1 //==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AArch64PromoteConstant pass which promotes constants 10 // to global variables when this is likely to be more efficient. Currently only 11 // types related to constant vector (i.e., constant vector, array of constant 12 // vectors, constant structure with a constant vector field, etc.) are promoted 13 // to global variables. Constant vectors are likely to be lowered in target 14 // constant pool during instruction selection already; therefore, the access 15 // will remain the same (memory load), but the structure types are not split 16 // into different constant pool accesses for each field. A bonus side effect is 17 // that created globals may be merged by the global merge pass. 18 // 19 // FIXME: This pass may be useful for other targets too. 20 //===----------------------------------------------------------------------===// 21 22 #include "AArch64.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalValue.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <cassert> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "aarch64-promote-const" 52 53 // Stress testing mode - disable heuristics. 54 static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden, 55 cl::desc("Promote all vector constants")); 56 57 STATISTIC(NumPromoted, "Number of promoted constants"); 58 STATISTIC(NumPromotedUses, "Number of promoted constants uses"); 59 60 //===----------------------------------------------------------------------===// 61 // AArch64PromoteConstant 62 //===----------------------------------------------------------------------===// 63 64 namespace { 65 66 /// Promotes interesting constant into global variables. 67 /// The motivating example is: 68 /// static const uint16_t TableA[32] = { 69 /// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768, 70 /// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215, 71 /// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846, 72 /// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725, 73 /// }; 74 /// 75 /// uint8x16x4_t LoadStatic(void) { 76 /// uint8x16x4_t ret; 77 /// ret.val[0] = vld1q_u16(TableA + 0); 78 /// ret.val[1] = vld1q_u16(TableA + 8); 79 /// ret.val[2] = vld1q_u16(TableA + 16); 80 /// ret.val[3] = vld1q_u16(TableA + 24); 81 /// return ret; 82 /// } 83 /// 84 /// The constants in this example are folded into the uses. Thus, 4 different 85 /// constants are created. 86 /// 87 /// As their type is vector the cheapest way to create them is to load them 88 /// for the memory. 89 /// 90 /// Therefore the final assembly final has 4 different loads. With this pass 91 /// enabled, only one load is issued for the constants. 92 class AArch64PromoteConstant : public ModulePass { 93 public: 94 struct PromotedConstant { 95 bool ShouldConvert = false; 96 GlobalVariable *GV = nullptr; 97 }; 98 using PromotionCacheTy = SmallDenseMap<Constant *, PromotedConstant, 16>; 99 100 struct UpdateRecord { 101 Constant *C; 102 Instruction *User; 103 unsigned Op; 104 105 UpdateRecord(Constant *C, Instruction *User, unsigned Op) 106 : C(C), User(User), Op(Op) {} 107 }; 108 109 static char ID; 110 111 AArch64PromoteConstant() : ModulePass(ID) { 112 initializeAArch64PromoteConstantPass(*PassRegistry::getPassRegistry()); 113 } 114 115 StringRef getPassName() const override { return "AArch64 Promote Constant"; } 116 117 /// Iterate over the functions and promote the interesting constants into 118 /// global variables with module scope. 119 bool runOnModule(Module &M) override { 120 LLVM_DEBUG(dbgs() << getPassName() << '\n'); 121 if (skipModule(M)) 122 return false; 123 bool Changed = false; 124 PromotionCacheTy PromotionCache; 125 for (auto &MF : M) { 126 Changed |= runOnFunction(MF, PromotionCache); 127 } 128 return Changed; 129 } 130 131 private: 132 /// Look for interesting constants used within the given function. 133 /// Promote them into global variables, load these global variables within 134 /// the related function, so that the number of inserted load is minimal. 135 bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache); 136 137 // This transformation requires dominator info 138 void getAnalysisUsage(AnalysisUsage &AU) const override { 139 AU.setPreservesCFG(); 140 AU.addRequired<DominatorTreeWrapperPass>(); 141 AU.addPreserved<DominatorTreeWrapperPass>(); 142 } 143 144 /// Type to store a list of Uses. 145 using Uses = SmallVector<std::pair<Instruction *, unsigned>, 4>; 146 /// Map an insertion point to all the uses it dominates. 147 using InsertionPoints = DenseMap<Instruction *, Uses>; 148 149 /// Find the closest point that dominates the given Use. 150 Instruction *findInsertionPoint(Instruction &User, unsigned OpNo); 151 152 /// Check if the given insertion point is dominated by an existing 153 /// insertion point. 154 /// If true, the given use is added to the list of dominated uses for 155 /// the related existing point. 156 /// \param NewPt the insertion point to be checked 157 /// \param User the user of the constant 158 /// \param OpNo the operand number of the use 159 /// \param InsertPts existing insertion points 160 /// \pre NewPt and all instruction in InsertPts belong to the same function 161 /// \return true if one of the insertion point in InsertPts dominates NewPt, 162 /// false otherwise 163 bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo, 164 InsertionPoints &InsertPts); 165 166 /// Check if the given insertion point can be merged with an existing 167 /// insertion point in a common dominator. 168 /// If true, the given use is added to the list of the created insertion 169 /// point. 170 /// \param NewPt the insertion point to be checked 171 /// \param User the user of the constant 172 /// \param OpNo the operand number of the use 173 /// \param InsertPts existing insertion points 174 /// \pre NewPt and all instruction in InsertPts belong to the same function 175 /// \pre isDominated returns false for the exact same parameters. 176 /// \return true if it exists an insertion point in InsertPts that could 177 /// have been merged with NewPt in a common dominator, 178 /// false otherwise 179 bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo, 180 InsertionPoints &InsertPts); 181 182 /// Compute the minimal insertion points to dominates all the interesting 183 /// uses of value. 184 /// Insertion points are group per function and each insertion point 185 /// contains a list of all the uses it dominates within the related function 186 /// \param User the user of the constant 187 /// \param OpNo the operand number of the constant 188 /// \param[out] InsertPts output storage of the analysis 189 void computeInsertionPoint(Instruction *User, unsigned OpNo, 190 InsertionPoints &InsertPts); 191 192 /// Insert a definition of a new global variable at each point contained in 193 /// InsPtsPerFunc and update the related uses (also contained in 194 /// InsPtsPerFunc). 195 void insertDefinitions(Function &F, GlobalVariable &GV, 196 InsertionPoints &InsertPts); 197 198 /// Do the constant promotion indicated by the Updates records, keeping track 199 /// of globals in PromotionCache. 200 void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates, 201 PromotionCacheTy &PromotionCache); 202 203 /// Transfer the list of dominated uses of IPI to NewPt in InsertPts. 204 /// Append Use to this list and delete the entry of IPI in InsertPts. 205 static void appendAndTransferDominatedUses(Instruction *NewPt, 206 Instruction *User, unsigned OpNo, 207 InsertionPoints::iterator &IPI, 208 InsertionPoints &InsertPts) { 209 // Record the dominated use. 210 IPI->second.emplace_back(User, OpNo); 211 // Transfer the dominated uses of IPI to NewPt 212 // Inserting into the DenseMap may invalidate existing iterator. 213 // Keep a copy of the key to find the iterator to erase. Keep a copy of the 214 // value so that we don't have to dereference IPI->second. 215 Instruction *OldInstr = IPI->first; 216 Uses OldUses = std::move(IPI->second); 217 InsertPts[NewPt] = std::move(OldUses); 218 // Erase IPI. 219 InsertPts.erase(OldInstr); 220 } 221 }; 222 223 } // end anonymous namespace 224 225 char AArch64PromoteConstant::ID = 0; 226 227 INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const", 228 "AArch64 Promote Constant Pass", false, false) 229 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 230 INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const", 231 "AArch64 Promote Constant Pass", false, false) 232 233 ModulePass *llvm::createAArch64PromoteConstantPass() { 234 return new AArch64PromoteConstant(); 235 } 236 237 /// Check if the given type uses a vector type. 238 static bool isConstantUsingVectorTy(const Type *CstTy) { 239 if (CstTy->isVectorTy()) 240 return true; 241 if (CstTy->isStructTy()) { 242 for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements(); 243 EltIdx < EndEltIdx; ++EltIdx) 244 if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx))) 245 return true; 246 } else if (CstTy->isArrayTy()) 247 return isConstantUsingVectorTy(CstTy->getArrayElementType()); 248 return false; 249 } 250 251 // Returns true if \p C contains only ConstantData leafs and no global values, 252 // block addresses or constant expressions. Traverses ConstantAggregates. 253 static bool containsOnlyConstantData(const Constant *C) { 254 if (isa<ConstantData>(C)) 255 return true; 256 257 if (isa<GlobalValue>(C) || isa<BlockAddress>(C) || isa<ConstantExpr>(C)) 258 return false; 259 260 return all_of(C->operands(), [](const Use &U) { 261 return containsOnlyConstantData(cast<Constant>(&U)); 262 }); 263 } 264 265 /// Check if the given use (Instruction + OpIdx) of Cst should be converted into 266 /// a load of a global variable initialized with Cst. 267 /// A use should be converted if it is legal to do so. 268 /// For instance, it is not legal to turn the mask operand of a shuffle vector 269 /// into a load of a global variable. 270 static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr, 271 unsigned OpIdx) { 272 // shufflevector instruction expects a const for the mask argument, i.e., the 273 // third argument. Do not promote this use in that case. 274 if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2) 275 return false; 276 277 // extractvalue instruction expects a const idx. 278 if (isa<const ExtractValueInst>(Instr) && OpIdx > 0) 279 return false; 280 281 // extractvalue instruction expects a const idx. 282 if (isa<const InsertValueInst>(Instr) && OpIdx > 1) 283 return false; 284 285 if (isa<const AllocaInst>(Instr) && OpIdx > 0) 286 return false; 287 288 // Alignment argument must be constant. 289 if (isa<const LoadInst>(Instr) && OpIdx > 0) 290 return false; 291 292 // Alignment argument must be constant. 293 if (isa<const StoreInst>(Instr) && OpIdx > 1) 294 return false; 295 296 // Index must be constant. 297 if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0) 298 return false; 299 300 // Personality function and filters must be constant. 301 // Give up on that instruction. 302 if (isa<const LandingPadInst>(Instr)) 303 return false; 304 305 // Switch instruction expects constants to compare to. 306 if (isa<const SwitchInst>(Instr)) 307 return false; 308 309 // Expected address must be a constant. 310 if (isa<const IndirectBrInst>(Instr)) 311 return false; 312 313 // Do not mess with intrinsics. 314 if (isa<const IntrinsicInst>(Instr)) 315 return false; 316 317 // Do not mess with inline asm. 318 const CallInst *CI = dyn_cast<const CallInst>(Instr); 319 return !(CI && CI->isInlineAsm()); 320 } 321 322 /// Check if the given Cst should be converted into 323 /// a load of a global variable initialized with Cst. 324 /// A constant should be converted if it is likely that the materialization of 325 /// the constant will be tricky. Thus, we give up on zero or undef values. 326 /// 327 /// \todo Currently, accept only vector related types. 328 /// Also we give up on all simple vector type to keep the existing 329 /// behavior. Otherwise, we should push here all the check of the lowering of 330 /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging 331 /// constant via global merge and the fact that the same constant is stored 332 /// only once with this method (versus, as many function that uses the constant 333 /// for the regular approach, even for float). 334 /// Again, the simplest solution would be to promote every 335 /// constant and rematerialize them when they are actually cheap to create. 336 static bool shouldConvertImpl(const Constant *Cst) { 337 if (isa<const UndefValue>(Cst)) 338 return false; 339 340 // FIXME: In some cases, it may be interesting to promote in memory 341 // a zero initialized constant. 342 // E.g., when the type of Cst require more instructions than the 343 // adrp/add/load sequence or when this sequence can be shared by several 344 // instances of Cst. 345 // Ideally, we could promote this into a global and rematerialize the constant 346 // when it was a bad idea. 347 if (Cst->isZeroValue()) 348 return false; 349 350 if (Stress) 351 return true; 352 353 // FIXME: see function \todo 354 if (Cst->getType()->isVectorTy()) 355 return false; 356 return isConstantUsingVectorTy(Cst->getType()); 357 } 358 359 static bool 360 shouldConvert(Constant &C, 361 AArch64PromoteConstant::PromotionCacheTy &PromotionCache) { 362 auto Converted = PromotionCache.insert( 363 std::make_pair(&C, AArch64PromoteConstant::PromotedConstant())); 364 if (Converted.second) 365 Converted.first->second.ShouldConvert = shouldConvertImpl(&C); 366 return Converted.first->second.ShouldConvert; 367 } 368 369 Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User, 370 unsigned OpNo) { 371 // If this user is a phi, the insertion point is in the related 372 // incoming basic block. 373 if (PHINode *PhiInst = dyn_cast<PHINode>(&User)) 374 return PhiInst->getIncomingBlock(OpNo)->getTerminator(); 375 376 return &User; 377 } 378 379 bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User, 380 unsigned OpNo, 381 InsertionPoints &InsertPts) { 382 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( 383 *NewPt->getParent()->getParent()).getDomTree(); 384 385 // Traverse all the existing insertion points and check if one is dominating 386 // NewPt. If it is, remember that. 387 for (auto &IPI : InsertPts) { 388 if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) || 389 // When IPI.first is a terminator instruction, DT may think that 390 // the result is defined on the edge. 391 // Here we are testing the insertion point, not the definition. 392 (IPI.first->getParent() != NewPt->getParent() && 393 DT.dominates(IPI.first->getParent(), NewPt->getParent()))) { 394 // No need to insert this point. Just record the dominated use. 395 LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n"); 396 LLVM_DEBUG(IPI.first->print(dbgs())); 397 LLVM_DEBUG(dbgs() << '\n'); 398 IPI.second.emplace_back(User, OpNo); 399 return true; 400 } 401 } 402 return false; 403 } 404 405 bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User, 406 unsigned OpNo, 407 InsertionPoints &InsertPts) { 408 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>( 409 *NewPt->getParent()->getParent()).getDomTree(); 410 BasicBlock *NewBB = NewPt->getParent(); 411 412 // Traverse all the existing insertion point and check if one is dominated by 413 // NewPt and thus useless or can be combined with NewPt into a common 414 // dominator. 415 for (InsertionPoints::iterator IPI = InsertPts.begin(), 416 EndIPI = InsertPts.end(); 417 IPI != EndIPI; ++IPI) { 418 BasicBlock *CurBB = IPI->first->getParent(); 419 if (NewBB == CurBB) { 420 // Instructions are in the same block. 421 // By construction, NewPt is dominating the other. 422 // Indeed, isDominated returned false with the exact same arguments. 423 LLVM_DEBUG(dbgs() << "Merge insertion point with:\n"); 424 LLVM_DEBUG(IPI->first->print(dbgs())); 425 LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n"); 426 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); 427 return true; 428 } 429 430 // Look for a common dominator 431 BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB); 432 // If none exists, we cannot merge these two points. 433 if (!CommonDominator) 434 continue; 435 436 if (CommonDominator != NewBB) { 437 // By construction, the CommonDominator cannot be CurBB. 438 assert(CommonDominator != CurBB && 439 "Instruction has not been rejected during isDominated check!"); 440 // Take the last instruction of the CommonDominator as insertion point 441 NewPt = CommonDominator->getTerminator(); 442 } 443 // else, CommonDominator is the block of NewBB, hence NewBB is the last 444 // possible insertion point in that block. 445 LLVM_DEBUG(dbgs() << "Merge insertion point with:\n"); 446 LLVM_DEBUG(IPI->first->print(dbgs())); 447 LLVM_DEBUG(dbgs() << '\n'); 448 LLVM_DEBUG(NewPt->print(dbgs())); 449 LLVM_DEBUG(dbgs() << '\n'); 450 appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts); 451 return true; 452 } 453 return false; 454 } 455 456 void AArch64PromoteConstant::computeInsertionPoint( 457 Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) { 458 LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n"); 459 LLVM_DEBUG(User->print(dbgs())); 460 LLVM_DEBUG(dbgs() << '\n'); 461 462 Instruction *InsertionPoint = findInsertionPoint(*User, OpNo); 463 464 LLVM_DEBUG(dbgs() << "Considered insertion point:\n"); 465 LLVM_DEBUG(InsertionPoint->print(dbgs())); 466 LLVM_DEBUG(dbgs() << '\n'); 467 468 if (isDominated(InsertionPoint, User, OpNo, InsertPts)) 469 return; 470 // This insertion point is useful, check if we can merge some insertion 471 // point in a common dominator or if NewPt dominates an existing one. 472 if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts)) 473 return; 474 475 LLVM_DEBUG(dbgs() << "Keep considered insertion point\n"); 476 477 // It is definitely useful by its own 478 InsertPts[InsertionPoint].emplace_back(User, OpNo); 479 } 480 481 static void ensurePromotedGV(Function &F, Constant &C, 482 AArch64PromoteConstant::PromotedConstant &PC) { 483 assert(PC.ShouldConvert && 484 "Expected that we should convert this to a global"); 485 if (PC.GV) 486 return; 487 PC.GV = new GlobalVariable( 488 *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr, 489 "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal); 490 PC.GV->setInitializer(&C); 491 LLVM_DEBUG(dbgs() << "Global replacement: "); 492 LLVM_DEBUG(PC.GV->print(dbgs())); 493 LLVM_DEBUG(dbgs() << '\n'); 494 ++NumPromoted; 495 } 496 497 void AArch64PromoteConstant::insertDefinitions(Function &F, 498 GlobalVariable &PromotedGV, 499 InsertionPoints &InsertPts) { 500 #ifndef NDEBUG 501 // Do more checking for debug purposes. 502 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 503 #endif 504 assert(!InsertPts.empty() && "Empty uses does not need a definition"); 505 506 for (const auto &IPI : InsertPts) { 507 // Create the load of the global variable. 508 IRBuilder<> Builder(IPI.first); 509 LoadInst *LoadedCst = 510 Builder.CreateLoad(PromotedGV.getValueType(), &PromotedGV); 511 LLVM_DEBUG(dbgs() << "**********\n"); 512 LLVM_DEBUG(dbgs() << "New def: "); 513 LLVM_DEBUG(LoadedCst->print(dbgs())); 514 LLVM_DEBUG(dbgs() << '\n'); 515 516 // Update the dominated uses. 517 for (auto Use : IPI.second) { 518 #ifndef NDEBUG 519 assert(DT.dominates(LoadedCst, 520 findInsertionPoint(*Use.first, Use.second)) && 521 "Inserted definition does not dominate all its uses!"); 522 #endif 523 LLVM_DEBUG({ 524 dbgs() << "Use to update " << Use.second << ":"; 525 Use.first->print(dbgs()); 526 dbgs() << '\n'; 527 }); 528 Use.first->setOperand(Use.second, LoadedCst); 529 ++NumPromotedUses; 530 } 531 } 532 } 533 534 void AArch64PromoteConstant::promoteConstants( 535 Function &F, SmallVectorImpl<UpdateRecord> &Updates, 536 PromotionCacheTy &PromotionCache) { 537 // Promote the constants. 538 for (auto U = Updates.begin(), E = Updates.end(); U != E;) { 539 LLVM_DEBUG(dbgs() << "** Compute insertion points **\n"); 540 auto First = U; 541 Constant *C = First->C; 542 InsertionPoints InsertPts; 543 do { 544 computeInsertionPoint(U->User, U->Op, InsertPts); 545 } while (++U != E && U->C == C); 546 547 auto &Promotion = PromotionCache[C]; 548 ensurePromotedGV(F, *C, Promotion); 549 insertDefinitions(F, *Promotion.GV, InsertPts); 550 } 551 } 552 553 bool AArch64PromoteConstant::runOnFunction(Function &F, 554 PromotionCacheTy &PromotionCache) { 555 // Look for instructions using constant vector. Promote that constant to a 556 // global variable. Create as few loads of this variable as possible and 557 // update the uses accordingly. 558 SmallVector<UpdateRecord, 64> Updates; 559 for (Instruction &I : instructions(&F)) { 560 // Traverse the operand, looking for constant vectors. Replace them by a 561 // load of a global variable of constant vector type. 562 for (Use &U : I.operands()) { 563 Constant *Cst = dyn_cast<Constant>(U); 564 // There is no point in promoting global values as they are already 565 // global. Do not promote constants containing constant expression, global 566 // values or blockaddresses either, as they may require some code 567 // expansion. 568 if (!Cst || isa<GlobalValue>(Cst) || !containsOnlyConstantData(Cst)) 569 continue; 570 571 // Check if this constant is worth promoting. 572 if (!shouldConvert(*Cst, PromotionCache)) 573 continue; 574 575 // Check if this use should be promoted. 576 unsigned OpNo = &U - I.op_begin(); 577 if (!shouldConvertUse(Cst, &I, OpNo)) 578 continue; 579 580 Updates.emplace_back(Cst, &I, OpNo); 581 } 582 } 583 584 if (Updates.empty()) 585 return false; 586 587 promoteConstants(F, Updates, PromotionCache); 588 return true; 589 } 590