1 //===- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the DeltaTree and related classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/DeltaTree.h" 14 #include "llvm/Support/Casting.h" 15 #include <cassert> 16 #include <cstring> 17 18 using namespace llvm; 19 20 /// The DeltaTree class is a multiway search tree (BTree) structure with some 21 /// fancy features. B-Trees are generally more memory and cache efficient 22 /// than binary trees, because they store multiple keys/values in each node. 23 /// 24 /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing 25 /// fast lookup by FileIndex. However, an added (important) bonus is that it 26 /// can also efficiently tell us the full accumulated delta for a specific 27 /// file offset as well, without traversing the whole tree. 28 /// 29 /// The nodes of the tree are made up of instances of two classes: 30 /// DeltaTreeNode and DeltaTreeInteriorNode. The later subclasses the 31 /// former and adds children pointers. Each node knows the full delta of all 32 /// entries (recursively) contained inside of it, which allows us to get the 33 /// full delta implied by a whole subtree in constant time. 34 35 namespace { 36 37 /// SourceDelta - As code in the original input buffer is added and deleted, 38 /// SourceDelta records are used to keep track of how the input SourceLocation 39 /// object is mapped into the output buffer. 40 struct SourceDelta { 41 unsigned FileLoc; 42 int Delta; 43 44 static SourceDelta get(unsigned Loc, int D) { 45 SourceDelta Delta; 46 Delta.FileLoc = Loc; 47 Delta.Delta = D; 48 return Delta; 49 } 50 }; 51 52 /// DeltaTreeNode - The common part of all nodes. 53 /// 54 class DeltaTreeNode { 55 public: 56 struct InsertResult { 57 DeltaTreeNode *LHS, *RHS; 58 SourceDelta Split; 59 }; 60 61 private: 62 friend class DeltaTreeInteriorNode; 63 64 /// WidthFactor - This controls the number of K/V slots held in the BTree: 65 /// how wide it is. Each level of the BTree is guaranteed to have at least 66 /// WidthFactor-1 K/V pairs (except the root) and may have at most 67 /// 2*WidthFactor-1 K/V pairs. 68 enum { WidthFactor = 8 }; 69 70 /// Values - This tracks the SourceDelta's currently in this node. 71 SourceDelta Values[2 * WidthFactor - 1]; 72 73 /// NumValuesUsed - This tracks the number of values this node currently 74 /// holds. 75 unsigned char NumValuesUsed = 0; 76 77 /// IsLeaf - This is true if this is a leaf of the btree. If false, this is 78 /// an interior node, and is actually an instance of DeltaTreeInteriorNode. 79 bool IsLeaf; 80 81 /// FullDelta - This is the full delta of all the values in this node and 82 /// all children nodes. 83 int FullDelta = 0; 84 85 public: 86 DeltaTreeNode(bool isLeaf = true) : IsLeaf(isLeaf) {} 87 88 bool isLeaf() const { return IsLeaf; } 89 int getFullDelta() const { return FullDelta; } 90 bool isFull() const { return NumValuesUsed == 2 * WidthFactor - 1; } 91 92 unsigned getNumValuesUsed() const { return NumValuesUsed; } 93 94 const SourceDelta &getValue(unsigned i) const { 95 assert(i < NumValuesUsed && "Invalid value #"); 96 return Values[i]; 97 } 98 99 SourceDelta &getValue(unsigned i) { 100 assert(i < NumValuesUsed && "Invalid value #"); 101 return Values[i]; 102 } 103 104 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into 105 /// this node. If insertion is easy, do it and return false. Otherwise, 106 /// split the node, populate InsertRes with info about the split, and return 107 /// true. 108 bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes); 109 110 void DoSplit(InsertResult &InsertRes); 111 112 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a 113 /// local walk over our contained deltas. 114 void RecomputeFullDeltaLocally(); 115 116 void Destroy(); 117 }; 118 119 /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers. 120 /// This class tracks them. 121 class DeltaTreeInteriorNode : public DeltaTreeNode { 122 friend class DeltaTreeNode; 123 124 DeltaTreeNode *Children[2 * WidthFactor]; 125 126 ~DeltaTreeInteriorNode() { 127 for (unsigned i = 0, e = NumValuesUsed + 1; i != e; ++i) 128 Children[i]->Destroy(); 129 } 130 131 public: 132 DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {} 133 134 DeltaTreeInteriorNode(const InsertResult &IR) 135 : DeltaTreeNode(false /*nonleaf*/) { 136 Children[0] = IR.LHS; 137 Children[1] = IR.RHS; 138 Values[0] = IR.Split; 139 FullDelta = 140 IR.LHS->getFullDelta() + IR.RHS->getFullDelta() + IR.Split.Delta; 141 NumValuesUsed = 1; 142 } 143 144 const DeltaTreeNode *getChild(unsigned i) const { 145 assert(i < getNumValuesUsed() + 1 && "Invalid child"); 146 return Children[i]; 147 } 148 149 DeltaTreeNode *getChild(unsigned i) { 150 assert(i < getNumValuesUsed() + 1 && "Invalid child"); 151 return Children[i]; 152 } 153 154 static bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); } 155 }; 156 157 } // namespace 158 159 /// Destroy - A 'virtual' destructor. 160 void DeltaTreeNode::Destroy() { 161 if (isLeaf()) 162 delete this; 163 else 164 delete cast<DeltaTreeInteriorNode>(this); 165 } 166 167 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a 168 /// local walk over our contained deltas. 169 void DeltaTreeNode::RecomputeFullDeltaLocally() { 170 int NewFullDelta = 0; 171 for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i) 172 NewFullDelta += Values[i].Delta; 173 if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this)) 174 for (unsigned i = 0, e = getNumValuesUsed() + 1; i != e; ++i) 175 NewFullDelta += IN->getChild(i)->getFullDelta(); 176 FullDelta = NewFullDelta; 177 } 178 179 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into 180 /// this node. If insertion is easy, do it and return false. Otherwise, 181 /// split the node, populate InsertRes with info about the split, and return 182 /// true. 183 bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta, 184 InsertResult *InsertRes) { 185 // Maintain full delta for this node. 186 FullDelta += Delta; 187 188 // Find the insertion point, the first delta whose index is >= FileIndex. 189 unsigned i = 0, e = getNumValuesUsed(); 190 while (i != e && FileIndex > getValue(i).FileLoc) 191 ++i; 192 193 // If we found an a record for exactly this file index, just merge this 194 // value into the pre-existing record and finish early. 195 if (i != e && getValue(i).FileLoc == FileIndex) { 196 // NOTE: Delta could drop to zero here. This means that the delta entry is 197 // useless and could be removed. Supporting erases is more complex than 198 // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in 199 // the tree. 200 Values[i].Delta += Delta; 201 return false; 202 } 203 204 // Otherwise, we found an insertion point, and we know that the value at the 205 // specified index is > FileIndex. Handle the leaf case first. 206 if (isLeaf()) { 207 if (!isFull()) { 208 // For an insertion into a non-full leaf node, just insert the value in 209 // its sorted position. This requires moving later values over. 210 if (i != e) 211 memmove(&Values[i + 1], &Values[i], sizeof(Values[0]) * (e - i)); 212 Values[i] = SourceDelta::get(FileIndex, Delta); 213 ++NumValuesUsed; 214 return false; 215 } 216 217 // Otherwise, if this is leaf is full, split the node at its median, insert 218 // the value into one of the children, and return the result. 219 assert(InsertRes && "No result location specified"); 220 DoSplit(*InsertRes); 221 222 if (InsertRes->Split.FileLoc > FileIndex) 223 InsertRes->LHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/); 224 else 225 InsertRes->RHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/); 226 return true; 227 } 228 229 // Otherwise, this is an interior node. Send the request down the tree. 230 auto *IN = cast<DeltaTreeInteriorNode>(this); 231 if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes)) 232 return false; // If there was space in the child, just return. 233 234 // Okay, this split the subtree, producing a new value and two children to 235 // insert here. If this node is non-full, we can just insert it directly. 236 if (!isFull()) { 237 // Now that we have two nodes and a new element, insert the perclated value 238 // into ourself by moving all the later values/children down, then inserting 239 // the new one. 240 if (i != e) 241 memmove(&IN->Children[i + 2], &IN->Children[i + 1], 242 (e - i) * sizeof(IN->Children[0])); 243 IN->Children[i] = InsertRes->LHS; 244 IN->Children[i + 1] = InsertRes->RHS; 245 246 if (e != i) 247 memmove(&Values[i + 1], &Values[i], (e - i) * sizeof(Values[0])); 248 Values[i] = InsertRes->Split; 249 ++NumValuesUsed; 250 return false; 251 } 252 253 // Finally, if this interior node was full and a node is percolated up, split 254 // ourself and return that up the chain. Start by saving all our info to 255 // avoid having the split clobber it. 256 IN->Children[i] = InsertRes->LHS; 257 DeltaTreeNode *SubRHS = InsertRes->RHS; 258 SourceDelta SubSplit = InsertRes->Split; 259 260 // Do the split. 261 DoSplit(*InsertRes); 262 263 // Figure out where to insert SubRHS/NewSplit. 264 DeltaTreeInteriorNode *InsertSide; 265 if (SubSplit.FileLoc < InsertRes->Split.FileLoc) 266 InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS); 267 else 268 InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS); 269 270 // We now have a non-empty interior node 'InsertSide' to insert 271 // SubRHS/SubSplit into. Find out where to insert SubSplit. 272 273 // Find the insertion point, the first delta whose index is >SubSplit.FileLoc. 274 i = 0; 275 e = InsertSide->getNumValuesUsed(); 276 while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc) 277 ++i; 278 279 // Now we know that i is the place to insert the split value into. Insert it 280 // and the child right after it. 281 if (i != e) 282 memmove(&InsertSide->Children[i + 2], &InsertSide->Children[i + 1], 283 (e - i) * sizeof(IN->Children[0])); 284 InsertSide->Children[i + 1] = SubRHS; 285 286 if (e != i) 287 memmove(&InsertSide->Values[i + 1], &InsertSide->Values[i], 288 (e - i) * sizeof(Values[0])); 289 InsertSide->Values[i] = SubSplit; 290 ++InsertSide->NumValuesUsed; 291 InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta(); 292 return true; 293 } 294 295 /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values) 296 /// into two subtrees each with "WidthFactor-1" values and a pivot value. 297 /// Return the pieces in InsertRes. 298 void DeltaTreeNode::DoSplit(InsertResult &InsertRes) { 299 assert(isFull() && "Why split a non-full node?"); 300 301 // Since this node is full, it contains 2*WidthFactor-1 values. We move 302 // the first 'WidthFactor-1' values to the LHS child (which we leave in this 303 // node), propagate one value up, and move the last 'WidthFactor-1' values 304 // into the RHS child. 305 306 // Create the new child node. 307 DeltaTreeNode *NewNode; 308 if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this)) { 309 // If this is an interior node, also move over 'WidthFactor' children 310 // into the new node. 311 DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode(); 312 memcpy(&New->Children[0], &IN->Children[WidthFactor], 313 WidthFactor * sizeof(IN->Children[0])); 314 NewNode = New; 315 } else { 316 // Just create the new leaf node. 317 NewNode = new DeltaTreeNode(); 318 } 319 320 // Move over the last 'WidthFactor-1' values from here to NewNode. 321 memcpy(&NewNode->Values[0], &Values[WidthFactor], 322 (WidthFactor - 1) * sizeof(Values[0])); 323 324 // Decrease the number of values in the two nodes. 325 NewNode->NumValuesUsed = NumValuesUsed = WidthFactor - 1; 326 327 // Recompute the two nodes' full delta. 328 NewNode->RecomputeFullDeltaLocally(); 329 RecomputeFullDeltaLocally(); 330 331 InsertRes.LHS = this; 332 InsertRes.RHS = NewNode; 333 InsertRes.Split = Values[WidthFactor - 1]; 334 } 335 336 //===----------------------------------------------------------------------===// 337 // DeltaTree Implementation 338 //===----------------------------------------------------------------------===// 339 340 // #define VERIFY_TREE 341 342 #ifdef VERIFY_TREE 343 /// VerifyTree - Walk the btree performing assertions on various properties to 344 /// verify consistency. This is useful for debugging new changes to the tree. 345 static void VerifyTree(const DeltaTreeNode *N) { 346 const auto *IN = dyn_cast<DeltaTreeInteriorNode>(N); 347 if (IN == 0) { 348 // Verify leaves, just ensure that FullDelta matches up and the elements 349 // are in proper order. 350 int FullDelta = 0; 351 for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) { 352 if (i) 353 assert(N->getValue(i - 1).FileLoc < N->getValue(i).FileLoc); 354 FullDelta += N->getValue(i).Delta; 355 } 356 assert(FullDelta == N->getFullDelta()); 357 return; 358 } 359 360 // Verify interior nodes: Ensure that FullDelta matches up and the 361 // elements are in proper order and the children are in proper order. 362 int FullDelta = 0; 363 for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) { 364 const SourceDelta &IVal = N->getValue(i); 365 const DeltaTreeNode *IChild = IN->getChild(i); 366 if (i) 367 assert(IN->getValue(i - 1).FileLoc < IVal.FileLoc); 368 FullDelta += IVal.Delta; 369 FullDelta += IChild->getFullDelta(); 370 371 // The largest value in child #i should be smaller than FileLoc. 372 assert(IChild->getValue(IChild->getNumValuesUsed() - 1).FileLoc < 373 IVal.FileLoc); 374 375 // The smallest value in child #i+1 should be larger than FileLoc. 376 assert(IN->getChild(i + 1)->getValue(0).FileLoc > IVal.FileLoc); 377 VerifyTree(IChild); 378 } 379 380 FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta(); 381 382 assert(FullDelta == N->getFullDelta()); 383 } 384 #endif // VERIFY_TREE 385 386 static DeltaTreeNode *getRoot(void *Root) { return (DeltaTreeNode *)Root; } 387 388 DeltaTree::DeltaTree() { Root = new DeltaTreeNode(); } 389 390 DeltaTree::DeltaTree(const DeltaTree &RHS) { 391 // Currently we only support copying when the RHS is empty. 392 assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 && 393 "Can only copy empty tree"); 394 Root = new DeltaTreeNode(); 395 } 396 397 DeltaTree::~DeltaTree() { getRoot(Root)->Destroy(); } 398 399 /// getDeltaAt - Return the accumulated delta at the specified file offset. 400 /// This includes all insertions or delections that occurred *before* the 401 /// specified file index. 402 int DeltaTree::getDeltaAt(unsigned FileIndex) const { 403 const DeltaTreeNode *Node = getRoot(Root); 404 405 int Result = 0; 406 407 // Walk down the tree. 408 while (true) { 409 // For all nodes, include any local deltas before the specified file 410 // index by summing them up directly. Keep track of how many were 411 // included. 412 unsigned NumValsGreater = 0; 413 for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e; 414 ++NumValsGreater) { 415 const SourceDelta &Val = Node->getValue(NumValsGreater); 416 417 if (Val.FileLoc >= FileIndex) 418 break; 419 Result += Val.Delta; 420 } 421 422 // If we have an interior node, include information about children and 423 // recurse. Otherwise, if we have a leaf, we're done. 424 const auto *IN = dyn_cast<DeltaTreeInteriorNode>(Node); 425 if (!IN) 426 return Result; 427 428 // Include any children to the left of the values we skipped, all of 429 // their deltas should be included as well. 430 for (unsigned i = 0; i != NumValsGreater; ++i) 431 Result += IN->getChild(i)->getFullDelta(); 432 433 // If we found exactly the value we were looking for, break off the 434 // search early. There is no need to search the RHS of the value for 435 // partial results. 436 if (NumValsGreater != Node->getNumValuesUsed() && 437 Node->getValue(NumValsGreater).FileLoc == FileIndex) 438 return Result + IN->getChild(NumValsGreater)->getFullDelta(); 439 440 // Otherwise, traverse down the tree. The selected subtree may be 441 // partially included in the range. 442 Node = IN->getChild(NumValsGreater); 443 } 444 // NOT REACHED. 445 } 446 447 /// AddDelta - When a change is made that shifts around the text buffer, 448 /// this method is used to record that info. It inserts a delta of 'Delta' 449 /// into the current DeltaTree at offset FileIndex. 450 void DeltaTree::AddDelta(unsigned FileIndex, int Delta) { 451 assert(Delta && "Adding a noop?"); 452 DeltaTreeNode *MyRoot = getRoot(Root); 453 454 DeltaTreeNode::InsertResult InsertRes; 455 if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) { 456 Root = new DeltaTreeInteriorNode(InsertRes); 457 #ifdef VERIFY_TREE 458 MyRoot = Root; 459 #endif 460 } 461 462 #ifdef VERIFY_TREE 463 VerifyTree(MyRoot); 464 #endif 465 } 466