1 //===- BalancedPartitioning.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements BalancedPartitioning, a recursive balanced graph 10 // partitioning algorithm. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Support/BalancedPartitioning.h" 15 #include "llvm/Config/llvm-config.h" // for LLVM_ENABLE_THREADS 16 #include "llvm/Support/Debug.h" 17 #include "llvm/Support/Format.h" 18 #include "llvm/Support/FormatVariadic.h" 19 #include "llvm/Support/ThreadPool.h" 20 21 using namespace llvm; 22 #define DEBUG_TYPE "balanced-partitioning" 23 24 void BPFunctionNode::dump(raw_ostream &OS) const { 25 OS << formatv("{{ID={0} Utilities={{{1:$[,]}} Bucket={2}}", Id, 26 make_range(UtilityNodes.begin(), UtilityNodes.end()), Bucket); 27 } 28 29 template <typename Func> 30 void BalancedPartitioning::BPThreadPool::async(Func &&F) { 31 #if LLVM_ENABLE_THREADS 32 // This new thread could spawn more threads, so mark it as active 33 ++NumActiveThreads; 34 TheThreadPool.async([this, F]() { 35 // Run the task 36 F(); 37 38 // This thread will no longer spawn new threads, so mark it as inactive 39 if (--NumActiveThreads == 0) { 40 // There are no more active threads, so mark as finished and notify 41 { 42 std::unique_lock<std::mutex> lock(mtx); 43 assert(!IsFinishedSpawning); 44 IsFinishedSpawning = true; 45 } 46 cv.notify_one(); 47 } 48 }); 49 #else 50 llvm_unreachable("threads are disabled"); 51 #endif 52 } 53 54 void BalancedPartitioning::BPThreadPool::wait() { 55 #if LLVM_ENABLE_THREADS 56 // TODO: We could remove the mutex and condition variable and use 57 // std::atomic::wait() instead, but that isn't available until C++20 58 { 59 std::unique_lock<std::mutex> lock(mtx); 60 cv.wait(lock, [&]() { return IsFinishedSpawning; }); 61 assert(IsFinishedSpawning && NumActiveThreads == 0); 62 } 63 // Now we can call ThreadPool::wait() since all tasks have been submitted 64 TheThreadPool.wait(); 65 #else 66 llvm_unreachable("threads are disabled"); 67 #endif 68 } 69 70 BalancedPartitioning::BalancedPartitioning( 71 const BalancedPartitioningConfig &Config) 72 : Config(Config) { 73 // Pre-computing log2 values 74 Log2Cache[0] = 0.0; 75 for (unsigned I = 1; I < LOG_CACHE_SIZE; I++) 76 Log2Cache[I] = std::log2(I); 77 } 78 79 void BalancedPartitioning::run(std::vector<BPFunctionNode> &Nodes) const { 80 LLVM_DEBUG( 81 dbgs() << format( 82 "Partitioning %d nodes using depth %d and %d iterations per split\n", 83 Nodes.size(), Config.SplitDepth, Config.IterationsPerSplit)); 84 std::optional<BPThreadPool> TP; 85 #if LLVM_ENABLE_THREADS 86 DefaultThreadPool TheThreadPool; 87 if (Config.TaskSplitDepth > 1) 88 TP.emplace(TheThreadPool); 89 #endif 90 91 // Record the input order 92 for (unsigned I = 0; I < Nodes.size(); I++) 93 Nodes[I].InputOrderIndex = I; 94 95 auto NodesRange = llvm::make_range(Nodes.begin(), Nodes.end()); 96 auto BisectTask = [this, NodesRange, &TP]() { 97 bisect(NodesRange, /*RecDepth=*/0, /*RootBucket=*/1, /*Offset=*/0, TP); 98 }; 99 if (TP) { 100 TP->async(std::move(BisectTask)); 101 TP->wait(); 102 } else { 103 BisectTask(); 104 } 105 106 llvm::stable_sort(NodesRange, [](const auto &L, const auto &R) { 107 return L.Bucket < R.Bucket; 108 }); 109 110 LLVM_DEBUG(dbgs() << "Balanced partitioning completed\n"); 111 } 112 113 void BalancedPartitioning::bisect(const FunctionNodeRange Nodes, 114 unsigned RecDepth, unsigned RootBucket, 115 unsigned Offset, 116 std::optional<BPThreadPool> &TP) const { 117 unsigned NumNodes = std::distance(Nodes.begin(), Nodes.end()); 118 if (NumNodes <= 1 || RecDepth >= Config.SplitDepth) { 119 // We've reach the lowest level of the recursion tree. Fall back to the 120 // original order and assign to buckets. 121 llvm::sort(Nodes, [](const auto &L, const auto &R) { 122 return L.InputOrderIndex < R.InputOrderIndex; 123 }); 124 for (auto &N : Nodes) 125 N.Bucket = Offset++; 126 return; 127 } 128 129 LLVM_DEBUG(dbgs() << format("Bisect with %d nodes and root bucket %d\n", 130 NumNodes, RootBucket)); 131 132 std::mt19937 RNG(RootBucket); 133 134 unsigned LeftBucket = 2 * RootBucket; 135 unsigned RightBucket = 2 * RootBucket + 1; 136 137 // Split into two and assign to the left and right buckets 138 split(Nodes, LeftBucket); 139 140 runIterations(Nodes, LeftBucket, RightBucket, RNG); 141 142 // Split nodes wrt the resulting buckets 143 auto NodesMid = 144 llvm::partition(Nodes, [&](auto &N) { return N.Bucket == LeftBucket; }); 145 unsigned MidOffset = Offset + std::distance(Nodes.begin(), NodesMid); 146 147 auto LeftNodes = llvm::make_range(Nodes.begin(), NodesMid); 148 auto RightNodes = llvm::make_range(NodesMid, Nodes.end()); 149 150 auto LeftRecTask = [this, LeftNodes, RecDepth, LeftBucket, Offset, &TP]() { 151 bisect(LeftNodes, RecDepth + 1, LeftBucket, Offset, TP); 152 }; 153 auto RightRecTask = [this, RightNodes, RecDepth, RightBucket, MidOffset, 154 &TP]() { 155 bisect(RightNodes, RecDepth + 1, RightBucket, MidOffset, TP); 156 }; 157 158 if (TP && RecDepth < Config.TaskSplitDepth && NumNodes >= 4) { 159 TP->async(std::move(LeftRecTask)); 160 TP->async(std::move(RightRecTask)); 161 } else { 162 LeftRecTask(); 163 RightRecTask(); 164 } 165 } 166 167 void BalancedPartitioning::runIterations(const FunctionNodeRange Nodes, 168 unsigned LeftBucket, 169 unsigned RightBucket, 170 std::mt19937 &RNG) const { 171 unsigned NumNodes = std::distance(Nodes.begin(), Nodes.end()); 172 DenseMap<BPFunctionNode::UtilityNodeT, unsigned> UtilityNodeIndex; 173 for (auto &N : Nodes) 174 for (auto &UN : N.UtilityNodes) 175 ++UtilityNodeIndex[UN]; 176 // Remove utility nodes if they have just one edge or are connected to all 177 // functions 178 for (auto &N : Nodes) 179 llvm::erase_if(N.UtilityNodes, [&](auto &UN) { 180 return UtilityNodeIndex[UN] == 1 || UtilityNodeIndex[UN] == NumNodes; 181 }); 182 183 // Renumber utility nodes so they can be used to index into Signatures 184 UtilityNodeIndex.clear(); 185 for (auto &N : Nodes) 186 for (auto &UN : N.UtilityNodes) 187 UN = UtilityNodeIndex.insert({UN, UtilityNodeIndex.size()}).first->second; 188 189 // Initialize signatures 190 SignaturesT Signatures(/*Size=*/UtilityNodeIndex.size()); 191 for (auto &N : Nodes) { 192 for (auto &UN : N.UtilityNodes) { 193 assert(UN < Signatures.size()); 194 if (N.Bucket == LeftBucket) { 195 Signatures[UN].LeftCount++; 196 } else { 197 Signatures[UN].RightCount++; 198 } 199 } 200 } 201 202 for (unsigned I = 0; I < Config.IterationsPerSplit; I++) { 203 unsigned NumMovedNodes = 204 runIteration(Nodes, LeftBucket, RightBucket, Signatures, RNG); 205 if (NumMovedNodes == 0) 206 break; 207 } 208 } 209 210 unsigned BalancedPartitioning::runIteration(const FunctionNodeRange Nodes, 211 unsigned LeftBucket, 212 unsigned RightBucket, 213 SignaturesT &Signatures, 214 std::mt19937 &RNG) const { 215 // Init signature cost caches 216 for (auto &Signature : Signatures) { 217 if (Signature.CachedGainIsValid) 218 continue; 219 unsigned L = Signature.LeftCount; 220 unsigned R = Signature.RightCount; 221 assert((L > 0 || R > 0) && "incorrect signature"); 222 float Cost = logCost(L, R); 223 Signature.CachedGainLR = 0.f; 224 Signature.CachedGainRL = 0.f; 225 if (L > 0) 226 Signature.CachedGainLR = Cost - logCost(L - 1, R + 1); 227 if (R > 0) 228 Signature.CachedGainRL = Cost - logCost(L + 1, R - 1); 229 Signature.CachedGainIsValid = true; 230 } 231 232 // Compute move gains 233 typedef std::pair<float, BPFunctionNode *> GainPair; 234 std::vector<GainPair> Gains; 235 for (auto &N : Nodes) { 236 bool FromLeftToRight = (N.Bucket == LeftBucket); 237 float Gain = moveGain(N, FromLeftToRight, Signatures); 238 Gains.push_back(std::make_pair(Gain, &N)); 239 } 240 241 // Collect left and right gains 242 auto LeftEnd = llvm::partition( 243 Gains, [&](const auto &GP) { return GP.second->Bucket == LeftBucket; }); 244 auto LeftRange = llvm::make_range(Gains.begin(), LeftEnd); 245 auto RightRange = llvm::make_range(LeftEnd, Gains.end()); 246 247 // Sort gains in descending order 248 auto LargerGain = [](const auto &L, const auto &R) { 249 return L.first > R.first; 250 }; 251 llvm::stable_sort(LeftRange, LargerGain); 252 llvm::stable_sort(RightRange, LargerGain); 253 254 unsigned NumMovedDataVertices = 0; 255 for (auto [LeftPair, RightPair] : llvm::zip(LeftRange, RightRange)) { 256 auto &[LeftGain, LeftNode] = LeftPair; 257 auto &[RightGain, RightNode] = RightPair; 258 // Stop when the gain is no longer beneficial 259 if (LeftGain + RightGain <= 0.f) 260 break; 261 // Try to exchange the nodes between buckets 262 if (moveFunctionNode(*LeftNode, LeftBucket, RightBucket, Signatures, RNG)) 263 ++NumMovedDataVertices; 264 if (moveFunctionNode(*RightNode, LeftBucket, RightBucket, Signatures, RNG)) 265 ++NumMovedDataVertices; 266 } 267 return NumMovedDataVertices; 268 } 269 270 bool BalancedPartitioning::moveFunctionNode(BPFunctionNode &N, 271 unsigned LeftBucket, 272 unsigned RightBucket, 273 SignaturesT &Signatures, 274 std::mt19937 &RNG) const { 275 // Sometimes we skip the move. This helps to escape local optima 276 if (std::uniform_real_distribution<float>(0.f, 1.f)(RNG) <= 277 Config.SkipProbability) 278 return false; 279 280 bool FromLeftToRight = (N.Bucket == LeftBucket); 281 // Update the current bucket 282 N.Bucket = (FromLeftToRight ? RightBucket : LeftBucket); 283 284 // Update signatures and invalidate gain cache 285 if (FromLeftToRight) { 286 for (auto &UN : N.UtilityNodes) { 287 auto &Signature = Signatures[UN]; 288 Signature.LeftCount--; 289 Signature.RightCount++; 290 Signature.CachedGainIsValid = false; 291 } 292 } else { 293 for (auto &UN : N.UtilityNodes) { 294 auto &Signature = Signatures[UN]; 295 Signature.LeftCount++; 296 Signature.RightCount--; 297 Signature.CachedGainIsValid = false; 298 } 299 } 300 return true; 301 } 302 303 void BalancedPartitioning::split(const FunctionNodeRange Nodes, 304 unsigned StartBucket) const { 305 unsigned NumNodes = std::distance(Nodes.begin(), Nodes.end()); 306 auto NodesMid = Nodes.begin() + (NumNodes + 1) / 2; 307 308 std::nth_element(Nodes.begin(), NodesMid, Nodes.end(), [](auto &L, auto &R) { 309 return L.InputOrderIndex < R.InputOrderIndex; 310 }); 311 312 for (auto &N : llvm::make_range(Nodes.begin(), NodesMid)) 313 N.Bucket = StartBucket; 314 for (auto &N : llvm::make_range(NodesMid, Nodes.end())) 315 N.Bucket = StartBucket + 1; 316 } 317 318 float BalancedPartitioning::moveGain(const BPFunctionNode &N, 319 bool FromLeftToRight, 320 const SignaturesT &Signatures) { 321 float Gain = 0.f; 322 for (auto &UN : N.UtilityNodes) 323 Gain += (FromLeftToRight ? Signatures[UN].CachedGainLR 324 : Signatures[UN].CachedGainRL); 325 return Gain; 326 } 327 328 float BalancedPartitioning::logCost(unsigned X, unsigned Y) const { 329 return -(X * log2Cached(X + 1) + Y * log2Cached(Y + 1)); 330 } 331 332 float BalancedPartitioning::log2Cached(unsigned i) const { 333 return (i < LOG_CACHE_SIZE) ? Log2Cache[i] : std::log2(i); 334 } 335