predOps(ARMCC::AL));
2077     NextReg += 4;
2078     NumAlignedDPRCS2Regs -= 4;
2079   }
2080 
2081   // 16-byte aligned vld1.64 with 2 d-regs.
2082   if (NumAlignedDPRCS2Regs >= 2) {
2083     MCRegister SupReg =
2084         TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, &ARM::QPRRegClass);
2085     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
2086         .addReg(ARM::R4)
2087         .addImm(16)
2088         .add(predOps(ARMCC::AL));
2089     NextReg += 2;
2090     NumAlignedDPRCS2Regs -= 2;
2091   }
2092 
2093   // Finally, use a vanilla vldr.64 for the remaining odd register.
2094   if (NumAlignedDPRCS2Regs)
2095     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
2096         .addReg(ARM::R4)
2097         .addImm(2 * (NextReg - R4BaseReg))
2098         .add(predOps(ARMCC::AL));
2099 
2100   // Last store kills r4.
2101   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
2102 }
2103 
2104 bool ARMFrameLowering::spillCalleeSavedRegisters(
2105     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2106     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2107   if (CSI.empty())
2108     return false;
2109 
2110   MachineFunction &MF = *MBB.getParent();
2111   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2112   ARMSubtarget::PushPopSplitVariation PushPopSplit =
2113       STI.getPushPopSplitVariation(MF);
2114   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
2115 
2116   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
2117   unsigned PushOneOpc = AFI->isThumbFunction() ?
2118     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
2119   unsigned FltOpc = ARM::VSTMDDB_UPD;
2120   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
2121   // Compute PAC in R12.
2122   if (AFI->shouldSignReturnAddress()) {
2123     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
2124         .setMIFlags(MachineInstr::FrameSetup);
2125   }
2126   // Save the non-secure floating point context.
2127   if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
2128         return C.getReg() == ARM::FPCXTNS;
2129       })) {
2130     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
2131             ARM::SP)
2132         .addReg(ARM::SP)
2133         .addImm(-4)
2134         .add(predOps(ARMCC::AL));
2135   }
2136 
2137   auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs,
2138                        RegInfo](unsigned Reg, SpillArea TestArea) {
2139     return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) ==
2140            TestArea;
2141   };
2142   auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) {
2143     return CheckRegArea(Reg, SpillArea::GPRCS1);
2144   };
2145   auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) {
2146     return CheckRegArea(Reg, SpillArea::GPRCS2);
2147   };
2148   auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) {
2149     return CheckRegArea(Reg, SpillArea::DPRCS1);
2150   };
2151   auto IsGPRCS3 = [&CheckRegArea](unsigned Reg) {
2152     return CheckRegArea(Reg, SpillArea::GPRCS3);
2153   };
2154 
2155   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS1);
2156   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS2);
2157   emitPushInst(MBB, MI, CSI, FltOpc, 0, true, IsDPRCS1);
2158   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, IsGPRCS3);
2159 
2160   // The code above does not insert spill code for the aligned DPRCS2 registers.
2161   // The stack realignment code will be inserted between the push instructions
2162   // and these spills.
2163   if (NumAlignedDPRCS2Regs)
2164     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2165 
2166   return true;
2167 }
2168 
2169 bool ARMFrameLowering::restoreCalleeSavedRegisters(
2170     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2171     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2172   if (CSI.empty())
2173     return false;
2174 
2175   MachineFunction &MF = *MBB.getParent();
2176   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2177   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
2178 
2179   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
2180   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
2181   ARMSubtarget::PushPopSplitVariation PushPopSplit =
2182       STI.getPushPopSplitVariation(MF);
2183 
2184   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
2185   // registers. Do that here instead.
2186   if (NumAlignedDPRCS2Regs)
2187     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2188 
2189   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
2190   unsigned LdrOpc =
2191       AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
2192   unsigned FltOpc = ARM::VLDMDIA_UPD;
2193 
2194   auto CheckRegArea = [PushPopSplit, NumAlignedDPRCS2Regs,
2195                        RegInfo](unsigned Reg, SpillArea TestArea) {
2196     return getSpillArea(Reg, PushPopSplit, NumAlignedDPRCS2Regs, RegInfo) ==
2197            TestArea;
2198   };
2199   auto IsGPRCS1 = [&CheckRegArea](unsigned Reg) {
2200     return CheckRegArea(Reg, SpillArea::GPRCS1);
2201   };
2202   auto IsGPRCS2 = [&CheckRegArea](unsigned Reg) {
2203     return CheckRegArea(Reg, SpillArea::GPRCS2);
2204   };
2205   auto IsDPRCS1 = [&CheckRegArea](unsigned Reg) {
2206     return CheckRegArea(Reg, SpillArea::DPRCS1);
2207   };
2208   auto IsGPRCS3 = [&CheckRegArea](unsigned Reg) {
2209     return CheckRegArea(Reg, SpillArea::GPRCS3);
2210   };
2211 
2212   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS3);
2213   emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, IsDPRCS1);
2214   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS2);
2215   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, IsGPRCS1);
2216 
2217   return true;
2218 }
2219 
2220 // FIXME: Make generic?
2221 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
2222                                             const ARMBaseInstrInfo &TII) {
2223   unsigned FnSize = 0;
2224   for (auto &MBB : MF) {
2225     for (auto &MI : MBB)
2226       FnSize += TII.getInstSizeInBytes(MI);
2227   }
2228   if (MF.getJumpTableInfo())
2229     for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
2230       FnSize += Table.MBBs.size() * 4;
2231   FnSize += MF.getConstantPool()->getConstants().size() * 4;
2232   return FnSize;
2233 }
2234 
2235 /// estimateRSStackSizeLimit - Look at each instruction that references stack
2236 /// frames and return the stack size limit beyond which some of these
2237 /// instructions will require a scratch register during their expansion later.
2238 // FIXME: Move to TII?
2239 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
2240                                          const TargetFrameLowering *TFI,
2241                                          bool &HasNonSPFrameIndex) {
2242   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2243   const ARMBaseInstrInfo &TII =
2244       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2245   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2246   unsigned Limit = (1 << 12) - 1;
2247   for (auto &MBB : MF) {
2248     for (auto &MI : MBB) {
2249       if (MI.isDebugInstr())
2250         continue;
2251       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2252         if (!MI.getOperand(i).isFI())
2253           continue;
2254 
2255         // When using ADDri to get the address of a stack object, 255 is the
2256         // largest offset guaranteed to fit in the immediate offset.
2257         if (MI.getOpcode() == ARM::ADDri) {
2258           Limit = std::min(Limit, (1U << 8) - 1);
2259           break;
2260         }
2261         // t2ADDri will not require an extra register, it can reuse the
2262         // destination.
2263         if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
2264           break;
2265 
2266         const MCInstrDesc &MCID = MI.getDesc();
2267         const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
2268         if (RegClass && !RegClass->contains(ARM::SP))
2269           HasNonSPFrameIndex = true;
2270 
2271         // Otherwise check the addressing mode.
2272         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
2273         case ARMII::AddrMode_i12:
2274         case ARMII::AddrMode2:
2275           // Default 12 bit limit.
2276           break;
2277         case ARMII::AddrMode3:
2278         case ARMII::AddrModeT2_i8neg:
2279           Limit = std::min(Limit, (1U << 8) - 1);
2280           break;
2281         case ARMII::AddrMode5FP16:
2282           Limit = std::min(Limit, ((1U << 8) - 1) * 2);
2283           break;
2284         case ARMII::AddrMode5:
2285         case ARMII::AddrModeT2_i8s4:
2286         case ARMII::AddrModeT2_ldrex:
2287           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
2288           break;
2289         case ARMII::AddrModeT2_i12:
2290           // i12 supports only positive offset so these will be converted to
2291           // i8 opcodes. See llvm::rewriteT2FrameIndex.
2292           if (TFI->hasFP(MF) && AFI->hasStackFrame())
2293             Limit = std::min(Limit, (1U << 8) - 1);
2294           break;
2295         case ARMII::AddrMode4:
2296         case ARMII::AddrMode6:
2297           // Addressing modes 4 & 6 (load/store) instructions can't encode an
2298           // immediate offset for stack references.
2299           return 0;
2300         case ARMII::AddrModeT2_i7:
2301           Limit = std::min(Limit, ((1U << 7) - 1) * 1);
2302           break;
2303         case ARMII::AddrModeT2_i7s2:
2304           Limit = std::min(Limit, ((1U << 7) - 1) * 2);
2305           break;
2306         case ARMII::AddrModeT2_i7s4:
2307           Limit = std::min(Limit, ((1U << 7) - 1) * 4);
2308           break;
2309         default:
2310           llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
2311         }
2312         break; // At most one FI per instruction
2313       }
2314     }
2315   }
2316 
2317   return Limit;
2318 }
2319 
2320 // In functions that realign the stack, it can be an advantage to spill the
2321 // callee-saved vector registers after realigning the stack. The vst1 and vld1
2322 // instructions take alignment hints that can improve performance.
2323 static void
2324 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
2325   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
2326   if (!SpillAlignedNEONRegs)
2327     return;
2328 
2329   // Naked functions don't spill callee-saved registers.
2330   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
2331     return;
2332 
2333   // We are planning to use NEON instructions vst1 / vld1.
2334   if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
2335     return;
2336 
2337   // Don't bother if the default stack alignment is sufficiently high.
2338   if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
2339     return;
2340 
2341   // Aligned spills require stack realignment.
2342   if (!static_cast<const ARMBaseRegisterInfo *>(
2343            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
2344     return;
2345 
2346   // We always spill contiguous d-registers starting from d8. Count how many
2347   // needs spilling.  The register allocator will almost always use the
2348   // callee-saved registers in order, but it can happen that there are holes in
2349   // the range.  Registers above the hole will be spilled to the standard DPRCS
2350   // area.
2351   unsigned NumSpills = 0;
2352   for (; NumSpills < 8; ++NumSpills)
2353     if (!SavedRegs.test(ARM::D8 + NumSpills))
2354       break;
2355 
2356   // Don't do this for just one d-register. It's not worth it.
2357   if (NumSpills < 2)
2358     return;
2359 
2360   // Spill the first NumSpills D-registers after realigning the stack.
2361   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
2362 
2363   // A scratch register is required for the vst1 / vld1 instructions.
2364   SavedRegs.set(ARM::R4);
2365 }
2366 
2367 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2368   // For CMSE entry functions, we want to save the FPCXT_NS immediately
2369   // upon function entry (resp. restore it immmediately before return)
2370   if (STI.hasV8_1MMainlineOps() &&
2371       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
2372     return false;
2373 
2374   // We are disabling shrinkwrapping for now when PAC is enabled, as
2375   // shrinkwrapping can cause clobbering of r12 when the PAC code is
2376   // generated. A follow-up patch will fix this in a more performant manner.
2377   if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
2378           true /* SpillsLR */))
2379     return false;
2380 
2381   return true;
2382 }
2383 
2384 bool ARMFrameLowering::requiresAAPCSFrameRecord(
2385     const MachineFunction &MF) const {
2386   const auto &Subtarget = MF.getSubtarget<ARMSubtarget>();
2387   return Subtarget.createAAPCSFrameChain() && hasFP(MF);
2388 }
2389 
2390 // Thumb1 may require a spill when storing to a frame index through FP (or any
2391 // access with execute-only), for cases where FP is a high register (R11). This
2392 // scans the function for cases where this may happen.
2393 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF,
2394                                        const TargetFrameLowering &TFI) {
2395   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2396   if (!AFI->isThumb1OnlyFunction())
2397     return false;
2398 
2399   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
2400   for (const auto &MBB : MF)
2401     for (const auto &MI : MBB)
2402       if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi ||
2403           STI.genExecuteOnly())
2404         for (const auto &Op : MI.operands())
2405           if (Op.isFI()) {
2406             Register Reg;
2407             TFI.getFrameIndexReference(MF, Op.getIndex(), Reg);
2408             if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP)
2409               return true;
2410           }
2411   return false;
2412 }
2413 
2414 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
2415                                             BitVector &SavedRegs,
2416                                             RegScavenger *RS) const {
2417   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2418   // This tells PEI to spill the FP as if it is any other callee-save register
2419   // to take advantage the eliminateFrameIndex machinery. This also ensures it
2420   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
2421   // to combine multiple loads / stores.
2422   bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)) &&
2423                            !MF.getTarget().Options.DisableFramePointerElim(MF);
2424   bool CS1Spilled = false;
2425   bool LRSpilled = false;
2426   unsigned NumGPRSpills = 0;
2427   unsigned NumFPRSpills = 0;
2428   SmallVector<unsigned, 4> UnspilledCS1GPRs;
2429   SmallVector<unsigned, 4> UnspilledCS2GPRs;
2430   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
2431       MF.getSubtarget().getRegisterInfo());
2432   const ARMBaseInstrInfo &TII =
2433       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2434   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2435   MachineFrameInfo &MFI = MF.getFrameInfo();
2436   MachineRegisterInfo &MRI = MF.getRegInfo();
2437   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2438   (void)TRI;  // Silence unused warning in non-assert builds.
2439   Register FramePtr = RegInfo->getFrameRegister(MF);
2440   ARMSubtarget::PushPopSplitVariation PushPopSplit =
2441       STI.getPushPopSplitVariation(MF);
2442 
2443   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
2444   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
2445   // since it's not always possible to restore sp from fp in a single
2446   // instruction.
2447   // FIXME: It will be better just to find spare register here.
2448   if (AFI->isThumb2Function() &&
2449       (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
2450     SavedRegs.set(ARM::R4);
2451 
2452   // If a stack probe will be emitted, spill R4 and LR, since they are
2453   // clobbered by the stack probe call.
2454   // This estimate should be a safe, conservative estimate. The actual
2455   // stack probe is enabled based on the size of the local objects;
2456   // this estimate also includes the varargs store size.
2457   if (STI.isTargetWindows() &&
2458       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
2459     SavedRegs.set(ARM::R4);
2460     SavedRegs.set(ARM::LR);
2461   }
2462 
2463   if (AFI->isThumb1OnlyFunction()) {
2464     // Spill LR if Thumb1 function uses variable length argument lists.
2465     if (AFI->getArgRegsSaveSize() > 0)
2466       SavedRegs.set(ARM::LR);
2467 
2468     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
2469     // requires stack alignment.  We don't know for sure what the stack size
2470     // will be, but for this, an estimate is good enough. If there anything
2471     // changes it, it'll be a spill, which implies we've used all the registers
2472     // and so R4 is already used, so not marking it here will be OK.
2473     // FIXME: It will be better just to find spare register here.
2474     if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
2475         MFI.estimateStackSize(MF) > 508)
2476       SavedRegs.set(ARM::R4);
2477   }
2478 
2479   // See if we can spill vector registers to aligned stack.
2480   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
2481 
2482   // Spill the BasePtr if it's used.
2483   if (RegInfo->hasBasePointer(MF))
2484     SavedRegs.set(RegInfo->getBaseRegister());
2485 
2486   // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
2487   if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
2488     CanEliminateFrame = false;
2489 
2490   // When return address signing is enabled R12 is treated as callee-saved.
2491   if (AFI->shouldSignReturnAddress())
2492     CanEliminateFrame = false;
2493 
2494   // Don't spill FP if the frame can be eliminated. This is determined
2495   // by scanning the callee-save registers to see if any is modified.
2496   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2497   for (unsigned i = 0; CSRegs[i]; ++i) {
2498     unsigned Reg = CSRegs[i];
2499     bool Spilled = false;
2500     if (SavedRegs.test(Reg)) {
2501       Spilled = true;
2502       CanEliminateFrame = false;
2503     }
2504 
2505     if (!ARM::GPRRegClass.contains(Reg)) {
2506       if (Spilled) {
2507         if (ARM::SPRRegClass.contains(Reg))
2508           NumFPRSpills++;
2509         else if (ARM::DPRRegClass.contains(Reg))
2510           NumFPRSpills += 2;
2511         else if (ARM::QPRRegClass.contains(Reg))
2512           NumFPRSpills += 4;
2513       }
2514       continue;
2515     }
2516 
2517     if (Spilled) {
2518       NumGPRSpills++;
2519 
2520       if (PushPopSplit != ARMSubtarget::SplitR7) {
2521         if (Reg == ARM::LR)
2522           LRSpilled = true;
2523         CS1Spilled = true;
2524         continue;
2525       }
2526 
2527       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
2528       switch (Reg) {
2529       case ARM::LR:
2530         LRSpilled = true;
2531         [[fallthrough]];
2532       case ARM::R0: case ARM::R1:
2533       case ARM::R2: case ARM::R3:
2534       case ARM::R4: case ARM::R5:
2535       case ARM::R6: case ARM::R7:
2536         CS1Spilled = true;
2537         break;
2538       default:
2539         break;
2540       }
2541     } else {
2542       if (PushPopSplit != ARMSubtarget::SplitR7) {
2543         UnspilledCS1GPRs.push_back(Reg);
2544         continue;
2545       }
2546 
2547       switch (Reg) {
2548       case ARM::R0: case ARM::R1:
2549       case ARM::R2: case ARM::R3:
2550       case ARM::R4: case ARM::R5:
2551       case ARM::R6: case ARM::R7:
2552       case ARM::LR:
2553         UnspilledCS1GPRs.push_back(Reg);
2554         break;
2555       default:
2556         UnspilledCS2GPRs.push_back(Reg);
2557         break;
2558       }
2559     }
2560   }
2561 
2562   bool ForceLRSpill = false;
2563   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
2564     unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
2565     // Force LR to be spilled if the Thumb function size is > 2048. This enables
2566     // use of BL to implement far jump.
2567     if (FnSize >= (1 << 11)) {
2568       CanEliminateFrame = false;
2569       ForceLRSpill = true;
2570     }
2571   }
2572 
2573   // If any of the stack slot references may be out of range of an immediate
2574   // offset, make sure a register (or a spill slot) is available for the
2575   // register scavenger. Note that if we're indexing off the frame pointer, the
2576   // effective stack size is 4 bytes larger since the FP points to the stack
2577   // slot of the previous FP. Also, if we have variable sized objects in the
2578   // function, stack slot references will often be negative, and some of
2579   // our instructions are positive-offset only, so conservatively consider
2580   // that case to want a spill slot (or register) as well. Similarly, if
2581   // the function adjusts the stack pointer during execution and the
2582   // adjustments aren't already part of our stack size estimate, our offset
2583   // calculations may be off, so be conservative.
2584   // FIXME: We could add logic to be more precise about negative offsets
2585   //        and which instructions will need a scratch register for them. Is it
2586   //        worth the effort and added fragility?
2587   unsigned EstimatedStackSize =
2588       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
2589 
2590   // Determine biggest (positive) SP offset in MachineFrameInfo.
2591   int MaxFixedOffset = 0;
2592   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
2593     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
2594     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
2595   }
2596 
2597   bool HasFP = hasFP(MF);
2598   if (HasFP) {
2599     if (AFI->hasStackFrame())
2600       EstimatedStackSize += 4;
2601   } else {
2602     // If FP is not used, SP will be used to access arguments, so count the
2603     // size of arguments into the estimation.
2604     EstimatedStackSize += MaxFixedOffset;
2605   }
2606   EstimatedStackSize += 16; // For possible paddings.
2607 
2608   unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
2609   bool HasNonSPFrameIndex = false;
2610   if (AFI->isThumb1OnlyFunction()) {
2611     // For Thumb1, don't bother to iterate over the function. The only
2612     // instruction that requires an emergency spill slot is a store to a
2613     // frame index.
2614     //
2615     // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
2616     // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
2617     // a 5-bit unsigned immediate.
2618     //
2619     // We could try to check if the function actually contains a tSTRspi
2620     // that might need the spill slot, but it's not really important.
2621     // Functions with VLAs or extremely large call frames are rare, and
2622     // if a function is allocating more than 1KB of stack, an extra 4-byte
2623     // slot probably isn't relevant.
2624     //
2625     // A special case is the scenario where r11 is used as FP, where accesses
2626     // to a frame index will require its value to be moved into a low reg.
2627     // This is handled later on, once we are able to determine if we have any
2628     // fp-relative accesses.
2629     if (RegInfo->hasBasePointer(MF))
2630       EstimatedRSStackSizeLimit = (1U << 5) * 4;
2631     else
2632       EstimatedRSStackSizeLimit = (1U << 8) * 4;
2633     EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2634   } else {
2635     EstimatedRSStackSizeLimit =
2636         estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2637     EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2638   }
2639   // Final estimate of whether sp or bp-relative accesses might require
2640   // scavenging.
2641   bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2642 
2643   // If the stack pointer moves and we don't have a base pointer, the
2644   // estimate logic doesn't work. The actual offsets might be larger when
2645   // we're constructing a call frame, or we might need to use negative
2646   // offsets from fp.
2647   bool HasMovingSP = MFI.hasVarSizedObjects() ||
2648     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2649   bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2650 
2651   // If we have a frame pointer, we assume arguments will be accessed
2652   // relative to the frame pointer. Check whether fp-relative accesses to
2653   // arguments require scavenging.
2654   //
2655   // We could do slightly better on Thumb1; in some cases, an sp-relative
2656   // offset would be legal even though an fp-relative offset is not.
2657   int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF);
2658   bool HasLargeArgumentList =
2659       HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2660 
2661   bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2662                          HasLargeArgumentList || HasNonSPFrameIndex;
2663   LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2664                     << "; EstimatedStack: " << EstimatedStackSize
2665                     << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2666                     << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2667   if (BigFrameOffsets ||
2668       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2669     AFI->setHasStackFrame(true);
2670 
2671     if (HasFP) {
2672       SavedRegs.set(FramePtr);
2673       // If the frame pointer is required by the ABI, also spill LR so that we
2674       // emit a complete frame record.
2675       if ((requiresAAPCSFrameRecord(MF) ||
2676            MF.getTarget().Options.DisableFramePointerElim(MF)) &&
2677           !LRSpilled) {
2678         SavedRegs.set(ARM::LR);
2679         LRSpilled = true;
2680         NumGPRSpills++;
2681         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2682         if (LRPos != UnspilledCS1GPRs.end())
2683           UnspilledCS1GPRs.erase(LRPos);
2684       }
2685       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2686       if (FPPos != UnspilledCS1GPRs.end())
2687         UnspilledCS1GPRs.erase(FPPos);
2688       NumGPRSpills++;
2689       if (FramePtr == ARM::R7)
2690         CS1Spilled = true;
2691     }
2692 
2693     // This is the number of extra spills inserted for callee-save GPRs which
2694     // would not otherwise be used by the function. When greater than zero it
2695     // guaranteees that it is possible to scavenge a register to hold the
2696     // address of a stack slot. On Thumb1, the register must be a valid operand
2697     // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11
2698     // or lr.
2699     //
2700     // If we don't insert a spill, we instead allocate an emergency spill
2701     // slot, which can be used by scavenging to spill an arbitrary register.
2702     //
2703     // We currently don't try to figure out whether any specific instruction
2704     // requires scavening an additional register.
2705     unsigned NumExtraCSSpill = 0;
2706 
2707     if (AFI->isThumb1OnlyFunction()) {
2708       // For Thumb1-only targets, we need some low registers when we save and
2709       // restore the high registers (which aren't allocatable, but could be
2710       // used by inline assembly) because the push/pop instructions can not
2711       // access high registers. If necessary, we might need to push more low
2712       // registers to ensure that there is at least one free that can be used
2713       // for the saving & restoring, and preferably we should ensure that as
2714       // many as are needed are available so that fewer push/pop instructions
2715       // are required.
2716 
2717       // Low registers which are not currently pushed, but could be (r4-r7).
2718       SmallVector<unsigned, 4> AvailableRegs;
2719 
2720       // Unused argument registers (r0-r3) can be clobbered in the prologue for
2721       // free.
2722       int EntryRegDeficit = 0;
2723       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2724         if (!MF.getRegInfo().isLiveIn(Reg)) {
2725           --EntryRegDeficit;
2726           LLVM_DEBUG(dbgs()
2727                      << printReg(Reg, TRI)
2728                      << " is unused argument register, EntryRegDeficit = "
2729                      << EntryRegDeficit << "\n");
2730         }
2731       }
2732 
2733       // Unused return registers can be clobbered in the epilogue for free.
2734       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2735       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2736                         << " return regs used, ExitRegDeficit = "
2737                         << ExitRegDeficit << "\n");
2738 
2739       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2740       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2741 
2742       // r4-r6 can be used in the prologue if they are pushed by the first push
2743       // instruction.
2744       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2745         if (SavedRegs.test(Reg)) {
2746           --RegDeficit;
2747           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2748                             << " is saved low register, RegDeficit = "
2749                             << RegDeficit << "\n");
2750         } else {
2751           AvailableRegs.push_back(Reg);
2752           LLVM_DEBUG(
2753               dbgs()
2754               << printReg(Reg, TRI)
2755               << " is non-saved low register, adding to AvailableRegs\n");
2756         }
2757       }
2758 
2759       // r7 can be used if it is not being used as the frame pointer.
2760       if (!HasFP || FramePtr != ARM::R7) {
2761         if (SavedRegs.test(ARM::R7)) {
2762           --RegDeficit;
2763           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2764                             << RegDeficit << "\n");
2765         } else {
2766           AvailableRegs.push_back(ARM::R7);
2767           LLVM_DEBUG(
2768               dbgs()
2769               << "%r7 is non-saved low register, adding to AvailableRegs\n");
2770         }
2771       }
2772 
2773       // Each of r8-r11 needs to be copied to a low register, then pushed.
2774       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2775         if (SavedRegs.test(Reg)) {
2776           ++RegDeficit;
2777           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2778                             << " is saved high register, RegDeficit = "
2779                             << RegDeficit << "\n");
2780         }
2781       }
2782 
2783       // LR can only be used by PUSH, not POP, and can't be used at all if the
2784       // llvm.returnaddress intrinsic is used. This is only worth doing if we
2785       // are more limited at function entry than exit.
2786       if ((EntryRegDeficit > ExitRegDeficit) &&
2787           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2788             MF.getFrameInfo().isReturnAddressTaken())) {
2789         if (SavedRegs.test(ARM::LR)) {
2790           --RegDeficit;
2791           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2792                             << RegDeficit << "\n");
2793         } else {
2794           AvailableRegs.push_back(ARM::LR);
2795           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2796         }
2797       }
2798 
2799       // If there are more high registers that need pushing than low registers
2800       // available, push some more low registers so that we can use fewer push
2801       // instructions. This might not reduce RegDeficit all the way to zero,
2802       // because we can only guarantee that r4-r6 are available, but r8-r11 may
2803       // need saving.
2804       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2805       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2806         unsigned Reg = AvailableRegs.pop_back_val();
2807         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2808                           << " to make up reg deficit\n");
2809         SavedRegs.set(Reg);
2810         NumGPRSpills++;
2811         CS1Spilled = true;
2812         assert(!MRI.isReserved(Reg) && "Should not be reserved");
2813         if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2814           NumExtraCSSpill++;
2815         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2816         if (Reg == ARM::LR)
2817           LRSpilled = true;
2818       }
2819       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2820                         << "\n");
2821     }
2822 
2823     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2824     // restore LR in that case.
2825     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2826 
2827     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2828     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2829     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2830       SavedRegs.set(ARM::LR);
2831       NumGPRSpills++;
2832       SmallVectorImpl<unsigned>::iterator LRPos;
2833       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2834       if (LRPos != UnspilledCS1GPRs.end())
2835         UnspilledCS1GPRs.erase(LRPos);
2836 
2837       ForceLRSpill = false;
2838       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2839           !AFI->isThumb1OnlyFunction())
2840         NumExtraCSSpill++;
2841     }
2842 
2843     // If stack and double are 8-byte aligned and we are spilling an odd number
2844     // of GPRs, spill one extra callee save GPR so we won't have to pad between
2845     // the integer and double callee save areas.
2846     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2847     const Align TargetAlign = getStackAlign();
2848     if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2849       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2850         for (unsigned Reg : UnspilledCS1GPRs) {
2851           // Don't spill high register if the function is thumb.  In the case of
2852           // Windows on ARM, accept R11 (frame pointer)
2853           if (!AFI->isThumbFunction() ||
2854               (STI.isTargetWindows() && Reg == ARM::R11) ||
2855               isARMLowRegister(Reg) ||
2856               (Reg == ARM::LR && !ExpensiveLRRestore)) {
2857             SavedRegs.set(Reg);
2858             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2859                               << " to make up alignment\n");
2860             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2861                 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2862               NumExtraCSSpill++;
2863             break;
2864           }
2865         }
2866       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2867         unsigned Reg = UnspilledCS2GPRs.front();
2868         SavedRegs.set(Reg);
2869         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2870                           << " to make up alignment\n");
2871         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2872           NumExtraCSSpill++;
2873       }
2874     }
2875 
2876     // Estimate if we might need to scavenge registers at some point in order
2877     // to materialize a stack offset. If so, either spill one additional
2878     // callee-saved register or reserve a special spill slot to facilitate
2879     // register scavenging. Thumb1 needs a spill slot for stack pointer
2880     // adjustments and for frame index accesses when FP is high register,
2881     // even when the frame itself is small.
2882     unsigned RegsNeeded = 0;
2883     if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) {
2884       RegsNeeded++;
2885       // With thumb1 execute-only we may need an additional register for saving
2886       // and restoring the CPSR.
2887       if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt())
2888         RegsNeeded++;
2889     }
2890 
2891     if (RegsNeeded > NumExtraCSSpill) {
2892       // If any non-reserved CS register isn't spilled, just spill one or two
2893       // extra. That should take care of it!
2894       unsigned NumExtras = TargetAlign.value() / 4;
2895       SmallVector<unsigned, 2> Extras;
2896       while (NumExtras && !UnspilledCS1GPRs.empty()) {
2897         unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2898         if (!MRI.isReserved(Reg) &&
2899             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2900           Extras.push_back(Reg);
2901           NumExtras--;
2902         }
2903       }
2904       // For non-Thumb1 functions, also check for hi-reg CS registers
2905       if (!AFI->isThumb1OnlyFunction()) {
2906         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2907           unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2908           if (!MRI.isReserved(Reg)) {
2909             Extras.push_back(Reg);
2910             NumExtras--;
2911           }
2912         }
2913       }
2914       if (NumExtras == 0) {
2915         for (unsigned Reg : Extras) {
2916           SavedRegs.set(Reg);
2917           if (!MRI.isPhysRegUsed(Reg))
2918             NumExtraCSSpill++;
2919         }
2920       }
2921       while ((RegsNeeded > NumExtraCSSpill) && RS) {
2922         // Reserve a slot closest to SP or frame pointer.
2923         LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2924         const TargetRegisterClass &RC = ARM::GPRRegClass;
2925         unsigned Size = TRI->getSpillSize(RC);
2926         Align Alignment = TRI->getSpillAlign(RC);
2927         RS->addScavengingFrameIndex(
2928             MFI.CreateSpillStackObject(Size, Alignment));
2929         --RegsNeeded;
2930       }
2931     }
2932   }
2933 
2934   if (ForceLRSpill)
2935     SavedRegs.set(ARM::LR);
2936   AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2937 }
2938 
2939 void ARMFrameLowering::updateLRRestored(MachineFunction &MF) {
2940   MachineFrameInfo &MFI = MF.getFrameInfo();
2941   if (!MFI.isCalleeSavedInfoValid())
2942     return;
2943 
2944   // Check if all terminators do not implicitly use LR. Then we can 'restore' LR
2945   // into PC so it is not live out of the return block: Clear the Restored bit
2946   // in that case.
2947   for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) {
2948     if (Info.getReg() != ARM::LR)
2949       continue;
2950     if (all_of(MF, [](const MachineBasicBlock &MBB) {
2951           return all_of(MBB.terminators(), [](const MachineInstr &Term) {
2952             return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET ||
2953                    Term.getOpcode() == ARM::t2LDMIA_RET ||
2954                    Term.getOpcode() == ARM::tPOP_RET;
2955           });
2956         })) {
2957       Info.setRestored(false);
2958       break;
2959     }
2960   }
2961 }
2962 
2963 void ARMFrameLowering::processFunctionBeforeFrameFinalized(
2964     MachineFunction &MF, RegScavenger *RS) const {
2965   TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS);
2966   updateLRRestored(MF);
2967 }
2968 
2969 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2970                                       BitVector &SavedRegs) const {
2971   TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2972 
2973   // If we have the "returned" parameter attribute which guarantees that we
2974   // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2975   // record that fact for IPRA.
2976   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2977   if (AFI->getPreservesR0())
2978     SavedRegs.set(ARM::R0);
2979 }
2980 
2981 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2982     MachineFunction &MF, const TargetRegisterInfo *TRI,
2983     std::vector<CalleeSavedInfo> &CSI) const {
2984   // For CMSE entry functions, handle floating-point context as if it was a
2985   // callee-saved register.
2986   if (STI.hasV8_1MMainlineOps() &&
2987       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2988     CSI.emplace_back(ARM::FPCXTNS);
2989     CSI.back().setRestored(false);
2990   }
2991 
2992   // For functions, which sign their return address, upon function entry, the
2993   // return address PAC is computed in R12. Treat R12 as a callee-saved register
2994   // in this case.
2995   const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
2996   if (AFI.shouldSignReturnAddress()) {
2997     // The order of register must match the order we push them, because the
2998     // PEI assigns frame indices in that order. That order depends on the
2999     // PushPopSplitVariation, there are only two cases which we use with return
3000     // address signing:
3001     switch (STI.getPushPopSplitVariation(MF)) {
3002     case ARMSubtarget::SplitR7:
3003       // LR, R7, R6, R5, R4, <R12>, R11, R10,  R9,  R8, D15-D8
3004       CSI.insert(find_if(CSI,
3005                          [=](const auto &CS) {
3006                            Register Reg = CS.getReg();
3007                            return Reg == ARM::R10 || Reg == ARM::R11 ||
3008                                   Reg == ARM::R8 || Reg == ARM::R9 ||
3009                                   ARM::DPRRegClass.contains(Reg);
3010                          }),
3011                  CalleeSavedInfo(ARM::R12));
3012       break;
3013     case ARMSubtarget::SplitR11AAPCSSignRA:
3014       // With SplitR11AAPCSSignRA, R12 will always be the highest-addressed CSR
3015       // on the stack.
3016       CSI.insert(CSI.begin(), CalleeSavedInfo(ARM::R12));
3017       break;
3018     case ARMSubtarget::NoSplit:
3019       assert(!MF.getTarget().Options.DisableFramePointerElim(MF) &&
3020              "ABI-required frame pointers need a CSR split when signing return "
3021              "address.");
3022       CSI.insert(find_if(CSI,
3023                          [=](const auto &CS) {
3024                            Register Reg = CS.getReg();
3025                            return Reg != ARM::LR;
3026                          }),
3027                  CalleeSavedInfo(ARM::R12));
3028       break;
3029     default:
3030       llvm_unreachable("Unexpected CSR split with return address signing");
3031     }
3032   }
3033 
3034   return false;
3035 }
3036 
3037 const TargetFrameLowering::SpillSlot *
3038 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
3039   static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
3040   NumEntries = std::size(FixedSpillOffsets);
3041   return FixedSpillOffsets;
3042 }
3043 
3044 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
3045     MachineFunction &MF, MachineBasicBlock &MBB,
3046     MachineBasicBlock::iterator I) const {
3047   const ARMBaseInstrInfo &TII =
3048       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
3049   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3050   bool isARM = !AFI->isThumbFunction();
3051   DebugLoc dl = I->getDebugLoc();
3052   unsigned Opc = I->getOpcode();
3053   bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
3054   unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
3055 
3056   assert(!AFI->isThumb1OnlyFunction() &&
3057          "This eliminateCallFramePseudoInstr does not support Thumb1!");
3058 
3059   int PIdx = I->findFirstPredOperandIdx();
3060   ARMCC::CondCodes Pred = (PIdx == -1)
3061                               ? ARMCC::AL
3062                               : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
3063   unsigned PredReg = TII.getFramePred(*I);
3064 
3065   if (!hasReservedCallFrame(MF)) {
3066     // Bail early if the callee is expected to do the adjustment.
3067     if (IsDestroy && CalleePopAmount != -1U)
3068       return MBB.erase(I);
3069 
3070     // If we have alloca, convert as follows:
3071     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
3072     // ADJCALLSTACKUP   -> add, sp, sp, amount
3073     unsigned Amount = TII.getFrameSize(*I);
3074     if (Amount != 0) {
3075       // We need to keep the stack aligned properly.  To do this, we round the
3076       // amount of space needed for the outgoing arguments up to the next
3077       // alignment boundary.
3078       Amount = alignSPAdjust(Amount);
3079 
3080       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
3081         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
3082                      Pred, PredReg);
3083       } else {
3084         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
3085         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
3086                      Pred, PredReg);
3087       }
3088     }
3089   } else if (CalleePopAmount != -1U) {
3090     // If the calling convention demands that the callee pops arguments from the
3091     // stack, we want to add it back if we have a reserved call frame.
3092     emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
3093                  MachineInstr::NoFlags, Pred, PredReg);
3094   }
3095   return MBB.erase(I);
3096 }
3097 
3098 /// Get the minimum constant for ARM that is greater than or equal to the
3099 /// argument. In ARM, constants can have any value that can be produced by
3100 /// rotating an 8-bit value to the right by an even number of bits within a
3101 /// 32-bit word.
3102 static uint32_t alignToARMConstant(uint32_t Value) {
3103   unsigned Shifted = 0;
3104 
3105   if (Value == 0)
3106       return 0;
3107 
3108   while (!(Value & 0xC0000000)) {
3109       Value = Value << 2;
3110       Shifted += 2;
3111   }
3112 
3113   bool Carry = (Value & 0x00FFFFFF);
3114   Value = ((Value & 0xFF000000) >> 24) + Carry;
3115 
3116   if (Value & 0x0000100)
3117       Value = Value & 0x000001FC;
3118 
3119   if (Shifted > 24)
3120       Value = Value >> (Shifted - 24);
3121   else
3122       Value = Value << (24 - Shifted);
3123 
3124   return Value;
3125 }
3126 
3127 // The stack limit in the TCB is set to this many bytes above the actual
3128 // stack limit.
3129 static const uint64_t kSplitStackAvailable = 256;
3130 
3131 // Adjust the function prologue to enable split stacks. This currently only
3132 // supports android and linux.
3133 //
3134 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
3135 // must be well defined in order to allow for consistent implementations of the
3136 // __morestack helper function. The ABI is also not a normal ABI in that it
3137 // doesn't follow the normal calling conventions because this allows the
3138 // prologue of each function to be optimized further.
3139 //
3140 // Currently, the ABI looks like (when calling __morestack)
3141 //
3142 //  * r4 holds the minimum stack size requested for this function call
3143 //  * r5 holds the stack size of the arguments to the function
3144 //  * the beginning of the function is 3 instructions after the call to
3145 //    __morestack
3146 //
3147 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
3148 // place the arguments on to the new stack, and the 3-instruction knowledge to
3149 // jump directly to the body of the function when working on the new stack.
3150 //
3151 // An old (and possibly no longer compatible) implementation of __morestack for
3152 // ARM can be found at [1].
3153 //
3154 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
3155 void ARMFrameLowering::adjustForSegmentedStacks(
3156     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
3157   unsigned Opcode;
3158   unsigned CFIIndex;
3159   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
3160   bool Thumb = ST->isThumb();
3161   bool Thumb2 = ST->isThumb2();
3162 
3163   // Sadly, this currently doesn't support varargs, platforms other than
3164   // android/linux. Note that thumb1/thumb2 are support for android/linux.
3165   if (MF.getFunction().isVarArg())
3166     report_fatal_error("Segmented stacks do not support vararg functions.");
3167   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
3168     report_fatal_error("Segmented stacks not supported on this platform.");
3169 
3170   MachineFrameInfo &MFI = MF.getFrameInfo();
3171   MCContext &Context = MF.getContext();
3172   const MCRegisterInfo *MRI = Context.getRegisterInfo();
3173   const ARMBaseInstrInfo &TII =
3174       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
3175   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
3176   DebugLoc DL;
3177 
3178   if (!MFI.needsSplitStackProlog())
3179     return;
3180 
3181   uint64_t StackSize = MFI.getStackSize();
3182 
3183   // Use R4 and R5 as scratch registers.
3184   // We save R4 and R5 before use and restore them before leaving the function.
3185   unsigned ScratchReg0 = ARM::R4;
3186   unsigned ScratchReg1 = ARM::R5;
3187   unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm;
3188   uint64_t AlignedStackSize;
3189 
3190   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
3191   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
3192   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
3193   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
3194   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
3195 
3196   // Grab everything that reaches PrologueMBB to update there liveness as well.
3197   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
3198   SmallVector<MachineBasicBlock *, 2> WalkList;
3199   WalkList.push_back(&PrologueMBB);
3200 
3201   do {
3202     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
3203     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
3204       if (BeforePrologueRegion.insert(PredBB).second)
3205         WalkList.push_back(PredBB);
3206     }
3207   } while (!WalkList.empty());
3208 
3209   // The order in that list is important.
3210   // The blocks will all be inserted before PrologueMBB using that order.
3211   // Therefore the block that should appear first in the CFG should appear
3212   // first in the list.
3213   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
3214                                       PostStackMBB};
3215 
3216   for (MachineBasicBlock *B : AddedBlocks)
3217     BeforePrologueRegion.insert(B);
3218 
3219   for (const auto &LI : PrologueMBB.liveins()) {
3220     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
3221       PredBB->addLiveIn(LI);
3222   }
3223 
3224   // Remove the newly added blocks from the list, since we know
3225   // we do not have to do the following updates for them.
3226   for (MachineBasicBlock *B : AddedBlocks) {
3227     BeforePrologueRegion.erase(B);
3228     MF.insert(PrologueMBB.getIterator(), B);
3229   }
3230 
3231   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
3232     // Make sure the LiveIns are still sorted and unique.
3233     MBB->sortUniqueLiveIns();
3234     // Replace the edges to PrologueMBB by edges to the sequences
3235     // we are about to add, but only update for immediate predecessors.
3236     if (MBB->isSuccessor(&PrologueMBB))
3237       MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
3238   }
3239 
3240   // The required stack size that is aligned to ARM constant criterion.
3241   AlignedStackSize = alignToARMConstant(StackSize);
3242 
3243   // When the frame size is less than 256 we just compare the stack
3244   // boundary directly to the value of the stack pointer, per gcc.
3245   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
3246 
3247   // We will use two of the callee save registers as scratch registers so we
3248   // need to save those registers onto the stack.
3249   // We will use SR0 to hold stack limit and SR1 to hold the stack size
3250   // requested and arguments for __morestack().
3251   // SR0: Scratch Register #0
3252   // SR1: Scratch Register #1
3253   // push {SR0, SR1}
3254   if (Thumb) {
3255     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
3256         .add(predOps(ARMCC::AL))
3257         .addReg(ScratchReg0)
3258         .addReg(ScratchReg1);
3259   } else {
3260     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
3261         .addReg(ARM::SP, RegState::Define)
3262         .addReg(ARM::SP)
3263         .add(predOps(ARMCC::AL))
3264         .addReg(ScratchReg0)
3265         .addReg(ScratchReg1);
3266   }
3267 
3268   // Emit the relevant DWARF information about the change in stack pointer as
3269   // well as where to find both r4 and r5 (the callee-save registers)
3270   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3271     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
3272     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3273         .addCFIIndex(CFIIndex);
3274     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3275         nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
3276     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3277         .addCFIIndex(CFIIndex);
3278     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3279         nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
3280     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3281         .addCFIIndex(CFIIndex);
3282   }
3283 
3284   // mov SR1, sp
3285   if (Thumb) {
3286     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
3287         .addReg(ARM::SP)
3288         .add(predOps(ARMCC::AL));
3289   } else if (CompareStackPointer) {
3290     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
3291         .addReg(ARM::SP)
3292         .add(predOps(ARMCC::AL))
3293         .add(condCodeOp());
3294   }
3295 
3296   // sub SR1, sp, #StackSize
3297   if (!CompareStackPointer && Thumb) {
3298     if (AlignedStackSize < 256) {
3299       BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
3300           .add(condCodeOp())
3301           .addReg(ScratchReg1)
3302           .addImm(AlignedStackSize)
3303           .add(predOps(ARMCC::AL));
3304     } else {
3305       if (Thumb2 || ST->genExecuteOnly()) {
3306         BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0)
3307             .addImm(AlignedStackSize);
3308       } else {
3309         auto MBBI = McrMBB->end();
3310         auto RegInfo = STI.getRegisterInfo();
3311         RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3312                                    AlignedStackSize);
3313       }
3314       BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
3315           .add(condCodeOp())
3316           .addReg(ScratchReg1)
3317           .addReg(ScratchReg0)
3318           .add(predOps(ARMCC::AL));
3319     }
3320   } else if (!CompareStackPointer) {
3321     if (AlignedStackSize < 256) {
3322       BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
3323           .addReg(ARM::SP)
3324           .addImm(AlignedStackSize)
3325           .add(predOps(ARMCC::AL))
3326           .add(condCodeOp());
3327     } else {
3328       auto MBBI = McrMBB->end();
3329       auto RegInfo = STI.getRegisterInfo();
3330       RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3331                                  AlignedStackSize);
3332       BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
3333           .addReg(ARM::SP)
3334           .addReg(ScratchReg0)
3335           .add(predOps(ARMCC::AL))
3336           .add(condCodeOp());
3337     }
3338   }
3339 
3340   if (Thumb && ST->isThumb1Only()) {
3341     if (ST->genExecuteOnly()) {
3342       BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0)
3343           .addExternalSymbol("__STACK_LIMIT");
3344     } else {
3345       unsigned PCLabelId = ARMFI->createPICLabelUId();
3346       ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
3347           MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
3348       MachineConstantPool *MCP = MF.getConstantPool();
3349       unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
3350 
3351       // ldr SR0, [pc, offset(STACK_LIMIT)]
3352       BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
3353           .addConstantPoolIndex(CPI)
3354           .add(predOps(ARMCC::AL));
3355     }
3356 
3357     // ldr SR0, [SR0]
3358     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
3359         .addReg(ScratchReg0)
3360         .addImm(0)
3361         .add(predOps(ARMCC::AL));
3362   } else {
3363     // Get TLS base address from the coprocessor
3364     // mrc p15, #0, SR0, c13, c0, #3
3365     BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
3366             ScratchReg0)
3367         .addImm(15)
3368         .addImm(0)
3369         .addImm(13)
3370         .addImm(0)
3371         .addImm(3)
3372         .add(predOps(ARMCC::AL));
3373 
3374     // Use the last tls slot on android and a private field of the TCP on linux.
3375     assert(ST->isTargetAndroid() || ST->isTargetLinux());
3376     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
3377 
3378     // Get the stack limit from the right offset
3379     // ldr SR0, [sr0, #4 * TlsOffset]
3380     BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
3381             ScratchReg0)
3382         .addReg(ScratchReg0)
3383         .addImm(4 * TlsOffset)
3384         .add(predOps(ARMCC::AL));
3385   }
3386 
3387   // Compare stack limit with stack size requested.
3388   // cmp SR0, SR1
3389   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
3390   BuildMI(GetMBB, DL, TII.get(Opcode))
3391       .addReg(ScratchReg0)
3392       .addReg(ScratchReg1)
3393       .add(predOps(ARMCC::AL));
3394 
3395   // This jump is taken if StackLimit <= SP - stack required.
3396   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
3397   BuildMI(GetMBB, DL, TII.get(Opcode))
3398       .addMBB(PostStackMBB)
3399       .addImm(ARMCC::LS)
3400       .addReg(ARM::CPSR);
3401 
3402   // Calling __morestack(StackSize, Size of stack arguments).
3403   // __morestack knows that the stack size requested is in SR0(r4)
3404   // and amount size of stack arguments is in SR1(r5).
3405 
3406   // Pass first argument for the __morestack by Scratch Register #0.
3407   //   The amount size of stack required
3408   if (Thumb) {
3409     if (AlignedStackSize < 256) {
3410       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
3411           .add(condCodeOp())
3412           .addImm(AlignedStackSize)
3413           .add(predOps(ARMCC::AL));
3414     } else {
3415       if (Thumb2 || ST->genExecuteOnly()) {
3416         BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0)
3417             .addImm(AlignedStackSize);
3418       } else {
3419         auto MBBI = AllocMBB->end();
3420         auto RegInfo = STI.getRegisterInfo();
3421         RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3422                                    AlignedStackSize);
3423       }
3424     }
3425   } else {
3426     if (AlignedStackSize < 256) {
3427       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
3428           .addImm(AlignedStackSize)
3429           .add(predOps(ARMCC::AL))
3430           .add(condCodeOp());
3431     } else {
3432       auto MBBI = AllocMBB->end();
3433       auto RegInfo = STI.getRegisterInfo();
3434       RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3435                                  AlignedStackSize);
3436     }
3437   }
3438 
3439   // Pass second argument for the __morestack by Scratch Register #1.
3440   //   The amount size of stack consumed to save function arguments.
3441   if (Thumb) {
3442     if (ARMFI->getArgumentStackSize() < 256) {
3443       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
3444           .add(condCodeOp())
3445           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3446           .add(predOps(ARMCC::AL));
3447     } else {
3448       if (Thumb2 || ST->genExecuteOnly()) {
3449         BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1)
3450             .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
3451       } else {
3452         auto MBBI = AllocMBB->end();
3453         auto RegInfo = STI.getRegisterInfo();
3454         RegInfo->emitLoadConstPool(
3455             *AllocMBB, MBBI, DL, ScratchReg1, 0,
3456             alignToARMConstant(ARMFI->getArgumentStackSize()));
3457       }
3458     }
3459   } else {
3460     if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
3461       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
3462           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3463           .add(predOps(ARMCC::AL))
3464           .add(condCodeOp());
3465     } else {
3466       auto MBBI = AllocMBB->end();
3467       auto RegInfo = STI.getRegisterInfo();
3468       RegInfo->emitLoadConstPool(
3469           *AllocMBB, MBBI, DL, ScratchReg1, 0,
3470           alignToARMConstant(ARMFI->getArgumentStackSize()));
3471     }
3472   }
3473 
3474   // push {lr} - Save return address of this function.
3475   if (Thumb) {
3476     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
3477         .add(predOps(ARMCC::AL))
3478         .addReg(ARM::LR);
3479   } else {
3480     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
3481         .addReg(ARM::SP, RegState::Define)
3482         .addReg(ARM::SP)
3483         .add(predOps(ARMCC::AL))
3484         .addReg(ARM::LR);
3485   }
3486 
3487   // Emit the DWARF info about the change in stack as well as where to find the
3488   // previous link register
3489   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3490     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
3491     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3492         .addCFIIndex(CFIIndex);
3493     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3494         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
3495     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3496         .addCFIIndex(CFIIndex);
3497   }
3498 
3499   // Call __morestack().
3500   if (Thumb) {
3501     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
3502         .add(predOps(ARMCC::AL))
3503         .addExternalSymbol("__morestack");
3504   } else {
3505     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
3506         .addExternalSymbol("__morestack");
3507   }
3508 
3509   // pop {lr} - Restore return address of this original function.
3510   if (Thumb) {
3511     if (ST->isThumb1Only()) {
3512       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3513           .add(predOps(ARMCC::AL))
3514           .addReg(ScratchReg0);
3515       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
3516           .addReg(ScratchReg0)
3517           .add(predOps(ARMCC::AL));
3518     } else {
3519       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
3520           .addReg(ARM::LR, RegState::Define)
3521           .addReg(ARM::SP, RegState::Define)
3522           .addReg(ARM::SP)
3523           .addImm(4)
3524           .add(predOps(ARMCC::AL));
3525     }
3526   } else {
3527     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3528         .addReg(ARM::SP, RegState::Define)
3529         .addReg(ARM::SP)
3530         .add(predOps(ARMCC::AL))
3531         .addReg(ARM::LR);
3532   }
3533 
3534   // Restore SR0 and SR1 in case of __morestack() was called.
3535   // __morestack() will skip PostStackMBB block so we need to restore
3536   // scratch registers from here.
3537   // pop {SR0, SR1}
3538   if (Thumb) {
3539     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3540         .add(predOps(ARMCC::AL))
3541         .addReg(ScratchReg0)
3542         .addReg(ScratchReg1);
3543   } else {
3544     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3545         .addReg(ARM::SP, RegState::Define)
3546         .addReg(ARM::SP)
3547         .add(predOps(ARMCC::AL))
3548         .addReg(ScratchReg0)
3549         .addReg(ScratchReg1);
3550   }
3551 
3552   // Update the CFA offset now that we've popped
3553   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3554     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3555     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3556         .addCFIIndex(CFIIndex);
3557   }
3558 
3559   // Return from this function.
3560   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
3561 
3562   // Restore SR0 and SR1 in case of __morestack() was not called.
3563   // pop {SR0, SR1}
3564   if (Thumb) {
3565     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
3566         .add(predOps(ARMCC::AL))
3567         .addReg(ScratchReg0)
3568         .addReg(ScratchReg1);
3569   } else {
3570     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
3571         .addReg(ARM::SP, RegState::Define)
3572         .addReg(ARM::SP)
3573         .add(predOps(ARMCC::AL))
3574         .addReg(ScratchReg0)
3575         .addReg(ScratchReg1);
3576   }
3577 
3578   // Update the CFA offset now that we've popped
3579   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3580     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3581     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3582         .addCFIIndex(CFIIndex);
3583 
3584     // Tell debuggers that r4 and r5 are now the same as they were in the
3585     // previous function, that they're the "Same Value".
3586     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3587         nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
3588     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3589         .addCFIIndex(CFIIndex);
3590     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3591         nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
3592     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3593         .addCFIIndex(CFIIndex);
3594   }
3595 
3596   // Organizing MBB lists
3597   PostStackMBB->addSuccessor(&PrologueMBB);
3598 
3599   AllocMBB->addSuccessor(PostStackMBB);
3600 
3601   GetMBB->addSuccessor(PostStackMBB);
3602   GetMBB->addSuccessor(AllocMBB);
3603 
3604   McrMBB->addSuccessor(GetMBB);
3605 
3606   PrevStackMBB->addSuccessor(McrMBB);
3607 
3608 #ifdef EXPENSIVE_CHECKS
3609   MF.verify();
3610 #endif
3611 }
3612