1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the lowering of LLVM calls to machine code calls for 11 /// GlobalISel. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPU.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "SIMachineFunctionInfo.h" 19 #include "SIRegisterInfo.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/FunctionLoweringInfo.h" 22 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/IR/IntrinsicsAMDGPU.h" 25 26 #define DEBUG_TYPE "amdgpu-call-lowering" 27 28 using namespace llvm; 29 30 namespace { 31 32 /// Wrapper around extendRegister to ensure we extend to a full 32-bit register. 33 static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, 34 Register ValVReg, const CCValAssign &VA) { 35 if (VA.getLocVT().getSizeInBits() < 32) { 36 // 16-bit types are reported as legal for 32-bit registers. We need to 37 // extend and do a 32-bit copy to avoid the verifier complaining about it. 38 return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); 39 } 40 41 return Handler.extendRegister(ValVReg, VA); 42 } 43 44 struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { 45 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, 46 MachineInstrBuilder MIB) 47 : OutgoingValueHandler(B, MRI), MIB(MIB) {} 48 49 MachineInstrBuilder MIB; 50 51 Register getStackAddress(uint64_t Size, int64_t Offset, 52 MachinePointerInfo &MPO, 53 ISD::ArgFlagsTy Flags) override { 54 llvm_unreachable("not implemented"); 55 } 56 57 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 58 const MachinePointerInfo &MPO, 59 const CCValAssign &VA) override { 60 llvm_unreachable("not implemented"); 61 } 62 63 void assignValueToReg(Register ValVReg, Register PhysReg, 64 const CCValAssign &VA) override { 65 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); 66 67 // If this is a scalar return, insert a readfirstlane just in case the value 68 // ends up in a VGPR. 69 // FIXME: Assert this is a shader return. 70 const SIRegisterInfo *TRI 71 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); 72 if (TRI->isSGPRReg(MRI, PhysReg)) { 73 LLT Ty = MRI.getType(ExtReg); 74 LLT S32 = LLT::scalar(32); 75 if (Ty != S32) { 76 // FIXME: We should probably support readfirstlane intrinsics with all 77 // legal 32-bit types. 78 assert(Ty.getSizeInBits() == 32); 79 if (Ty.isPointer()) 80 ExtReg = MIRBuilder.buildPtrToInt(S32, ExtReg).getReg(0); 81 else 82 ExtReg = MIRBuilder.buildBitcast(S32, ExtReg).getReg(0); 83 } 84 85 auto ToSGPR = MIRBuilder 86 .buildIntrinsic(Intrinsic::amdgcn_readfirstlane, 87 {MRI.getType(ExtReg)}) 88 .addReg(ExtReg); 89 ExtReg = ToSGPR.getReg(0); 90 } 91 92 MIRBuilder.buildCopy(PhysReg, ExtReg); 93 MIB.addUse(PhysReg, RegState::Implicit); 94 } 95 }; 96 97 struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { 98 uint64_t StackUsed = 0; 99 100 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 101 : IncomingValueHandler(B, MRI) {} 102 103 Register getStackAddress(uint64_t Size, int64_t Offset, 104 MachinePointerInfo &MPO, 105 ISD::ArgFlagsTy Flags) override { 106 auto &MFI = MIRBuilder.getMF().getFrameInfo(); 107 108 // Byval is assumed to be writable memory, but other stack passed arguments 109 // are not. 110 const bool IsImmutable = !Flags.isByVal(); 111 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); 112 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); 113 auto AddrReg = MIRBuilder.buildFrameIndex( 114 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); 115 StackUsed = std::max(StackUsed, Size + Offset); 116 return AddrReg.getReg(0); 117 } 118 119 void assignValueToReg(Register ValVReg, Register PhysReg, 120 const CCValAssign &VA) override { 121 markPhysRegUsed(PhysReg); 122 123 if (VA.getLocVT().getSizeInBits() < 32) { 124 // 16-bit types are reported as legal for 32-bit registers. We need to do 125 // a 32-bit copy, and truncate to avoid the verifier complaining about it. 126 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); 127 128 // If we have signext/zeroext, it applies to the whole 32-bit register 129 // before truncation. 130 auto Extended = 131 buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT())); 132 MIRBuilder.buildTrunc(ValVReg, Extended); 133 return; 134 } 135 136 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); 137 } 138 139 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 140 const MachinePointerInfo &MPO, 141 const CCValAssign &VA) override { 142 MachineFunction &MF = MIRBuilder.getMF(); 143 144 auto *MMO = MF.getMachineMemOperand( 145 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy, 146 inferAlignFromPtrInfo(MF, MPO)); 147 MIRBuilder.buildLoad(ValVReg, Addr, *MMO); 148 } 149 150 /// How the physical register gets marked varies between formal 151 /// parameters (it's a basic-block live-in), and a call instruction 152 /// (it's an implicit-def of the BL). 153 virtual void markPhysRegUsed(unsigned PhysReg) = 0; 154 }; 155 156 struct FormalArgHandler : public AMDGPUIncomingArgHandler { 157 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) 158 : AMDGPUIncomingArgHandler(B, MRI) {} 159 160 void markPhysRegUsed(unsigned PhysReg) override { 161 MIRBuilder.getMBB().addLiveIn(PhysReg); 162 } 163 }; 164 165 struct CallReturnHandler : public AMDGPUIncomingArgHandler { 166 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, 167 MachineInstrBuilder MIB) 168 : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} 169 170 void markPhysRegUsed(unsigned PhysReg) override { 171 MIB.addDef(PhysReg, RegState::Implicit); 172 } 173 174 MachineInstrBuilder MIB; 175 }; 176 177 struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { 178 /// For tail calls, the byte offset of the call's argument area from the 179 /// callee's. Unused elsewhere. 180 int FPDiff; 181 182 // Cache the SP register vreg if we need it more than once in this call site. 183 Register SPReg; 184 185 bool IsTailCall; 186 187 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, 188 MachineRegisterInfo &MRI, MachineInstrBuilder MIB, 189 bool IsTailCall = false, int FPDiff = 0) 190 : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff), 191 IsTailCall(IsTailCall) {} 192 193 Register getStackAddress(uint64_t Size, int64_t Offset, 194 MachinePointerInfo &MPO, 195 ISD::ArgFlagsTy Flags) override { 196 MachineFunction &MF = MIRBuilder.getMF(); 197 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); 198 const LLT S32 = LLT::scalar(32); 199 200 if (IsTailCall) { 201 Offset += FPDiff; 202 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); 203 auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI); 204 MPO = MachinePointerInfo::getFixedStack(MF, FI); 205 return FIReg.getReg(0); 206 } 207 208 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 209 210 if (!SPReg) { 211 const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>(); 212 if (ST.enableFlatScratch()) { 213 // The stack is accessed unswizzled, so we can use a regular copy. 214 SPReg = MIRBuilder.buildCopy(PtrTy, 215 MFI->getStackPtrOffsetReg()).getReg(0); 216 } else { 217 // The address we produce here, without knowing the use context, is going 218 // to be interpreted as a vector address, so we need to convert to a 219 // swizzled address. 220 SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy}, 221 {MFI->getStackPtrOffsetReg()}).getReg(0); 222 } 223 } 224 225 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); 226 227 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); 228 MPO = MachinePointerInfo::getStack(MF, Offset); 229 return AddrReg.getReg(0); 230 } 231 232 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, 233 const MachinePointerInfo &MPO, 234 const CCValAssign &VA) override { 235 MachineFunction &MF = MIRBuilder.getMF(); 236 uint64_t LocMemOffset = VA.getLocMemOffset(); 237 const auto &ST = MF.getSubtarget<GCNSubtarget>(); 238 239 auto *MMO = MF.getMachineMemOperand( 240 MPO, MachineMemOperand::MOStore, MemTy, 241 commonAlignment(ST.getStackAlignment(), LocMemOffset)); 242 MIRBuilder.buildStore(ValVReg, Addr, *MMO); 243 } 244 245 void assignValueToAddress(const CallLowering::ArgInfo &Arg, 246 unsigned ValRegIndex, Register Addr, LLT MemTy, 247 const MachinePointerInfo &MPO, 248 const CCValAssign &VA) override { 249 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt 250 ? extendRegister(Arg.Regs[ValRegIndex], VA) 251 : Arg.Regs[ValRegIndex]; 252 assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA); 253 } 254 }; 255 } // anonymous namespace 256 257 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) 258 : CallLowering(&TLI) { 259 } 260 261 // FIXME: Compatibility shim 262 static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { 263 switch (MIOpc) { 264 case TargetOpcode::G_SEXT: 265 return ISD::SIGN_EXTEND; 266 case TargetOpcode::G_ZEXT: 267 return ISD::ZERO_EXTEND; 268 case TargetOpcode::G_ANYEXT: 269 return ISD::ANY_EXTEND; 270 default: 271 llvm_unreachable("not an extend opcode"); 272 } 273 } 274 275 bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, 276 CallingConv::ID CallConv, 277 SmallVectorImpl<BaseArgInfo> &Outs, 278 bool IsVarArg) const { 279 // For shaders. Vector types should be explicitly handled by CC. 280 if (AMDGPU::isEntryFunctionCC(CallConv)) 281 return true; 282 283 SmallVector<CCValAssign, 16> ArgLocs; 284 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 285 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, 286 MF.getFunction().getContext()); 287 288 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); 289 } 290 291 /// Lower the return value for the already existing \p Ret. This assumes that 292 /// \p B's insertion point is correct. 293 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, 294 const Value *Val, ArrayRef<Register> VRegs, 295 MachineInstrBuilder &Ret) const { 296 if (!Val) 297 return true; 298 299 auto &MF = B.getMF(); 300 const auto &F = MF.getFunction(); 301 const DataLayout &DL = MF.getDataLayout(); 302 MachineRegisterInfo *MRI = B.getMRI(); 303 LLVMContext &Ctx = F.getContext(); 304 305 CallingConv::ID CC = F.getCallingConv(); 306 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 307 308 SmallVector<EVT, 8> SplitEVTs; 309 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); 310 assert(VRegs.size() == SplitEVTs.size() && 311 "For each split Type there should be exactly one VReg."); 312 313 SmallVector<ArgInfo, 8> SplitRetInfos; 314 315 for (unsigned i = 0; i < SplitEVTs.size(); ++i) { 316 EVT VT = SplitEVTs[i]; 317 Register Reg = VRegs[i]; 318 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0); 319 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 320 321 if (VT.isScalarInteger()) { 322 unsigned ExtendOp = TargetOpcode::G_ANYEXT; 323 if (RetInfo.Flags[0].isSExt()) { 324 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 325 ExtendOp = TargetOpcode::G_SEXT; 326 } else if (RetInfo.Flags[0].isZExt()) { 327 assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); 328 ExtendOp = TargetOpcode::G_ZEXT; 329 } 330 331 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, 332 extOpcodeToISDExtOpcode(ExtendOp)); 333 if (ExtVT != VT) { 334 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); 335 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); 336 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); 337 } 338 } 339 340 if (Reg != RetInfo.Regs[0]) { 341 RetInfo.Regs[0] = Reg; 342 // Reset the arg flags after modifying Reg. 343 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); 344 } 345 346 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); 347 } 348 349 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); 350 351 OutgoingValueAssigner Assigner(AssignFn); 352 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret); 353 return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B, 354 CC, F.isVarArg()); 355 } 356 357 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, 358 ArrayRef<Register> VRegs, 359 FunctionLoweringInfo &FLI) const { 360 361 MachineFunction &MF = B.getMF(); 362 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 363 MFI->setIfReturnsVoid(!Val); 364 365 assert(!Val == VRegs.empty() && "Return value without a vreg"); 366 367 CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); 368 const bool IsShader = AMDGPU::isShader(CC); 369 const bool IsWaveEnd = 370 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); 371 if (IsWaveEnd) { 372 B.buildInstr(AMDGPU::S_ENDPGM) 373 .addImm(0); 374 return true; 375 } 376 377 unsigned ReturnOpc = 378 IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN; 379 auto Ret = B.buildInstrNoInsert(ReturnOpc); 380 381 if (!FLI.CanLowerReturn) 382 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); 383 else if (!lowerReturnVal(B, Val, VRegs, Ret)) 384 return false; 385 386 // TODO: Handle CalleeSavedRegsViaCopy. 387 388 B.insertInstr(Ret); 389 return true; 390 } 391 392 void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, 393 uint64_t Offset) const { 394 MachineFunction &MF = B.getMF(); 395 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 396 MachineRegisterInfo &MRI = MF.getRegInfo(); 397 Register KernArgSegmentPtr = 398 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); 399 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); 400 401 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); 402 403 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); 404 } 405 406 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg, 407 uint64_t Offset, 408 Align Alignment) const { 409 MachineFunction &MF = B.getMF(); 410 const Function &F = MF.getFunction(); 411 const DataLayout &DL = F.getDataLayout(); 412 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); 413 414 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 415 416 SmallVector<ArgInfo, 32> SplitArgs; 417 SmallVector<uint64_t> FieldOffsets; 418 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets); 419 420 unsigned Idx = 0; 421 for (ArgInfo &SplitArg : SplitArgs) { 422 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); 423 lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]); 424 425 LLT ArgTy = getLLTForType(*SplitArg.Ty, DL); 426 if (SplitArg.Flags[0].isPointer()) { 427 // Compensate for losing pointeriness in splitValueTypes. 428 LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(), 429 ArgTy.getScalarSizeInBits()); 430 ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy) 431 : PtrTy; 432 } 433 434 MachineMemOperand *MMO = MF.getMachineMemOperand( 435 PtrInfo, 436 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | 437 MachineMemOperand::MOInvariant, 438 ArgTy, commonAlignment(Alignment, FieldOffsets[Idx])); 439 440 assert(SplitArg.Regs.size() == 1); 441 442 B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO); 443 ++Idx; 444 } 445 } 446 447 // Allocate special inputs passed in user SGPRs. 448 static void allocateHSAUserSGPRs(CCState &CCInfo, 449 MachineIRBuilder &B, 450 MachineFunction &MF, 451 const SIRegisterInfo &TRI, 452 SIMachineFunctionInfo &Info) { 453 // FIXME: How should these inputs interact with inreg / custom SGPR inputs? 454 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo(); 455 if (UserSGPRInfo.hasPrivateSegmentBuffer()) { 456 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); 457 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); 458 CCInfo.AllocateReg(PrivateSegmentBufferReg); 459 } 460 461 if (UserSGPRInfo.hasDispatchPtr()) { 462 Register DispatchPtrReg = Info.addDispatchPtr(TRI); 463 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); 464 CCInfo.AllocateReg(DispatchPtrReg); 465 } 466 467 if (UserSGPRInfo.hasQueuePtr()) { 468 Register QueuePtrReg = Info.addQueuePtr(TRI); 469 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); 470 CCInfo.AllocateReg(QueuePtrReg); 471 } 472 473 if (UserSGPRInfo.hasKernargSegmentPtr()) { 474 MachineRegisterInfo &MRI = MF.getRegInfo(); 475 Register InputPtrReg = Info.addKernargSegmentPtr(TRI); 476 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 477 Register VReg = MRI.createGenericVirtualRegister(P4); 478 MRI.addLiveIn(InputPtrReg, VReg); 479 B.getMBB().addLiveIn(InputPtrReg); 480 B.buildCopy(VReg, InputPtrReg); 481 CCInfo.AllocateReg(InputPtrReg); 482 } 483 484 if (UserSGPRInfo.hasDispatchID()) { 485 Register DispatchIDReg = Info.addDispatchID(TRI); 486 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); 487 CCInfo.AllocateReg(DispatchIDReg); 488 } 489 490 if (UserSGPRInfo.hasFlatScratchInit()) { 491 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); 492 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 493 CCInfo.AllocateReg(FlatScratchInitReg); 494 } 495 496 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read 497 // these from the dispatch pointer. 498 } 499 500 bool AMDGPUCallLowering::lowerFormalArgumentsKernel( 501 MachineIRBuilder &B, const Function &F, 502 ArrayRef<ArrayRef<Register>> VRegs) const { 503 MachineFunction &MF = B.getMF(); 504 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); 505 MachineRegisterInfo &MRI = MF.getRegInfo(); 506 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 507 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); 508 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 509 const DataLayout &DL = F.getDataLayout(); 510 511 SmallVector<CCValAssign, 16> ArgLocs; 512 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); 513 514 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); 515 516 unsigned i = 0; 517 const Align KernArgBaseAlign(16); 518 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(); 519 uint64_t ExplicitArgOffset = 0; 520 521 // TODO: Align down to dword alignment and extract bits for extending loads. 522 for (auto &Arg : F.args()) { 523 // TODO: Add support for kernarg preload. 524 if (Arg.hasAttribute("amdgpu-hidden-argument")) { 525 LLVM_DEBUG(dbgs() << "Preloading hidden arguments is not supported\n"); 526 return false; 527 } 528 529 const bool IsByRef = Arg.hasByRefAttr(); 530 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 531 unsigned AllocSize = DL.getTypeAllocSize(ArgTy); 532 if (AllocSize == 0) 533 continue; 534 535 MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt; 536 Align ABIAlign = DL.getValueOrABITypeAlignment(ParamAlign, ArgTy); 537 538 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; 539 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; 540 541 if (Arg.use_empty()) { 542 ++i; 543 continue; 544 } 545 546 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); 547 548 if (IsByRef) { 549 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); 550 551 assert(VRegs[i].size() == 1 && 552 "expected only one register for byval pointers"); 553 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { 554 lowerParameterPtr(VRegs[i][0], B, ArgOffset); 555 } else { 556 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); 557 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); 558 lowerParameterPtr(PtrReg, B, ArgOffset); 559 560 B.buildAddrSpaceCast(VRegs[i][0], PtrReg); 561 } 562 } else { 563 ArgInfo OrigArg(VRegs[i], Arg, i); 564 const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex; 565 setArgFlags(OrigArg, OrigArgIdx, DL, F); 566 lowerParameter(B, OrigArg, ArgOffset, Alignment); 567 } 568 569 ++i; 570 } 571 572 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); 573 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); 574 return true; 575 } 576 577 bool AMDGPUCallLowering::lowerFormalArguments( 578 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, 579 FunctionLoweringInfo &FLI) const { 580 CallingConv::ID CC = F.getCallingConv(); 581 582 // The infrastructure for normal calling convention lowering is essentially 583 // useless for kernels. We want to avoid any kind of legalization or argument 584 // splitting. 585 if (CC == CallingConv::AMDGPU_KERNEL) 586 return lowerFormalArgumentsKernel(B, F, VRegs); 587 588 const bool IsGraphics = AMDGPU::isGraphics(CC); 589 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); 590 591 MachineFunction &MF = B.getMF(); 592 MachineBasicBlock &MBB = B.getMBB(); 593 MachineRegisterInfo &MRI = MF.getRegInfo(); 594 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 595 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); 596 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); 597 const DataLayout &DL = F.getDataLayout(); 598 599 SmallVector<CCValAssign, 16> ArgLocs; 600 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); 601 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo(); 602 603 if (UserSGPRInfo.hasImplicitBufferPtr()) { 604 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); 605 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); 606 CCInfo.AllocateReg(ImplicitBufferPtrReg); 607 } 608 609 // FIXME: This probably isn't defined for mesa 610 if (UserSGPRInfo.hasFlatScratchInit() && !Subtarget.isAmdPalOS()) { 611 Register FlatScratchInitReg = Info->addFlatScratchInit(*TRI); 612 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); 613 CCInfo.AllocateReg(FlatScratchInitReg); 614 } 615 616 SmallVector<ArgInfo, 32> SplitArgs; 617 unsigned Idx = 0; 618 unsigned PSInputNum = 0; 619 620 // Insert the hidden sret parameter if the return value won't fit in the 621 // return registers. 622 if (!FLI.CanLowerReturn) 623 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); 624 625 for (auto &Arg : F.args()) { 626 if (DL.getTypeStoreSize(Arg.getType()) == 0) 627 continue; 628 629 const bool InReg = Arg.hasAttribute(Attribute::InReg); 630 631 if (Arg.hasAttribute(Attribute::SwiftSelf) || 632 Arg.hasAttribute(Attribute::SwiftError) || 633 Arg.hasAttribute(Attribute::Nest)) 634 return false; 635 636 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { 637 const bool ArgUsed = !Arg.use_empty(); 638 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); 639 640 if (!SkipArg) { 641 Info->markPSInputAllocated(PSInputNum); 642 if (ArgUsed) 643 Info->markPSInputEnabled(PSInputNum); 644 } 645 646 ++PSInputNum; 647 648 if (SkipArg) { 649 for (Register R : VRegs[Idx]) 650 B.buildUndef(R); 651 652 ++Idx; 653 continue; 654 } 655 } 656 657 ArgInfo OrigArg(VRegs[Idx], Arg, Idx); 658 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; 659 setArgFlags(OrigArg, OrigArgIdx, DL, F); 660 661 splitToValueTypes(OrigArg, SplitArgs, DL, CC); 662 ++Idx; 663 } 664 665 // At least one interpolation mode must be enabled or else the GPU will 666 // hang. 667 // 668 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user 669 // set PSInputAddr, the user wants to enable some bits after the compilation 670 // based on run-time states. Since we can't know what the final PSInputEna 671 // will look like, so we shouldn't do anything here and the user should take 672 // responsibility for the correct programming. 673 // 674 // Otherwise, the following restrictions apply: 675 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. 676 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be 677 // enabled too. 678 if (CC == CallingConv::AMDGPU_PS) { 679 if ((Info->getPSInputAddr() & 0x7F) == 0 || 680 ((Info->getPSInputAddr() & 0xF) == 0 && 681 Info->isPSInputAllocated(11))) { 682 CCInfo.AllocateReg(AMDGPU::VGPR0); 683 CCInfo.AllocateReg(AMDGPU::VGPR1); 684 Info->markPSInputAllocated(0); 685 Info->markPSInputEnabled(0); 686 } 687 688 if (Subtarget.isAmdPalOS()) { 689 // For isAmdPalOS, the user does not enable some bits after compilation 690 // based on run-time states; the register values being generated here are 691 // the final ones set in hardware. Therefore we need to apply the 692 // workaround to PSInputAddr and PSInputEnable together. (The case where 693 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend 694 // set up an input arg for a particular interpolation mode, but nothing 695 // uses that input arg. Really we should have an earlier pass that removes 696 // such an arg.) 697 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); 698 if ((PsInputBits & 0x7F) == 0 || 699 ((PsInputBits & 0xF) == 0 && 700 (PsInputBits >> 11 & 1))) 701 Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr())); 702 } 703 } 704 705 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 706 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); 707 708 if (!MBB.empty()) 709 B.setInstr(*MBB.begin()); 710 711 if (!IsEntryFunc && !IsGraphics) { 712 // For the fixed ABI, pass workitem IDs in the last argument register. 713 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); 714 715 if (!Subtarget.enableFlatScratch()) 716 CCInfo.AllocateReg(Info->getScratchRSrcReg()); 717 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); 718 } 719 720 IncomingValueAssigner Assigner(AssignFn); 721 if (!determineAssignments(Assigner, SplitArgs, CCInfo)) 722 return false; 723 724 FormalArgHandler Handler(B, MRI); 725 if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B)) 726 return false; 727 728 uint64_t StackSize = Assigner.StackSize; 729 730 // Start adding system SGPRs. 731 if (IsEntryFunc) 732 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); 733 734 // When we tail call, we need to check if the callee's arguments will fit on 735 // the caller's stack. So, whenever we lower formal arguments, we should keep 736 // track of this information, since we might lower a tail call in this 737 // function later. 738 Info->setBytesInStackArgArea(StackSize); 739 740 // Move back to the end of the basic block. 741 B.setMBB(MBB); 742 743 return true; 744 } 745 746 bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, 747 CCState &CCInfo, 748 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, 749 CallLoweringInfo &Info) const { 750 MachineFunction &MF = MIRBuilder.getMF(); 751 752 // If there's no call site, this doesn't correspond to a call from the IR and 753 // doesn't need implicit inputs. 754 if (!Info.CB) 755 return true; 756 757 const AMDGPUFunctionArgInfo *CalleeArgInfo 758 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; 759 760 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 761 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); 762 763 764 // TODO: Unify with private memory register handling. This is complicated by 765 // the fact that at least in kernels, the input argument is not necessarily 766 // in the same location as the input. 767 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { 768 AMDGPUFunctionArgInfo::DISPATCH_PTR, 769 AMDGPUFunctionArgInfo::QUEUE_PTR, 770 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, 771 AMDGPUFunctionArgInfo::DISPATCH_ID, 772 AMDGPUFunctionArgInfo::WORKGROUP_ID_X, 773 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, 774 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z, 775 AMDGPUFunctionArgInfo::LDS_KERNEL_ID, 776 }; 777 778 static constexpr StringLiteral ImplicitAttrNames[] = { 779 "amdgpu-no-dispatch-ptr", 780 "amdgpu-no-queue-ptr", 781 "amdgpu-no-implicitarg-ptr", 782 "amdgpu-no-dispatch-id", 783 "amdgpu-no-workgroup-id-x", 784 "amdgpu-no-workgroup-id-y", 785 "amdgpu-no-workgroup-id-z", 786 "amdgpu-no-lds-kernel-id", 787 }; 788 789 MachineRegisterInfo &MRI = MF.getRegInfo(); 790 791 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 792 const AMDGPULegalizerInfo *LI 793 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); 794 795 unsigned I = 0; 796 for (auto InputID : InputRegs) { 797 const ArgDescriptor *OutgoingArg; 798 const TargetRegisterClass *ArgRC; 799 LLT ArgTy; 800 801 // If the callee does not use the attribute value, skip copying the value. 802 if (Info.CB->hasFnAttr(ImplicitAttrNames[I++])) 803 continue; 804 805 std::tie(OutgoingArg, ArgRC, ArgTy) = 806 CalleeArgInfo->getPreloadedValue(InputID); 807 if (!OutgoingArg) 808 continue; 809 810 const ArgDescriptor *IncomingArg; 811 const TargetRegisterClass *IncomingArgRC; 812 std::tie(IncomingArg, IncomingArgRC, ArgTy) = 813 CallerArgInfo.getPreloadedValue(InputID); 814 assert(IncomingArgRC == ArgRC); 815 816 Register InputReg = MRI.createGenericVirtualRegister(ArgTy); 817 818 if (IncomingArg) { 819 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); 820 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { 821 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); 822 } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { 823 std::optional<uint32_t> Id = 824 AMDGPUMachineFunction::getLDSKernelIdMetadata(MF.getFunction()); 825 if (Id) { 826 MIRBuilder.buildConstant(InputReg, *Id); 827 } else { 828 MIRBuilder.buildUndef(InputReg); 829 } 830 } else { 831 // We may have proven the input wasn't needed, although the ABI is 832 // requiring it. We just need to allocate the register appropriately. 833 MIRBuilder.buildUndef(InputReg); 834 } 835 836 if (OutgoingArg->isRegister()) { 837 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 838 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 839 report_fatal_error("failed to allocate implicit input argument"); 840 } else { 841 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 842 return false; 843 } 844 } 845 846 // Pack workitem IDs into a single register or pass it as is if already 847 // packed. 848 const ArgDescriptor *OutgoingArg; 849 const TargetRegisterClass *ArgRC; 850 LLT ArgTy; 851 852 std::tie(OutgoingArg, ArgRC, ArgTy) = 853 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 854 if (!OutgoingArg) 855 std::tie(OutgoingArg, ArgRC, ArgTy) = 856 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 857 if (!OutgoingArg) 858 std::tie(OutgoingArg, ArgRC, ArgTy) = 859 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 860 if (!OutgoingArg) 861 return false; 862 863 auto WorkitemIDX = 864 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); 865 auto WorkitemIDY = 866 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); 867 auto WorkitemIDZ = 868 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); 869 870 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); 871 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); 872 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); 873 const LLT S32 = LLT::scalar(32); 874 875 const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x"); 876 const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y"); 877 const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z"); 878 879 // If incoming ids are not packed we need to pack them. 880 // FIXME: Should consider known workgroup size to eliminate known 0 cases. 881 Register InputReg; 882 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && 883 NeedWorkItemIDX) { 884 if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) { 885 InputReg = MRI.createGenericVirtualRegister(S32); 886 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, 887 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); 888 } else { 889 InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0); 890 } 891 } 892 893 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && 894 NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) { 895 Register Y = MRI.createGenericVirtualRegister(S32); 896 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), 897 std::get<2>(WorkitemIDY)); 898 899 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); 900 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; 901 } 902 903 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && 904 NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) { 905 Register Z = MRI.createGenericVirtualRegister(S32); 906 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), 907 std::get<2>(WorkitemIDZ)); 908 909 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); 910 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; 911 } 912 913 if (!InputReg && 914 (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { 915 InputReg = MRI.createGenericVirtualRegister(S32); 916 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { 917 // We're in a situation where the outgoing function requires the workitem 918 // ID, but the calling function does not have it (e.g a graphics function 919 // calling a C calling convention function). This is illegal, but we need 920 // to produce something. 921 MIRBuilder.buildUndef(InputReg); 922 } else { 923 // Workitem ids are already packed, any of present incoming arguments will 924 // carry all required fields. 925 ArgDescriptor IncomingArg = ArgDescriptor::createArg( 926 IncomingArgX ? *IncomingArgX : 927 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); 928 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, 929 &AMDGPU::VGPR_32RegClass, S32); 930 } 931 } 932 933 if (OutgoingArg->isRegister()) { 934 if (InputReg) 935 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); 936 937 if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) 938 report_fatal_error("failed to allocate implicit input argument"); 939 } else { 940 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); 941 return false; 942 } 943 944 return true; 945 } 946 947 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for 948 /// CC. 949 static std::pair<CCAssignFn *, CCAssignFn *> 950 getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { 951 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; 952 } 953 954 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, 955 bool IsTailCall, bool isWave32, 956 CallingConv::ID CC) { 957 // For calls to amdgpu_cs_chain functions, the address is known to be uniform. 958 assert((AMDGPU::isChainCC(CC) || !IsIndirect || !IsTailCall) && 959 "Indirect calls can't be tail calls, " 960 "because the address can be divergent"); 961 if (!IsTailCall) 962 return AMDGPU::G_SI_CALL; 963 964 if (AMDGPU::isChainCC(CC)) 965 return isWave32 ? AMDGPU::SI_CS_CHAIN_TC_W32 : AMDGPU::SI_CS_CHAIN_TC_W64; 966 967 return CC == CallingConv::AMDGPU_Gfx ? AMDGPU::SI_TCRETURN_GFX : 968 AMDGPU::SI_TCRETURN; 969 } 970 971 // Add operands to call instruction to track the callee. 972 static bool addCallTargetOperands(MachineInstrBuilder &CallInst, 973 MachineIRBuilder &MIRBuilder, 974 AMDGPUCallLowering::CallLoweringInfo &Info) { 975 if (Info.Callee.isReg()) { 976 CallInst.addReg(Info.Callee.getReg()); 977 CallInst.addImm(0); 978 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { 979 // The call lowering lightly assumed we can directly encode a call target in 980 // the instruction, which is not the case. Materialize the address here. 981 const GlobalValue *GV = Info.Callee.getGlobal(); 982 auto Ptr = MIRBuilder.buildGlobalValue( 983 LLT::pointer(GV->getAddressSpace(), 64), GV); 984 CallInst.addReg(Ptr.getReg(0)); 985 CallInst.add(Info.Callee); 986 } else 987 return false; 988 989 return true; 990 } 991 992 bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay( 993 CallLoweringInfo &Info, MachineFunction &MF, 994 SmallVectorImpl<ArgInfo> &InArgs) const { 995 const Function &CallerF = MF.getFunction(); 996 CallingConv::ID CalleeCC = Info.CallConv; 997 CallingConv::ID CallerCC = CallerF.getCallingConv(); 998 999 // If the calling conventions match, then everything must be the same. 1000 if (CalleeCC == CallerCC) 1001 return true; 1002 1003 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1004 1005 // Make sure that the caller and callee preserve all of the same registers. 1006 const auto *TRI = ST.getRegisterInfo(); 1007 1008 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1009 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); 1010 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) 1011 return false; 1012 1013 // Check if the caller and callee will handle arguments in the same way. 1014 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1015 CCAssignFn *CalleeAssignFnFixed; 1016 CCAssignFn *CalleeAssignFnVarArg; 1017 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = 1018 getAssignFnsForCC(CalleeCC, TLI); 1019 1020 CCAssignFn *CallerAssignFnFixed; 1021 CCAssignFn *CallerAssignFnVarArg; 1022 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = 1023 getAssignFnsForCC(CallerCC, TLI); 1024 1025 // FIXME: We are not accounting for potential differences in implicitly passed 1026 // inputs, but only the fixed ABI is supported now anyway. 1027 IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, 1028 CalleeAssignFnVarArg); 1029 IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, 1030 CallerAssignFnVarArg); 1031 return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner); 1032 } 1033 1034 bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable( 1035 CallLoweringInfo &Info, MachineFunction &MF, 1036 SmallVectorImpl<ArgInfo> &OutArgs) const { 1037 // If there are no outgoing arguments, then we are done. 1038 if (OutArgs.empty()) 1039 return true; 1040 1041 const Function &CallerF = MF.getFunction(); 1042 CallingConv::ID CalleeCC = Info.CallConv; 1043 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1044 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1045 1046 CCAssignFn *AssignFnFixed; 1047 CCAssignFn *AssignFnVarArg; 1048 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1049 1050 // We have outgoing arguments. Make sure that we can tail call with them. 1051 SmallVector<CCValAssign, 16> OutLocs; 1052 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); 1053 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1054 1055 if (!determineAssignments(Assigner, OutArgs, OutInfo)) { 1056 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); 1057 return false; 1058 } 1059 1060 // Make sure that they can fit on the caller's stack. 1061 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1062 if (OutInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) { 1063 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); 1064 return false; 1065 } 1066 1067 // Verify that the parameters in callee-saved registers match. 1068 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1069 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1070 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); 1071 MachineRegisterInfo &MRI = MF.getRegInfo(); 1072 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); 1073 } 1074 1075 /// Return true if the calling convention is one that we can guarantee TCO for. 1076 static bool canGuaranteeTCO(CallingConv::ID CC) { 1077 return CC == CallingConv::Fast; 1078 } 1079 1080 /// Return true if we might ever do TCO for calls with this calling convention. 1081 static bool mayTailCallThisCC(CallingConv::ID CC) { 1082 switch (CC) { 1083 case CallingConv::C: 1084 case CallingConv::AMDGPU_Gfx: 1085 return true; 1086 default: 1087 return canGuaranteeTCO(CC); 1088 } 1089 } 1090 1091 bool AMDGPUCallLowering::isEligibleForTailCallOptimization( 1092 MachineIRBuilder &B, CallLoweringInfo &Info, 1093 SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const { 1094 // Must pass all target-independent checks in order to tail call optimize. 1095 if (!Info.IsTailCall) 1096 return false; 1097 1098 // Indirect calls can't be tail calls, because the address can be divergent. 1099 // TODO Check divergence info if the call really is divergent. 1100 if (Info.Callee.isReg()) 1101 return false; 1102 1103 MachineFunction &MF = B.getMF(); 1104 const Function &CallerF = MF.getFunction(); 1105 CallingConv::ID CalleeCC = Info.CallConv; 1106 CallingConv::ID CallerCC = CallerF.getCallingConv(); 1107 1108 const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo(); 1109 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); 1110 // Kernels aren't callable, and don't have a live in return address so it 1111 // doesn't make sense to do a tail call with entry functions. 1112 if (!CallerPreserved) 1113 return false; 1114 1115 if (!mayTailCallThisCC(CalleeCC)) { 1116 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); 1117 return false; 1118 } 1119 1120 if (any_of(CallerF.args(), [](const Argument &A) { 1121 return A.hasByValAttr() || A.hasSwiftErrorAttr(); 1122 })) { 1123 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval " 1124 "or swifterror arguments\n"); 1125 return false; 1126 } 1127 1128 // If we have -tailcallopt, then we're done. 1129 if (MF.getTarget().Options.GuaranteedTailCallOpt) 1130 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv(); 1131 1132 // Verify that the incoming and outgoing arguments from the callee are 1133 // safe to tail call. 1134 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { 1135 LLVM_DEBUG( 1136 dbgs() 1137 << "... Caller and callee have incompatible calling conventions.\n"); 1138 return false; 1139 } 1140 1141 // FIXME: We need to check if any arguments passed in SGPR are uniform. If 1142 // they are not, this cannot be a tail call. If they are uniform, but may be 1143 // VGPR, we need to insert readfirstlanes. 1144 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) 1145 return false; 1146 1147 LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n"); 1148 return true; 1149 } 1150 1151 // Insert outgoing implicit arguments for a call, by inserting copies to the 1152 // implicit argument registers and adding the necessary implicit uses to the 1153 // call instruction. 1154 void AMDGPUCallLowering::handleImplicitCallArguments( 1155 MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst, 1156 const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo, 1157 CallingConv::ID CalleeCC, 1158 ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const { 1159 if (!ST.enableFlatScratch()) { 1160 // Insert copies for the SRD. In the HSA case, this should be an identity 1161 // copy. 1162 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32), 1163 FuncInfo.getScratchRSrcReg()); 1164 1165 auto CalleeRSrcReg = AMDGPU::isChainCC(CalleeCC) 1166 ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51 1167 : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3; 1168 1169 MIRBuilder.buildCopy(CalleeRSrcReg, ScratchRSrcReg); 1170 CallInst.addReg(CalleeRSrcReg, RegState::Implicit); 1171 } 1172 1173 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { 1174 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); 1175 CallInst.addReg(ArgReg.first, RegState::Implicit); 1176 } 1177 } 1178 1179 bool AMDGPUCallLowering::lowerTailCall( 1180 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, 1181 SmallVectorImpl<ArgInfo> &OutArgs) const { 1182 MachineFunction &MF = MIRBuilder.getMF(); 1183 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1184 SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); 1185 const Function &F = MF.getFunction(); 1186 MachineRegisterInfo &MRI = MF.getRegInfo(); 1187 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1188 1189 // True when we're tail calling, but without -tailcallopt. 1190 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; 1191 1192 // Find out which ABI gets to decide where things go. 1193 CallingConv::ID CalleeCC = Info.CallConv; 1194 CCAssignFn *AssignFnFixed; 1195 CCAssignFn *AssignFnVarArg; 1196 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); 1197 1198 MachineInstrBuilder CallSeqStart; 1199 if (!IsSibCall) 1200 CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP); 1201 1202 unsigned Opc = 1203 getCallOpcode(MF, Info.Callee.isReg(), true, ST.isWave32(), CalleeCC); 1204 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1205 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1206 return false; 1207 1208 // Byte offset for the tail call. When we are sibcalling, this will always 1209 // be 0. 1210 MIB.addImm(0); 1211 1212 // If this is a chain call, we need to pass in the EXEC mask. 1213 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1214 if (AMDGPU::isChainCC(Info.CallConv)) { 1215 ArgInfo ExecArg = Info.OrigArgs[1]; 1216 assert(ExecArg.Regs.size() == 1 && "Too many regs for EXEC"); 1217 1218 if (!ExecArg.Ty->isIntegerTy(ST.getWavefrontSize())) 1219 return false; 1220 1221 if (const auto *CI = dyn_cast<ConstantInt>(ExecArg.OrigValue)) { 1222 MIB.addImm(CI->getSExtValue()); 1223 } else { 1224 MIB.addReg(ExecArg.Regs[0]); 1225 unsigned Idx = MIB->getNumOperands() - 1; 1226 MIB->getOperand(Idx).setReg(constrainOperandRegClass( 1227 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, 1228 MIB->getDesc(), MIB->getOperand(Idx), Idx)); 1229 } 1230 } 1231 1232 // Tell the call which registers are clobbered. 1233 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); 1234 MIB.addRegMask(Mask); 1235 1236 // FPDiff is the byte offset of the call's argument area from the callee's. 1237 // Stores to callee stack arguments will be placed in FixedStackSlots offset 1238 // by this amount for a tail call. In a sibling call it must be 0 because the 1239 // caller will deallocate the entire stack and the callee still expects its 1240 // arguments to begin at SP+0. 1241 int FPDiff = 0; 1242 1243 // This will be 0 for sibcalls, potentially nonzero for tail calls produced 1244 // by -tailcallopt. For sibcalls, the memory operands for the call are 1245 // already available in the caller's incoming argument space. 1246 unsigned NumBytes = 0; 1247 if (!IsSibCall) { 1248 // We aren't sibcalling, so we need to compute FPDiff. We need to do this 1249 // before handling assignments, because FPDiff must be known for memory 1250 // arguments. 1251 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 1252 SmallVector<CCValAssign, 16> OutLocs; 1253 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); 1254 1255 // FIXME: Not accounting for callee implicit inputs 1256 OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg); 1257 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) 1258 return false; 1259 1260 // The callee will pop the argument stack as a tail call. Thus, we must 1261 // keep it 16-byte aligned. 1262 NumBytes = alignTo(OutInfo.getStackSize(), ST.getStackAlignment()); 1263 1264 // FPDiff will be negative if this tail call requires more space than we 1265 // would automatically have in our incoming argument space. Positive if we 1266 // actually shrink the stack. 1267 FPDiff = NumReusableBytes - NumBytes; 1268 1269 // The stack pointer must be 16-byte aligned at all times it's used for a 1270 // memory operation, which in practice means at *all* times and in 1271 // particular across call boundaries. Therefore our own arguments started at 1272 // a 16-byte aligned SP and the delta applied for the tail call should 1273 // satisfy the same constraint. 1274 assert(isAligned(ST.getStackAlignment(), FPDiff) && 1275 "unaligned stack on tail call"); 1276 } 1277 1278 SmallVector<CCValAssign, 16> ArgLocs; 1279 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1280 1281 // We could pass MIB and directly add the implicit uses to the call 1282 // now. However, as an aesthetic choice, place implicit argument operands 1283 // after the ordinary user argument registers. 1284 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1285 1286 if (Info.CallConv != CallingConv::AMDGPU_Gfx && 1287 !AMDGPU::isChainCC(Info.CallConv)) { 1288 // With a fixed ABI, allocate fixed registers before user arguments. 1289 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1290 return false; 1291 } 1292 1293 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1294 1295 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1296 return false; 1297 1298 // Do the actual argument marshalling. 1299 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff); 1300 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1301 return false; 1302 1303 if (Info.ConvergenceCtrlToken) { 1304 MIB.addUse(Info.ConvergenceCtrlToken, RegState::Implicit); 1305 } 1306 handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, CalleeCC, 1307 ImplicitArgRegs); 1308 1309 // If we have -tailcallopt, we need to adjust the stack. We'll do the call 1310 // sequence start and end here. 1311 if (!IsSibCall) { 1312 MIB->getOperand(1).setImm(FPDiff); 1313 CallSeqStart.addImm(NumBytes).addImm(0); 1314 // End the call sequence *before* emitting the call. Normally, we would 1315 // tidy the frame up after the call. However, here, we've laid out the 1316 // parameters so that when SP is reset, they will be in the correct 1317 // location. 1318 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0); 1319 } 1320 1321 // Now we can add the actual call instruction to the correct basic block. 1322 MIRBuilder.insertInstr(MIB); 1323 1324 // If Callee is a reg, since it is used by a target specific 1325 // instruction, it must have a register class matching the 1326 // constraint of that instruction. 1327 1328 // FIXME: We should define regbankselectable call instructions to handle 1329 // divergent call targets. 1330 if (MIB->getOperand(0).isReg()) { 1331 MIB->getOperand(0).setReg(constrainOperandRegClass( 1332 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, 1333 MIB->getDesc(), MIB->getOperand(0), 0)); 1334 } 1335 1336 MF.getFrameInfo().setHasTailCall(); 1337 Info.LoweredTailCall = true; 1338 return true; 1339 } 1340 1341 /// Lower a call to the @llvm.amdgcn.cs.chain intrinsic. 1342 bool AMDGPUCallLowering::lowerChainCall(MachineIRBuilder &MIRBuilder, 1343 CallLoweringInfo &Info) const { 1344 ArgInfo Callee = Info.OrigArgs[0]; 1345 ArgInfo SGPRArgs = Info.OrigArgs[2]; 1346 ArgInfo VGPRArgs = Info.OrigArgs[3]; 1347 ArgInfo Flags = Info.OrigArgs[4]; 1348 1349 assert(cast<ConstantInt>(Flags.OrigValue)->isZero() && 1350 "Non-zero flags aren't supported yet."); 1351 assert(Info.OrigArgs.size() == 5 && "Additional args aren't supported yet."); 1352 1353 MachineFunction &MF = MIRBuilder.getMF(); 1354 const Function &F = MF.getFunction(); 1355 const DataLayout &DL = F.getDataLayout(); 1356 1357 // The function to jump to is actually the first argument, so we'll change the 1358 // Callee and other info to match that before using our existing helper. 1359 const Value *CalleeV = Callee.OrigValue->stripPointerCasts(); 1360 if (const Function *F = dyn_cast<Function>(CalleeV)) { 1361 Info.Callee = MachineOperand::CreateGA(F, 0); 1362 Info.CallConv = F->getCallingConv(); 1363 } else { 1364 assert(Callee.Regs.size() == 1 && "Too many regs for the callee"); 1365 Info.Callee = MachineOperand::CreateReg(Callee.Regs[0], false); 1366 Info.CallConv = CallingConv::AMDGPU_CS_Chain; // amdgpu_cs_chain_preserve 1367 // behaves the same here. 1368 } 1369 1370 // The function that we're calling cannot be vararg (only the intrinsic is). 1371 Info.IsVarArg = false; 1372 1373 assert( 1374 all_of(SGPRArgs.Flags, [](ISD::ArgFlagsTy F) { return F.isInReg(); }) && 1375 "SGPR arguments should be marked inreg"); 1376 assert( 1377 none_of(VGPRArgs.Flags, [](ISD::ArgFlagsTy F) { return F.isInReg(); }) && 1378 "VGPR arguments should not be marked inreg"); 1379 1380 SmallVector<ArgInfo, 8> OutArgs; 1381 splitToValueTypes(SGPRArgs, OutArgs, DL, Info.CallConv); 1382 splitToValueTypes(VGPRArgs, OutArgs, DL, Info.CallConv); 1383 1384 Info.IsMustTailCall = true; 1385 return lowerTailCall(MIRBuilder, Info, OutArgs); 1386 } 1387 1388 bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, 1389 CallLoweringInfo &Info) const { 1390 if (Function *F = Info.CB->getCalledFunction()) 1391 if (F->isIntrinsic()) { 1392 assert(F->getIntrinsicID() == Intrinsic::amdgcn_cs_chain && 1393 "Unexpected intrinsic"); 1394 return lowerChainCall(MIRBuilder, Info); 1395 } 1396 1397 if (Info.IsVarArg) { 1398 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); 1399 return false; 1400 } 1401 1402 MachineFunction &MF = MIRBuilder.getMF(); 1403 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1404 const SIRegisterInfo *TRI = ST.getRegisterInfo(); 1405 1406 const Function &F = MF.getFunction(); 1407 MachineRegisterInfo &MRI = MF.getRegInfo(); 1408 const SITargetLowering &TLI = *getTLI<SITargetLowering>(); 1409 const DataLayout &DL = F.getDataLayout(); 1410 1411 SmallVector<ArgInfo, 8> OutArgs; 1412 for (auto &OrigArg : Info.OrigArgs) 1413 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); 1414 1415 SmallVector<ArgInfo, 8> InArgs; 1416 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) 1417 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); 1418 1419 // If we can lower as a tail call, do that instead. 1420 bool CanTailCallOpt = 1421 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); 1422 1423 // We must emit a tail call if we have musttail. 1424 if (Info.IsMustTailCall && !CanTailCallOpt) { 1425 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); 1426 return false; 1427 } 1428 1429 Info.IsTailCall = CanTailCallOpt; 1430 if (CanTailCallOpt) 1431 return lowerTailCall(MIRBuilder, Info, OutArgs); 1432 1433 // Find out which ABI gets to decide where things go. 1434 CCAssignFn *AssignFnFixed; 1435 CCAssignFn *AssignFnVarArg; 1436 std::tie(AssignFnFixed, AssignFnVarArg) = 1437 getAssignFnsForCC(Info.CallConv, TLI); 1438 1439 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) 1440 .addImm(0) 1441 .addImm(0); 1442 1443 // Create a temporarily-floating call instruction so we can add the implicit 1444 // uses of arg registers. 1445 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false, ST.isWave32(), 1446 Info.CallConv); 1447 1448 auto MIB = MIRBuilder.buildInstrNoInsert(Opc); 1449 MIB.addDef(TRI->getReturnAddressReg(MF)); 1450 1451 if (!Info.IsConvergent) 1452 MIB.setMIFlag(MachineInstr::NoConvergent); 1453 1454 if (!addCallTargetOperands(MIB, MIRBuilder, Info)) 1455 return false; 1456 1457 // Tell the call which registers are clobbered. 1458 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); 1459 MIB.addRegMask(Mask); 1460 1461 SmallVector<CCValAssign, 16> ArgLocs; 1462 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); 1463 1464 // We could pass MIB and directly add the implicit uses to the call 1465 // now. However, as an aesthetic choice, place implicit argument operands 1466 // after the ordinary user argument registers. 1467 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; 1468 1469 if (Info.CallConv != CallingConv::AMDGPU_Gfx) { 1470 // With a fixed ABI, allocate fixed registers before user arguments. 1471 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) 1472 return false; 1473 } 1474 1475 // Do the actual argument marshalling. 1476 SmallVector<Register, 8> PhysRegs; 1477 1478 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); 1479 if (!determineAssignments(Assigner, OutArgs, CCInfo)) 1480 return false; 1481 1482 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false); 1483 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) 1484 return false; 1485 1486 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1487 1488 if (Info.ConvergenceCtrlToken) { 1489 MIB.addUse(Info.ConvergenceCtrlToken, RegState::Implicit); 1490 } 1491 handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, Info.CallConv, 1492 ImplicitArgRegs); 1493 1494 // Get a count of how many bytes are to be pushed on the stack. 1495 unsigned NumBytes = CCInfo.getStackSize(); 1496 1497 // If Callee is a reg, since it is used by a target specific 1498 // instruction, it must have a register class matching the 1499 // constraint of that instruction. 1500 1501 // FIXME: We should define regbankselectable call instructions to handle 1502 // divergent call targets. 1503 if (MIB->getOperand(1).isReg()) { 1504 MIB->getOperand(1).setReg(constrainOperandRegClass( 1505 MF, *TRI, MRI, *ST.getInstrInfo(), 1506 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), 1507 1)); 1508 } 1509 1510 // Now we can add the actual call instruction to the correct position. 1511 MIRBuilder.insertInstr(MIB); 1512 1513 // Finally we can copy the returned value back into its virtual-register. In 1514 // symmetry with the arguments, the physical register must be an 1515 // implicit-define of the call instruction. 1516 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { 1517 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, 1518 Info.IsVarArg); 1519 IncomingValueAssigner Assigner(RetAssignFn); 1520 CallReturnHandler Handler(MIRBuilder, MRI, MIB); 1521 if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder, 1522 Info.CallConv, Info.IsVarArg)) 1523 return false; 1524 } 1525 1526 uint64_t CalleePopBytes = NumBytes; 1527 1528 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN) 1529 .addImm(0) 1530 .addImm(CalleePopBytes); 1531 1532 if (!Info.CanLowerReturn) { 1533 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, 1534 Info.DemoteRegister, Info.DemoteStackIndex); 1535 } 1536 1537 return true; 1538 } 1539