1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the ARM-specific support for the FastISel class. Some 10 // of the target-specific code is generated by tablegen in the file 11 // ARMGenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBaseRegisterInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMSubtarget.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "MCTargetDesc/ARMBaseInfo.h" 25 #include "Utils/ARMBaseInfo.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/CodeGen/CallingConvLower.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetLowering.h" 45 #include "llvm/CodeGen/TargetOpcodes.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/ValueTypes.h" 48 #include "llvm/CodeGenTypes/MachineValueType.h" 49 #include "llvm/IR/Argument.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GetElementPtrTypeIterator.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/MathExtras.h" 75 #include "llvm/Target/TargetMachine.h" 76 #include "llvm/Target/TargetOptions.h" 77 #include <cassert> 78 #include <cstdint> 79 #include <utility> 80 81 using namespace llvm; 82 83 namespace { 84 85 // All possible address modes, plus some. 86 struct Address { 87 enum { 88 RegBase, 89 FrameIndexBase 90 } BaseType = RegBase; 91 92 union { 93 unsigned Reg; 94 int FI; 95 } Base; 96 97 int Offset = 0; 98 99 // Innocuous defaults for our address. 100 Address() { 101 Base.Reg = 0; 102 } 103 }; 104 105 class ARMFastISel final : public FastISel { 106 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 107 /// make the right decision when generating code for different targets. 108 const ARMSubtarget *Subtarget; 109 Module &M; 110 const TargetMachine &TM; 111 const TargetInstrInfo &TII; 112 const TargetLowering &TLI; 113 ARMFunctionInfo *AFI; 114 115 // Convenience variables to avoid some queries. 116 bool isThumb2; 117 LLVMContext *Context; 118 119 public: 120 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 121 const TargetLibraryInfo *libInfo) 122 : FastISel(funcInfo, libInfo), 123 Subtarget(&funcInfo.MF->getSubtarget<ARMSubtarget>()), 124 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 125 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), 126 TLI(*Subtarget->getTargetLowering()) { 127 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 128 isThumb2 = AFI->isThumbFunction(); 129 Context = &funcInfo.Fn->getContext(); 130 } 131 132 private: 133 // Code from FastISel.cpp. 134 135 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 136 const TargetRegisterClass *RC, unsigned Op0); 137 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 138 const TargetRegisterClass *RC, 139 unsigned Op0, unsigned Op1); 140 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 141 const TargetRegisterClass *RC, 142 unsigned Op0, uint64_t Imm); 143 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 144 const TargetRegisterClass *RC, 145 uint64_t Imm); 146 147 // Backend specific FastISel code. 148 149 bool fastSelectInstruction(const Instruction *I) override; 150 unsigned fastMaterializeConstant(const Constant *C) override; 151 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 152 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 153 const LoadInst *LI) override; 154 bool fastLowerArguments() override; 155 156 #include "ARMGenFastISel.inc" 157 158 // Instruction selection routines. 159 160 bool SelectLoad(const Instruction *I); 161 bool SelectStore(const Instruction *I); 162 bool SelectBranch(const Instruction *I); 163 bool SelectIndirectBr(const Instruction *I); 164 bool SelectCmp(const Instruction *I); 165 bool SelectFPExt(const Instruction *I); 166 bool SelectFPTrunc(const Instruction *I); 167 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 168 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 169 bool SelectIToFP(const Instruction *I, bool isSigned); 170 bool SelectFPToI(const Instruction *I, bool isSigned); 171 bool SelectDiv(const Instruction *I, bool isSigned); 172 bool SelectRem(const Instruction *I, bool isSigned); 173 bool SelectCall(const Instruction *I, const char *IntrMemName); 174 bool SelectIntrinsicCall(const IntrinsicInst &I); 175 bool SelectSelect(const Instruction *I); 176 bool SelectRet(const Instruction *I); 177 bool SelectTrunc(const Instruction *I); 178 bool SelectIntExt(const Instruction *I); 179 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 180 181 // Utility routines. 182 183 bool isPositionIndependent() const; 184 bool isTypeLegal(Type *Ty, MVT &VT); 185 bool isLoadTypeLegal(Type *Ty, MVT &VT); 186 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 187 bool isZExt); 188 bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 189 MaybeAlign Alignment = std::nullopt, bool isZExt = true, 190 bool allocReg = true); 191 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 192 MaybeAlign Alignment = std::nullopt); 193 bool ARMComputeAddress(const Value *Obj, Address &Addr); 194 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 195 bool ARMIsMemCpySmall(uint64_t Len); 196 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 197 MaybeAlign Alignment); 198 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 199 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 200 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 201 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 202 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 203 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 204 unsigned ARMSelectCallOp(bool UseReg); 205 unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT); 206 207 const TargetLowering *getTargetLowering() { return &TLI; } 208 209 // Call handling routines. 210 211 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 212 bool Return, 213 bool isVarArg); 214 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 215 SmallVectorImpl<Register> &ArgRegs, 216 SmallVectorImpl<MVT> &ArgVTs, 217 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 218 SmallVectorImpl<Register> &RegArgs, 219 CallingConv::ID CC, 220 unsigned &NumBytes, 221 bool isVarArg); 222 unsigned getLibcallReg(const Twine &Name); 223 bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, 224 const Instruction *I, CallingConv::ID CC, 225 unsigned &NumBytes, bool isVarArg); 226 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 227 228 // OptionalDef handling routines. 229 230 bool isARMNEONPred(const MachineInstr *MI); 231 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 232 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 233 void AddLoadStoreOperands(MVT VT, Address &Addr, 234 const MachineInstrBuilder &MIB, 235 MachineMemOperand::Flags Flags, bool useAM3); 236 }; 237 238 } // end anonymous namespace 239 240 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 241 // we don't care about implicit defs here, just places we'll need to add a 242 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 243 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 244 if (!MI->hasOptionalDef()) 245 return false; 246 247 // Look to see if our OptionalDef is defining CPSR or CCR. 248 for (const MachineOperand &MO : MI->operands()) { 249 if (!MO.isReg() || !MO.isDef()) continue; 250 if (MO.getReg() == ARM::CPSR) 251 *CPSR = true; 252 } 253 return true; 254 } 255 256 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 257 const MCInstrDesc &MCID = MI->getDesc(); 258 259 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 260 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 261 AFI->isThumb2Function()) 262 return MI->isPredicable(); 263 264 for (const MCOperandInfo &opInfo : MCID.operands()) 265 if (opInfo.isPredicate()) 266 return true; 267 268 return false; 269 } 270 271 // If the machine is predicable go ahead and add the predicate operands, if 272 // it needs default CC operands add those. 273 // TODO: If we want to support thumb1 then we'll need to deal with optional 274 // CPSR defs that need to be added before the remaining operands. See s_cc_out 275 // for descriptions why. 276 const MachineInstrBuilder & 277 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 278 MachineInstr *MI = &*MIB; 279 280 // Do we use a predicate? or... 281 // Are we NEON in ARM mode and have a predicate operand? If so, I know 282 // we're not predicable but add it anyways. 283 if (isARMNEONPred(MI)) 284 MIB.add(predOps(ARMCC::AL)); 285 286 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 287 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 288 bool CPSR = false; 289 if (DefinesOptionalPredicate(MI, &CPSR)) 290 MIB.add(CPSR ? t1CondCodeOp() : condCodeOp()); 291 return MIB; 292 } 293 294 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 295 const TargetRegisterClass *RC, 296 unsigned Op0) { 297 Register ResultReg = createResultReg(RC); 298 const MCInstrDesc &II = TII.get(MachineInstOpcode); 299 300 // Make sure the input operand is sufficiently constrained to be legal 301 // for this instruction. 302 Op0 = constrainOperandRegClass(II, Op0, 1); 303 if (II.getNumDefs() >= 1) { 304 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, 305 ResultReg).addReg(Op0)); 306 } else { 307 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 308 .addReg(Op0)); 309 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 310 TII.get(TargetOpcode::COPY), ResultReg) 311 .addReg(II.implicit_defs()[0])); 312 } 313 return ResultReg; 314 } 315 316 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 317 const TargetRegisterClass *RC, 318 unsigned Op0, unsigned Op1) { 319 Register ResultReg = createResultReg(RC); 320 const MCInstrDesc &II = TII.get(MachineInstOpcode); 321 322 // Make sure the input operands are sufficiently constrained to be legal 323 // for this instruction. 324 Op0 = constrainOperandRegClass(II, Op0, 1); 325 Op1 = constrainOperandRegClass(II, Op1, 2); 326 327 if (II.getNumDefs() >= 1) { 328 AddOptionalDefs( 329 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 330 .addReg(Op0) 331 .addReg(Op1)); 332 } else { 333 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 334 .addReg(Op0) 335 .addReg(Op1)); 336 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 337 TII.get(TargetOpcode::COPY), ResultReg) 338 .addReg(II.implicit_defs()[0])); 339 } 340 return ResultReg; 341 } 342 343 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 344 const TargetRegisterClass *RC, 345 unsigned Op0, uint64_t Imm) { 346 Register ResultReg = createResultReg(RC); 347 const MCInstrDesc &II = TII.get(MachineInstOpcode); 348 349 // Make sure the input operand is sufficiently constrained to be legal 350 // for this instruction. 351 Op0 = constrainOperandRegClass(II, Op0, 1); 352 if (II.getNumDefs() >= 1) { 353 AddOptionalDefs( 354 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 355 .addReg(Op0) 356 .addImm(Imm)); 357 } else { 358 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 359 .addReg(Op0) 360 .addImm(Imm)); 361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 362 TII.get(TargetOpcode::COPY), ResultReg) 363 .addReg(II.implicit_defs()[0])); 364 } 365 return ResultReg; 366 } 367 368 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 369 const TargetRegisterClass *RC, 370 uint64_t Imm) { 371 Register ResultReg = createResultReg(RC); 372 const MCInstrDesc &II = TII.get(MachineInstOpcode); 373 374 if (II.getNumDefs() >= 1) { 375 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, 376 ResultReg).addImm(Imm)); 377 } else { 378 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 379 .addImm(Imm)); 380 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 381 TII.get(TargetOpcode::COPY), ResultReg) 382 .addReg(II.implicit_defs()[0])); 383 } 384 return ResultReg; 385 } 386 387 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 388 // checks from the various callers. 389 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 390 if (VT == MVT::f64) return 0; 391 392 Register MoveReg = createResultReg(TLI.getRegClassFor(VT)); 393 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 394 TII.get(ARM::VMOVSR), MoveReg) 395 .addReg(SrcReg)); 396 return MoveReg; 397 } 398 399 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 400 if (VT == MVT::i64) return 0; 401 402 Register MoveReg = createResultReg(TLI.getRegClassFor(VT)); 403 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 404 TII.get(ARM::VMOVRS), MoveReg) 405 .addReg(SrcReg)); 406 return MoveReg; 407 } 408 409 // For double width floating point we need to materialize two constants 410 // (the high and the low) into integer registers then use a move to get 411 // the combined constant into an FP reg. 412 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 413 const APFloat Val = CFP->getValueAPF(); 414 bool is64bit = VT == MVT::f64; 415 416 // This checks to see if we can use VFP3 instructions to materialize 417 // a constant, otherwise we have to go through the constant pool. 418 if (TLI.isFPImmLegal(Val, VT)) { 419 int Imm; 420 unsigned Opc; 421 if (is64bit) { 422 Imm = ARM_AM::getFP64Imm(Val); 423 Opc = ARM::FCONSTD; 424 } else { 425 Imm = ARM_AM::getFP32Imm(Val); 426 Opc = ARM::FCONSTS; 427 } 428 Register DestReg = createResultReg(TLI.getRegClassFor(VT)); 429 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 430 TII.get(Opc), DestReg).addImm(Imm)); 431 return DestReg; 432 } 433 434 // Require VFP2 for loading fp constants. 435 if (!Subtarget->hasVFP2Base()) return false; 436 437 // MachineConstantPool wants an explicit alignment. 438 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 439 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment); 440 Register DestReg = createResultReg(TLI.getRegClassFor(VT)); 441 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 442 443 // The extra reg is for addrmode5. 444 AddOptionalDefs( 445 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 446 .addConstantPoolIndex(Idx) 447 .addReg(0)); 448 return DestReg; 449 } 450 451 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 452 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 453 return 0; 454 455 // If we can do this in a single instruction without a constant pool entry 456 // do so now. 457 const ConstantInt *CI = cast<ConstantInt>(C); 458 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 459 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 460 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 461 &ARM::GPRRegClass; 462 Register ImmReg = createResultReg(RC); 463 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 464 TII.get(Opc), ImmReg) 465 .addImm(CI->getZExtValue())); 466 return ImmReg; 467 } 468 469 // Use MVN to emit negative constants. 470 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 471 unsigned Imm = (unsigned)~(CI->getSExtValue()); 472 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 473 (ARM_AM::getSOImmVal(Imm) != -1); 474 if (UseImm) { 475 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 476 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 477 &ARM::GPRRegClass; 478 Register ImmReg = createResultReg(RC); 479 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 480 TII.get(Opc), ImmReg) 481 .addImm(Imm)); 482 return ImmReg; 483 } 484 } 485 486 unsigned ResultReg = 0; 487 if (Subtarget->useMovt()) 488 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 489 490 if (ResultReg) 491 return ResultReg; 492 493 // Load from constant pool. For now 32-bit only. 494 if (VT != MVT::i32) 495 return 0; 496 497 // MachineConstantPool wants an explicit alignment. 498 Align Alignment = DL.getPrefTypeAlign(C->getType()); 499 unsigned Idx = MCP.getConstantPoolIndex(C, Alignment); 500 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 501 if (isThumb2) 502 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 503 TII.get(ARM::t2LDRpci), ResultReg) 504 .addConstantPoolIndex(Idx)); 505 else { 506 // The extra immediate is for addrmode2. 507 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 508 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 509 TII.get(ARM::LDRcp), ResultReg) 510 .addConstantPoolIndex(Idx) 511 .addImm(0)); 512 } 513 return ResultReg; 514 } 515 516 bool ARMFastISel::isPositionIndependent() const { 517 return TLI.isPositionIndependent(); 518 } 519 520 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 521 // For now 32-bit only. 522 if (VT != MVT::i32 || GV->isThreadLocal()) return 0; 523 524 // ROPI/RWPI not currently supported. 525 if (Subtarget->isROPI() || Subtarget->isRWPI()) 526 return 0; 527 528 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV); 529 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 530 : &ARM::GPRRegClass; 531 Register DestReg = createResultReg(RC); 532 533 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 534 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 535 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 536 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 537 538 bool IsPositionIndependent = isPositionIndependent(); 539 // Use movw+movt when possible, it avoids constant pool entries. 540 // Non-darwin targets only support static movt relocations in FastISel. 541 if (Subtarget->useMovt() && 542 (Subtarget->isTargetMachO() || !IsPositionIndependent)) { 543 unsigned Opc; 544 unsigned char TF = 0; 545 if (Subtarget->isTargetMachO()) 546 TF = ARMII::MO_NONLAZY; 547 548 if (IsPositionIndependent) 549 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 550 else 551 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 552 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 553 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 554 } else { 555 // MachineConstantPool wants an explicit alignment. 556 Align Alignment = DL.getPrefTypeAlign(GV->getType()); 557 558 if (Subtarget->isTargetELF() && IsPositionIndependent) 559 return ARMLowerPICELF(GV, VT); 560 561 // Grab index. 562 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; 563 unsigned Id = AFI->createPICLabelUId(); 564 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 565 ARMCP::CPValue, 566 PCAdj); 567 unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment); 568 569 // Load value. 570 MachineInstrBuilder MIB; 571 if (isThumb2) { 572 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; 573 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 574 DestReg).addConstantPoolIndex(Idx); 575 if (IsPositionIndependent) 576 MIB.addImm(Id); 577 AddOptionalDefs(MIB); 578 } else { 579 // The extra immediate is for addrmode2. 580 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 581 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 582 TII.get(ARM::LDRcp), DestReg) 583 .addConstantPoolIndex(Idx) 584 .addImm(0); 585 AddOptionalDefs(MIB); 586 587 if (IsPositionIndependent) { 588 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 589 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 590 591 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 592 MIMD, TII.get(Opc), NewDestReg) 593 .addReg(DestReg) 594 .addImm(Id); 595 AddOptionalDefs(MIB); 596 return NewDestReg; 597 } 598 } 599 } 600 601 if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) || 602 (Subtarget->isTargetMachO() && IsIndirect)) { 603 MachineInstrBuilder MIB; 604 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 605 if (isThumb2) 606 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 607 TII.get(ARM::t2LDRi12), NewDestReg) 608 .addReg(DestReg) 609 .addImm(0); 610 else 611 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 612 TII.get(ARM::LDRi12), NewDestReg) 613 .addReg(DestReg) 614 .addImm(0); 615 DestReg = NewDestReg; 616 AddOptionalDefs(MIB); 617 } 618 619 return DestReg; 620 } 621 622 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 623 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 624 625 // Only handle simple types. 626 if (!CEVT.isSimple()) return 0; 627 MVT VT = CEVT.getSimpleVT(); 628 629 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 630 return ARMMaterializeFP(CFP, VT); 631 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 632 return ARMMaterializeGV(GV, VT); 633 else if (isa<ConstantInt>(C)) 634 return ARMMaterializeInt(C, VT); 635 636 return 0; 637 } 638 639 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 640 641 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 642 // Don't handle dynamic allocas. 643 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 644 645 MVT VT; 646 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 647 648 DenseMap<const AllocaInst*, int>::iterator SI = 649 FuncInfo.StaticAllocaMap.find(AI); 650 651 // This will get lowered later into the correct offsets and registers 652 // via rewriteXFrameIndex. 653 if (SI != FuncInfo.StaticAllocaMap.end()) { 654 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 655 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 656 Register ResultReg = createResultReg(RC); 657 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 658 659 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 660 TII.get(Opc), ResultReg) 661 .addFrameIndex(SI->second) 662 .addImm(0)); 663 return ResultReg; 664 } 665 666 return 0; 667 } 668 669 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 670 EVT evt = TLI.getValueType(DL, Ty, true); 671 672 // Only handle simple types. 673 if (evt == MVT::Other || !evt.isSimple()) return false; 674 VT = evt.getSimpleVT(); 675 676 // Handle all legal types, i.e. a register that will directly hold this 677 // value. 678 return TLI.isTypeLegal(VT); 679 } 680 681 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 682 if (isTypeLegal(Ty, VT)) return true; 683 684 // If this is a type than can be sign or zero-extended to a basic operation 685 // go ahead and accept it now. 686 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 687 return true; 688 689 return false; 690 } 691 692 // Computes the address to get to an object. 693 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 694 // Some boilerplate from the X86 FastISel. 695 const User *U = nullptr; 696 unsigned Opcode = Instruction::UserOp1; 697 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 698 // Don't walk into other basic blocks unless the object is an alloca from 699 // another block, otherwise it may not have a virtual register assigned. 700 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 701 FuncInfo.getMBB(I->getParent()) == FuncInfo.MBB) { 702 Opcode = I->getOpcode(); 703 U = I; 704 } 705 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 706 Opcode = C->getOpcode(); 707 U = C; 708 } 709 710 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 711 if (Ty->getAddressSpace() > 255) 712 // Fast instruction selection doesn't support the special 713 // address spaces. 714 return false; 715 716 switch (Opcode) { 717 default: 718 break; 719 case Instruction::BitCast: 720 // Look through bitcasts. 721 return ARMComputeAddress(U->getOperand(0), Addr); 722 case Instruction::IntToPtr: 723 // Look past no-op inttoptrs. 724 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 725 TLI.getPointerTy(DL)) 726 return ARMComputeAddress(U->getOperand(0), Addr); 727 break; 728 case Instruction::PtrToInt: 729 // Look past no-op ptrtoints. 730 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 731 return ARMComputeAddress(U->getOperand(0), Addr); 732 break; 733 case Instruction::GetElementPtr: { 734 Address SavedAddr = Addr; 735 int TmpOffset = Addr.Offset; 736 737 // Iterate through the GEP folding the constants into offsets where 738 // we can. 739 gep_type_iterator GTI = gep_type_begin(U); 740 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 741 i != e; ++i, ++GTI) { 742 const Value *Op = *i; 743 if (StructType *STy = GTI.getStructTypeOrNull()) { 744 const StructLayout *SL = DL.getStructLayout(STy); 745 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 746 TmpOffset += SL->getElementOffset(Idx); 747 } else { 748 uint64_t S = GTI.getSequentialElementStride(DL); 749 while (true) { 750 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 751 // Constant-offset addressing. 752 TmpOffset += CI->getSExtValue() * S; 753 break; 754 } 755 if (canFoldAddIntoGEP(U, Op)) { 756 // A compatible add with a constant operand. Fold the constant. 757 ConstantInt *CI = 758 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 759 TmpOffset += CI->getSExtValue() * S; 760 // Iterate on the other operand. 761 Op = cast<AddOperator>(Op)->getOperand(0); 762 continue; 763 } 764 // Unsupported 765 goto unsupported_gep; 766 } 767 } 768 } 769 770 // Try to grab the base operand now. 771 Addr.Offset = TmpOffset; 772 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 773 774 // We failed, restore everything and try the other options. 775 Addr = SavedAddr; 776 777 unsupported_gep: 778 break; 779 } 780 case Instruction::Alloca: { 781 const AllocaInst *AI = cast<AllocaInst>(Obj); 782 DenseMap<const AllocaInst*, int>::iterator SI = 783 FuncInfo.StaticAllocaMap.find(AI); 784 if (SI != FuncInfo.StaticAllocaMap.end()) { 785 Addr.BaseType = Address::FrameIndexBase; 786 Addr.Base.FI = SI->second; 787 return true; 788 } 789 break; 790 } 791 } 792 793 // Try to get this in a register if nothing else has worked. 794 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 795 return Addr.Base.Reg != 0; 796 } 797 798 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 799 bool needsLowering = false; 800 switch (VT.SimpleTy) { 801 default: llvm_unreachable("Unhandled load/store type!"); 802 case MVT::i1: 803 case MVT::i8: 804 case MVT::i16: 805 case MVT::i32: 806 if (!useAM3) { 807 // Integer loads/stores handle 12-bit offsets. 808 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 809 // Handle negative offsets. 810 if (needsLowering && isThumb2) 811 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 812 Addr.Offset > -256); 813 } else { 814 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 815 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 816 } 817 break; 818 case MVT::f32: 819 case MVT::f64: 820 // Floating point operands handle 8-bit offsets. 821 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 822 break; 823 } 824 825 // If this is a stack pointer and the offset needs to be simplified then 826 // put the alloca address into a register, set the base type back to 827 // register and continue. This should almost never happen. 828 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 829 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 830 : &ARM::GPRRegClass; 831 Register ResultReg = createResultReg(RC); 832 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 833 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 834 TII.get(Opc), ResultReg) 835 .addFrameIndex(Addr.Base.FI) 836 .addImm(0)); 837 Addr.Base.Reg = ResultReg; 838 Addr.BaseType = Address::RegBase; 839 } 840 841 // Since the offset is too large for the load/store instruction 842 // get the reg+offset into a register. 843 if (needsLowering) { 844 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 845 Addr.Offset, MVT::i32); 846 Addr.Offset = 0; 847 } 848 } 849 850 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 851 const MachineInstrBuilder &MIB, 852 MachineMemOperand::Flags Flags, 853 bool useAM3) { 854 // addrmode5 output depends on the selection dag addressing dividing the 855 // offset by 4 that it then later multiplies. Do this here as well. 856 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 857 Addr.Offset /= 4; 858 859 // Frame base works a bit differently. Handle it separately. 860 if (Addr.BaseType == Address::FrameIndexBase) { 861 int FI = Addr.Base.FI; 862 int Offset = Addr.Offset; 863 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 864 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, 865 MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); 866 // Now add the rest of the operands. 867 MIB.addFrameIndex(FI); 868 869 // ARM halfword load/stores and signed byte loads need an additional 870 // operand. 871 if (useAM3) { 872 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 873 MIB.addReg(0); 874 MIB.addImm(Imm); 875 } else { 876 MIB.addImm(Addr.Offset); 877 } 878 MIB.addMemOperand(MMO); 879 } else { 880 // Now add the rest of the operands. 881 MIB.addReg(Addr.Base.Reg); 882 883 // ARM halfword load/stores and signed byte loads need an additional 884 // operand. 885 if (useAM3) { 886 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 887 MIB.addReg(0); 888 MIB.addImm(Imm); 889 } else { 890 MIB.addImm(Addr.Offset); 891 } 892 } 893 AddOptionalDefs(MIB); 894 } 895 896 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 897 MaybeAlign Alignment, bool isZExt, 898 bool allocReg) { 899 unsigned Opc; 900 bool useAM3 = false; 901 bool needVMOV = false; 902 const TargetRegisterClass *RC; 903 switch (VT.SimpleTy) { 904 // This is mostly going to be Neon/vector support. 905 default: return false; 906 case MVT::i1: 907 case MVT::i8: 908 if (isThumb2) { 909 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 910 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 911 else 912 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 913 } else { 914 if (isZExt) { 915 Opc = ARM::LDRBi12; 916 } else { 917 Opc = ARM::LDRSB; 918 useAM3 = true; 919 } 920 } 921 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 922 break; 923 case MVT::i16: 924 if (Alignment && *Alignment < Align(2) && 925 !Subtarget->allowsUnalignedMem()) 926 return false; 927 928 if (isThumb2) { 929 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 930 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 931 else 932 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 933 } else { 934 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 935 useAM3 = true; 936 } 937 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 938 break; 939 case MVT::i32: 940 if (Alignment && *Alignment < Align(4) && 941 !Subtarget->allowsUnalignedMem()) 942 return false; 943 944 if (isThumb2) { 945 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 946 Opc = ARM::t2LDRi8; 947 else 948 Opc = ARM::t2LDRi12; 949 } else { 950 Opc = ARM::LDRi12; 951 } 952 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 953 break; 954 case MVT::f32: 955 if (!Subtarget->hasVFP2Base()) return false; 956 // Unaligned loads need special handling. Floats require word-alignment. 957 if (Alignment && *Alignment < Align(4)) { 958 needVMOV = true; 959 VT = MVT::i32; 960 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 961 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 962 } else { 963 Opc = ARM::VLDRS; 964 RC = TLI.getRegClassFor(VT); 965 } 966 break; 967 case MVT::f64: 968 // Can load and store double precision even without FeatureFP64 969 if (!Subtarget->hasVFP2Base()) return false; 970 // FIXME: Unaligned loads need special handling. Doublewords require 971 // word-alignment. 972 if (Alignment && *Alignment < Align(4)) 973 return false; 974 975 Opc = ARM::VLDRD; 976 RC = TLI.getRegClassFor(VT); 977 break; 978 } 979 // Simplify this down to something we can handle. 980 ARMSimplifyAddress(Addr, VT, useAM3); 981 982 // Create the base instruction, then add the operands. 983 if (allocReg) 984 ResultReg = createResultReg(RC); 985 assert(ResultReg > 255 && "Expected an allocated virtual register."); 986 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 987 TII.get(Opc), ResultReg); 988 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 989 990 // If we had an unaligned load of a float we've converted it to an regular 991 // load. Now we must move from the GRP to the FP register. 992 if (needVMOV) { 993 Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 994 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 995 TII.get(ARM::VMOVSR), MoveReg) 996 .addReg(ResultReg)); 997 ResultReg = MoveReg; 998 } 999 return true; 1000 } 1001 1002 bool ARMFastISel::SelectLoad(const Instruction *I) { 1003 // Atomic loads need special handling. 1004 if (cast<LoadInst>(I)->isAtomic()) 1005 return false; 1006 1007 const Value *SV = I->getOperand(0); 1008 if (TLI.supportSwiftError()) { 1009 // Swifterror values can come from either a function parameter with 1010 // swifterror attribute or an alloca with swifterror attribute. 1011 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1012 if (Arg->hasSwiftErrorAttr()) 1013 return false; 1014 } 1015 1016 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1017 if (Alloca->isSwiftError()) 1018 return false; 1019 } 1020 } 1021 1022 // Verify we have a legal type before going any further. 1023 MVT VT; 1024 if (!isLoadTypeLegal(I->getType(), VT)) 1025 return false; 1026 1027 // See if we can handle this address. 1028 Address Addr; 1029 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1030 1031 Register ResultReg; 1032 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlign())) 1033 return false; 1034 updateValueMap(I, ResultReg); 1035 return true; 1036 } 1037 1038 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1039 MaybeAlign Alignment) { 1040 unsigned StrOpc; 1041 bool useAM3 = false; 1042 switch (VT.SimpleTy) { 1043 // This is mostly going to be Neon/vector support. 1044 default: return false; 1045 case MVT::i1: { 1046 Register Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass 1047 : &ARM::GPRRegClass); 1048 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1049 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1050 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1051 TII.get(Opc), Res) 1052 .addReg(SrcReg).addImm(1)); 1053 SrcReg = Res; 1054 [[fallthrough]]; 1055 } 1056 case MVT::i8: 1057 if (isThumb2) { 1058 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1059 StrOpc = ARM::t2STRBi8; 1060 else 1061 StrOpc = ARM::t2STRBi12; 1062 } else { 1063 StrOpc = ARM::STRBi12; 1064 } 1065 break; 1066 case MVT::i16: 1067 if (Alignment && *Alignment < Align(2) && 1068 !Subtarget->allowsUnalignedMem()) 1069 return false; 1070 1071 if (isThumb2) { 1072 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1073 StrOpc = ARM::t2STRHi8; 1074 else 1075 StrOpc = ARM::t2STRHi12; 1076 } else { 1077 StrOpc = ARM::STRH; 1078 useAM3 = true; 1079 } 1080 break; 1081 case MVT::i32: 1082 if (Alignment && *Alignment < Align(4) && 1083 !Subtarget->allowsUnalignedMem()) 1084 return false; 1085 1086 if (isThumb2) { 1087 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1088 StrOpc = ARM::t2STRi8; 1089 else 1090 StrOpc = ARM::t2STRi12; 1091 } else { 1092 StrOpc = ARM::STRi12; 1093 } 1094 break; 1095 case MVT::f32: 1096 if (!Subtarget->hasVFP2Base()) return false; 1097 // Unaligned stores need special handling. Floats require word-alignment. 1098 if (Alignment && *Alignment < Align(4)) { 1099 Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1100 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1101 TII.get(ARM::VMOVRS), MoveReg) 1102 .addReg(SrcReg)); 1103 SrcReg = MoveReg; 1104 VT = MVT::i32; 1105 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1106 } else { 1107 StrOpc = ARM::VSTRS; 1108 } 1109 break; 1110 case MVT::f64: 1111 // Can load and store double precision even without FeatureFP64 1112 if (!Subtarget->hasVFP2Base()) return false; 1113 // FIXME: Unaligned stores need special handling. Doublewords require 1114 // word-alignment. 1115 if (Alignment && *Alignment < Align(4)) 1116 return false; 1117 1118 StrOpc = ARM::VSTRD; 1119 break; 1120 } 1121 // Simplify this down to something we can handle. 1122 ARMSimplifyAddress(Addr, VT, useAM3); 1123 1124 // Create the base instruction, then add the operands. 1125 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1126 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1127 TII.get(StrOpc)) 1128 .addReg(SrcReg); 1129 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1130 return true; 1131 } 1132 1133 bool ARMFastISel::SelectStore(const Instruction *I) { 1134 Value *Op0 = I->getOperand(0); 1135 unsigned SrcReg = 0; 1136 1137 // Atomic stores need special handling. 1138 if (cast<StoreInst>(I)->isAtomic()) 1139 return false; 1140 1141 const Value *PtrV = I->getOperand(1); 1142 if (TLI.supportSwiftError()) { 1143 // Swifterror values can come from either a function parameter with 1144 // swifterror attribute or an alloca with swifterror attribute. 1145 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1146 if (Arg->hasSwiftErrorAttr()) 1147 return false; 1148 } 1149 1150 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1151 if (Alloca->isSwiftError()) 1152 return false; 1153 } 1154 } 1155 1156 // Verify we have a legal type before going any further. 1157 MVT VT; 1158 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1159 return false; 1160 1161 // Get the value to be stored into a register. 1162 SrcReg = getRegForValue(Op0); 1163 if (SrcReg == 0) return false; 1164 1165 // See if we can handle this address. 1166 Address Addr; 1167 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1168 return false; 1169 1170 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlign())) 1171 return false; 1172 return true; 1173 } 1174 1175 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1176 switch (Pred) { 1177 // Needs two compares... 1178 case CmpInst::FCMP_ONE: 1179 case CmpInst::FCMP_UEQ: 1180 default: 1181 // AL is our "false" for now. The other two need more compares. 1182 return ARMCC::AL; 1183 case CmpInst::ICMP_EQ: 1184 case CmpInst::FCMP_OEQ: 1185 return ARMCC::EQ; 1186 case CmpInst::ICMP_SGT: 1187 case CmpInst::FCMP_OGT: 1188 return ARMCC::GT; 1189 case CmpInst::ICMP_SGE: 1190 case CmpInst::FCMP_OGE: 1191 return ARMCC::GE; 1192 case CmpInst::ICMP_UGT: 1193 case CmpInst::FCMP_UGT: 1194 return ARMCC::HI; 1195 case CmpInst::FCMP_OLT: 1196 return ARMCC::MI; 1197 case CmpInst::ICMP_ULE: 1198 case CmpInst::FCMP_OLE: 1199 return ARMCC::LS; 1200 case CmpInst::FCMP_ORD: 1201 return ARMCC::VC; 1202 case CmpInst::FCMP_UNO: 1203 return ARMCC::VS; 1204 case CmpInst::FCMP_UGE: 1205 return ARMCC::PL; 1206 case CmpInst::ICMP_SLT: 1207 case CmpInst::FCMP_ULT: 1208 return ARMCC::LT; 1209 case CmpInst::ICMP_SLE: 1210 case CmpInst::FCMP_ULE: 1211 return ARMCC::LE; 1212 case CmpInst::FCMP_UNE: 1213 case CmpInst::ICMP_NE: 1214 return ARMCC::NE; 1215 case CmpInst::ICMP_UGE: 1216 return ARMCC::HS; 1217 case CmpInst::ICMP_ULT: 1218 return ARMCC::LO; 1219 } 1220 } 1221 1222 bool ARMFastISel::SelectBranch(const Instruction *I) { 1223 const BranchInst *BI = cast<BranchInst>(I); 1224 MachineBasicBlock *TBB = FuncInfo.getMBB(BI->getSuccessor(0)); 1225 MachineBasicBlock *FBB = FuncInfo.getMBB(BI->getSuccessor(1)); 1226 1227 // Simple branch support. 1228 1229 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1230 // behavior. 1231 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1232 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1233 // Get the compare predicate. 1234 // Try to take advantage of fallthrough opportunities. 1235 CmpInst::Predicate Predicate = CI->getPredicate(); 1236 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1237 std::swap(TBB, FBB); 1238 Predicate = CmpInst::getInversePredicate(Predicate); 1239 } 1240 1241 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1242 1243 // We may not handle every CC for now. 1244 if (ARMPred == ARMCC::AL) return false; 1245 1246 // Emit the compare. 1247 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1248 return false; 1249 1250 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc)) 1252 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1253 finishCondBranch(BI->getParent(), TBB, FBB); 1254 return true; 1255 } 1256 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1257 MVT SourceVT; 1258 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1259 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1260 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1261 Register OpReg = getRegForValue(TI->getOperand(0)); 1262 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1263 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1264 TII.get(TstOpc)) 1265 .addReg(OpReg).addImm(1)); 1266 1267 unsigned CCMode = ARMCC::NE; 1268 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1269 std::swap(TBB, FBB); 1270 CCMode = ARMCC::EQ; 1271 } 1272 1273 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc)) 1275 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1276 1277 finishCondBranch(BI->getParent(), TBB, FBB); 1278 return true; 1279 } 1280 } else if (const ConstantInt *CI = 1281 dyn_cast<ConstantInt>(BI->getCondition())) { 1282 uint64_t Imm = CI->getZExtValue(); 1283 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1284 fastEmitBranch(Target, MIMD.getDL()); 1285 return true; 1286 } 1287 1288 Register CmpReg = getRegForValue(BI->getCondition()); 1289 if (CmpReg == 0) return false; 1290 1291 // We've been divorced from our compare! Our block was split, and 1292 // now our compare lives in a predecessor block. We musn't 1293 // re-compare here, as the children of the compare aren't guaranteed 1294 // live across the block boundary (we *could* check for this). 1295 // Regardless, the compare has been done in the predecessor block, 1296 // and it left a value for us in a virtual register. Ergo, we test 1297 // the one-bit value left in the virtual register. 1298 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1299 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1300 AddOptionalDefs( 1301 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TstOpc)) 1302 .addReg(CmpReg) 1303 .addImm(1)); 1304 1305 unsigned CCMode = ARMCC::NE; 1306 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1307 std::swap(TBB, FBB); 1308 CCMode = ARMCC::EQ; 1309 } 1310 1311 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1312 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc)) 1313 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1314 finishCondBranch(BI->getParent(), TBB, FBB); 1315 return true; 1316 } 1317 1318 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1319 Register AddrReg = getRegForValue(I->getOperand(0)); 1320 if (AddrReg == 0) return false; 1321 1322 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1323 assert(isThumb2 || Subtarget->hasV4TOps()); 1324 1325 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1326 TII.get(Opc)).addReg(AddrReg)); 1327 1328 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1329 for (const BasicBlock *SuccBB : IB->successors()) 1330 FuncInfo.MBB->addSuccessor(FuncInfo.getMBB(SuccBB)); 1331 1332 return true; 1333 } 1334 1335 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1336 bool isZExt) { 1337 Type *Ty = Src1Value->getType(); 1338 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 1339 if (!SrcEVT.isSimple()) return false; 1340 MVT SrcVT = SrcEVT.getSimpleVT(); 1341 1342 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) 1343 return false; 1344 1345 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) 1346 return false; 1347 1348 // Check to see if the 2nd operand is a constant that we can encode directly 1349 // in the compare. 1350 int Imm = 0; 1351 bool UseImm = false; 1352 bool isNegativeImm = false; 1353 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1354 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1355 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1356 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1357 SrcVT == MVT::i1) { 1358 const APInt &CIVal = ConstInt->getValue(); 1359 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1360 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1361 // then a cmn, because there is no way to represent 2147483648 as a 1362 // signed 32-bit int. 1363 if (Imm < 0 && Imm != (int)0x80000000) { 1364 isNegativeImm = true; 1365 Imm = -Imm; 1366 } 1367 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1368 (ARM_AM::getSOImmVal(Imm) != -1); 1369 } 1370 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1371 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1372 if (ConstFP->isZero() && !ConstFP->isNegative()) 1373 UseImm = true; 1374 } 1375 1376 unsigned CmpOpc; 1377 bool isICmp = true; 1378 bool needsExt = false; 1379 switch (SrcVT.SimpleTy) { 1380 default: return false; 1381 // TODO: Verify compares. 1382 case MVT::f32: 1383 isICmp = false; 1384 CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS; 1385 break; 1386 case MVT::f64: 1387 isICmp = false; 1388 CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD; 1389 break; 1390 case MVT::i1: 1391 case MVT::i8: 1392 case MVT::i16: 1393 needsExt = true; 1394 [[fallthrough]]; 1395 case MVT::i32: 1396 if (isThumb2) { 1397 if (!UseImm) 1398 CmpOpc = ARM::t2CMPrr; 1399 else 1400 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1401 } else { 1402 if (!UseImm) 1403 CmpOpc = ARM::CMPrr; 1404 else 1405 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1406 } 1407 break; 1408 } 1409 1410 Register SrcReg1 = getRegForValue(Src1Value); 1411 if (SrcReg1 == 0) return false; 1412 1413 unsigned SrcReg2 = 0; 1414 if (!UseImm) { 1415 SrcReg2 = getRegForValue(Src2Value); 1416 if (SrcReg2 == 0) return false; 1417 } 1418 1419 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1420 if (needsExt) { 1421 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1422 if (SrcReg1 == 0) return false; 1423 if (!UseImm) { 1424 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1425 if (SrcReg2 == 0) return false; 1426 } 1427 } 1428 1429 const MCInstrDesc &II = TII.get(CmpOpc); 1430 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1431 if (!UseImm) { 1432 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1433 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 1434 .addReg(SrcReg1).addReg(SrcReg2)); 1435 } else { 1436 MachineInstrBuilder MIB; 1437 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 1438 .addReg(SrcReg1); 1439 1440 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1441 if (isICmp) 1442 MIB.addImm(Imm); 1443 AddOptionalDefs(MIB); 1444 } 1445 1446 // For floating point we need to move the result to a comparison register 1447 // that we can then use for branches. 1448 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1449 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1450 TII.get(ARM::FMSTAT))); 1451 return true; 1452 } 1453 1454 bool ARMFastISel::SelectCmp(const Instruction *I) { 1455 const CmpInst *CI = cast<CmpInst>(I); 1456 1457 // Get the compare predicate. 1458 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1459 1460 // We may not handle every CC for now. 1461 if (ARMPred == ARMCC::AL) return false; 1462 1463 // Emit the compare. 1464 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1465 return false; 1466 1467 // Now set a register based on the comparison. Explicitly set the predicates 1468 // here. 1469 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1470 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 1471 : &ARM::GPRRegClass; 1472 Register DestReg = createResultReg(RC); 1473 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1474 unsigned ZeroReg = fastMaterializeConstant(Zero); 1475 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1476 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc), DestReg) 1477 .addReg(ZeroReg).addImm(1) 1478 .addImm(ARMPred).addReg(ARM::CPSR); 1479 1480 updateValueMap(I, DestReg); 1481 return true; 1482 } 1483 1484 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1485 // Make sure we have VFP and that we're extending float to double. 1486 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; 1487 1488 Value *V = I->getOperand(0); 1489 if (!I->getType()->isDoubleTy() || 1490 !V->getType()->isFloatTy()) return false; 1491 1492 Register Op = getRegForValue(V); 1493 if (Op == 0) return false; 1494 1495 Register Result = createResultReg(&ARM::DPRRegClass); 1496 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1497 TII.get(ARM::VCVTDS), Result) 1498 .addReg(Op)); 1499 updateValueMap(I, Result); 1500 return true; 1501 } 1502 1503 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1504 // Make sure we have VFP and that we're truncating double to float. 1505 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; 1506 1507 Value *V = I->getOperand(0); 1508 if (!(I->getType()->isFloatTy() && 1509 V->getType()->isDoubleTy())) return false; 1510 1511 Register Op = getRegForValue(V); 1512 if (Op == 0) return false; 1513 1514 Register Result = createResultReg(&ARM::SPRRegClass); 1515 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1516 TII.get(ARM::VCVTSD), Result) 1517 .addReg(Op)); 1518 updateValueMap(I, Result); 1519 return true; 1520 } 1521 1522 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1523 // Make sure we have VFP. 1524 if (!Subtarget->hasVFP2Base()) return false; 1525 1526 MVT DstVT; 1527 Type *Ty = I->getType(); 1528 if (!isTypeLegal(Ty, DstVT)) 1529 return false; 1530 1531 Value *Src = I->getOperand(0); 1532 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1533 if (!SrcEVT.isSimple()) 1534 return false; 1535 MVT SrcVT = SrcEVT.getSimpleVT(); 1536 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1537 return false; 1538 1539 Register SrcReg = getRegForValue(Src); 1540 if (SrcReg == 0) return false; 1541 1542 // Handle sign-extension. 1543 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1544 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1545 /*isZExt*/!isSigned); 1546 if (SrcReg == 0) return false; 1547 } 1548 1549 // The conversion routine works on fp-reg to fp-reg and the operand above 1550 // was an integer, move it to the fp registers if possible. 1551 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1552 if (FP == 0) return false; 1553 1554 unsigned Opc; 1555 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1556 else if (Ty->isDoubleTy() && Subtarget->hasFP64()) 1557 Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1558 else return false; 1559 1560 Register ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1561 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1562 TII.get(Opc), ResultReg).addReg(FP)); 1563 updateValueMap(I, ResultReg); 1564 return true; 1565 } 1566 1567 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1568 // Make sure we have VFP. 1569 if (!Subtarget->hasVFP2Base()) return false; 1570 1571 MVT DstVT; 1572 Type *RetTy = I->getType(); 1573 if (!isTypeLegal(RetTy, DstVT)) 1574 return false; 1575 1576 Register Op = getRegForValue(I->getOperand(0)); 1577 if (Op == 0) return false; 1578 1579 unsigned Opc; 1580 Type *OpTy = I->getOperand(0)->getType(); 1581 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1582 else if (OpTy->isDoubleTy() && Subtarget->hasFP64()) 1583 Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1584 else return false; 1585 1586 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1587 Register ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1588 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1589 TII.get(Opc), ResultReg).addReg(Op)); 1590 1591 // This result needs to be in an integer register, but the conversion only 1592 // takes place in fp-regs. 1593 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1594 if (IntReg == 0) return false; 1595 1596 updateValueMap(I, IntReg); 1597 return true; 1598 } 1599 1600 bool ARMFastISel::SelectSelect(const Instruction *I) { 1601 MVT VT; 1602 if (!isTypeLegal(I->getType(), VT)) 1603 return false; 1604 1605 // Things need to be register sized for register moves. 1606 if (VT != MVT::i32) return false; 1607 1608 Register CondReg = getRegForValue(I->getOperand(0)); 1609 if (CondReg == 0) return false; 1610 Register Op1Reg = getRegForValue(I->getOperand(1)); 1611 if (Op1Reg == 0) return false; 1612 1613 // Check to see if we can use an immediate in the conditional move. 1614 int Imm = 0; 1615 bool UseImm = false; 1616 bool isNegativeImm = false; 1617 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1618 assert(VT == MVT::i32 && "Expecting an i32."); 1619 Imm = (int)ConstInt->getValue().getZExtValue(); 1620 if (Imm < 0) { 1621 isNegativeImm = true; 1622 Imm = ~Imm; 1623 } 1624 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1625 (ARM_AM::getSOImmVal(Imm) != -1); 1626 } 1627 1628 unsigned Op2Reg = 0; 1629 if (!UseImm) { 1630 Op2Reg = getRegForValue(I->getOperand(2)); 1631 if (Op2Reg == 0) return false; 1632 } 1633 1634 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1635 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); 1636 AddOptionalDefs( 1637 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TstOpc)) 1638 .addReg(CondReg) 1639 .addImm(1)); 1640 1641 unsigned MovCCOpc; 1642 const TargetRegisterClass *RC; 1643 if (!UseImm) { 1644 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1645 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1646 } else { 1647 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1648 if (!isNegativeImm) 1649 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1650 else 1651 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1652 } 1653 Register ResultReg = createResultReg(RC); 1654 if (!UseImm) { 1655 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1656 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1657 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc), 1658 ResultReg) 1659 .addReg(Op2Reg) 1660 .addReg(Op1Reg) 1661 .addImm(ARMCC::NE) 1662 .addReg(ARM::CPSR); 1663 } else { 1664 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1665 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc), 1666 ResultReg) 1667 .addReg(Op1Reg) 1668 .addImm(Imm) 1669 .addImm(ARMCC::EQ) 1670 .addReg(ARM::CPSR); 1671 } 1672 updateValueMap(I, ResultReg); 1673 return true; 1674 } 1675 1676 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1677 MVT VT; 1678 Type *Ty = I->getType(); 1679 if (!isTypeLegal(Ty, VT)) 1680 return false; 1681 1682 // If we have integer div support we should have selected this automagically. 1683 // In case we have a real miss go ahead and return false and we'll pick 1684 // it up later. 1685 if (Subtarget->hasDivideInThumbMode()) 1686 return false; 1687 1688 // Otherwise emit a libcall. 1689 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1690 if (VT == MVT::i8) 1691 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1692 else if (VT == MVT::i16) 1693 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1694 else if (VT == MVT::i32) 1695 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1696 else if (VT == MVT::i64) 1697 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1698 else if (VT == MVT::i128) 1699 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1700 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1701 1702 return ARMEmitLibcall(I, LC); 1703 } 1704 1705 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1706 MVT VT; 1707 Type *Ty = I->getType(); 1708 if (!isTypeLegal(Ty, VT)) 1709 return false; 1710 1711 // Many ABIs do not provide a libcall for standalone remainder, so we need to 1712 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double 1713 // multi-reg returns, we'll have to bail out. 1714 if (!TLI.hasStandaloneRem(VT)) { 1715 return false; 1716 } 1717 1718 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1719 if (VT == MVT::i8) 1720 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1721 else if (VT == MVT::i16) 1722 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1723 else if (VT == MVT::i32) 1724 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1725 else if (VT == MVT::i64) 1726 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1727 else if (VT == MVT::i128) 1728 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1729 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1730 1731 return ARMEmitLibcall(I, LC); 1732 } 1733 1734 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1735 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1736 1737 // We can get here in the case when we have a binary operation on a non-legal 1738 // type and the target independent selector doesn't know how to handle it. 1739 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1740 return false; 1741 1742 unsigned Opc; 1743 switch (ISDOpcode) { 1744 default: return false; 1745 case ISD::ADD: 1746 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1747 break; 1748 case ISD::OR: 1749 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1750 break; 1751 case ISD::SUB: 1752 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1753 break; 1754 } 1755 1756 Register SrcReg1 = getRegForValue(I->getOperand(0)); 1757 if (SrcReg1 == 0) return false; 1758 1759 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1760 // in the instruction, rather then materializing the value in a register. 1761 Register SrcReg2 = getRegForValue(I->getOperand(1)); 1762 if (SrcReg2 == 0) return false; 1763 1764 Register ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1765 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1766 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1767 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1768 TII.get(Opc), ResultReg) 1769 .addReg(SrcReg1).addReg(SrcReg2)); 1770 updateValueMap(I, ResultReg); 1771 return true; 1772 } 1773 1774 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1775 EVT FPVT = TLI.getValueType(DL, I->getType(), true); 1776 if (!FPVT.isSimple()) return false; 1777 MVT VT = FPVT.getSimpleVT(); 1778 1779 // FIXME: Support vector types where possible. 1780 if (VT.isVector()) 1781 return false; 1782 1783 // We can get here in the case when we want to use NEON for our fp 1784 // operations, but can't figure out how to. Just use the vfp instructions 1785 // if we have them. 1786 // FIXME: It'd be nice to use NEON instructions. 1787 Type *Ty = I->getType(); 1788 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) 1789 return false; 1790 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) 1791 return false; 1792 1793 unsigned Opc; 1794 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1795 switch (ISDOpcode) { 1796 default: return false; 1797 case ISD::FADD: 1798 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1799 break; 1800 case ISD::FSUB: 1801 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1802 break; 1803 case ISD::FMUL: 1804 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1805 break; 1806 } 1807 Register Op1 = getRegForValue(I->getOperand(0)); 1808 if (Op1 == 0) return false; 1809 1810 Register Op2 = getRegForValue(I->getOperand(1)); 1811 if (Op2 == 0) return false; 1812 1813 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1814 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1815 TII.get(Opc), ResultReg) 1816 .addReg(Op1).addReg(Op2)); 1817 updateValueMap(I, ResultReg); 1818 return true; 1819 } 1820 1821 // Call Handling Code 1822 1823 // This is largely taken directly from CCAssignFnForNode 1824 // TODO: We may not support all of this. 1825 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1826 bool Return, 1827 bool isVarArg) { 1828 switch (CC) { 1829 default: 1830 report_fatal_error("Unsupported calling convention"); 1831 case CallingConv::Fast: 1832 if (Subtarget->hasVFP2Base() && !isVarArg) { 1833 if (!Subtarget->isAAPCS_ABI()) 1834 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1835 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1836 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1837 } 1838 [[fallthrough]]; 1839 case CallingConv::C: 1840 case CallingConv::CXX_FAST_TLS: 1841 // Use target triple & subtarget features to do actual dispatch. 1842 if (Subtarget->isAAPCS_ABI()) { 1843 if (Subtarget->hasFPRegs() && 1844 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1845 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1846 else 1847 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1848 } else { 1849 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1850 } 1851 case CallingConv::ARM_AAPCS_VFP: 1852 case CallingConv::Swift: 1853 case CallingConv::SwiftTail: 1854 if (!isVarArg) 1855 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1856 // Fall through to soft float variant, variadic functions don't 1857 // use hard floating point ABI. 1858 [[fallthrough]]; 1859 case CallingConv::ARM_AAPCS: 1860 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1861 case CallingConv::ARM_APCS: 1862 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1863 case CallingConv::GHC: 1864 if (Return) 1865 report_fatal_error("Can't return in GHC call convention"); 1866 else 1867 return CC_ARM_APCS_GHC; 1868 case CallingConv::CFGuard_Check: 1869 return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check); 1870 } 1871 } 1872 1873 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1874 SmallVectorImpl<Register> &ArgRegs, 1875 SmallVectorImpl<MVT> &ArgVTs, 1876 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1877 SmallVectorImpl<Register> &RegArgs, 1878 CallingConv::ID CC, 1879 unsigned &NumBytes, 1880 bool isVarArg) { 1881 SmallVector<CCValAssign, 16> ArgLocs; 1882 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1883 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1884 CCAssignFnForCall(CC, false, isVarArg)); 1885 1886 // Check that we can handle all of the arguments. If we can't, then bail out 1887 // now before we add code to the MBB. 1888 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1889 CCValAssign &VA = ArgLocs[i]; 1890 MVT ArgVT = ArgVTs[VA.getValNo()]; 1891 1892 // We don't handle NEON/vector parameters yet. 1893 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1894 return false; 1895 1896 // Now copy/store arg to correct locations. 1897 if (VA.isRegLoc() && !VA.needsCustom()) { 1898 continue; 1899 } else if (VA.needsCustom()) { 1900 // TODO: We need custom lowering for vector (v2f64) args. 1901 if (VA.getLocVT() != MVT::f64 || 1902 // TODO: Only handle register args for now. 1903 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1904 return false; 1905 } else { 1906 switch (ArgVT.SimpleTy) { 1907 default: 1908 return false; 1909 case MVT::i1: 1910 case MVT::i8: 1911 case MVT::i16: 1912 case MVT::i32: 1913 break; 1914 case MVT::f32: 1915 if (!Subtarget->hasVFP2Base()) 1916 return false; 1917 break; 1918 case MVT::f64: 1919 if (!Subtarget->hasVFP2Base()) 1920 return false; 1921 break; 1922 } 1923 } 1924 } 1925 1926 // At the point, we are able to handle the call's arguments in fast isel. 1927 1928 // Get a count of how many bytes are to be pushed on the stack. 1929 NumBytes = CCInfo.getStackSize(); 1930 1931 // Issue CALLSEQ_START 1932 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1933 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1934 TII.get(AdjStackDown)) 1935 .addImm(NumBytes).addImm(0)); 1936 1937 // Process the args. 1938 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1939 CCValAssign &VA = ArgLocs[i]; 1940 const Value *ArgVal = Args[VA.getValNo()]; 1941 Register Arg = ArgRegs[VA.getValNo()]; 1942 MVT ArgVT = ArgVTs[VA.getValNo()]; 1943 1944 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1945 "We don't handle NEON/vector parameters yet."); 1946 1947 // Handle arg promotion, etc. 1948 switch (VA.getLocInfo()) { 1949 case CCValAssign::Full: break; 1950 case CCValAssign::SExt: { 1951 MVT DestVT = VA.getLocVT(); 1952 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1953 assert(Arg != 0 && "Failed to emit a sext"); 1954 ArgVT = DestVT; 1955 break; 1956 } 1957 case CCValAssign::AExt: 1958 // Intentional fall-through. Handle AExt and ZExt. 1959 case CCValAssign::ZExt: { 1960 MVT DestVT = VA.getLocVT(); 1961 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1962 assert(Arg != 0 && "Failed to emit a zext"); 1963 ArgVT = DestVT; 1964 break; 1965 } 1966 case CCValAssign::BCvt: { 1967 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg); 1968 assert(BC != 0 && "Failed to emit a bitcast!"); 1969 Arg = BC; 1970 ArgVT = VA.getLocVT(); 1971 break; 1972 } 1973 default: llvm_unreachable("Unknown arg promotion!"); 1974 } 1975 1976 // Now copy/store arg to correct locations. 1977 if (VA.isRegLoc() && !VA.needsCustom()) { 1978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1979 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1980 RegArgs.push_back(VA.getLocReg()); 1981 } else if (VA.needsCustom()) { 1982 // TODO: We need custom lowering for vector (v2f64) args. 1983 assert(VA.getLocVT() == MVT::f64 && 1984 "Custom lowering for v2f64 args not available"); 1985 1986 // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size() 1987 CCValAssign &NextVA = ArgLocs[++i]; 1988 1989 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1990 "We only handle register args!"); 1991 1992 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1993 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1994 .addReg(NextVA.getLocReg(), RegState::Define) 1995 .addReg(Arg)); 1996 RegArgs.push_back(VA.getLocReg()); 1997 RegArgs.push_back(NextVA.getLocReg()); 1998 } else { 1999 assert(VA.isMemLoc()); 2000 // Need to store on the stack. 2001 2002 // Don't emit stores for undef values. 2003 if (isa<UndefValue>(ArgVal)) 2004 continue; 2005 2006 Address Addr; 2007 Addr.BaseType = Address::RegBase; 2008 Addr.Base.Reg = ARM::SP; 2009 Addr.Offset = VA.getLocMemOffset(); 2010 2011 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2012 assert(EmitRet && "Could not emit a store for argument!"); 2013 } 2014 } 2015 2016 return true; 2017 } 2018 2019 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, 2020 const Instruction *I, CallingConv::ID CC, 2021 unsigned &NumBytes, bool isVarArg) { 2022 // Issue CALLSEQ_END 2023 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2024 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2025 TII.get(AdjStackUp)) 2026 .addImm(NumBytes).addImm(-1ULL)); 2027 2028 // Now the return value. 2029 if (RetVT != MVT::isVoid) { 2030 SmallVector<CCValAssign, 16> RVLocs; 2031 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2032 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2033 2034 // Copy all of the result registers out of their specified physreg. 2035 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2036 // For this move we copy into two registers and then move into the 2037 // double fp reg we want. 2038 MVT DestVT = RVLocs[0].getValVT(); 2039 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2040 Register ResultReg = createResultReg(DstRC); 2041 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2042 TII.get(ARM::VMOVDRR), ResultReg) 2043 .addReg(RVLocs[0].getLocReg()) 2044 .addReg(RVLocs[1].getLocReg())); 2045 2046 UsedRegs.push_back(RVLocs[0].getLocReg()); 2047 UsedRegs.push_back(RVLocs[1].getLocReg()); 2048 2049 // Finally update the result. 2050 updateValueMap(I, ResultReg); 2051 } else { 2052 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2053 MVT CopyVT = RVLocs[0].getValVT(); 2054 2055 // Special handling for extended integers. 2056 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2057 CopyVT = MVT::i32; 2058 2059 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2060 2061 Register ResultReg = createResultReg(DstRC); 2062 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2063 TII.get(TargetOpcode::COPY), 2064 ResultReg).addReg(RVLocs[0].getLocReg()); 2065 UsedRegs.push_back(RVLocs[0].getLocReg()); 2066 2067 // Finally update the result. 2068 updateValueMap(I, ResultReg); 2069 } 2070 } 2071 2072 return true; 2073 } 2074 2075 bool ARMFastISel::SelectRet(const Instruction *I) { 2076 const ReturnInst *Ret = cast<ReturnInst>(I); 2077 const Function &F = *I->getParent()->getParent(); 2078 const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry"); 2079 2080 if (!FuncInfo.CanLowerReturn) 2081 return false; 2082 2083 if (TLI.supportSwiftError() && 2084 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 2085 return false; 2086 2087 if (TLI.supportSplitCSR(FuncInfo.MF)) 2088 return false; 2089 2090 // Build a list of return value registers. 2091 SmallVector<unsigned, 4> RetRegs; 2092 2093 CallingConv::ID CC = F.getCallingConv(); 2094 if (Ret->getNumOperands() > 0) { 2095 SmallVector<ISD::OutputArg, 4> Outs; 2096 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 2097 2098 // Analyze operands of the call, assigning locations to each operand. 2099 SmallVector<CCValAssign, 16> ValLocs; 2100 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2101 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2102 F.isVarArg())); 2103 2104 const Value *RV = Ret->getOperand(0); 2105 Register Reg = getRegForValue(RV); 2106 if (Reg == 0) 2107 return false; 2108 2109 // Only handle a single return value for now. 2110 if (ValLocs.size() != 1) 2111 return false; 2112 2113 CCValAssign &VA = ValLocs[0]; 2114 2115 // Don't bother handling odd stuff for now. 2116 if (VA.getLocInfo() != CCValAssign::Full) 2117 return false; 2118 // Only handle register returns for now. 2119 if (!VA.isRegLoc()) 2120 return false; 2121 2122 unsigned SrcReg = Reg + VA.getValNo(); 2123 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 2124 if (!RVEVT.isSimple()) return false; 2125 MVT RVVT = RVEVT.getSimpleVT(); 2126 MVT DestVT = VA.getValVT(); 2127 // Special handling for extended integers. 2128 if (RVVT != DestVT) { 2129 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2130 return false; 2131 2132 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2133 2134 // Perform extension if flagged as either zext or sext. Otherwise, do 2135 // nothing. 2136 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2137 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2138 if (SrcReg == 0) return false; 2139 } 2140 } 2141 2142 // Make the copy. 2143 Register DstReg = VA.getLocReg(); 2144 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2145 // Avoid a cross-class copy. This is very unlikely. 2146 if (!SrcRC->contains(DstReg)) 2147 return false; 2148 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2149 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2150 2151 // Add register to return instruction. 2152 RetRegs.push_back(VA.getLocReg()); 2153 } 2154 2155 unsigned RetOpc; 2156 if (IsCmseNSEntry) 2157 if (isThumb2) 2158 RetOpc = ARM::tBXNS_RET; 2159 else 2160 llvm_unreachable("CMSE not valid for non-Thumb targets"); 2161 else 2162 RetOpc = Subtarget->getReturnOpcode(); 2163 2164 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2165 TII.get(RetOpc)); 2166 AddOptionalDefs(MIB); 2167 for (unsigned R : RetRegs) 2168 MIB.addReg(R, RegState::Implicit); 2169 return true; 2170 } 2171 2172 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2173 if (UseReg) 2174 return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF); 2175 else 2176 return isThumb2 ? ARM::tBL : ARM::BL; 2177 } 2178 2179 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2180 // Manually compute the global's type to avoid building it when unnecessary. 2181 Type *GVTy = PointerType::get(*Context, /*AS=*/0); 2182 EVT LCREVT = TLI.getValueType(DL, GVTy); 2183 if (!LCREVT.isSimple()) return 0; 2184 2185 GlobalValue *GV = M.getNamedGlobal(Name.str()); 2186 if (!GV) 2187 GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2188 GlobalValue::ExternalLinkage, nullptr, Name); 2189 2190 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2191 } 2192 2193 // A quick function that will emit a call for a named libcall in F with the 2194 // vector of passed arguments for the Instruction in I. We can assume that we 2195 // can emit a call for any libcall we can produce. This is an abridged version 2196 // of the full call infrastructure since we won't need to worry about things 2197 // like computed function pointers or strange arguments at call sites. 2198 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2199 // with X86. 2200 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2201 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2202 2203 // Handle *simple* calls for now. 2204 Type *RetTy = I->getType(); 2205 MVT RetVT; 2206 if (RetTy->isVoidTy()) 2207 RetVT = MVT::isVoid; 2208 else if (!isTypeLegal(RetTy, RetVT)) 2209 return false; 2210 2211 // Can't handle non-double multi-reg retvals. 2212 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2213 SmallVector<CCValAssign, 16> RVLocs; 2214 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2215 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2216 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2217 return false; 2218 } 2219 2220 // Set up the argument vectors. 2221 SmallVector<Value*, 8> Args; 2222 SmallVector<Register, 8> ArgRegs; 2223 SmallVector<MVT, 8> ArgVTs; 2224 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2225 Args.reserve(I->getNumOperands()); 2226 ArgRegs.reserve(I->getNumOperands()); 2227 ArgVTs.reserve(I->getNumOperands()); 2228 ArgFlags.reserve(I->getNumOperands()); 2229 for (Value *Op : I->operands()) { 2230 Register Arg = getRegForValue(Op); 2231 if (Arg == 0) return false; 2232 2233 Type *ArgTy = Op->getType(); 2234 MVT ArgVT; 2235 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2236 2237 ISD::ArgFlagsTy Flags; 2238 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy)); 2239 2240 Args.push_back(Op); 2241 ArgRegs.push_back(Arg); 2242 ArgVTs.push_back(ArgVT); 2243 ArgFlags.push_back(Flags); 2244 } 2245 2246 // Handle the arguments now that we've gotten them. 2247 SmallVector<Register, 4> RegArgs; 2248 unsigned NumBytes; 2249 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2250 RegArgs, CC, NumBytes, false)) 2251 return false; 2252 2253 Register CalleeReg; 2254 if (Subtarget->genLongCalls()) { 2255 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2256 if (CalleeReg == 0) return false; 2257 } 2258 2259 // Issue the call. 2260 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); 2261 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2262 MIMD, TII.get(CallOpc)); 2263 // BL / BLX don't take a predicate, but tBL / tBLX do. 2264 if (isThumb2) 2265 MIB.add(predOps(ARMCC::AL)); 2266 if (Subtarget->genLongCalls()) { 2267 CalleeReg = 2268 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0); 2269 MIB.addReg(CalleeReg); 2270 } else 2271 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2272 2273 // Add implicit physical register uses to the call. 2274 for (Register R : RegArgs) 2275 MIB.addReg(R, RegState::Implicit); 2276 2277 // Add a register mask with the call-preserved registers. 2278 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2279 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2280 2281 // Finish off the call including any return values. 2282 SmallVector<Register, 4> UsedRegs; 2283 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2284 2285 // Set all unused physreg defs as dead. 2286 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2287 2288 return true; 2289 } 2290 2291 bool ARMFastISel::SelectCall(const Instruction *I, 2292 const char *IntrMemName = nullptr) { 2293 const CallInst *CI = cast<CallInst>(I); 2294 const Value *Callee = CI->getCalledOperand(); 2295 2296 // Can't handle inline asm. 2297 if (isa<InlineAsm>(Callee)) return false; 2298 2299 // Allow SelectionDAG isel to handle tail calls. 2300 if (CI->isTailCall()) return false; 2301 2302 // Check the calling convention. 2303 CallingConv::ID CC = CI->getCallingConv(); 2304 2305 // TODO: Avoid some calling conventions? 2306 2307 FunctionType *FTy = CI->getFunctionType(); 2308 bool isVarArg = FTy->isVarArg(); 2309 2310 // Handle *simple* calls for now. 2311 Type *RetTy = I->getType(); 2312 MVT RetVT; 2313 if (RetTy->isVoidTy()) 2314 RetVT = MVT::isVoid; 2315 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2316 RetVT != MVT::i8 && RetVT != MVT::i1) 2317 return false; 2318 2319 // Can't handle non-double multi-reg retvals. 2320 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2321 RetVT != MVT::i16 && RetVT != MVT::i32) { 2322 SmallVector<CCValAssign, 16> RVLocs; 2323 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2324 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2325 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2326 return false; 2327 } 2328 2329 // Set up the argument vectors. 2330 SmallVector<Value*, 8> Args; 2331 SmallVector<Register, 8> ArgRegs; 2332 SmallVector<MVT, 8> ArgVTs; 2333 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2334 unsigned arg_size = CI->arg_size(); 2335 Args.reserve(arg_size); 2336 ArgRegs.reserve(arg_size); 2337 ArgVTs.reserve(arg_size); 2338 ArgFlags.reserve(arg_size); 2339 for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) { 2340 // If we're lowering a memory intrinsic instead of a regular call, skip the 2341 // last argument, which shouldn't be passed to the underlying function. 2342 if (IntrMemName && ArgE - ArgI <= 1) 2343 break; 2344 2345 ISD::ArgFlagsTy Flags; 2346 unsigned ArgIdx = ArgI - CI->arg_begin(); 2347 if (CI->paramHasAttr(ArgIdx, Attribute::SExt)) 2348 Flags.setSExt(); 2349 if (CI->paramHasAttr(ArgIdx, Attribute::ZExt)) 2350 Flags.setZExt(); 2351 2352 // FIXME: Only handle *easy* calls for now. 2353 if (CI->paramHasAttr(ArgIdx, Attribute::InReg) || 2354 CI->paramHasAttr(ArgIdx, Attribute::StructRet) || 2355 CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) || 2356 CI->paramHasAttr(ArgIdx, Attribute::SwiftError) || 2357 CI->paramHasAttr(ArgIdx, Attribute::Nest) || 2358 CI->paramHasAttr(ArgIdx, Attribute::ByVal)) 2359 return false; 2360 2361 Type *ArgTy = (*ArgI)->getType(); 2362 MVT ArgVT; 2363 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2364 ArgVT != MVT::i1) 2365 return false; 2366 2367 Register Arg = getRegForValue(*ArgI); 2368 if (!Arg.isValid()) 2369 return false; 2370 2371 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy)); 2372 2373 Args.push_back(*ArgI); 2374 ArgRegs.push_back(Arg); 2375 ArgVTs.push_back(ArgVT); 2376 ArgFlags.push_back(Flags); 2377 } 2378 2379 // Handle the arguments now that we've gotten them. 2380 SmallVector<Register, 4> RegArgs; 2381 unsigned NumBytes; 2382 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2383 RegArgs, CC, NumBytes, isVarArg)) 2384 return false; 2385 2386 bool UseReg = false; 2387 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2388 if (!GV || Subtarget->genLongCalls()) UseReg = true; 2389 2390 Register CalleeReg; 2391 if (UseReg) { 2392 if (IntrMemName) 2393 CalleeReg = getLibcallReg(IntrMemName); 2394 else 2395 CalleeReg = getRegForValue(Callee); 2396 2397 if (CalleeReg == 0) return false; 2398 } 2399 2400 // Issue the call. 2401 unsigned CallOpc = ARMSelectCallOp(UseReg); 2402 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2403 MIMD, TII.get(CallOpc)); 2404 2405 // ARM calls don't take a predicate, but tBL / tBLX do. 2406 if(isThumb2) 2407 MIB.add(predOps(ARMCC::AL)); 2408 if (UseReg) { 2409 CalleeReg = 2410 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0); 2411 MIB.addReg(CalleeReg); 2412 } else if (!IntrMemName) 2413 MIB.addGlobalAddress(GV, 0, 0); 2414 else 2415 MIB.addExternalSymbol(IntrMemName, 0); 2416 2417 // Add implicit physical register uses to the call. 2418 for (Register R : RegArgs) 2419 MIB.addReg(R, RegState::Implicit); 2420 2421 // Add a register mask with the call-preserved registers. 2422 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2423 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2424 2425 // Finish off the call including any return values. 2426 SmallVector<Register, 4> UsedRegs; 2427 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2428 return false; 2429 2430 // Set all unused physreg defs as dead. 2431 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2432 2433 return true; 2434 } 2435 2436 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2437 return Len <= 16; 2438 } 2439 2440 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 2441 MaybeAlign Alignment) { 2442 // Make sure we don't bloat code by inlining very large memcpy's. 2443 if (!ARMIsMemCpySmall(Len)) 2444 return false; 2445 2446 while (Len) { 2447 MVT VT; 2448 if (!Alignment || *Alignment >= 4) { 2449 if (Len >= 4) 2450 VT = MVT::i32; 2451 else if (Len >= 2) 2452 VT = MVT::i16; 2453 else { 2454 assert(Len == 1 && "Expected a length of 1!"); 2455 VT = MVT::i8; 2456 } 2457 } else { 2458 assert(Alignment && "Alignment is set in this branch"); 2459 // Bound based on alignment. 2460 if (Len >= 2 && *Alignment == 2) 2461 VT = MVT::i16; 2462 else { 2463 VT = MVT::i8; 2464 } 2465 } 2466 2467 bool RV; 2468 Register ResultReg; 2469 RV = ARMEmitLoad(VT, ResultReg, Src); 2470 assert(RV && "Should be able to handle this load."); 2471 RV = ARMEmitStore(VT, ResultReg, Dest); 2472 assert(RV && "Should be able to handle this store."); 2473 (void)RV; 2474 2475 unsigned Size = VT.getSizeInBits()/8; 2476 Len -= Size; 2477 Dest.Offset += Size; 2478 Src.Offset += Size; 2479 } 2480 2481 return true; 2482 } 2483 2484 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2485 // FIXME: Handle more intrinsics. 2486 switch (I.getIntrinsicID()) { 2487 default: return false; 2488 case Intrinsic::frameaddress: { 2489 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 2490 MFI.setFrameAddressIsTaken(true); 2491 2492 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 2493 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 2494 : &ARM::GPRRegClass; 2495 2496 const ARMBaseRegisterInfo *RegInfo = 2497 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); 2498 Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2499 unsigned SrcReg = FramePtr; 2500 2501 // Recursively load frame address 2502 // ldr r0 [fp] 2503 // ldr r0 [r0] 2504 // ldr r0 [r0] 2505 // ... 2506 unsigned DestReg; 2507 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2508 while (Depth--) { 2509 DestReg = createResultReg(RC); 2510 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2511 TII.get(LdrOpc), DestReg) 2512 .addReg(SrcReg).addImm(0)); 2513 SrcReg = DestReg; 2514 } 2515 updateValueMap(&I, SrcReg); 2516 return true; 2517 } 2518 case Intrinsic::memcpy: 2519 case Intrinsic::memmove: { 2520 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2521 // Don't handle volatile. 2522 if (MTI.isVolatile()) 2523 return false; 2524 2525 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2526 // we would emit dead code because we don't currently handle memmoves. 2527 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2528 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2529 // Small memcpy's are common enough that we want to do them without a call 2530 // if possible. 2531 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2532 if (ARMIsMemCpySmall(Len)) { 2533 Address Dest, Src; 2534 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2535 !ARMComputeAddress(MTI.getRawSource(), Src)) 2536 return false; 2537 MaybeAlign Alignment; 2538 if (MTI.getDestAlign() || MTI.getSourceAlign()) 2539 Alignment = std::min(MTI.getDestAlign().valueOrOne(), 2540 MTI.getSourceAlign().valueOrOne()); 2541 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2542 return true; 2543 } 2544 } 2545 2546 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2547 return false; 2548 2549 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2550 return false; 2551 2552 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2553 return SelectCall(&I, IntrMemName); 2554 } 2555 case Intrinsic::memset: { 2556 const MemSetInst &MSI = cast<MemSetInst>(I); 2557 // Don't handle volatile. 2558 if (MSI.isVolatile()) 2559 return false; 2560 2561 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2562 return false; 2563 2564 if (MSI.getDestAddressSpace() > 255) 2565 return false; 2566 2567 return SelectCall(&I, "memset"); 2568 } 2569 case Intrinsic::trap: { 2570 unsigned Opcode; 2571 if (Subtarget->isThumb()) 2572 Opcode = ARM::tTRAP; 2573 else 2574 Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; 2575 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opcode)); 2576 return true; 2577 } 2578 } 2579 } 2580 2581 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2582 // The high bits for a type smaller than the register size are assumed to be 2583 // undefined. 2584 Value *Op = I->getOperand(0); 2585 2586 EVT SrcVT, DestVT; 2587 SrcVT = TLI.getValueType(DL, Op->getType(), true); 2588 DestVT = TLI.getValueType(DL, I->getType(), true); 2589 2590 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2591 return false; 2592 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2593 return false; 2594 2595 Register SrcReg = getRegForValue(Op); 2596 if (!SrcReg) return false; 2597 2598 // Because the high bits are undefined, a truncate doesn't generate 2599 // any code. 2600 updateValueMap(I, SrcReg); 2601 return true; 2602 } 2603 2604 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2605 bool isZExt) { 2606 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2607 return 0; 2608 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2609 return 0; 2610 2611 // Table of which combinations can be emitted as a single instruction, 2612 // and which will require two. 2613 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2614 // ARM Thumb 2615 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2616 // ext: s z s z s z s z 2617 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2618 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2619 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2620 }; 2621 2622 // Target registers for: 2623 // - For ARM can never be PC. 2624 // - For 16-bit Thumb are restricted to lower 8 registers. 2625 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2626 static const TargetRegisterClass *RCTbl[2][2] = { 2627 // Instructions: Two Single 2628 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2629 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2630 }; 2631 2632 // Table governing the instruction(s) to be emitted. 2633 static const struct InstructionTable { 2634 uint32_t Opc : 16; 2635 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2636 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2637 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2638 } IT[2][2][3][2] = { 2639 { // Two instructions (first is left shift, second is in this table). 2640 { // ARM Opc S Shift Imm 2641 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2642 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2643 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2644 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2645 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2646 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2647 }, 2648 { // Thumb Opc S Shift Imm 2649 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2650 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2651 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2652 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2653 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2654 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2655 } 2656 }, 2657 { // Single instruction. 2658 { // ARM Opc S Shift Imm 2659 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2660 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2661 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2662 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2663 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2664 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2665 }, 2666 { // Thumb Opc S Shift Imm 2667 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2668 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2669 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2670 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2671 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2672 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2673 } 2674 } 2675 }; 2676 2677 unsigned SrcBits = SrcVT.getSizeInBits(); 2678 unsigned DestBits = DestVT.getSizeInBits(); 2679 (void) DestBits; 2680 assert((SrcBits < DestBits) && "can only extend to larger types"); 2681 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2682 "other sizes unimplemented"); 2683 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2684 "other sizes unimplemented"); 2685 2686 bool hasV6Ops = Subtarget->hasV6Ops(); 2687 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2688 assert((Bitness < 3) && "sanity-check table bounds"); 2689 2690 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2691 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2692 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2693 unsigned Opc = ITP->Opc; 2694 assert(ARM::KILL != Opc && "Invalid table entry"); 2695 unsigned hasS = ITP->hasS; 2696 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2697 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2698 "only MOVsi has shift operand addressing mode"); 2699 unsigned Imm = ITP->Imm; 2700 2701 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2702 bool setsCPSR = &ARM::tGPRRegClass == RC; 2703 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2704 unsigned ResultReg; 2705 // MOVsi encodes shift and immediate in shift operand addressing mode. 2706 // The following condition has the same value when emitting two 2707 // instruction sequences: both are shifts. 2708 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2709 2710 // Either one or two instructions are emitted. 2711 // They're always of the form: 2712 // dst = in OP imm 2713 // CPSR is set only by 16-bit Thumb instructions. 2714 // Predicate, if any, is AL. 2715 // S bit, if available, is always 0. 2716 // When two are emitted the first's result will feed as the second's input, 2717 // that value is then dead. 2718 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2719 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2720 ResultReg = createResultReg(RC); 2721 bool isLsl = (0 == Instr) && !isSingleInstr; 2722 unsigned Opcode = isLsl ? LSLOpc : Opc; 2723 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2724 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2725 bool isKill = 1 == Instr; 2726 MachineInstrBuilder MIB = BuildMI( 2727 *FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opcode), ResultReg); 2728 if (setsCPSR) 2729 MIB.addReg(ARM::CPSR, RegState::Define); 2730 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2731 MIB.addReg(SrcReg, isKill * RegState::Kill) 2732 .addImm(ImmEnc) 2733 .add(predOps(ARMCC::AL)); 2734 if (hasS) 2735 MIB.add(condCodeOp()); 2736 // Second instruction consumes the first's result. 2737 SrcReg = ResultReg; 2738 } 2739 2740 return ResultReg; 2741 } 2742 2743 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2744 // On ARM, in general, integer casts don't involve legal types; this code 2745 // handles promotable integers. 2746 Type *DestTy = I->getType(); 2747 Value *Src = I->getOperand(0); 2748 Type *SrcTy = Src->getType(); 2749 2750 bool isZExt = isa<ZExtInst>(I); 2751 Register SrcReg = getRegForValue(Src); 2752 if (!SrcReg) return false; 2753 2754 EVT SrcEVT, DestEVT; 2755 SrcEVT = TLI.getValueType(DL, SrcTy, true); 2756 DestEVT = TLI.getValueType(DL, DestTy, true); 2757 if (!SrcEVT.isSimple()) return false; 2758 if (!DestEVT.isSimple()) return false; 2759 2760 MVT SrcVT = SrcEVT.getSimpleVT(); 2761 MVT DestVT = DestEVT.getSimpleVT(); 2762 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2763 if (ResultReg == 0) return false; 2764 updateValueMap(I, ResultReg); 2765 return true; 2766 } 2767 2768 bool ARMFastISel::SelectShift(const Instruction *I, 2769 ARM_AM::ShiftOpc ShiftTy) { 2770 // We handle thumb2 mode by target independent selector 2771 // or SelectionDAG ISel. 2772 if (isThumb2) 2773 return false; 2774 2775 // Only handle i32 now. 2776 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 2777 if (DestVT != MVT::i32) 2778 return false; 2779 2780 unsigned Opc = ARM::MOVsr; 2781 unsigned ShiftImm; 2782 Value *Src2Value = I->getOperand(1); 2783 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2784 ShiftImm = CI->getZExtValue(); 2785 2786 // Fall back to selection DAG isel if the shift amount 2787 // is zero or greater than the width of the value type. 2788 if (ShiftImm == 0 || ShiftImm >=32) 2789 return false; 2790 2791 Opc = ARM::MOVsi; 2792 } 2793 2794 Value *Src1Value = I->getOperand(0); 2795 Register Reg1 = getRegForValue(Src1Value); 2796 if (Reg1 == 0) return false; 2797 2798 unsigned Reg2 = 0; 2799 if (Opc == ARM::MOVsr) { 2800 Reg2 = getRegForValue(Src2Value); 2801 if (Reg2 == 0) return false; 2802 } 2803 2804 Register ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2805 if(ResultReg == 0) return false; 2806 2807 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2808 TII.get(Opc), ResultReg) 2809 .addReg(Reg1); 2810 2811 if (Opc == ARM::MOVsi) 2812 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2813 else if (Opc == ARM::MOVsr) { 2814 MIB.addReg(Reg2); 2815 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2816 } 2817 2818 AddOptionalDefs(MIB); 2819 updateValueMap(I, ResultReg); 2820 return true; 2821 } 2822 2823 // TODO: SoftFP support. 2824 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2825 switch (I->getOpcode()) { 2826 case Instruction::Load: 2827 return SelectLoad(I); 2828 case Instruction::Store: 2829 return SelectStore(I); 2830 case Instruction::Br: 2831 return SelectBranch(I); 2832 case Instruction::IndirectBr: 2833 return SelectIndirectBr(I); 2834 case Instruction::ICmp: 2835 case Instruction::FCmp: 2836 return SelectCmp(I); 2837 case Instruction::FPExt: 2838 return SelectFPExt(I); 2839 case Instruction::FPTrunc: 2840 return SelectFPTrunc(I); 2841 case Instruction::SIToFP: 2842 return SelectIToFP(I, /*isSigned*/ true); 2843 case Instruction::UIToFP: 2844 return SelectIToFP(I, /*isSigned*/ false); 2845 case Instruction::FPToSI: 2846 return SelectFPToI(I, /*isSigned*/ true); 2847 case Instruction::FPToUI: 2848 return SelectFPToI(I, /*isSigned*/ false); 2849 case Instruction::Add: 2850 return SelectBinaryIntOp(I, ISD::ADD); 2851 case Instruction::Or: 2852 return SelectBinaryIntOp(I, ISD::OR); 2853 case Instruction::Sub: 2854 return SelectBinaryIntOp(I, ISD::SUB); 2855 case Instruction::FAdd: 2856 return SelectBinaryFPOp(I, ISD::FADD); 2857 case Instruction::FSub: 2858 return SelectBinaryFPOp(I, ISD::FSUB); 2859 case Instruction::FMul: 2860 return SelectBinaryFPOp(I, ISD::FMUL); 2861 case Instruction::SDiv: 2862 return SelectDiv(I, /*isSigned*/ true); 2863 case Instruction::UDiv: 2864 return SelectDiv(I, /*isSigned*/ false); 2865 case Instruction::SRem: 2866 return SelectRem(I, /*isSigned*/ true); 2867 case Instruction::URem: 2868 return SelectRem(I, /*isSigned*/ false); 2869 case Instruction::Call: 2870 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2871 return SelectIntrinsicCall(*II); 2872 return SelectCall(I); 2873 case Instruction::Select: 2874 return SelectSelect(I); 2875 case Instruction::Ret: 2876 return SelectRet(I); 2877 case Instruction::Trunc: 2878 return SelectTrunc(I); 2879 case Instruction::ZExt: 2880 case Instruction::SExt: 2881 return SelectIntExt(I); 2882 case Instruction::Shl: 2883 return SelectShift(I, ARM_AM::lsl); 2884 case Instruction::LShr: 2885 return SelectShift(I, ARM_AM::lsr); 2886 case Instruction::AShr: 2887 return SelectShift(I, ARM_AM::asr); 2888 default: break; 2889 } 2890 return false; 2891 } 2892 2893 // This table describes sign- and zero-extend instructions which can be 2894 // folded into a preceding load. All of these extends have an immediate 2895 // (sometimes a mask and sometimes a shift) that's applied after 2896 // extension. 2897 static const struct FoldableLoadExtendsStruct { 2898 uint16_t Opc[2]; // ARM, Thumb. 2899 uint8_t ExpectedImm; 2900 uint8_t isZExt : 1; 2901 uint8_t ExpectedVT : 7; 2902 } FoldableLoadExtends[] = { 2903 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2904 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2905 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2906 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2907 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2908 }; 2909 2910 /// The specified machine instr operand is a vreg, and that 2911 /// vreg is being provided by the specified load instruction. If possible, 2912 /// try to fold the load as an operand to the instruction, returning true if 2913 /// successful. 2914 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2915 const LoadInst *LI) { 2916 // Verify we have a legal type before going any further. 2917 MVT VT; 2918 if (!isLoadTypeLegal(LI->getType(), VT)) 2919 return false; 2920 2921 // Combine load followed by zero- or sign-extend. 2922 // ldrb r1, [r0] ldrb r1, [r0] 2923 // uxtb r2, r1 => 2924 // mov r3, r2 mov r3, r1 2925 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2926 return false; 2927 const uint64_t Imm = MI->getOperand(2).getImm(); 2928 2929 bool Found = false; 2930 bool isZExt; 2931 for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) { 2932 if (FLE.Opc[isThumb2] == MI->getOpcode() && 2933 (uint64_t)FLE.ExpectedImm == Imm && 2934 MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) { 2935 Found = true; 2936 isZExt = FLE.isZExt; 2937 } 2938 } 2939 if (!Found) return false; 2940 2941 // See if we can handle this address. 2942 Address Addr; 2943 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2944 2945 Register ResultReg = MI->getOperand(0).getReg(); 2946 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlign(), isZExt, false)) 2947 return false; 2948 MachineBasicBlock::iterator I(MI); 2949 removeDeadCode(I, std::next(I)); 2950 return true; 2951 } 2952 2953 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) { 2954 bool UseGOT_PREL = !GV->isDSOLocal(); 2955 LLVMContext *Context = &MF->getFunction().getContext(); 2956 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2957 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2958 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( 2959 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, 2960 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, 2961 /*AddCurrentAddress=*/UseGOT_PREL); 2962 2963 Align ConstAlign = 2964 MF->getDataLayout().getPrefTypeAlign(PointerType::get(*Context, 0)); 2965 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign); 2966 MachineMemOperand *CPMMO = 2967 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), 2968 MachineMemOperand::MOLoad, 4, Align(4)); 2969 2970 Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass); 2971 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; 2972 MachineInstrBuilder MIB = 2973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), TempReg) 2974 .addConstantPoolIndex(Idx) 2975 .addMemOperand(CPMMO); 2976 if (Opc == ARM::LDRcp) 2977 MIB.addImm(0); 2978 MIB.add(predOps(ARMCC::AL)); 2979 2980 // Fix the address by adding pc. 2981 Register DestReg = createResultReg(TLI.getRegClassFor(VT)); 2982 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR 2983 : ARM::PICADD; 2984 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0); 2985 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 2986 .addReg(TempReg) 2987 .addImm(ARMPCLabelIndex); 2988 2989 if (!Subtarget->isThumb()) 2990 MIB.add(predOps(ARMCC::AL)); 2991 2992 if (UseGOT_PREL && Subtarget->isThumb()) { 2993 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 2994 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2995 TII.get(ARM::t2LDRi12), NewDestReg) 2996 .addReg(DestReg) 2997 .addImm(0); 2998 DestReg = NewDestReg; 2999 AddOptionalDefs(MIB); 3000 } 3001 return DestReg; 3002 } 3003 3004 bool ARMFastISel::fastLowerArguments() { 3005 if (!FuncInfo.CanLowerReturn) 3006 return false; 3007 3008 const Function *F = FuncInfo.Fn; 3009 if (F->isVarArg()) 3010 return false; 3011 3012 CallingConv::ID CC = F->getCallingConv(); 3013 switch (CC) { 3014 default: 3015 return false; 3016 case CallingConv::Fast: 3017 case CallingConv::C: 3018 case CallingConv::ARM_AAPCS_VFP: 3019 case CallingConv::ARM_AAPCS: 3020 case CallingConv::ARM_APCS: 3021 case CallingConv::Swift: 3022 case CallingConv::SwiftTail: 3023 break; 3024 } 3025 3026 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3027 // which are passed in r0 - r3. 3028 for (const Argument &Arg : F->args()) { 3029 if (Arg.getArgNo() >= 4) 3030 return false; 3031 3032 if (Arg.hasAttribute(Attribute::InReg) || 3033 Arg.hasAttribute(Attribute::StructRet) || 3034 Arg.hasAttribute(Attribute::SwiftSelf) || 3035 Arg.hasAttribute(Attribute::SwiftError) || 3036 Arg.hasAttribute(Attribute::ByVal)) 3037 return false; 3038 3039 Type *ArgTy = Arg.getType(); 3040 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3041 return false; 3042 3043 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3044 if (!ArgVT.isSimple()) return false; 3045 switch (ArgVT.getSimpleVT().SimpleTy) { 3046 case MVT::i8: 3047 case MVT::i16: 3048 case MVT::i32: 3049 break; 3050 default: 3051 return false; 3052 } 3053 } 3054 3055 static const MCPhysReg GPRArgRegs[] = { 3056 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3057 }; 3058 3059 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3060 for (const Argument &Arg : F->args()) { 3061 unsigned ArgNo = Arg.getArgNo(); 3062 unsigned SrcReg = GPRArgRegs[ArgNo]; 3063 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3064 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3065 // Without this, EmitLiveInCopies may eliminate the livein if its only 3066 // use is a bitcast (which isn't turned into an instruction). 3067 Register ResultReg = createResultReg(RC); 3068 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3069 TII.get(TargetOpcode::COPY), 3070 ResultReg).addReg(DstReg, getKillRegState(true)); 3071 updateValueMap(&Arg, ResultReg); 3072 } 3073 3074 return true; 3075 } 3076 3077 namespace llvm { 3078 3079 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3080 const TargetLibraryInfo *libInfo) { 3081 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) 3082 return new ARMFastISel(funcInfo, libInfo); 3083 3084 return nullptr; 3085 } 3086 3087 } // end namespace llvm 3088