xref: /llvm-project/llvm/lib/Support/StringRef.cpp (revision ec2da0ca19c393053c7f11d5478ae21c27e54f5c)
1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/StringRef.h"
10 #include "llvm/ADT/APFloat.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/Hashing.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/ADT/edit_distance.h"
15 #include "llvm/Support/Error.h"
16 #include <bitset>
17 
18 using namespace llvm;
19 
20 // MSVC emits references to this into the translation units which reference it.
21 #ifndef _MSC_VER
22 constexpr size_t StringRef::npos;
23 #endif
24 
25 // strncasecmp() is not available on non-POSIX systems, so define an
26 // alternative function here.
27 static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
28   for (size_t I = 0; I < Length; ++I) {
29     unsigned char LHC = toLower(LHS[I]);
30     unsigned char RHC = toLower(RHS[I]);
31     if (LHC != RHC)
32       return LHC < RHC ? -1 : 1;
33   }
34   return 0;
35 }
36 
37 int StringRef::compare_insensitive(StringRef RHS) const {
38   if (int Res =
39           ascii_strncasecmp(data(), RHS.data(), std::min(size(), RHS.size())))
40     return Res;
41   if (size() == RHS.size())
42     return 0;
43   return size() < RHS.size() ? -1 : 1;
44 }
45 
46 bool StringRef::starts_with_insensitive(StringRef Prefix) const {
47   return size() >= Prefix.size() &&
48          ascii_strncasecmp(data(), Prefix.data(), Prefix.size()) == 0;
49 }
50 
51 bool StringRef::ends_with_insensitive(StringRef Suffix) const {
52   return size() >= Suffix.size() &&
53          ascii_strncasecmp(end() - Suffix.size(), Suffix.data(),
54                            Suffix.size()) == 0;
55 }
56 
57 size_t StringRef::find_insensitive(char C, size_t From) const {
58   char L = toLower(C);
59   return find_if([L](char D) { return toLower(D) == L; }, From);
60 }
61 
62 /// compare_numeric - Compare strings, handle embedded numbers.
63 int StringRef::compare_numeric(StringRef RHS) const {
64   for (size_t I = 0, E = std::min(size(), RHS.size()); I != E; ++I) {
65     // Check for sequences of digits.
66     if (isDigit(data()[I]) && isDigit(RHS.data()[I])) {
67       // The longer sequence of numbers is considered larger.
68       // This doesn't really handle prefixed zeros well.
69       size_t J;
70       for (J = I + 1; J != E + 1; ++J) {
71         bool ld = J < size() && isDigit(data()[J]);
72         bool rd = J < RHS.size() && isDigit(RHS.data()[J]);
73         if (ld != rd)
74           return rd ? -1 : 1;
75         if (!rd)
76           break;
77       }
78       // The two number sequences have the same length (J-I), just memcmp them.
79       if (int Res = compareMemory(data() + I, RHS.data() + I, J - I))
80         return Res < 0 ? -1 : 1;
81       // Identical number sequences, continue search after the numbers.
82       I = J - 1;
83       continue;
84     }
85     if (data()[I] != RHS.data()[I])
86       return (unsigned char)data()[I] < (unsigned char)RHS.data()[I] ? -1 : 1;
87   }
88   if (size() == RHS.size())
89     return 0;
90   return size() < RHS.size() ? -1 : 1;
91 }
92 
93 // Compute the edit distance between the two given strings.
94 unsigned StringRef::edit_distance(llvm::StringRef Other,
95                                   bool AllowReplacements,
96                                   unsigned MaxEditDistance) const {
97   return llvm::ComputeEditDistance(ArrayRef(data(), size()),
98                                    ArrayRef(Other.data(), Other.size()),
99                                    AllowReplacements, MaxEditDistance);
100 }
101 
102 unsigned llvm::StringRef::edit_distance_insensitive(
103     StringRef Other, bool AllowReplacements, unsigned MaxEditDistance) const {
104   return llvm::ComputeMappedEditDistance(
105       ArrayRef(data(), size()), ArrayRef(Other.data(), Other.size()),
106       llvm::toLower, AllowReplacements, MaxEditDistance);
107 }
108 
109 //===----------------------------------------------------------------------===//
110 // String Operations
111 //===----------------------------------------------------------------------===//
112 
113 std::string StringRef::lower() const {
114   return std::string(map_iterator(begin(), toLower),
115                      map_iterator(end(), toLower));
116 }
117 
118 std::string StringRef::upper() const {
119   return std::string(map_iterator(begin(), toUpper),
120                      map_iterator(end(), toUpper));
121 }
122 
123 //===----------------------------------------------------------------------===//
124 // String Searching
125 //===----------------------------------------------------------------------===//
126 
127 
128 /// find - Search for the first string \arg Str in the string.
129 ///
130 /// \return - The index of the first occurrence of \arg Str, or npos if not
131 /// found.
132 size_t StringRef::find(StringRef Str, size_t From) const {
133   if (From > size())
134     return npos;
135 
136   const char *Start = data() + From;
137   size_t Size = size() - From;
138 
139   const char *Needle = Str.data();
140   size_t N = Str.size();
141   if (N == 0)
142     return From;
143   if (Size < N)
144     return npos;
145   if (N == 1) {
146     const char *Ptr = (const char *)::memchr(Start, Needle[0], Size);
147     return Ptr == nullptr ? npos : Ptr - data();
148   }
149 
150   const char *Stop = Start + (Size - N + 1);
151 
152   if (N == 2) {
153     // Provide a fast path for newline finding (CRLF case) in InclusionRewriter.
154     // Not the most optimized strategy, but getting memcmp inlined should be
155     // good enough.
156     do {
157       if (std::memcmp(Start, Needle, 2) == 0)
158         return Start - data();
159       ++Start;
160     } while (Start < Stop);
161     return npos;
162   }
163 
164   // For short haystacks or unsupported needles fall back to the naive algorithm
165   if (Size < 16 || N > 255) {
166     do {
167       if (std::memcmp(Start, Needle, N) == 0)
168         return Start - data();
169       ++Start;
170     } while (Start < Stop);
171     return npos;
172   }
173 
174   // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
175   uint8_t BadCharSkip[256];
176   std::memset(BadCharSkip, N, 256);
177   for (unsigned i = 0; i != N-1; ++i)
178     BadCharSkip[(uint8_t)Str[i]] = N-1-i;
179 
180   do {
181     uint8_t Last = Start[N - 1];
182     if (LLVM_UNLIKELY(Last == (uint8_t)Needle[N - 1]))
183       if (std::memcmp(Start, Needle, N - 1) == 0)
184         return Start - data();
185 
186     // Otherwise skip the appropriate number of bytes.
187     Start += BadCharSkip[Last];
188   } while (Start < Stop);
189 
190   return npos;
191 }
192 
193 size_t StringRef::find_insensitive(StringRef Str, size_t From) const {
194   StringRef This = substr(From);
195   while (This.size() >= Str.size()) {
196     if (This.starts_with_insensitive(Str))
197       return From;
198     This = This.drop_front();
199     ++From;
200   }
201   return npos;
202 }
203 
204 size_t StringRef::rfind_insensitive(char C, size_t From) const {
205   From = std::min(From, size());
206   size_t i = From;
207   while (i != 0) {
208     --i;
209     if (toLower(data()[i]) == toLower(C))
210       return i;
211   }
212   return npos;
213 }
214 
215 /// rfind - Search for the last string \arg Str in the string.
216 ///
217 /// \return - The index of the last occurrence of \arg Str, or npos if not
218 /// found.
219 size_t StringRef::rfind(StringRef Str) const {
220   return std::string_view(*this).rfind(Str);
221 }
222 
223 size_t StringRef::rfind_insensitive(StringRef Str) const {
224   size_t N = Str.size();
225   if (N > size())
226     return npos;
227   for (size_t i = size() - N + 1, e = 0; i != e;) {
228     --i;
229     if (substr(i, N).equals_insensitive(Str))
230       return i;
231   }
232   return npos;
233 }
234 
235 /// find_first_of - Find the first character in the string that is in \arg
236 /// Chars, or npos if not found.
237 ///
238 /// Note: O(size() + Chars.size())
239 StringRef::size_type StringRef::find_first_of(StringRef Chars,
240                                               size_t From) const {
241   std::bitset<1 << CHAR_BIT> CharBits;
242   for (char C : Chars)
243     CharBits.set((unsigned char)C);
244 
245   for (size_type i = std::min(From, size()), e = size(); i != e; ++i)
246     if (CharBits.test((unsigned char)data()[i]))
247       return i;
248   return npos;
249 }
250 
251 /// find_first_not_of - Find the first character in the string that is not
252 /// \arg C or npos if not found.
253 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
254   return std::string_view(*this).find_first_not_of(C, From);
255 }
256 
257 /// find_first_not_of - Find the first character in the string that is not
258 /// in the string \arg Chars, or npos if not found.
259 ///
260 /// Note: O(size() + Chars.size())
261 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
262                                                   size_t From) const {
263   std::bitset<1 << CHAR_BIT> CharBits;
264   for (char C : Chars)
265     CharBits.set((unsigned char)C);
266 
267   for (size_type i = std::min(From, size()), e = size(); i != e; ++i)
268     if (!CharBits.test((unsigned char)data()[i]))
269       return i;
270   return npos;
271 }
272 
273 /// find_last_of - Find the last character in the string that is in \arg C,
274 /// or npos if not found.
275 ///
276 /// Note: O(size() + Chars.size())
277 StringRef::size_type StringRef::find_last_of(StringRef Chars,
278                                              size_t From) const {
279   std::bitset<1 << CHAR_BIT> CharBits;
280   for (char C : Chars)
281     CharBits.set((unsigned char)C);
282 
283   for (size_type i = std::min(From, size()) - 1, e = -1; i != e; --i)
284     if (CharBits.test((unsigned char)data()[i]))
285       return i;
286   return npos;
287 }
288 
289 /// find_last_not_of - Find the last character in the string that is not
290 /// \arg C, or npos if not found.
291 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
292   for (size_type i = std::min(From, size()) - 1, e = -1; i != e; --i)
293     if (data()[i] != C)
294       return i;
295   return npos;
296 }
297 
298 /// find_last_not_of - Find the last character in the string that is not in
299 /// \arg Chars, or npos if not found.
300 ///
301 /// Note: O(size() + Chars.size())
302 StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
303                                                  size_t From) const {
304   std::bitset<1 << CHAR_BIT> CharBits;
305   for (char C : Chars)
306     CharBits.set((unsigned char)C);
307 
308   for (size_type i = std::min(From, size()) - 1, e = -1; i != e; --i)
309     if (!CharBits.test((unsigned char)data()[i]))
310       return i;
311   return npos;
312 }
313 
314 void StringRef::split(SmallVectorImpl<StringRef> &A,
315                       StringRef Separator, int MaxSplit,
316                       bool KeepEmpty) const {
317   StringRef S = *this;
318 
319   // Count down from MaxSplit. When MaxSplit is -1, this will just split
320   // "forever". This doesn't support splitting more than 2^31 times
321   // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
322   // but that seems unlikely to be useful.
323   while (MaxSplit-- != 0) {
324     size_t Idx = S.find(Separator);
325     if (Idx == npos)
326       break;
327 
328     // Push this split.
329     if (KeepEmpty || Idx > 0)
330       A.push_back(S.slice(0, Idx));
331 
332     // Jump forward.
333     S = S.substr(Idx + Separator.size());
334   }
335 
336   // Push the tail.
337   if (KeepEmpty || !S.empty())
338     A.push_back(S);
339 }
340 
341 void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator,
342                       int MaxSplit, bool KeepEmpty) const {
343   StringRef S = *this;
344 
345   // Count down from MaxSplit. When MaxSplit is -1, this will just split
346   // "forever". This doesn't support splitting more than 2^31 times
347   // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
348   // but that seems unlikely to be useful.
349   while (MaxSplit-- != 0) {
350     size_t Idx = S.find(Separator);
351     if (Idx == npos)
352       break;
353 
354     // Push this split.
355     if (KeepEmpty || Idx > 0)
356       A.push_back(S.slice(0, Idx));
357 
358     // Jump forward.
359     S = S.substr(Idx + 1);
360   }
361 
362   // Push the tail.
363   if (KeepEmpty || !S.empty())
364     A.push_back(S);
365 }
366 
367 //===----------------------------------------------------------------------===//
368 // Helpful Algorithms
369 //===----------------------------------------------------------------------===//
370 
371 /// count - Return the number of non-overlapped occurrences of \arg Str in
372 /// the string.
373 size_t StringRef::count(StringRef Str) const {
374   size_t Count = 0;
375   size_t Pos = 0;
376   size_t N = Str.size();
377   // TODO: For an empty `Str` we return 0 for legacy reasons. Consider changing
378   //       this to `Length + 1` which is more in-line with the function
379   //       description.
380   if (!N)
381     return 0;
382   while ((Pos = find(Str, Pos)) != npos) {
383     ++Count;
384     Pos += N;
385   }
386   return Count;
387 }
388 
389 static unsigned GetAutoSenseRadix(StringRef &Str) {
390   if (Str.empty())
391     return 10;
392 
393   if (Str.consume_front_insensitive("0x"))
394     return 16;
395 
396   if (Str.consume_front_insensitive("0b"))
397     return 2;
398 
399   if (Str.consume_front("0o"))
400     return 8;
401 
402   if (Str[0] == '0' && Str.size() > 1 && isDigit(Str[1])) {
403     Str = Str.substr(1);
404     return 8;
405   }
406 
407   return 10;
408 }
409 
410 bool llvm::consumeUnsignedInteger(StringRef &Str, unsigned Radix,
411                                   unsigned long long &Result) {
412   // Autosense radix if not specified.
413   if (Radix == 0)
414     Radix = GetAutoSenseRadix(Str);
415 
416   // Empty strings (after the radix autosense) are invalid.
417   if (Str.empty()) return true;
418 
419   // Parse all the bytes of the string given this radix.  Watch for overflow.
420   StringRef Str2 = Str;
421   Result = 0;
422   while (!Str2.empty()) {
423     unsigned CharVal;
424     if (Str2[0] >= '0' && Str2[0] <= '9')
425       CharVal = Str2[0] - '0';
426     else if (Str2[0] >= 'a' && Str2[0] <= 'z')
427       CharVal = Str2[0] - 'a' + 10;
428     else if (Str2[0] >= 'A' && Str2[0] <= 'Z')
429       CharVal = Str2[0] - 'A' + 10;
430     else
431       break;
432 
433     // If the parsed value is larger than the integer radix, we cannot
434     // consume any more characters.
435     if (CharVal >= Radix)
436       break;
437 
438     // Add in this character.
439     unsigned long long PrevResult = Result;
440     Result = Result * Radix + CharVal;
441 
442     // Check for overflow by shifting back and seeing if bits were lost.
443     if (Result / Radix < PrevResult)
444       return true;
445 
446     Str2 = Str2.substr(1);
447   }
448 
449   // We consider the operation a failure if no characters were consumed
450   // successfully.
451   if (Str.size() == Str2.size())
452     return true;
453 
454   Str = Str2;
455   return false;
456 }
457 
458 bool llvm::consumeSignedInteger(StringRef &Str, unsigned Radix,
459                                 long long &Result) {
460   unsigned long long ULLVal;
461 
462   // Handle positive strings first.
463   if (!Str.starts_with("-")) {
464     if (consumeUnsignedInteger(Str, Radix, ULLVal) ||
465         // Check for value so large it overflows a signed value.
466         (long long)ULLVal < 0)
467       return true;
468     Result = ULLVal;
469     return false;
470   }
471 
472   // Get the positive part of the value.
473   StringRef Str2 = Str.drop_front(1);
474   if (consumeUnsignedInteger(Str2, Radix, ULLVal) ||
475       // Reject values so large they'd overflow as negative signed, but allow
476       // "-0".  This negates the unsigned so that the negative isn't undefined
477       // on signed overflow.
478       (long long)-ULLVal > 0)
479     return true;
480 
481   Str = Str2;
482   Result = -ULLVal;
483   return false;
484 }
485 
486 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
487 /// sequence of radix up to 36 to an unsigned long long value.
488 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
489                                 unsigned long long &Result) {
490   if (consumeUnsignedInteger(Str, Radix, Result))
491     return true;
492 
493   // For getAsUnsignedInteger, we require the whole string to be consumed or
494   // else we consider it a failure.
495   return !Str.empty();
496 }
497 
498 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
499                               long long &Result) {
500   if (consumeSignedInteger(Str, Radix, Result))
501     return true;
502 
503   // For getAsSignedInteger, we require the whole string to be consumed or else
504   // we consider it a failure.
505   return !Str.empty();
506 }
507 
508 bool StringRef::consumeInteger(unsigned Radix, APInt &Result) {
509   StringRef Str = *this;
510 
511   // Autosense radix if not specified.
512   if (Radix == 0)
513     Radix = GetAutoSenseRadix(Str);
514 
515   assert(Radix > 1 && Radix <= 36);
516 
517   // Empty strings (after the radix autosense) are invalid.
518   if (Str.empty()) return true;
519 
520   // Skip leading zeroes.  This can be a significant improvement if
521   // it means we don't need > 64 bits.
522   Str = Str.ltrim('0');
523 
524   // If it was nothing but zeroes....
525   if (Str.empty()) {
526     Result = APInt(64, 0);
527     *this = Str;
528     return false;
529   }
530 
531   // (Over-)estimate the required number of bits.
532   unsigned Log2Radix = 0;
533   while ((1U << Log2Radix) < Radix) Log2Radix++;
534   bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
535 
536   unsigned BitWidth = Log2Radix * Str.size();
537   if (BitWidth < Result.getBitWidth())
538     BitWidth = Result.getBitWidth(); // don't shrink the result
539   else if (BitWidth > Result.getBitWidth())
540     Result = Result.zext(BitWidth);
541 
542   APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
543   if (!IsPowerOf2Radix) {
544     // These must have the same bit-width as Result.
545     RadixAP = APInt(BitWidth, Radix);
546     CharAP = APInt(BitWidth, 0);
547   }
548 
549   // Parse all the bytes of the string given this radix.
550   Result = 0;
551   while (!Str.empty()) {
552     unsigned CharVal;
553     if (Str[0] >= '0' && Str[0] <= '9')
554       CharVal = Str[0]-'0';
555     else if (Str[0] >= 'a' && Str[0] <= 'z')
556       CharVal = Str[0]-'a'+10;
557     else if (Str[0] >= 'A' && Str[0] <= 'Z')
558       CharVal = Str[0]-'A'+10;
559     else
560       break;
561 
562     // If the parsed value is larger than the integer radix, the string is
563     // invalid.
564     if (CharVal >= Radix)
565       break;
566 
567     // Add in this character.
568     if (IsPowerOf2Radix) {
569       Result <<= Log2Radix;
570       Result |= CharVal;
571     } else {
572       Result *= RadixAP;
573       CharAP = CharVal;
574       Result += CharAP;
575     }
576 
577     Str = Str.substr(1);
578   }
579 
580   // We consider the operation a failure if no characters were consumed
581   // successfully.
582   if (size() == Str.size())
583     return true;
584 
585   *this = Str;
586   return false;
587 }
588 
589 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
590   StringRef Str = *this;
591   if (Str.consumeInteger(Radix, Result))
592     return true;
593 
594   // For getAsInteger, we require the whole string to be consumed or else we
595   // consider it a failure.
596   return !Str.empty();
597 }
598 
599 bool StringRef::getAsDouble(double &Result, bool AllowInexact) const {
600   APFloat F(0.0);
601   auto StatusOrErr = F.convertFromString(*this, APFloat::rmNearestTiesToEven);
602   if (errorToBool(StatusOrErr.takeError()))
603     return true;
604 
605   APFloat::opStatus Status = *StatusOrErr;
606   if (Status != APFloat::opOK) {
607     if (!AllowInexact || !(Status & APFloat::opInexact))
608       return true;
609   }
610 
611   Result = F.convertToDouble();
612   return false;
613 }
614 
615 // Implementation of StringRef hashing.
616 hash_code llvm::hash_value(StringRef S) {
617   return hash_combine_range(S.begin(), S.end());
618 }
619 
620 unsigned DenseMapInfo<StringRef, void>::getHashValue(StringRef Val) {
621   assert(Val.data() != getEmptyKey().data() &&
622          "Cannot hash the empty key!");
623   assert(Val.data() != getTombstoneKey().data() &&
624          "Cannot hash the tombstone key!");
625   return (unsigned)(hash_value(Val));
626 }
627