1 //===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This pass adds instructions to enable whole quad mode (strict or non-strict) 11 /// for pixel shaders, and strict whole wavefront mode for all programs. 12 /// 13 /// The "strict" prefix indicates that inactive lanes do not take part in 14 /// control flow, specifically an inactive lane enabled by a strict WQM/WWM will 15 /// always be enabled irrespective of control flow decisions. Conversely in 16 /// non-strict WQM inactive lanes may control flow decisions. 17 /// 18 /// Whole quad mode is required for derivative computations, but it interferes 19 /// with shader side effects (stores and atomics). It ensures that WQM is 20 /// enabled when necessary, but disabled around stores and atomics. 21 /// 22 /// When necessary, this pass creates a function prolog 23 /// 24 /// S_MOV_B64 LiveMask, EXEC 25 /// S_WQM_B64 EXEC, EXEC 26 /// 27 /// to enter WQM at the top of the function and surrounds blocks of Exact 28 /// instructions by 29 /// 30 /// S_AND_SAVEEXEC_B64 Tmp, LiveMask 31 /// ... 32 /// S_MOV_B64 EXEC, Tmp 33 /// 34 /// We also compute when a sequence of instructions requires strict whole 35 /// wavefront mode (StrictWWM) and insert instructions to save and restore it: 36 /// 37 /// S_OR_SAVEEXEC_B64 Tmp, -1 38 /// ... 39 /// S_MOV_B64 EXEC, Tmp 40 /// 41 /// When a sequence of instructions requires strict whole quad mode (StrictWQM) 42 /// we use a similar save and restore mechanism and force whole quad mode for 43 /// those instructions: 44 /// 45 /// S_MOV_B64 Tmp, EXEC 46 /// S_WQM_B64 EXEC, EXEC 47 /// ... 48 /// S_MOV_B64 EXEC, Tmp 49 /// 50 /// In order to avoid excessive switching during sequences of Exact 51 /// instructions, the pass first analyzes which instructions must be run in WQM 52 /// (aka which instructions produce values that lead to derivative 53 /// computations). 54 /// 55 /// Basic blocks are always exited in WQM as long as some successor needs WQM. 56 /// 57 /// There is room for improvement given better control flow analysis: 58 /// 59 /// (1) at the top level (outside of control flow statements, and as long as 60 /// kill hasn't been used), one SGPR can be saved by recovering WQM from 61 /// the LiveMask (this is implemented for the entry block). 62 /// 63 /// (2) when entire regions (e.g. if-else blocks or entire loops) only 64 /// consist of exact and don't-care instructions, the switch only has to 65 /// be done at the entry and exit points rather than potentially in each 66 /// block of the region. 67 /// 68 //===----------------------------------------------------------------------===// 69 70 #include "AMDGPU.h" 71 #include "GCNSubtarget.h" 72 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 73 #include "llvm/ADT/MapVector.h" 74 #include "llvm/ADT/PostOrderIterator.h" 75 #include "llvm/CodeGen/LiveIntervals.h" 76 #include "llvm/CodeGen/MachineBasicBlock.h" 77 #include "llvm/CodeGen/MachineDominators.h" 78 #include "llvm/CodeGen/MachineFunctionPass.h" 79 #include "llvm/CodeGen/MachineInstr.h" 80 #include "llvm/CodeGen/MachinePostDominators.h" 81 #include "llvm/IR/CallingConv.h" 82 #include "llvm/InitializePasses.h" 83 #include "llvm/Support/raw_ostream.h" 84 85 using namespace llvm; 86 87 #define DEBUG_TYPE "si-wqm" 88 89 namespace { 90 91 enum { 92 StateWQM = 0x1, 93 StateStrictWWM = 0x2, 94 StateStrictWQM = 0x4, 95 StateExact = 0x8, 96 StateStrict = StateStrictWWM | StateStrictWQM, 97 }; 98 99 struct PrintState { 100 public: 101 int State; 102 103 explicit PrintState(int State) : State(State) {} 104 }; 105 106 #ifndef NDEBUG 107 static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) { 108 109 static const std::pair<char, const char *> Mapping[] = { 110 std::pair(StateWQM, "WQM"), std::pair(StateStrictWWM, "StrictWWM"), 111 std::pair(StateStrictWQM, "StrictWQM"), std::pair(StateExact, "Exact")}; 112 char State = PS.State; 113 for (auto M : Mapping) { 114 if (State & M.first) { 115 OS << M.second; 116 State &= ~M.first; 117 118 if (State) 119 OS << '|'; 120 } 121 } 122 assert(State == 0); 123 return OS; 124 } 125 #endif 126 127 struct InstrInfo { 128 char Needs = 0; 129 char Disabled = 0; 130 char OutNeeds = 0; 131 char MarkedStates = 0; 132 }; 133 134 struct BlockInfo { 135 char Needs = 0; 136 char InNeeds = 0; 137 char OutNeeds = 0; 138 char InitialState = 0; 139 bool NeedsLowering = false; 140 }; 141 142 struct WorkItem { 143 MachineBasicBlock *MBB = nullptr; 144 MachineInstr *MI = nullptr; 145 146 WorkItem() = default; 147 WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {} 148 WorkItem(MachineInstr *MI) : MI(MI) {} 149 }; 150 151 class SIWholeQuadMode : public MachineFunctionPass { 152 private: 153 const SIInstrInfo *TII; 154 const SIRegisterInfo *TRI; 155 const GCNSubtarget *ST; 156 MachineRegisterInfo *MRI; 157 LiveIntervals *LIS; 158 MachineDominatorTree *MDT; 159 MachinePostDominatorTree *PDT; 160 161 unsigned AndOpc; 162 unsigned AndTermOpc; 163 unsigned AndN2Opc; 164 unsigned XorOpc; 165 unsigned AndSaveExecOpc; 166 unsigned AndSaveExecTermOpc; 167 unsigned WQMOpc; 168 Register Exec; 169 Register LiveMaskReg; 170 171 DenseMap<const MachineInstr *, InstrInfo> Instructions; 172 MapVector<MachineBasicBlock *, BlockInfo> Blocks; 173 174 // Tracks state (WQM/StrictWWM/StrictWQM/Exact) after a given instruction 175 DenseMap<const MachineInstr *, char> StateTransition; 176 177 SmallVector<MachineInstr *, 2> LiveMaskQueries; 178 SmallVector<MachineInstr *, 4> LowerToMovInstrs; 179 SmallSetVector<MachineInstr *, 4> LowerToCopyInstrs; 180 SmallVector<MachineInstr *, 4> KillInstrs; 181 SmallVector<MachineInstr *, 4> InitExecInstrs; 182 SmallVector<MachineInstr *, 4> SetInactiveInstrs; 183 184 void printInfo(); 185 186 void markInstruction(MachineInstr &MI, char Flag, 187 std::vector<WorkItem> &Worklist); 188 void markDefs(const MachineInstr &UseMI, LiveRange &LR, Register Reg, 189 unsigned SubReg, char Flag, std::vector<WorkItem> &Worklist); 190 void markOperand(const MachineInstr &MI, const MachineOperand &Op, char Flag, 191 std::vector<WorkItem> &Worklist); 192 void markInstructionUses(const MachineInstr &MI, char Flag, 193 std::vector<WorkItem> &Worklist); 194 char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist); 195 void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist); 196 void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist); 197 char analyzeFunction(MachineFunction &MF); 198 199 MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB, 200 MachineBasicBlock::iterator Before); 201 MachineBasicBlock::iterator 202 prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 203 MachineBasicBlock::iterator Last, bool PreferLast, 204 bool SaveSCC); 205 void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 206 Register SaveWQM); 207 void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 208 Register SavedWQM); 209 void toStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before, 210 Register SaveOrig, char StrictStateNeeded); 211 void fromStrictMode(MachineBasicBlock &MBB, 212 MachineBasicBlock::iterator Before, Register SavedOrig, 213 char NonStrictState, char CurrentStrictState); 214 215 void splitBlock(MachineInstr *TermMI); 216 MachineInstr *lowerKillI1(MachineInstr &MI, bool IsWQM); 217 MachineInstr *lowerKillF32(MachineInstr &MI); 218 219 void lowerBlock(MachineBasicBlock &MBB, BlockInfo &BI); 220 void processBlock(MachineBasicBlock &MBB, BlockInfo &BI, bool IsEntry); 221 222 bool lowerLiveMaskQueries(); 223 bool lowerCopyInstrs(); 224 bool lowerKillInstrs(bool IsWQM); 225 void lowerInitExec(MachineInstr &MI); 226 MachineBasicBlock::iterator lowerInitExecInstrs(MachineBasicBlock &Entry, 227 bool &Changed); 228 229 public: 230 static char ID; 231 232 SIWholeQuadMode() : 233 MachineFunctionPass(ID) { } 234 235 bool runOnMachineFunction(MachineFunction &MF) override; 236 237 StringRef getPassName() const override { return "SI Whole Quad Mode"; } 238 239 void getAnalysisUsage(AnalysisUsage &AU) const override { 240 AU.addRequired<LiveIntervalsWrapperPass>(); 241 AU.addPreserved<SlotIndexesWrapperPass>(); 242 AU.addPreserved<LiveIntervalsWrapperPass>(); 243 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 244 AU.addPreserved<MachinePostDominatorTreeWrapperPass>(); 245 MachineFunctionPass::getAnalysisUsage(AU); 246 } 247 248 MachineFunctionProperties getClearedProperties() const override { 249 return MachineFunctionProperties().set( 250 MachineFunctionProperties::Property::IsSSA); 251 } 252 }; 253 254 } // end anonymous namespace 255 256 char SIWholeQuadMode::ID = 0; 257 258 INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 259 false) 260 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 261 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 262 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass) 263 INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false, 264 false) 265 266 char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID; 267 268 FunctionPass *llvm::createSIWholeQuadModePass() { 269 return new SIWholeQuadMode; 270 } 271 272 #ifndef NDEBUG 273 LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() { 274 for (const auto &BII : Blocks) { 275 dbgs() << "\n" 276 << printMBBReference(*BII.first) << ":\n" 277 << " InNeeds = " << PrintState(BII.second.InNeeds) 278 << ", Needs = " << PrintState(BII.second.Needs) 279 << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n"; 280 281 for (const MachineInstr &MI : *BII.first) { 282 auto III = Instructions.find(&MI); 283 if (III != Instructions.end()) { 284 dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs) 285 << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n'; 286 } 287 } 288 } 289 } 290 #endif 291 292 void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag, 293 std::vector<WorkItem> &Worklist) { 294 InstrInfo &II = Instructions[&MI]; 295 296 assert(!(Flag & StateExact) && Flag != 0); 297 298 // Capture all states requested in marking including disabled ones. 299 II.MarkedStates |= Flag; 300 301 // Remove any disabled states from the flag. The user that required it gets 302 // an undefined value in the helper lanes. For example, this can happen if 303 // the result of an atomic is used by instruction that requires WQM, where 304 // ignoring the request for WQM is correct as per the relevant specs. 305 Flag &= ~II.Disabled; 306 307 // Ignore if the flag is already encompassed by the existing needs, or we 308 // just disabled everything. 309 if ((II.Needs & Flag) == Flag) 310 return; 311 312 LLVM_DEBUG(dbgs() << "markInstruction " << PrintState(Flag) << ": " << MI); 313 II.Needs |= Flag; 314 Worklist.emplace_back(&MI); 315 } 316 317 /// Mark all relevant definitions of register \p Reg in usage \p UseMI. 318 void SIWholeQuadMode::markDefs(const MachineInstr &UseMI, LiveRange &LR, 319 Register Reg, unsigned SubReg, char Flag, 320 std::vector<WorkItem> &Worklist) { 321 LLVM_DEBUG(dbgs() << "markDefs " << PrintState(Flag) << ": " << UseMI); 322 323 LiveQueryResult UseLRQ = LR.Query(LIS->getInstructionIndex(UseMI)); 324 const VNInfo *Value = UseLRQ.valueIn(); 325 if (!Value) 326 return; 327 328 // Note: this code assumes that lane masks on AMDGPU completely 329 // cover registers. 330 const LaneBitmask UseLanes = 331 SubReg ? TRI->getSubRegIndexLaneMask(SubReg) 332 : (Reg.isVirtual() ? MRI->getMaxLaneMaskForVReg(Reg) 333 : LaneBitmask::getNone()); 334 335 // Perform a depth-first iteration of the LiveRange graph marking defs. 336 // Stop processing of a given branch when all use lanes have been defined. 337 // The first definition stops processing for a physical register. 338 struct PhiEntry { 339 const VNInfo *Phi; 340 unsigned PredIdx; 341 LaneBitmask DefinedLanes; 342 343 PhiEntry(const VNInfo *Phi, unsigned PredIdx, LaneBitmask DefinedLanes) 344 : Phi(Phi), PredIdx(PredIdx), DefinedLanes(DefinedLanes) {} 345 }; 346 using VisitKey = std::pair<const VNInfo *, LaneBitmask>; 347 SmallVector<PhiEntry, 2> PhiStack; 348 SmallSet<VisitKey, 4> Visited; 349 LaneBitmask DefinedLanes; 350 unsigned NextPredIdx = 0; // Only used for processing phi nodes 351 do { 352 const VNInfo *NextValue = nullptr; 353 const VisitKey Key(Value, DefinedLanes); 354 355 if (Visited.insert(Key).second) { 356 // On first visit to a phi then start processing first predecessor 357 NextPredIdx = 0; 358 } 359 360 if (Value->isPHIDef()) { 361 // Each predecessor node in the phi must be processed as a subgraph 362 const MachineBasicBlock *MBB = LIS->getMBBFromIndex(Value->def); 363 assert(MBB && "Phi-def has no defining MBB"); 364 365 // Find next predecessor to process 366 unsigned Idx = NextPredIdx; 367 const auto *PI = MBB->pred_begin() + Idx; 368 const auto *PE = MBB->pred_end(); 369 for (; PI != PE && !NextValue; ++PI, ++Idx) { 370 if (const VNInfo *VN = LR.getVNInfoBefore(LIS->getMBBEndIdx(*PI))) { 371 if (!Visited.count(VisitKey(VN, DefinedLanes))) 372 NextValue = VN; 373 } 374 } 375 376 // If there are more predecessors to process; add phi to stack 377 if (PI != PE) 378 PhiStack.emplace_back(Value, Idx, DefinedLanes); 379 } else { 380 MachineInstr *MI = LIS->getInstructionFromIndex(Value->def); 381 assert(MI && "Def has no defining instruction"); 382 383 if (Reg.isVirtual()) { 384 // Iterate over all operands to find relevant definitions 385 bool HasDef = false; 386 for (const MachineOperand &Op : MI->all_defs()) { 387 if (Op.getReg() != Reg) 388 continue; 389 390 // Compute lanes defined and overlap with use 391 LaneBitmask OpLanes = 392 Op.isUndef() ? LaneBitmask::getAll() 393 : TRI->getSubRegIndexLaneMask(Op.getSubReg()); 394 LaneBitmask Overlap = (UseLanes & OpLanes); 395 396 // Record if this instruction defined any of use 397 HasDef |= Overlap.any(); 398 399 // Mark any lanes defined 400 DefinedLanes |= OpLanes; 401 } 402 403 // Check if all lanes of use have been defined 404 if ((DefinedLanes & UseLanes) != UseLanes) { 405 // Definition not complete; need to process input value 406 LiveQueryResult LRQ = LR.Query(LIS->getInstructionIndex(*MI)); 407 if (const VNInfo *VN = LRQ.valueIn()) { 408 if (!Visited.count(VisitKey(VN, DefinedLanes))) 409 NextValue = VN; 410 } 411 } 412 413 // Only mark the instruction if it defines some part of the use 414 if (HasDef) 415 markInstruction(*MI, Flag, Worklist); 416 } else { 417 // For physical registers simply mark the defining instruction 418 markInstruction(*MI, Flag, Worklist); 419 } 420 } 421 422 if (!NextValue && !PhiStack.empty()) { 423 // Reach end of chain; revert to processing last phi 424 PhiEntry &Entry = PhiStack.back(); 425 NextValue = Entry.Phi; 426 NextPredIdx = Entry.PredIdx; 427 DefinedLanes = Entry.DefinedLanes; 428 PhiStack.pop_back(); 429 } 430 431 Value = NextValue; 432 } while (Value); 433 } 434 435 void SIWholeQuadMode::markOperand(const MachineInstr &MI, 436 const MachineOperand &Op, char Flag, 437 std::vector<WorkItem> &Worklist) { 438 assert(Op.isReg()); 439 Register Reg = Op.getReg(); 440 441 // Ignore some hardware registers 442 switch (Reg) { 443 case AMDGPU::EXEC: 444 case AMDGPU::EXEC_LO: 445 return; 446 default: 447 break; 448 } 449 450 LLVM_DEBUG(dbgs() << "markOperand " << PrintState(Flag) << ": " << Op 451 << " for " << MI); 452 if (Reg.isVirtual()) { 453 LiveRange &LR = LIS->getInterval(Reg); 454 markDefs(MI, LR, Reg, Op.getSubReg(), Flag, Worklist); 455 } else { 456 // Handle physical registers that we need to track; this is mostly relevant 457 // for VCC, which can appear as the (implicit) input of a uniform branch, 458 // e.g. when a loop counter is stored in a VGPR. 459 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 460 LiveRange &LR = LIS->getRegUnit(Unit); 461 const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn(); 462 if (Value) 463 markDefs(MI, LR, Unit, AMDGPU::NoSubRegister, Flag, Worklist); 464 } 465 } 466 } 467 468 /// Mark all instructions defining the uses in \p MI with \p Flag. 469 void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag, 470 std::vector<WorkItem> &Worklist) { 471 LLVM_DEBUG(dbgs() << "markInstructionUses " << PrintState(Flag) << ": " 472 << MI); 473 474 for (const MachineOperand &Use : MI.all_uses()) 475 markOperand(MI, Use, Flag, Worklist); 476 } 477 478 // Scan instructions to determine which ones require an Exact execmask and 479 // which ones seed WQM requirements. 480 char SIWholeQuadMode::scanInstructions(MachineFunction &MF, 481 std::vector<WorkItem> &Worklist) { 482 char GlobalFlags = 0; 483 bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs"); 484 SmallVector<MachineInstr *, 4> SoftWQMInstrs; 485 bool HasImplicitDerivatives = 486 MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS; 487 488 // We need to visit the basic blocks in reverse post-order so that we visit 489 // defs before uses, in particular so that we don't accidentally mark an 490 // instruction as needing e.g. WQM before visiting it and realizing it needs 491 // WQM disabled. 492 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 493 for (MachineBasicBlock *MBB : RPOT) { 494 BlockInfo &BBI = Blocks[MBB]; 495 496 for (MachineInstr &MI : *MBB) { 497 InstrInfo &III = Instructions[&MI]; 498 unsigned Opcode = MI.getOpcode(); 499 char Flags = 0; 500 501 if (TII->isWQM(Opcode)) { 502 // If LOD is not supported WQM is not needed. 503 // Only generate implicit WQM if implicit derivatives are required. 504 // This avoids inserting unintended WQM if a shader type without 505 // implicit derivatives uses an image sampling instruction. 506 if (ST->hasExtendedImageInsts() && HasImplicitDerivatives) { 507 // Sampling instructions don't need to produce results for all pixels 508 // in a quad, they just require all inputs of a quad to have been 509 // computed for derivatives. 510 markInstructionUses(MI, StateWQM, Worklist); 511 GlobalFlags |= StateWQM; 512 } 513 } else if (Opcode == AMDGPU::WQM) { 514 // The WQM intrinsic requires its output to have all the helper lanes 515 // correct, so we need it to be in WQM. 516 Flags = StateWQM; 517 LowerToCopyInstrs.insert(&MI); 518 } else if (Opcode == AMDGPU::SOFT_WQM) { 519 LowerToCopyInstrs.insert(&MI); 520 SoftWQMInstrs.push_back(&MI); 521 } else if (Opcode == AMDGPU::STRICT_WWM) { 522 // The STRICT_WWM intrinsic doesn't make the same guarantee, and plus 523 // it needs to be executed in WQM or Exact so that its copy doesn't 524 // clobber inactive lanes. 525 markInstructionUses(MI, StateStrictWWM, Worklist); 526 GlobalFlags |= StateStrictWWM; 527 LowerToMovInstrs.push_back(&MI); 528 } else if (Opcode == AMDGPU::STRICT_WQM || 529 TII->isDualSourceBlendEXP(MI)) { 530 // STRICT_WQM is similar to STRICTWWM, but instead of enabling all 531 // threads of the wave like STRICTWWM, STRICT_WQM enables all threads in 532 // quads that have at least one active thread. 533 markInstructionUses(MI, StateStrictWQM, Worklist); 534 GlobalFlags |= StateStrictWQM; 535 536 if (Opcode == AMDGPU::STRICT_WQM) { 537 LowerToMovInstrs.push_back(&MI); 538 } else { 539 // Dual source blend export acts as implicit strict-wqm, its sources 540 // need to be shuffled in strict wqm, but the export itself needs to 541 // run in exact mode. 542 BBI.Needs |= StateExact; 543 if (!(BBI.InNeeds & StateExact)) { 544 BBI.InNeeds |= StateExact; 545 Worklist.emplace_back(MBB); 546 } 547 GlobalFlags |= StateExact; 548 III.Disabled = StateWQM | StateStrict; 549 } 550 } else if (Opcode == AMDGPU::LDS_PARAM_LOAD || 551 Opcode == AMDGPU::DS_PARAM_LOAD || 552 Opcode == AMDGPU::LDS_DIRECT_LOAD || 553 Opcode == AMDGPU::DS_DIRECT_LOAD) { 554 // Mark these STRICTWQM, but only for the instruction, not its operands. 555 // This avoid unnecessarily marking M0 as requiring WQM. 556 III.Needs |= StateStrictWQM; 557 GlobalFlags |= StateStrictWQM; 558 } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32) { 559 // Disable strict states; StrictWQM will be added as required later. 560 III.Disabled = StateStrict; 561 MachineOperand &Inactive = MI.getOperand(4); 562 if (Inactive.isReg()) { 563 if (Inactive.isUndef() && MI.getOperand(3).getImm() == 0) 564 LowerToCopyInstrs.insert(&MI); 565 else 566 markOperand(MI, Inactive, StateStrictWWM, Worklist); 567 } 568 SetInactiveInstrs.push_back(&MI); 569 BBI.NeedsLowering = true; 570 } else if (TII->isDisableWQM(MI)) { 571 BBI.Needs |= StateExact; 572 if (!(BBI.InNeeds & StateExact)) { 573 BBI.InNeeds |= StateExact; 574 Worklist.emplace_back(MBB); 575 } 576 GlobalFlags |= StateExact; 577 III.Disabled = StateWQM | StateStrict; 578 } else if (Opcode == AMDGPU::SI_PS_LIVE || 579 Opcode == AMDGPU::SI_LIVE_MASK) { 580 LiveMaskQueries.push_back(&MI); 581 } else if (Opcode == AMDGPU::SI_KILL_I1_TERMINATOR || 582 Opcode == AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR || 583 Opcode == AMDGPU::SI_DEMOTE_I1) { 584 KillInstrs.push_back(&MI); 585 BBI.NeedsLowering = true; 586 } else if (Opcode == AMDGPU::SI_INIT_EXEC || 587 Opcode == AMDGPU::SI_INIT_EXEC_FROM_INPUT || 588 Opcode == AMDGPU::SI_INIT_WHOLE_WAVE) { 589 InitExecInstrs.push_back(&MI); 590 } else if (WQMOutputs) { 591 // The function is in machine SSA form, which means that physical 592 // VGPRs correspond to shader inputs and outputs. Inputs are 593 // only used, outputs are only defined. 594 // FIXME: is this still valid? 595 for (const MachineOperand &MO : MI.defs()) { 596 Register Reg = MO.getReg(); 597 if (Reg.isPhysical() && 598 TRI->hasVectorRegisters(TRI->getPhysRegBaseClass(Reg))) { 599 Flags = StateWQM; 600 break; 601 } 602 } 603 } 604 605 if (Flags) { 606 markInstruction(MI, Flags, Worklist); 607 GlobalFlags |= Flags; 608 } 609 } 610 } 611 612 // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is 613 // ever used anywhere in the function. This implements the corresponding 614 // semantics of @llvm.amdgcn.set.inactive. 615 // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm. 616 if (GlobalFlags & StateWQM) { 617 for (MachineInstr *MI : SetInactiveInstrs) 618 markInstruction(*MI, StateWQM, Worklist); 619 for (MachineInstr *MI : SoftWQMInstrs) 620 markInstruction(*MI, StateWQM, Worklist); 621 } 622 623 return GlobalFlags; 624 } 625 626 void SIWholeQuadMode::propagateInstruction(MachineInstr &MI, 627 std::vector<WorkItem>& Worklist) { 628 MachineBasicBlock *MBB = MI.getParent(); 629 InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references 630 BlockInfo &BI = Blocks[MBB]; 631 632 // Control flow-type instructions and stores to temporary memory that are 633 // followed by WQM computations must themselves be in WQM. 634 if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) && 635 (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) { 636 Instructions[&MI].Needs = StateWQM; 637 II.Needs = StateWQM; 638 } 639 640 // Propagate to block level 641 if (II.Needs & StateWQM) { 642 BI.Needs |= StateWQM; 643 if (!(BI.InNeeds & StateWQM)) { 644 BI.InNeeds |= StateWQM; 645 Worklist.emplace_back(MBB); 646 } 647 } 648 649 // Propagate backwards within block 650 if (MachineInstr *PrevMI = MI.getPrevNode()) { 651 char InNeeds = (II.Needs & ~StateStrict) | II.OutNeeds; 652 if (!PrevMI->isPHI()) { 653 InstrInfo &PrevII = Instructions[PrevMI]; 654 if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) { 655 PrevII.OutNeeds |= InNeeds; 656 Worklist.emplace_back(PrevMI); 657 } 658 } 659 } 660 661 // Propagate WQM flag to instruction inputs 662 assert(!(II.Needs & StateExact)); 663 664 if (II.Needs != 0) 665 markInstructionUses(MI, II.Needs, Worklist); 666 667 // Ensure we process a block containing StrictWWM/StrictWQM, even if it does 668 // not require any WQM transitions. 669 if (II.Needs & StateStrictWWM) 670 BI.Needs |= StateStrictWWM; 671 if (II.Needs & StateStrictWQM) 672 BI.Needs |= StateStrictWQM; 673 } 674 675 void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB, 676 std::vector<WorkItem>& Worklist) { 677 BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references. 678 679 // Propagate through instructions 680 if (!MBB.empty()) { 681 MachineInstr *LastMI = &*MBB.rbegin(); 682 InstrInfo &LastII = Instructions[LastMI]; 683 if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) { 684 LastII.OutNeeds |= BI.OutNeeds; 685 Worklist.emplace_back(LastMI); 686 } 687 } 688 689 // Predecessor blocks must provide for our WQM/Exact needs. 690 for (MachineBasicBlock *Pred : MBB.predecessors()) { 691 BlockInfo &PredBI = Blocks[Pred]; 692 if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds) 693 continue; 694 695 PredBI.OutNeeds |= BI.InNeeds; 696 PredBI.InNeeds |= BI.InNeeds; 697 Worklist.emplace_back(Pred); 698 } 699 700 // All successors must be prepared to accept the same set of WQM/Exact data. 701 for (MachineBasicBlock *Succ : MBB.successors()) { 702 BlockInfo &SuccBI = Blocks[Succ]; 703 if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds) 704 continue; 705 706 SuccBI.InNeeds |= BI.OutNeeds; 707 Worklist.emplace_back(Succ); 708 } 709 } 710 711 char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) { 712 std::vector<WorkItem> Worklist; 713 char GlobalFlags = scanInstructions(MF, Worklist); 714 715 while (!Worklist.empty()) { 716 WorkItem WI = Worklist.back(); 717 Worklist.pop_back(); 718 719 if (WI.MI) 720 propagateInstruction(*WI.MI, Worklist); 721 else 722 propagateBlock(*WI.MBB, Worklist); 723 } 724 725 return GlobalFlags; 726 } 727 728 MachineBasicBlock::iterator 729 SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB, 730 MachineBasicBlock::iterator Before) { 731 Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass); 732 733 MachineInstr *Save = 734 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg) 735 .addReg(AMDGPU::SCC); 736 MachineInstr *Restore = 737 BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC) 738 .addReg(SaveReg); 739 740 LIS->InsertMachineInstrInMaps(*Save); 741 LIS->InsertMachineInstrInMaps(*Restore); 742 LIS->createAndComputeVirtRegInterval(SaveReg); 743 744 return Restore; 745 } 746 747 void SIWholeQuadMode::splitBlock(MachineInstr *TermMI) { 748 MachineBasicBlock *BB = TermMI->getParent(); 749 LLVM_DEBUG(dbgs() << "Split block " << printMBBReference(*BB) << " @ " 750 << *TermMI << "\n"); 751 752 MachineBasicBlock *SplitBB = 753 BB->splitAt(*TermMI, /*UpdateLiveIns*/ true, LIS); 754 755 // Convert last instruction in block to a terminator. 756 // Note: this only covers the expected patterns 757 unsigned NewOpcode = 0; 758 switch (TermMI->getOpcode()) { 759 case AMDGPU::S_AND_B32: 760 NewOpcode = AMDGPU::S_AND_B32_term; 761 break; 762 case AMDGPU::S_AND_B64: 763 NewOpcode = AMDGPU::S_AND_B64_term; 764 break; 765 case AMDGPU::S_MOV_B32: 766 NewOpcode = AMDGPU::S_MOV_B32_term; 767 break; 768 case AMDGPU::S_MOV_B64: 769 NewOpcode = AMDGPU::S_MOV_B64_term; 770 break; 771 default: 772 break; 773 } 774 if (NewOpcode) 775 TermMI->setDesc(TII->get(NewOpcode)); 776 777 if (SplitBB != BB) { 778 // Update dominator trees 779 using DomTreeT = DomTreeBase<MachineBasicBlock>; 780 SmallVector<DomTreeT::UpdateType, 16> DTUpdates; 781 for (MachineBasicBlock *Succ : SplitBB->successors()) { 782 DTUpdates.push_back({DomTreeT::Insert, SplitBB, Succ}); 783 DTUpdates.push_back({DomTreeT::Delete, BB, Succ}); 784 } 785 DTUpdates.push_back({DomTreeT::Insert, BB, SplitBB}); 786 if (MDT) 787 MDT->applyUpdates(DTUpdates); 788 if (PDT) 789 PDT->applyUpdates(DTUpdates); 790 791 // Link blocks 792 MachineInstr *MI = 793 BuildMI(*BB, BB->end(), DebugLoc(), TII->get(AMDGPU::S_BRANCH)) 794 .addMBB(SplitBB); 795 LIS->InsertMachineInstrInMaps(*MI); 796 } 797 } 798 799 MachineInstr *SIWholeQuadMode::lowerKillF32(MachineInstr &MI) { 800 assert(LiveMaskReg.isVirtual()); 801 802 const DebugLoc &DL = MI.getDebugLoc(); 803 unsigned Opcode = 0; 804 805 assert(MI.getOperand(0).isReg()); 806 807 // Comparison is for live lanes; however here we compute the inverse 808 // (killed lanes). This is because VCMP will always generate 0 bits 809 // for inactive lanes so a mask of live lanes would not be correct 810 // inside control flow. 811 // Invert the comparison by swapping the operands and adjusting 812 // the comparison codes. 813 814 switch (MI.getOperand(2).getImm()) { 815 case ISD::SETUEQ: 816 Opcode = AMDGPU::V_CMP_LG_F32_e64; 817 break; 818 case ISD::SETUGT: 819 Opcode = AMDGPU::V_CMP_GE_F32_e64; 820 break; 821 case ISD::SETUGE: 822 Opcode = AMDGPU::V_CMP_GT_F32_e64; 823 break; 824 case ISD::SETULT: 825 Opcode = AMDGPU::V_CMP_LE_F32_e64; 826 break; 827 case ISD::SETULE: 828 Opcode = AMDGPU::V_CMP_LT_F32_e64; 829 break; 830 case ISD::SETUNE: 831 Opcode = AMDGPU::V_CMP_EQ_F32_e64; 832 break; 833 case ISD::SETO: 834 Opcode = AMDGPU::V_CMP_O_F32_e64; 835 break; 836 case ISD::SETUO: 837 Opcode = AMDGPU::V_CMP_U_F32_e64; 838 break; 839 case ISD::SETOEQ: 840 case ISD::SETEQ: 841 Opcode = AMDGPU::V_CMP_NEQ_F32_e64; 842 break; 843 case ISD::SETOGT: 844 case ISD::SETGT: 845 Opcode = AMDGPU::V_CMP_NLT_F32_e64; 846 break; 847 case ISD::SETOGE: 848 case ISD::SETGE: 849 Opcode = AMDGPU::V_CMP_NLE_F32_e64; 850 break; 851 case ISD::SETOLT: 852 case ISD::SETLT: 853 Opcode = AMDGPU::V_CMP_NGT_F32_e64; 854 break; 855 case ISD::SETOLE: 856 case ISD::SETLE: 857 Opcode = AMDGPU::V_CMP_NGE_F32_e64; 858 break; 859 case ISD::SETONE: 860 case ISD::SETNE: 861 Opcode = AMDGPU::V_CMP_NLG_F32_e64; 862 break; 863 default: 864 llvm_unreachable("invalid ISD:SET cond code"); 865 } 866 867 MachineBasicBlock &MBB = *MI.getParent(); 868 869 // Pick opcode based on comparison type. 870 MachineInstr *VcmpMI; 871 const MachineOperand &Op0 = MI.getOperand(0); 872 const MachineOperand &Op1 = MI.getOperand(1); 873 874 // VCC represents lanes killed. 875 Register VCC = ST->isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC; 876 877 if (TRI->isVGPR(*MRI, Op0.getReg())) { 878 Opcode = AMDGPU::getVOPe32(Opcode); 879 VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)).add(Op1).add(Op0); 880 } else { 881 VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)) 882 .addReg(VCC, RegState::Define) 883 .addImm(0) // src0 modifiers 884 .add(Op1) 885 .addImm(0) // src1 modifiers 886 .add(Op0) 887 .addImm(0); // omod 888 } 889 890 MachineInstr *MaskUpdateMI = 891 BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 892 .addReg(LiveMaskReg) 893 .addReg(VCC); 894 895 // State of SCC represents whether any lanes are live in mask, 896 // if SCC is 0 then no lanes will be alive anymore. 897 MachineInstr *EarlyTermMI = 898 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0)); 899 900 MachineInstr *ExecMaskMI = 901 BuildMI(MBB, MI, DL, TII->get(AndN2Opc), Exec).addReg(Exec).addReg(VCC); 902 903 assert(MBB.succ_size() == 1); 904 MachineInstr *NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH)) 905 .addMBB(*MBB.succ_begin()); 906 907 // Update live intervals 908 LIS->ReplaceMachineInstrInMaps(MI, *VcmpMI); 909 MBB.remove(&MI); 910 911 LIS->InsertMachineInstrInMaps(*MaskUpdateMI); 912 LIS->InsertMachineInstrInMaps(*ExecMaskMI); 913 LIS->InsertMachineInstrInMaps(*EarlyTermMI); 914 LIS->InsertMachineInstrInMaps(*NewTerm); 915 916 return NewTerm; 917 } 918 919 MachineInstr *SIWholeQuadMode::lowerKillI1(MachineInstr &MI, bool IsWQM) { 920 assert(LiveMaskReg.isVirtual()); 921 922 MachineBasicBlock &MBB = *MI.getParent(); 923 924 const DebugLoc &DL = MI.getDebugLoc(); 925 MachineInstr *MaskUpdateMI = nullptr; 926 927 const bool IsDemote = IsWQM && (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1); 928 const MachineOperand &Op = MI.getOperand(0); 929 int64_t KillVal = MI.getOperand(1).getImm(); 930 MachineInstr *ComputeKilledMaskMI = nullptr; 931 Register CndReg = !Op.isImm() ? Op.getReg() : Register(); 932 Register TmpReg; 933 934 // Is this a static or dynamic kill? 935 if (Op.isImm()) { 936 if (Op.getImm() == KillVal) { 937 // Static: all active lanes are killed 938 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 939 .addReg(LiveMaskReg) 940 .addReg(Exec); 941 } else { 942 // Static: kill does nothing 943 MachineInstr *NewTerm = nullptr; 944 if (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1) { 945 LIS->RemoveMachineInstrFromMaps(MI); 946 } else { 947 assert(MBB.succ_size() == 1); 948 NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH)) 949 .addMBB(*MBB.succ_begin()); 950 LIS->ReplaceMachineInstrInMaps(MI, *NewTerm); 951 } 952 MBB.remove(&MI); 953 return NewTerm; 954 } 955 } else { 956 if (!KillVal) { 957 // Op represents live lanes after kill, 958 // so exec mask needs to be factored in. 959 TmpReg = MRI->createVirtualRegister(TRI->getBoolRC()); 960 ComputeKilledMaskMI = 961 BuildMI(MBB, MI, DL, TII->get(AndN2Opc), TmpReg).addReg(Exec).add(Op); 962 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 963 .addReg(LiveMaskReg) 964 .addReg(TmpReg); 965 } else { 966 // Op represents lanes to kill 967 MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg) 968 .addReg(LiveMaskReg) 969 .add(Op); 970 } 971 } 972 973 // State of SCC represents whether any lanes are live in mask, 974 // if SCC is 0 then no lanes will be alive anymore. 975 MachineInstr *EarlyTermMI = 976 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0)); 977 978 // In the case we got this far some lanes are still live, 979 // update EXEC to deactivate lanes as appropriate. 980 MachineInstr *NewTerm; 981 MachineInstr *WQMMaskMI = nullptr; 982 Register LiveMaskWQM; 983 if (IsDemote) { 984 // Demote - deactivate quads with only helper lanes 985 LiveMaskWQM = MRI->createVirtualRegister(TRI->getBoolRC()); 986 WQMMaskMI = 987 BuildMI(MBB, MI, DL, TII->get(WQMOpc), LiveMaskWQM).addReg(LiveMaskReg); 988 NewTerm = BuildMI(MBB, MI, DL, TII->get(AndOpc), Exec) 989 .addReg(Exec) 990 .addReg(LiveMaskWQM); 991 } else { 992 // Kill - deactivate lanes no longer in live mask 993 if (Op.isImm()) { 994 unsigned MovOpc = ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64; 995 NewTerm = BuildMI(MBB, &MI, DL, TII->get(MovOpc), Exec).addImm(0); 996 } else if (!IsWQM) { 997 NewTerm = BuildMI(MBB, &MI, DL, TII->get(AndOpc), Exec) 998 .addReg(Exec) 999 .addReg(LiveMaskReg); 1000 } else { 1001 unsigned Opcode = KillVal ? AndN2Opc : AndOpc; 1002 NewTerm = 1003 BuildMI(MBB, &MI, DL, TII->get(Opcode), Exec).addReg(Exec).add(Op); 1004 } 1005 } 1006 1007 // Update live intervals 1008 LIS->RemoveMachineInstrFromMaps(MI); 1009 MBB.remove(&MI); 1010 assert(EarlyTermMI); 1011 assert(MaskUpdateMI); 1012 assert(NewTerm); 1013 if (ComputeKilledMaskMI) 1014 LIS->InsertMachineInstrInMaps(*ComputeKilledMaskMI); 1015 LIS->InsertMachineInstrInMaps(*MaskUpdateMI); 1016 LIS->InsertMachineInstrInMaps(*EarlyTermMI); 1017 if (WQMMaskMI) 1018 LIS->InsertMachineInstrInMaps(*WQMMaskMI); 1019 LIS->InsertMachineInstrInMaps(*NewTerm); 1020 1021 if (CndReg) { 1022 LIS->removeInterval(CndReg); 1023 LIS->createAndComputeVirtRegInterval(CndReg); 1024 } 1025 if (TmpReg) 1026 LIS->createAndComputeVirtRegInterval(TmpReg); 1027 if (LiveMaskWQM) 1028 LIS->createAndComputeVirtRegInterval(LiveMaskWQM); 1029 1030 return NewTerm; 1031 } 1032 1033 // Replace (or supplement) instructions accessing live mask. 1034 // This can only happen once all the live mask registers have been created 1035 // and the execute state (WQM/StrictWWM/Exact) of instructions is known. 1036 void SIWholeQuadMode::lowerBlock(MachineBasicBlock &MBB, BlockInfo &BI) { 1037 if (!BI.NeedsLowering) 1038 return; 1039 1040 LLVM_DEBUG(dbgs() << "\nLowering block " << printMBBReference(MBB) << ":\n"); 1041 1042 SmallVector<MachineInstr *, 4> SplitPoints; 1043 Register ActiveLanesReg = 0; 1044 char State = BI.InitialState; 1045 1046 for (MachineInstr &MI : llvm::make_early_inc_range( 1047 llvm::make_range(MBB.getFirstNonPHI(), MBB.end()))) { 1048 auto MIState = StateTransition.find(&MI); 1049 if (MIState != StateTransition.end()) 1050 State = MIState->second; 1051 1052 MachineInstr *SplitPoint = nullptr; 1053 switch (MI.getOpcode()) { 1054 case AMDGPU::SI_DEMOTE_I1: 1055 case AMDGPU::SI_KILL_I1_TERMINATOR: 1056 SplitPoint = lowerKillI1(MI, State == StateWQM); 1057 break; 1058 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 1059 SplitPoint = lowerKillF32(MI); 1060 break; 1061 case AMDGPU::ENTER_STRICT_WWM: 1062 ActiveLanesReg = MI.getOperand(0).getReg(); 1063 break; 1064 case AMDGPU::EXIT_STRICT_WWM: 1065 ActiveLanesReg = 0; 1066 break; 1067 case AMDGPU::V_SET_INACTIVE_B32: 1068 if (ActiveLanesReg) { 1069 LiveInterval &LI = LIS->getInterval(MI.getOperand(5).getReg()); 1070 MRI->constrainRegClass(ActiveLanesReg, TRI->getWaveMaskRegClass()); 1071 MI.getOperand(5).setReg(ActiveLanesReg); 1072 LIS->shrinkToUses(&LI); 1073 } else { 1074 assert(State == StateExact || State == StateWQM); 1075 } 1076 break; 1077 default: 1078 break; 1079 } 1080 if (SplitPoint) 1081 SplitPoints.push_back(SplitPoint); 1082 } 1083 1084 // Perform splitting after instruction scan to simplify iteration. 1085 for (MachineInstr *MI : SplitPoints) 1086 splitBlock(MI); 1087 } 1088 1089 // Return an iterator in the (inclusive) range [First, Last] at which 1090 // instructions can be safely inserted, keeping in mind that some of the 1091 // instructions we want to add necessarily clobber SCC. 1092 MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion( 1093 MachineBasicBlock &MBB, MachineBasicBlock::iterator First, 1094 MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) { 1095 if (!SaveSCC) 1096 return PreferLast ? Last : First; 1097 1098 LiveRange &LR = 1099 LIS->getRegUnit(*TRI->regunits(MCRegister::from(AMDGPU::SCC)).begin()); 1100 auto MBBE = MBB.end(); 1101 SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First) 1102 : LIS->getMBBEndIdx(&MBB); 1103 SlotIndex LastIdx = 1104 Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB); 1105 SlotIndex Idx = PreferLast ? LastIdx : FirstIdx; 1106 const LiveRange::Segment *S; 1107 1108 for (;;) { 1109 S = LR.getSegmentContaining(Idx); 1110 if (!S) 1111 break; 1112 1113 if (PreferLast) { 1114 SlotIndex Next = S->start.getBaseIndex(); 1115 if (Next < FirstIdx) 1116 break; 1117 Idx = Next; 1118 } else { 1119 MachineInstr *EndMI = LIS->getInstructionFromIndex(S->end.getBaseIndex()); 1120 assert(EndMI && "Segment does not end on valid instruction"); 1121 auto NextI = std::next(EndMI->getIterator()); 1122 if (NextI == MBB.end()) 1123 break; 1124 SlotIndex Next = LIS->getInstructionIndex(*NextI); 1125 if (Next > LastIdx) 1126 break; 1127 Idx = Next; 1128 } 1129 } 1130 1131 MachineBasicBlock::iterator MBBI; 1132 1133 if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx)) 1134 MBBI = MI; 1135 else { 1136 assert(Idx == LIS->getMBBEndIdx(&MBB)); 1137 MBBI = MBB.end(); 1138 } 1139 1140 // Move insertion point past any operations modifying EXEC. 1141 // This assumes that the value of SCC defined by any of these operations 1142 // does not need to be preserved. 1143 while (MBBI != Last) { 1144 bool IsExecDef = false; 1145 for (const MachineOperand &MO : MBBI->all_defs()) { 1146 IsExecDef |= 1147 MO.getReg() == AMDGPU::EXEC_LO || MO.getReg() == AMDGPU::EXEC; 1148 } 1149 if (!IsExecDef) 1150 break; 1151 MBBI++; 1152 S = nullptr; 1153 } 1154 1155 if (S) 1156 MBBI = saveSCC(MBB, MBBI); 1157 1158 return MBBI; 1159 } 1160 1161 void SIWholeQuadMode::toExact(MachineBasicBlock &MBB, 1162 MachineBasicBlock::iterator Before, 1163 Register SaveWQM) { 1164 assert(LiveMaskReg.isVirtual()); 1165 1166 bool IsTerminator = Before == MBB.end(); 1167 if (!IsTerminator) { 1168 auto FirstTerm = MBB.getFirstTerminator(); 1169 if (FirstTerm != MBB.end()) { 1170 SlotIndex FirstTermIdx = LIS->getInstructionIndex(*FirstTerm); 1171 SlotIndex BeforeIdx = LIS->getInstructionIndex(*Before); 1172 IsTerminator = BeforeIdx > FirstTermIdx; 1173 } 1174 } 1175 1176 MachineInstr *MI; 1177 1178 if (SaveWQM) { 1179 unsigned Opcode = IsTerminator ? AndSaveExecTermOpc : AndSaveExecOpc; 1180 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), SaveWQM) 1181 .addReg(LiveMaskReg); 1182 } else { 1183 unsigned Opcode = IsTerminator ? AndTermOpc : AndOpc; 1184 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(Opcode), Exec) 1185 .addReg(Exec) 1186 .addReg(LiveMaskReg); 1187 } 1188 1189 LIS->InsertMachineInstrInMaps(*MI); 1190 StateTransition[MI] = StateExact; 1191 } 1192 1193 void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB, 1194 MachineBasicBlock::iterator Before, 1195 Register SavedWQM) { 1196 MachineInstr *MI; 1197 1198 if (SavedWQM) { 1199 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec) 1200 .addReg(SavedWQM); 1201 } else { 1202 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(WQMOpc), Exec).addReg(Exec); 1203 } 1204 1205 LIS->InsertMachineInstrInMaps(*MI); 1206 StateTransition[MI] = StateWQM; 1207 } 1208 1209 void SIWholeQuadMode::toStrictMode(MachineBasicBlock &MBB, 1210 MachineBasicBlock::iterator Before, 1211 Register SaveOrig, char StrictStateNeeded) { 1212 MachineInstr *MI; 1213 assert(SaveOrig); 1214 assert(StrictStateNeeded == StateStrictWWM || 1215 StrictStateNeeded == StateStrictWQM); 1216 1217 if (StrictStateNeeded == StateStrictWWM) { 1218 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WWM), 1219 SaveOrig) 1220 .addImm(-1); 1221 } else { 1222 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WQM), 1223 SaveOrig) 1224 .addImm(-1); 1225 } 1226 LIS->InsertMachineInstrInMaps(*MI); 1227 StateTransition[MI] = StrictStateNeeded; 1228 } 1229 1230 void SIWholeQuadMode::fromStrictMode(MachineBasicBlock &MBB, 1231 MachineBasicBlock::iterator Before, 1232 Register SavedOrig, char NonStrictState, 1233 char CurrentStrictState) { 1234 MachineInstr *MI; 1235 1236 assert(SavedOrig); 1237 assert(CurrentStrictState == StateStrictWWM || 1238 CurrentStrictState == StateStrictWQM); 1239 1240 if (CurrentStrictState == StateStrictWWM) { 1241 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WWM), 1242 Exec) 1243 .addReg(SavedOrig); 1244 } else { 1245 MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WQM), 1246 Exec) 1247 .addReg(SavedOrig); 1248 } 1249 LIS->InsertMachineInstrInMaps(*MI); 1250 StateTransition[MI] = NonStrictState; 1251 } 1252 1253 void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, BlockInfo &BI, 1254 bool IsEntry) { 1255 // This is a non-entry block that is WQM throughout, so no need to do 1256 // anything. 1257 if (!IsEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) { 1258 BI.InitialState = StateWQM; 1259 return; 1260 } 1261 1262 LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB) 1263 << ":\n"); 1264 1265 Register SavedWQMReg; 1266 Register SavedNonStrictReg; 1267 bool WQMFromExec = IsEntry; 1268 char State = (IsEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM; 1269 char NonStrictState = 0; 1270 const TargetRegisterClass *BoolRC = TRI->getBoolRC(); 1271 1272 auto II = MBB.getFirstNonPHI(), IE = MBB.end(); 1273 if (IsEntry) { 1274 // Skip the instruction that saves LiveMask 1275 if (II != IE && II->getOpcode() == AMDGPU::COPY && 1276 II->getOperand(1).getReg() == TRI->getExec()) 1277 ++II; 1278 } 1279 1280 // This stores the first instruction where it's safe to switch from WQM to 1281 // Exact or vice versa. 1282 MachineBasicBlock::iterator FirstWQM = IE; 1283 1284 // This stores the first instruction where it's safe to switch from Strict 1285 // mode to Exact/WQM or to switch to Strict mode. It must always be the same 1286 // as, or after, FirstWQM since if it's safe to switch to/from Strict, it must 1287 // be safe to switch to/from WQM as well. 1288 MachineBasicBlock::iterator FirstStrict = IE; 1289 1290 // Record initial state is block information. 1291 BI.InitialState = State; 1292 1293 for (unsigned Idx = 0;; ++Idx) { 1294 MachineBasicBlock::iterator Next = II; 1295 char Needs = StateExact | StateWQM; // Strict mode is disabled by default. 1296 char OutNeeds = 0; 1297 1298 if (FirstWQM == IE) 1299 FirstWQM = II; 1300 1301 if (FirstStrict == IE) 1302 FirstStrict = II; 1303 1304 // Adjust needs if this is first instruction of WQM requiring shader. 1305 if (IsEntry && Idx == 0 && (BI.InNeeds & StateWQM)) 1306 Needs = StateWQM; 1307 1308 // First, figure out the allowed states (Needs) based on the propagated 1309 // flags. 1310 if (II != IE) { 1311 MachineInstr &MI = *II; 1312 1313 if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) { 1314 auto III = Instructions.find(&MI); 1315 if (III != Instructions.end()) { 1316 if (III->second.Needs & StateStrictWWM) 1317 Needs = StateStrictWWM; 1318 else if (III->second.Needs & StateStrictWQM) 1319 Needs = StateStrictWQM; 1320 else if (III->second.Needs & StateWQM) 1321 Needs = StateWQM; 1322 else 1323 Needs &= ~III->second.Disabled; 1324 OutNeeds = III->second.OutNeeds; 1325 } 1326 } else { 1327 // If the instruction doesn't actually need a correct EXEC, then we can 1328 // safely leave Strict mode enabled. 1329 Needs = StateExact | StateWQM | StateStrict; 1330 } 1331 1332 // Exact mode exit can occur in terminators, but must be before branches. 1333 if (MI.isBranch() && OutNeeds == StateExact) 1334 Needs = StateExact; 1335 1336 ++Next; 1337 } else { 1338 // End of basic block 1339 if (BI.OutNeeds & StateWQM) 1340 Needs = StateWQM; 1341 else if (BI.OutNeeds == StateExact) 1342 Needs = StateExact; 1343 else 1344 Needs = StateWQM | StateExact; 1345 } 1346 1347 // Now, transition if necessary. 1348 if (!(Needs & State)) { 1349 MachineBasicBlock::iterator First; 1350 if (State == StateStrictWWM || Needs == StateStrictWWM || 1351 State == StateStrictWQM || Needs == StateStrictWQM) { 1352 // We must switch to or from Strict mode. 1353 First = FirstStrict; 1354 } else { 1355 // We only need to switch to/from WQM, so we can use FirstWQM. 1356 First = FirstWQM; 1357 } 1358 1359 // Whether we need to save SCC depends on start and end states. 1360 bool SaveSCC = false; 1361 switch (State) { 1362 case StateExact: 1363 case StateStrictWWM: 1364 case StateStrictWQM: 1365 // Exact/Strict -> Strict: save SCC 1366 // Exact/Strict -> WQM: save SCC if WQM mask is generated from exec 1367 // Exact/Strict -> Exact: no save 1368 SaveSCC = (Needs & StateStrict) || ((Needs & StateWQM) && WQMFromExec); 1369 break; 1370 case StateWQM: 1371 // WQM -> Exact/Strict: save SCC 1372 SaveSCC = !(Needs & StateWQM); 1373 break; 1374 default: 1375 llvm_unreachable("Unknown state"); 1376 break; 1377 } 1378 char StartState = State & StateStrict ? NonStrictState : State; 1379 bool WQMToExact = 1380 StartState == StateWQM && (Needs & StateExact) && !(Needs & StateWQM); 1381 bool ExactToWQM = StartState == StateExact && (Needs & StateWQM) && 1382 !(Needs & StateExact); 1383 bool PreferLast = Needs == StateWQM; 1384 // Exact regions in divergent control flow may run at EXEC=0, so try to 1385 // exclude instructions with unexpected effects from them. 1386 // FIXME: ideally we would branch over these when EXEC=0, 1387 // but this requires updating implicit values, live intervals and CFG. 1388 if ((WQMToExact && (OutNeeds & StateWQM)) || ExactToWQM) { 1389 for (MachineBasicBlock::iterator I = First; I != II; ++I) { 1390 if (TII->hasUnwantedEffectsWhenEXECEmpty(*I)) { 1391 PreferLast = WQMToExact; 1392 break; 1393 } 1394 } 1395 } 1396 MachineBasicBlock::iterator Before = 1397 prepareInsertion(MBB, First, II, PreferLast, SaveSCC); 1398 1399 if (State & StateStrict) { 1400 assert(State == StateStrictWWM || State == StateStrictWQM); 1401 assert(SavedNonStrictReg); 1402 fromStrictMode(MBB, Before, SavedNonStrictReg, NonStrictState, State); 1403 1404 LIS->createAndComputeVirtRegInterval(SavedNonStrictReg); 1405 SavedNonStrictReg = 0; 1406 State = NonStrictState; 1407 } 1408 1409 if (Needs & StateStrict) { 1410 NonStrictState = State; 1411 assert(Needs == StateStrictWWM || Needs == StateStrictWQM); 1412 assert(!SavedNonStrictReg); 1413 SavedNonStrictReg = MRI->createVirtualRegister(BoolRC); 1414 1415 toStrictMode(MBB, Before, SavedNonStrictReg, Needs); 1416 State = Needs; 1417 } else { 1418 if (WQMToExact) { 1419 if (!WQMFromExec && (OutNeeds & StateWQM)) { 1420 assert(!SavedWQMReg); 1421 SavedWQMReg = MRI->createVirtualRegister(BoolRC); 1422 } 1423 1424 toExact(MBB, Before, SavedWQMReg); 1425 State = StateExact; 1426 } else if (ExactToWQM) { 1427 assert(WQMFromExec == (SavedWQMReg == 0)); 1428 1429 toWQM(MBB, Before, SavedWQMReg); 1430 1431 if (SavedWQMReg) { 1432 LIS->createAndComputeVirtRegInterval(SavedWQMReg); 1433 SavedWQMReg = 0; 1434 } 1435 State = StateWQM; 1436 } else { 1437 // We can get here if we transitioned from StrictWWM to a 1438 // non-StrictWWM state that already matches our needs, but we 1439 // shouldn't need to do anything. 1440 assert(Needs & State); 1441 } 1442 } 1443 } 1444 1445 if (Needs != (StateExact | StateWQM | StateStrict)) { 1446 if (Needs != (StateExact | StateWQM)) 1447 FirstWQM = IE; 1448 FirstStrict = IE; 1449 } 1450 1451 if (II == IE) 1452 break; 1453 1454 II = Next; 1455 } 1456 assert(!SavedWQMReg); 1457 assert(!SavedNonStrictReg); 1458 } 1459 1460 bool SIWholeQuadMode::lowerLiveMaskQueries() { 1461 for (MachineInstr *MI : LiveMaskQueries) { 1462 const DebugLoc &DL = MI->getDebugLoc(); 1463 Register Dest = MI->getOperand(0).getReg(); 1464 1465 MachineInstr *Copy = 1466 BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest) 1467 .addReg(LiveMaskReg); 1468 1469 LIS->ReplaceMachineInstrInMaps(*MI, *Copy); 1470 MI->eraseFromParent(); 1471 } 1472 return !LiveMaskQueries.empty(); 1473 } 1474 1475 bool SIWholeQuadMode::lowerCopyInstrs() { 1476 for (MachineInstr *MI : LowerToMovInstrs) { 1477 assert(MI->getNumExplicitOperands() == 2); 1478 1479 const Register Reg = MI->getOperand(0).getReg(); 1480 1481 const TargetRegisterClass *regClass = 1482 TRI->getRegClassForOperandReg(*MRI, MI->getOperand(0)); 1483 if (TRI->isVGPRClass(regClass)) { 1484 const unsigned MovOp = TII->getMovOpcode(regClass); 1485 MI->setDesc(TII->get(MovOp)); 1486 1487 // Check that it already implicitly depends on exec (like all VALU movs 1488 // should do). 1489 assert(any_of(MI->implicit_operands(), [](const MachineOperand &MO) { 1490 return MO.isUse() && MO.getReg() == AMDGPU::EXEC; 1491 })); 1492 } else { 1493 // Remove early-clobber and exec dependency from simple SGPR copies. 1494 // This allows some to be eliminated during/post RA. 1495 LLVM_DEBUG(dbgs() << "simplify SGPR copy: " << *MI); 1496 if (MI->getOperand(0).isEarlyClobber()) { 1497 LIS->removeInterval(Reg); 1498 MI->getOperand(0).setIsEarlyClobber(false); 1499 LIS->createAndComputeVirtRegInterval(Reg); 1500 } 1501 int Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC, /*TRI=*/nullptr); 1502 while (Index >= 0) { 1503 MI->removeOperand(Index); 1504 Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC, /*TRI=*/nullptr); 1505 } 1506 MI->setDesc(TII->get(AMDGPU::COPY)); 1507 LLVM_DEBUG(dbgs() << " -> " << *MI); 1508 } 1509 } 1510 for (MachineInstr *MI : LowerToCopyInstrs) { 1511 LLVM_DEBUG(dbgs() << "simplify: " << *MI); 1512 1513 if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32) { 1514 assert(MI->getNumExplicitOperands() == 6); 1515 1516 LiveInterval *RecomputeLI = nullptr; 1517 if (MI->getOperand(4).isReg()) 1518 RecomputeLI = &LIS->getInterval(MI->getOperand(4).getReg()); 1519 1520 MI->removeOperand(5); 1521 MI->removeOperand(4); 1522 MI->removeOperand(3); 1523 MI->removeOperand(1); 1524 1525 if (RecomputeLI) 1526 LIS->shrinkToUses(RecomputeLI); 1527 } else { 1528 assert(MI->getNumExplicitOperands() == 2); 1529 } 1530 1531 unsigned CopyOp = MI->getOperand(1).isReg() 1532 ? (unsigned)AMDGPU::COPY 1533 : TII->getMovOpcode(TRI->getRegClassForOperandReg( 1534 *MRI, MI->getOperand(0))); 1535 MI->setDesc(TII->get(CopyOp)); 1536 LLVM_DEBUG(dbgs() << " -> " << *MI); 1537 } 1538 return !LowerToCopyInstrs.empty() || !LowerToMovInstrs.empty(); 1539 } 1540 1541 bool SIWholeQuadMode::lowerKillInstrs(bool IsWQM) { 1542 for (MachineInstr *MI : KillInstrs) { 1543 MachineInstr *SplitPoint = nullptr; 1544 switch (MI->getOpcode()) { 1545 case AMDGPU::SI_DEMOTE_I1: 1546 case AMDGPU::SI_KILL_I1_TERMINATOR: 1547 SplitPoint = lowerKillI1(*MI, IsWQM); 1548 break; 1549 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR: 1550 SplitPoint = lowerKillF32(*MI); 1551 break; 1552 } 1553 if (SplitPoint) 1554 splitBlock(SplitPoint); 1555 } 1556 return !KillInstrs.empty(); 1557 } 1558 1559 void SIWholeQuadMode::lowerInitExec(MachineInstr &MI) { 1560 MachineBasicBlock *MBB = MI.getParent(); 1561 bool IsWave32 = ST->isWave32(); 1562 1563 if (MI.getOpcode() == AMDGPU::SI_INIT_WHOLE_WAVE) { 1564 assert(MBB == &MBB->getParent()->front() && 1565 "init whole wave not in entry block"); 1566 Register EntryExec = MRI->createVirtualRegister(TRI->getBoolRC()); 1567 MachineInstr *SaveExec = 1568 BuildMI(*MBB, MBB->begin(), MI.getDebugLoc(), 1569 TII->get(IsWave32 ? AMDGPU::S_OR_SAVEEXEC_B32 1570 : AMDGPU::S_OR_SAVEEXEC_B64), 1571 EntryExec) 1572 .addImm(-1); 1573 1574 // Replace all uses of MI's destination reg with EntryExec. 1575 MRI->replaceRegWith(MI.getOperand(0).getReg(), EntryExec); 1576 1577 if (LIS) { 1578 LIS->RemoveMachineInstrFromMaps(MI); 1579 } 1580 1581 MI.eraseFromParent(); 1582 1583 if (LIS) { 1584 LIS->InsertMachineInstrInMaps(*SaveExec); 1585 LIS->createAndComputeVirtRegInterval(EntryExec); 1586 } 1587 return; 1588 } 1589 1590 if (MI.getOpcode() == AMDGPU::SI_INIT_EXEC) { 1591 // This should be before all vector instructions. 1592 MachineInstr *InitMI = 1593 BuildMI(*MBB, MBB->begin(), MI.getDebugLoc(), 1594 TII->get(IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64), 1595 Exec) 1596 .addImm(MI.getOperand(0).getImm()); 1597 if (LIS) { 1598 LIS->RemoveMachineInstrFromMaps(MI); 1599 LIS->InsertMachineInstrInMaps(*InitMI); 1600 } 1601 MI.eraseFromParent(); 1602 return; 1603 } 1604 1605 // Extract the thread count from an SGPR input and set EXEC accordingly. 1606 // Since BFM can't shift by 64, handle that case with CMP + CMOV. 1607 // 1608 // S_BFE_U32 count, input, {shift, 7} 1609 // S_BFM_B64 exec, count, 0 1610 // S_CMP_EQ_U32 count, 64 1611 // S_CMOV_B64 exec, -1 1612 Register InputReg = MI.getOperand(0).getReg(); 1613 MachineInstr *FirstMI = &*MBB->begin(); 1614 if (InputReg.isVirtual()) { 1615 MachineInstr *DefInstr = MRI->getVRegDef(InputReg); 1616 assert(DefInstr && DefInstr->isCopy()); 1617 if (DefInstr->getParent() == MBB) { 1618 if (DefInstr != FirstMI) { 1619 // If the `InputReg` is defined in current block, we also need to 1620 // move that instruction to the beginning of the block. 1621 DefInstr->removeFromParent(); 1622 MBB->insert(FirstMI, DefInstr); 1623 if (LIS) 1624 LIS->handleMove(*DefInstr); 1625 } else { 1626 // If first instruction is definition then move pointer after it. 1627 FirstMI = &*std::next(FirstMI->getIterator()); 1628 } 1629 } 1630 } 1631 1632 // Insert instruction sequence at block beginning (before vector operations). 1633 const DebugLoc DL = MI.getDebugLoc(); 1634 const unsigned WavefrontSize = ST->getWavefrontSize(); 1635 const unsigned Mask = (WavefrontSize << 1) - 1; 1636 Register CountReg = MRI->createVirtualRegister(&AMDGPU::SGPR_32RegClass); 1637 auto BfeMI = BuildMI(*MBB, FirstMI, DL, TII->get(AMDGPU::S_BFE_U32), CountReg) 1638 .addReg(InputReg) 1639 .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000); 1640 auto BfmMI = 1641 BuildMI(*MBB, FirstMI, DL, 1642 TII->get(IsWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64), Exec) 1643 .addReg(CountReg) 1644 .addImm(0); 1645 auto CmpMI = BuildMI(*MBB, FirstMI, DL, TII->get(AMDGPU::S_CMP_EQ_U32)) 1646 .addReg(CountReg, RegState::Kill) 1647 .addImm(WavefrontSize); 1648 auto CmovMI = 1649 BuildMI(*MBB, FirstMI, DL, 1650 TII->get(IsWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64), 1651 Exec) 1652 .addImm(-1); 1653 1654 if (!LIS) { 1655 MI.eraseFromParent(); 1656 return; 1657 } 1658 1659 LIS->RemoveMachineInstrFromMaps(MI); 1660 MI.eraseFromParent(); 1661 1662 LIS->InsertMachineInstrInMaps(*BfeMI); 1663 LIS->InsertMachineInstrInMaps(*BfmMI); 1664 LIS->InsertMachineInstrInMaps(*CmpMI); 1665 LIS->InsertMachineInstrInMaps(*CmovMI); 1666 1667 LIS->removeInterval(InputReg); 1668 LIS->createAndComputeVirtRegInterval(InputReg); 1669 LIS->createAndComputeVirtRegInterval(CountReg); 1670 } 1671 1672 /// Lower INIT_EXEC instructions. Return a suitable insert point in \p Entry 1673 /// for instructions that depend on EXEC. 1674 MachineBasicBlock::iterator 1675 SIWholeQuadMode::lowerInitExecInstrs(MachineBasicBlock &Entry, bool &Changed) { 1676 MachineBasicBlock::iterator InsertPt = Entry.getFirstNonPHI(); 1677 1678 for (MachineInstr *MI : InitExecInstrs) { 1679 // Try to handle undefined cases gracefully: 1680 // - multiple INIT_EXEC instructions 1681 // - INIT_EXEC instructions not in the entry block 1682 if (MI->getParent() == &Entry) 1683 InsertPt = std::next(MI->getIterator()); 1684 1685 lowerInitExec(*MI); 1686 Changed = true; 1687 } 1688 1689 return InsertPt; 1690 } 1691 1692 bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) { 1693 LLVM_DEBUG(dbgs() << "SI Whole Quad Mode on " << MF.getName() 1694 << " ------------- \n"); 1695 LLVM_DEBUG(MF.dump();); 1696 1697 Instructions.clear(); 1698 Blocks.clear(); 1699 LiveMaskQueries.clear(); 1700 LowerToCopyInstrs.clear(); 1701 LowerToMovInstrs.clear(); 1702 KillInstrs.clear(); 1703 InitExecInstrs.clear(); 1704 SetInactiveInstrs.clear(); 1705 StateTransition.clear(); 1706 1707 ST = &MF.getSubtarget<GCNSubtarget>(); 1708 1709 TII = ST->getInstrInfo(); 1710 TRI = &TII->getRegisterInfo(); 1711 MRI = &MF.getRegInfo(); 1712 LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 1713 auto *MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); 1714 MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; 1715 auto *PDTWrapper = 1716 getAnalysisIfAvailable<MachinePostDominatorTreeWrapperPass>(); 1717 PDT = PDTWrapper ? &PDTWrapper->getPostDomTree() : nullptr; 1718 1719 if (ST->isWave32()) { 1720 AndOpc = AMDGPU::S_AND_B32; 1721 AndTermOpc = AMDGPU::S_AND_B32_term; 1722 AndN2Opc = AMDGPU::S_ANDN2_B32; 1723 XorOpc = AMDGPU::S_XOR_B32; 1724 AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B32; 1725 AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B32_term; 1726 WQMOpc = AMDGPU::S_WQM_B32; 1727 Exec = AMDGPU::EXEC_LO; 1728 } else { 1729 AndOpc = AMDGPU::S_AND_B64; 1730 AndTermOpc = AMDGPU::S_AND_B64_term; 1731 AndN2Opc = AMDGPU::S_ANDN2_B64; 1732 XorOpc = AMDGPU::S_XOR_B64; 1733 AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B64; 1734 AndSaveExecTermOpc = AMDGPU::S_AND_SAVEEXEC_B64_term; 1735 WQMOpc = AMDGPU::S_WQM_B64; 1736 Exec = AMDGPU::EXEC; 1737 } 1738 1739 const char GlobalFlags = analyzeFunction(MF); 1740 bool Changed = false; 1741 1742 LiveMaskReg = Exec; 1743 1744 MachineBasicBlock &Entry = MF.front(); 1745 MachineBasicBlock::iterator EntryMI = lowerInitExecInstrs(Entry, Changed); 1746 1747 // Store a copy of the original live mask when required 1748 const bool HasLiveMaskQueries = !LiveMaskQueries.empty(); 1749 const bool HasWaveModes = GlobalFlags & ~StateExact; 1750 const bool HasKills = !KillInstrs.empty(); 1751 const bool UsesWQM = GlobalFlags & StateWQM; 1752 if (HasKills || UsesWQM || (HasWaveModes && HasLiveMaskQueries)) { 1753 LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC()); 1754 MachineInstr *MI = 1755 BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg) 1756 .addReg(Exec); 1757 LIS->InsertMachineInstrInMaps(*MI); 1758 Changed = true; 1759 } 1760 1761 // Check if V_SET_INACTIVE was touched by a strict state mode. 1762 // If so, promote to WWM; otherwise lower to COPY. 1763 for (MachineInstr *MI : SetInactiveInstrs) { 1764 if (LowerToCopyInstrs.contains(MI)) 1765 continue; 1766 if (Instructions[MI].MarkedStates & StateStrict) { 1767 Instructions[MI].Needs |= StateStrictWWM; 1768 Instructions[MI].Disabled &= ~StateStrictWWM; 1769 Blocks[MI->getParent()].Needs |= StateStrictWWM; 1770 } else { 1771 LLVM_DEBUG(dbgs() << "Has no WWM marking: " << *MI); 1772 LowerToCopyInstrs.insert(MI); 1773 } 1774 } 1775 1776 LLVM_DEBUG(printInfo()); 1777 1778 Changed |= lowerLiveMaskQueries(); 1779 Changed |= lowerCopyInstrs(); 1780 1781 if (!HasWaveModes) { 1782 // No wave mode execution 1783 Changed |= lowerKillInstrs(false); 1784 } else if (GlobalFlags == StateWQM) { 1785 // Shader only needs WQM 1786 auto MI = BuildMI(Entry, EntryMI, DebugLoc(), TII->get(WQMOpc), Exec) 1787 .addReg(Exec); 1788 LIS->InsertMachineInstrInMaps(*MI); 1789 lowerKillInstrs(true); 1790 Changed = true; 1791 } else { 1792 // Mark entry for WQM if required. 1793 if (GlobalFlags & StateWQM) 1794 Blocks[&Entry].InNeeds |= StateWQM; 1795 // Wave mode switching requires full lowering pass. 1796 for (auto &BII : Blocks) 1797 processBlock(*BII.first, BII.second, BII.first == &Entry); 1798 // Lowering blocks causes block splitting so perform as a second pass. 1799 for (auto &BII : Blocks) 1800 lowerBlock(*BII.first, BII.second); 1801 Changed = true; 1802 } 1803 1804 // Compute live range for live mask 1805 if (LiveMaskReg != Exec) 1806 LIS->createAndComputeVirtRegInterval(LiveMaskReg); 1807 1808 // Physical registers like SCC aren't tracked by default anyway, so just 1809 // removing the ranges we computed is the simplest option for maintaining 1810 // the analysis results. 1811 LIS->removeAllRegUnitsForPhysReg(AMDGPU::SCC); 1812 1813 // If we performed any kills then recompute EXEC 1814 if (!KillInstrs.empty() || !InitExecInstrs.empty()) 1815 LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC); 1816 1817 return Changed; 1818 } 1819