1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Linker/IRMover.h" 10 #include "LinkDiagnosticInfo.h" 11 #include "llvm/ADT/ScopeExit.h" 12 #include "llvm/ADT/SetVector.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DebugInfoMetadata.h" 18 #include "llvm/IR/DiagnosticPrinter.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/GVMaterializer.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/PseudoProbe.h" 27 #include "llvm/IR/TypeFinder.h" 28 #include "llvm/Object/ModuleSymbolTable.h" 29 #include "llvm/Support/Error.h" 30 #include "llvm/Support/Path.h" 31 #include "llvm/TargetParser/Triple.h" 32 #include "llvm/Transforms/Utils/ValueMapper.h" 33 #include <optional> 34 #include <utility> 35 using namespace llvm; 36 37 /// Most of the errors produced by this module are inconvertible StringErrors. 38 /// This convenience function lets us return one of those more easily. 39 static Error stringErr(const Twine &T) { 40 return make_error<StringError>(T, inconvertibleErrorCode()); 41 } 42 43 //===----------------------------------------------------------------------===// 44 // TypeMap implementation. 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 class TypeMapTy : public ValueMapTypeRemapper { 49 /// This is a mapping from a source type to a destination type to use. 50 DenseMap<Type *, Type *> MappedTypes; 51 52 /// When checking to see if two subgraphs are isomorphic, we speculatively 53 /// add types to MappedTypes, but keep track of them here in case we need to 54 /// roll back. 55 SmallVector<Type *, 16> SpeculativeTypes; 56 57 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes; 58 59 /// This is a list of non-opaque structs in the source module that are mapped 60 /// to an opaque struct in the destination module. 61 SmallVector<StructType *, 16> SrcDefinitionsToResolve; 62 63 /// This is the set of opaque types in the destination modules who are 64 /// getting a body from the source module. 65 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes; 66 67 public: 68 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet) 69 : DstStructTypesSet(DstStructTypesSet) {} 70 71 IRMover::IdentifiedStructTypeSet &DstStructTypesSet; 72 /// Indicate that the specified type in the destination module is conceptually 73 /// equivalent to the specified type in the source module. 74 void addTypeMapping(Type *DstTy, Type *SrcTy); 75 76 /// Produce a body for an opaque type in the dest module from a type 77 /// definition in the source module. 78 Error linkDefinedTypeBodies(); 79 80 /// Return the mapped type to use for the specified input type from the 81 /// source module. 82 Type *get(Type *SrcTy); 83 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited); 84 85 FunctionType *get(FunctionType *T) { 86 return cast<FunctionType>(get((Type *)T)); 87 } 88 89 private: 90 Type *remapType(Type *SrcTy) override { return get(SrcTy); } 91 92 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy); 93 }; 94 } 95 96 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) { 97 assert(SpeculativeTypes.empty()); 98 assert(SpeculativeDstOpaqueTypes.empty()); 99 100 // Check to see if these types are recursively isomorphic and establish a 101 // mapping between them if so. 102 if (!areTypesIsomorphic(DstTy, SrcTy)) { 103 // Oops, they aren't isomorphic. Just discard this request by rolling out 104 // any speculative mappings we've established. 105 for (Type *Ty : SpeculativeTypes) 106 MappedTypes.erase(Ty); 107 108 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() - 109 SpeculativeDstOpaqueTypes.size()); 110 for (StructType *Ty : SpeculativeDstOpaqueTypes) 111 DstResolvedOpaqueTypes.erase(Ty); 112 } else { 113 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy 114 // and all its descendants to lower amount of renaming in LLVM context 115 // Renaming occurs because we load all source modules to the same context 116 // and declaration with existing name gets renamed (i.e Foo -> Foo.42). 117 // As a result we may get several different types in the destination 118 // module, which are in fact the same. 119 for (Type *Ty : SpeculativeTypes) 120 if (auto *STy = dyn_cast<StructType>(Ty)) 121 if (STy->hasName()) 122 STy->setName(""); 123 } 124 SpeculativeTypes.clear(); 125 SpeculativeDstOpaqueTypes.clear(); 126 } 127 128 /// Recursively walk this pair of types, returning true if they are isomorphic, 129 /// false if they are not. 130 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) { 131 // Two types with differing kinds are clearly not isomorphic. 132 if (DstTy->getTypeID() != SrcTy->getTypeID()) 133 return false; 134 135 // If we have an entry in the MappedTypes table, then we have our answer. 136 Type *&Entry = MappedTypes[SrcTy]; 137 if (Entry) 138 return Entry == DstTy; 139 140 // Two identical types are clearly isomorphic. Remember this 141 // non-speculatively. 142 if (DstTy == SrcTy) { 143 Entry = DstTy; 144 return true; 145 } 146 147 // Okay, we have two types with identical kinds that we haven't seen before. 148 149 // If this is an opaque struct type, special case it. 150 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) { 151 // Mapping an opaque type to any struct, just keep the dest struct. 152 if (SSTy->isOpaque()) { 153 Entry = DstTy; 154 SpeculativeTypes.push_back(SrcTy); 155 return true; 156 } 157 158 // Mapping a non-opaque source type to an opaque dest. If this is the first 159 // type that we're mapping onto this destination type then we succeed. Keep 160 // the dest, but fill it in later. If this is the second (different) type 161 // that we're trying to map onto the same opaque type then we fail. 162 if (cast<StructType>(DstTy)->isOpaque()) { 163 // We can only map one source type onto the opaque destination type. 164 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second) 165 return false; 166 SrcDefinitionsToResolve.push_back(SSTy); 167 SpeculativeTypes.push_back(SrcTy); 168 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy)); 169 Entry = DstTy; 170 return true; 171 } 172 } 173 174 // If the number of subtypes disagree between the two types, then we fail. 175 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes()) 176 return false; 177 178 // Fail if any of the extra properties (e.g. array size) of the type disagree. 179 if (isa<IntegerType>(DstTy)) 180 return false; // bitwidth disagrees. 181 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) { 182 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace()) 183 return false; 184 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) { 185 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg()) 186 return false; 187 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) { 188 StructType *SSTy = cast<StructType>(SrcTy); 189 if (DSTy->isLiteral() != SSTy->isLiteral() || 190 DSTy->isPacked() != SSTy->isPacked()) 191 return false; 192 } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) { 193 if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements()) 194 return false; 195 } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) { 196 if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount()) 197 return false; 198 } 199 200 // Otherwise, we speculate that these two types will line up and recursively 201 // check the subelements. 202 Entry = DstTy; 203 SpeculativeTypes.push_back(SrcTy); 204 205 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I) 206 if (!areTypesIsomorphic(DstTy->getContainedType(I), 207 SrcTy->getContainedType(I))) 208 return false; 209 210 // If everything seems to have lined up, then everything is great. 211 return true; 212 } 213 214 Error TypeMapTy::linkDefinedTypeBodies() { 215 SmallVector<Type *, 16> Elements; 216 for (StructType *SrcSTy : SrcDefinitionsToResolve) { 217 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]); 218 assert(DstSTy->isOpaque()); 219 220 // Map the body of the source type over to a new body for the dest type. 221 Elements.resize(SrcSTy->getNumElements()); 222 for (unsigned I = 0, E = Elements.size(); I != E; ++I) 223 Elements[I] = get(SrcSTy->getElementType(I)); 224 225 if (auto E = DstSTy->setBodyOrError(Elements, SrcSTy->isPacked())) 226 return E; 227 DstStructTypesSet.switchToNonOpaque(DstSTy); 228 } 229 SrcDefinitionsToResolve.clear(); 230 DstResolvedOpaqueTypes.clear(); 231 return Error::success(); 232 } 233 234 Type *TypeMapTy::get(Type *Ty) { 235 SmallPtrSet<StructType *, 8> Visited; 236 return get(Ty, Visited); 237 } 238 239 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) { 240 // If we already have an entry for this type, return it. 241 Type **Entry = &MappedTypes[Ty]; 242 if (*Entry) 243 return *Entry; 244 245 // These are types that LLVM itself will unique. 246 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral(); 247 248 if (!IsUniqued) { 249 #ifndef NDEBUG 250 for (auto &Pair : MappedTypes) { 251 assert(!(Pair.first != Ty && Pair.second == Ty) && 252 "mapping to a source type"); 253 } 254 #endif 255 256 if (!Visited.insert(cast<StructType>(Ty)).second) { 257 StructType *DTy = StructType::create(Ty->getContext()); 258 return *Entry = DTy; 259 } 260 } 261 262 // If this is not a recursive type, then just map all of the elements and 263 // then rebuild the type from inside out. 264 SmallVector<Type *, 4> ElementTypes; 265 266 // If there are no element types to map, then the type is itself. This is 267 // true for the anonymous {} struct, things like 'float', integers, etc. 268 if (Ty->getNumContainedTypes() == 0 && IsUniqued) 269 return *Entry = Ty; 270 271 // Remap all of the elements, keeping track of whether any of them change. 272 bool AnyChange = false; 273 ElementTypes.resize(Ty->getNumContainedTypes()); 274 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) { 275 ElementTypes[I] = get(Ty->getContainedType(I), Visited); 276 AnyChange |= ElementTypes[I] != Ty->getContainedType(I); 277 } 278 279 // Refresh Entry after recursively processing stuff. 280 Entry = &MappedTypes[Ty]; 281 assert(!*Entry && "Recursive type!"); 282 283 // If all of the element types mapped directly over and the type is not 284 // a named struct, then the type is usable as-is. 285 if (!AnyChange && IsUniqued) 286 return *Entry = Ty; 287 288 // Otherwise, rebuild a modified type. 289 switch (Ty->getTypeID()) { 290 default: 291 llvm_unreachable("unknown derived type to remap"); 292 case Type::ArrayTyID: 293 return *Entry = ArrayType::get(ElementTypes[0], 294 cast<ArrayType>(Ty)->getNumElements()); 295 case Type::ScalableVectorTyID: 296 case Type::FixedVectorTyID: 297 return *Entry = VectorType::get(ElementTypes[0], 298 cast<VectorType>(Ty)->getElementCount()); 299 case Type::FunctionTyID: 300 return *Entry = FunctionType::get(ElementTypes[0], 301 ArrayRef(ElementTypes).slice(1), 302 cast<FunctionType>(Ty)->isVarArg()); 303 case Type::StructTyID: { 304 auto *STy = cast<StructType>(Ty); 305 bool IsPacked = STy->isPacked(); 306 if (IsUniqued) 307 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked); 308 309 // If the type is opaque, we can just use it directly. 310 if (STy->isOpaque()) { 311 DstStructTypesSet.addOpaque(STy); 312 return *Entry = Ty; 313 } 314 315 if (StructType *OldT = 316 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) { 317 STy->setName(""); 318 return *Entry = OldT; 319 } 320 321 if (!AnyChange) { 322 DstStructTypesSet.addNonOpaque(STy); 323 return *Entry = Ty; 324 } 325 326 StructType *DTy = 327 StructType::create(Ty->getContext(), ElementTypes, "", STy->isPacked()); 328 329 // Steal STy's name. 330 if (STy->hasName()) { 331 SmallString<16> TmpName = STy->getName(); 332 STy->setName(""); 333 DTy->setName(TmpName); 334 } 335 336 DstStructTypesSet.addNonOpaque(DTy); 337 return *Entry = DTy; 338 } 339 } 340 } 341 342 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity, 343 const Twine &Msg) 344 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {} 345 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 346 347 //===----------------------------------------------------------------------===// 348 // IRLinker implementation. 349 //===----------------------------------------------------------------------===// 350 351 namespace { 352 class IRLinker; 353 354 /// Creates prototypes for functions that are lazily linked on the fly. This 355 /// speeds up linking for modules with many/ lazily linked functions of which 356 /// few get used. 357 class GlobalValueMaterializer final : public ValueMaterializer { 358 IRLinker &TheIRLinker; 359 360 public: 361 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 362 Value *materialize(Value *V) override; 363 }; 364 365 class LocalValueMaterializer final : public ValueMaterializer { 366 IRLinker &TheIRLinker; 367 368 public: 369 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {} 370 Value *materialize(Value *V) override; 371 }; 372 373 /// Type of the Metadata map in \a ValueToValueMapTy. 374 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 375 376 /// This is responsible for keeping track of the state used for moving data 377 /// from SrcM to DstM. 378 class IRLinker { 379 Module &DstM; 380 std::unique_ptr<Module> SrcM; 381 382 /// See IRMover::move(). 383 IRMover::LazyCallback AddLazyFor; 384 385 TypeMapTy TypeMap; 386 GlobalValueMaterializer GValMaterializer; 387 LocalValueMaterializer LValMaterializer; 388 389 /// A metadata map that's shared between IRLinker instances. 390 MDMapT &SharedMDs; 391 392 /// Mapping of values from what they used to be in Src, to what they are now 393 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead 394 /// due to the use of Value handles which the Linker doesn't actually need, 395 /// but this allows us to reuse the ValueMapper code. 396 ValueToValueMapTy ValueMap; 397 ValueToValueMapTy IndirectSymbolValueMap; 398 399 DenseSet<GlobalValue *> ValuesToLink; 400 std::vector<GlobalValue *> Worklist; 401 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist; 402 403 /// Set of globals with eagerly copied metadata that may require remapping. 404 /// This remapping is performed after metadata linking. 405 DenseSet<GlobalObject *> UnmappedMetadata; 406 407 void maybeAdd(GlobalValue *GV) { 408 if (ValuesToLink.insert(GV).second) 409 Worklist.push_back(GV); 410 } 411 412 /// Whether we are importing globals for ThinLTO, as opposed to linking the 413 /// source module. If this flag is set, it means that we can rely on some 414 /// other object file to define any non-GlobalValue entities defined by the 415 /// source module. This currently causes us to not link retained types in 416 /// debug info metadata and module inline asm. 417 bool IsPerformingImport; 418 419 /// Set to true when all global value body linking is complete (including 420 /// lazy linking). Used to prevent metadata linking from creating new 421 /// references. 422 bool DoneLinkingBodies = false; 423 424 /// The Error encountered during materialization. We use an Optional here to 425 /// avoid needing to manage an unconsumed success value. 426 std::optional<Error> FoundError; 427 void setError(Error E) { 428 if (E) 429 FoundError = std::move(E); 430 } 431 432 /// Entry point for mapping values and alternate context for mapping aliases. 433 ValueMapper Mapper; 434 unsigned IndirectSymbolMCID; 435 436 /// Handles cloning of a global values from the source module into 437 /// the destination module, including setting the attributes and visibility. 438 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition); 439 440 void emitWarning(const Twine &Message) { 441 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message)); 442 } 443 444 /// Given a global in the source module, return the global in the 445 /// destination module that is being linked to, if any. 446 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) { 447 // If the source has no name it can't link. If it has local linkage, 448 // there is no name match-up going on. 449 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage()) 450 return nullptr; 451 452 // Otherwise see if we have a match in the destination module's symtab. 453 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName()); 454 if (!DGV) 455 return nullptr; 456 457 // If we found a global with the same name in the dest module, but it has 458 // internal linkage, we are really not doing any linkage here. 459 if (DGV->hasLocalLinkage()) 460 return nullptr; 461 462 // If we found an intrinsic declaration with mismatching prototypes, we 463 // probably had a nameclash. Don't use that version. 464 if (auto *FDGV = dyn_cast<Function>(DGV)) 465 if (FDGV->isIntrinsic()) 466 if (const auto *FSrcGV = dyn_cast<Function>(SrcGV)) 467 if (FDGV->getFunctionType() != TypeMap.get(FSrcGV->getFunctionType())) 468 return nullptr; 469 470 // Otherwise, we do in fact link to the destination global. 471 return DGV; 472 } 473 474 void computeTypeMapping(); 475 476 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV, 477 const GlobalVariable *SrcGV); 478 479 /// Given the GlobaValue \p SGV in the source module, and the matching 480 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV 481 /// into the destination module. 482 /// 483 /// Note this code may call the client-provided \p AddLazyFor. 484 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV); 485 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, 486 bool ForIndirectSymbol); 487 488 Error linkModuleFlagsMetadata(); 489 490 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src); 491 Error linkFunctionBody(Function &Dst, Function &Src); 492 void linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src); 493 void linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src); 494 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src); 495 496 /// Replace all types in the source AttributeList with the 497 /// corresponding destination type. 498 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs); 499 500 /// Functions that take care of cloning a specific global value type 501 /// into the destination module. 502 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar); 503 Function *copyFunctionProto(const Function *SF); 504 GlobalValue *copyIndirectSymbolProto(const GlobalValue *SGV); 505 506 /// Perform "replace all uses with" operations. These work items need to be 507 /// performed as part of materialization, but we postpone them to happen after 508 /// materialization is done. The materializer called by ValueMapper is not 509 /// expected to delete constants, as ValueMapper is holding pointers to some 510 /// of them, but constant destruction may be indirectly triggered by RAUW. 511 /// Hence, the need to move this out of the materialization call chain. 512 void flushRAUWWorklist(); 513 514 /// When importing for ThinLTO, prevent importing of types listed on 515 /// the DICompileUnit that we don't need a copy of in the importing 516 /// module. 517 void prepareCompileUnitsForImport(); 518 void linkNamedMDNodes(); 519 520 /// Update attributes while linking. 521 void updateAttributes(GlobalValue &GV); 522 523 public: 524 IRLinker(Module &DstM, MDMapT &SharedMDs, 525 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM, 526 ArrayRef<GlobalValue *> ValuesToLink, 527 IRMover::LazyCallback AddLazyFor, bool IsPerformingImport) 528 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)), 529 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this), 530 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport), 531 Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals, 532 &TypeMap, &GValMaterializer), 533 IndirectSymbolMCID(Mapper.registerAlternateMappingContext( 534 IndirectSymbolValueMap, &LValMaterializer)) { 535 ValueMap.getMDMap() = std::move(SharedMDs); 536 for (GlobalValue *GV : ValuesToLink) 537 maybeAdd(GV); 538 if (IsPerformingImport) 539 prepareCompileUnitsForImport(); 540 } 541 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); } 542 543 Error run(); 544 Value *materialize(Value *V, bool ForIndirectSymbol); 545 }; 546 } 547 548 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol 549 /// table. This is good for all clients except for us. Go through the trouble 550 /// to force this back. 551 static void forceRenaming(GlobalValue *GV, StringRef Name) { 552 // If the global doesn't force its name or if it already has the right name, 553 // there is nothing for us to do. 554 if (GV->hasLocalLinkage() || GV->getName() == Name) 555 return; 556 557 Module *M = GV->getParent(); 558 559 // If there is a conflict, rename the conflict. 560 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) { 561 GV->takeName(ConflictGV); 562 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed 563 assert(ConflictGV->getName() != Name && "forceRenaming didn't work"); 564 } else { 565 GV->setName(Name); // Force the name back 566 } 567 } 568 569 Value *GlobalValueMaterializer::materialize(Value *SGV) { 570 return TheIRLinker.materialize(SGV, false); 571 } 572 573 Value *LocalValueMaterializer::materialize(Value *SGV) { 574 return TheIRLinker.materialize(SGV, true); 575 } 576 577 Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) { 578 auto *SGV = dyn_cast<GlobalValue>(V); 579 if (!SGV) 580 return nullptr; 581 582 // If SGV is from dest, it was already materialized when dest was loaded. 583 if (SGV->getParent() == &DstM) 584 return nullptr; 585 586 // When linking a global from other modules than source & dest, skip 587 // materializing it because it would be mapped later when its containing 588 // module is linked. Linking it now would potentially pull in many types that 589 // may not be mapped properly. 590 if (SGV->getParent() != SrcM.get()) 591 return nullptr; 592 593 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol); 594 if (!NewProto) { 595 setError(NewProto.takeError()); 596 return nullptr; 597 } 598 if (!*NewProto) 599 return nullptr; 600 601 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto); 602 if (!New) 603 return *NewProto; 604 605 // If we already created the body, just return. 606 if (auto *F = dyn_cast<Function>(New)) { 607 if (!F->isDeclaration()) 608 return New; 609 } else if (auto *V = dyn_cast<GlobalVariable>(New)) { 610 if (V->hasInitializer() || V->hasAppendingLinkage()) 611 return New; 612 } else if (auto *GA = dyn_cast<GlobalAlias>(New)) { 613 if (GA->getAliasee()) 614 return New; 615 } else if (auto *GI = dyn_cast<GlobalIFunc>(New)) { 616 if (GI->getResolver()) 617 return New; 618 } else { 619 llvm_unreachable("Invalid GlobalValue type"); 620 } 621 622 // If the global is being linked for an indirect symbol, it may have already 623 // been scheduled to satisfy a regular symbol. Similarly, a global being linked 624 // for a regular symbol may have already been scheduled for an indirect 625 // symbol. Check for these cases by looking in the other value map and 626 // confirming the same value has been scheduled. If there is an entry in the 627 // ValueMap but the value is different, it means that the value already had a 628 // definition in the destination module (linkonce for instance), but we need a 629 // new definition for the indirect symbol ("New" will be different). 630 if ((ForIndirectSymbol && ValueMap.lookup(SGV) == New) || 631 (!ForIndirectSymbol && IndirectSymbolValueMap.lookup(SGV) == New)) 632 return New; 633 634 if (ForIndirectSymbol || shouldLink(New, *SGV)) 635 setError(linkGlobalValueBody(*New, *SGV)); 636 637 updateAttributes(*New); 638 return New; 639 } 640 641 /// Loop through the global variables in the src module and merge them into the 642 /// dest module. 643 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) { 644 // No linking to be performed or linking from the source: simply create an 645 // identical version of the symbol over in the dest module... the 646 // initializer will be filled in later by LinkGlobalInits. 647 GlobalVariable *NewDGV = 648 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()), 649 SGVar->isConstant(), GlobalValue::ExternalLinkage, 650 /*init*/ nullptr, SGVar->getName(), 651 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(), 652 SGVar->getAddressSpace()); 653 NewDGV->setAlignment(SGVar->getAlign()); 654 NewDGV->copyAttributesFrom(SGVar); 655 return NewDGV; 656 } 657 658 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) { 659 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 660 for (int AttrIdx = Attribute::FirstTypeAttr; 661 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 662 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 663 if (Attrs.hasAttributeAtIndex(i, TypedAttr)) { 664 if (Type *Ty = 665 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 666 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 667 TypeMap.get(Ty)); 668 break; 669 } 670 } 671 } 672 } 673 return Attrs; 674 } 675 676 /// Link the function in the source module into the destination module if 677 /// needed, setting up mapping information. 678 Function *IRLinker::copyFunctionProto(const Function *SF) { 679 // If there is no linkage to be performed or we are linking from the source, 680 // bring SF over. 681 auto *F = Function::Create(TypeMap.get(SF->getFunctionType()), 682 GlobalValue::ExternalLinkage, 683 SF->getAddressSpace(), SF->getName(), &DstM); 684 F->copyAttributesFrom(SF); 685 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes())); 686 F->IsNewDbgInfoFormat = SF->IsNewDbgInfoFormat; 687 return F; 688 } 689 690 /// Set up prototypes for any indirect symbols that come over from the source 691 /// module. 692 GlobalValue *IRLinker::copyIndirectSymbolProto(const GlobalValue *SGV) { 693 // If there is no linkage to be performed or we're linking from the source, 694 // bring over SGA. 695 auto *Ty = TypeMap.get(SGV->getValueType()); 696 697 if (auto *GA = dyn_cast<GlobalAlias>(SGV)) { 698 auto *DGA = GlobalAlias::create(Ty, SGV->getAddressSpace(), 699 GlobalValue::ExternalLinkage, 700 SGV->getName(), &DstM); 701 DGA->copyAttributesFrom(GA); 702 return DGA; 703 } 704 705 if (auto *GI = dyn_cast<GlobalIFunc>(SGV)) { 706 auto *DGI = GlobalIFunc::create(Ty, SGV->getAddressSpace(), 707 GlobalValue::ExternalLinkage, 708 SGV->getName(), nullptr, &DstM); 709 DGI->copyAttributesFrom(GI); 710 return DGI; 711 } 712 713 llvm_unreachable("Invalid source global value type"); 714 } 715 716 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV, 717 bool ForDefinition) { 718 GlobalValue *NewGV; 719 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) { 720 NewGV = copyGlobalVariableProto(SGVar); 721 } else if (auto *SF = dyn_cast<Function>(SGV)) { 722 NewGV = copyFunctionProto(SF); 723 } else { 724 if (ForDefinition) 725 NewGV = copyIndirectSymbolProto(SGV); 726 else if (SGV->getValueType()->isFunctionTy()) 727 NewGV = 728 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())), 729 GlobalValue::ExternalLinkage, SGV->getAddressSpace(), 730 SGV->getName(), &DstM); 731 else 732 NewGV = 733 new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()), 734 /*isConstant*/ false, GlobalValue::ExternalLinkage, 735 /*init*/ nullptr, SGV->getName(), 736 /*insertbefore*/ nullptr, 737 SGV->getThreadLocalMode(), SGV->getAddressSpace()); 738 } 739 740 if (ForDefinition) 741 NewGV->setLinkage(SGV->getLinkage()); 742 else if (SGV->hasExternalWeakLinkage()) 743 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage); 744 745 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) { 746 // Metadata for global variables and function declarations is copied eagerly. 747 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration()) { 748 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0); 749 if (SGV->isDeclaration() && NewGO->hasMetadata()) 750 UnmappedMetadata.insert(NewGO); 751 } 752 } 753 754 // Remove these copied constants in case this stays a declaration, since 755 // they point to the source module. If the def is linked the values will 756 // be mapped in during linkFunctionBody. 757 if (auto *NewF = dyn_cast<Function>(NewGV)) { 758 NewF->setPersonalityFn(nullptr); 759 NewF->setPrefixData(nullptr); 760 NewF->setPrologueData(nullptr); 761 } 762 763 return NewGV; 764 } 765 766 static StringRef getTypeNamePrefix(StringRef Name) { 767 size_t DotPos = Name.rfind('.'); 768 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' || 769 !isdigit(static_cast<unsigned char>(Name[DotPos + 1]))) 770 ? Name 771 : Name.substr(0, DotPos); 772 } 773 774 /// Loop over all of the linked values to compute type mappings. For example, 775 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct 776 /// types 'Foo' but one got renamed when the module was loaded into the same 777 /// LLVMContext. 778 void IRLinker::computeTypeMapping() { 779 for (GlobalValue &SGV : SrcM->globals()) { 780 GlobalValue *DGV = getLinkedToGlobal(&SGV); 781 if (!DGV) 782 continue; 783 784 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) { 785 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 786 continue; 787 } 788 789 // Unify the element type of appending arrays. 790 ArrayType *DAT = cast<ArrayType>(DGV->getValueType()); 791 ArrayType *SAT = cast<ArrayType>(SGV.getValueType()); 792 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType()); 793 } 794 795 for (GlobalValue &SGV : *SrcM) 796 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) { 797 if (DGV->getType() == SGV.getType()) { 798 // If the types of DGV and SGV are the same, it means that DGV is from 799 // the source module and got added to DstM from a shared metadata. We 800 // shouldn't map this type to itself in case the type's components get 801 // remapped to a new type from DstM (for instance, during the loop over 802 // SrcM->getIdentifiedStructTypes() below). 803 continue; 804 } 805 806 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 807 } 808 809 for (GlobalValue &SGV : SrcM->aliases()) 810 if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) 811 TypeMap.addTypeMapping(DGV->getType(), SGV.getType()); 812 813 // Incorporate types by name, scanning all the types in the source module. 814 // At this point, the destination module may have a type "%foo = { i32 }" for 815 // example. When the source module got loaded into the same LLVMContext, if 816 // it had the same type, it would have been renamed to "%foo.42 = { i32 }". 817 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes(); 818 for (StructType *ST : Types) { 819 if (!ST->hasName()) 820 continue; 821 822 if (TypeMap.DstStructTypesSet.hasType(ST)) { 823 // This is actually a type from the destination module. 824 // getIdentifiedStructTypes() can have found it by walking debug info 825 // metadata nodes, some of which get linked by name when ODR Type Uniquing 826 // is enabled on the Context, from the source to the destination module. 827 continue; 828 } 829 830 auto STTypePrefix = getTypeNamePrefix(ST->getName()); 831 if (STTypePrefix.size() == ST->getName().size()) 832 continue; 833 834 // Check to see if the destination module has a struct with the prefix name. 835 StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix); 836 if (!DST) 837 continue; 838 839 // Don't use it if this actually came from the source module. They're in 840 // the same LLVMContext after all. Also don't use it unless the type is 841 // actually used in the destination module. This can happen in situations 842 // like this: 843 // 844 // Module A Module B 845 // -------- -------- 846 // %Z = type { %A } %B = type { %C.1 } 847 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* } 848 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] } 849 // %C = type { i8* } %B.3 = type { %C.1 } 850 // 851 // When we link Module B with Module A, the '%B' in Module B is 852 // used. However, that would then use '%C.1'. But when we process '%C.1', 853 // we prefer to take the '%C' version. So we are then left with both 854 // '%C.1' and '%C' being used for the same types. This leads to some 855 // variables using one type and some using the other. 856 if (TypeMap.DstStructTypesSet.hasType(DST)) 857 TypeMap.addTypeMapping(DST, ST); 858 } 859 860 // Now that we have discovered all of the type equivalences, get a body for 861 // any 'opaque' types in the dest module that are now resolved. 862 setError(TypeMap.linkDefinedTypeBodies()); 863 } 864 865 static void getArrayElements(const Constant *C, 866 SmallVectorImpl<Constant *> &Dest) { 867 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements(); 868 869 for (unsigned i = 0; i != NumElements; ++i) 870 Dest.push_back(C->getAggregateElement(i)); 871 } 872 873 /// If there were any appending global variables, link them together now. 874 Expected<Constant *> 875 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV, 876 const GlobalVariable *SrcGV) { 877 // Check that both variables have compatible properties. 878 if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) { 879 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) 880 return stringErr( 881 "Linking globals named '" + SrcGV->getName() + 882 "': can only link appending global with another appending " 883 "global!"); 884 885 if (DstGV->isConstant() != SrcGV->isConstant()) 886 return stringErr("Appending variables linked with different const'ness!"); 887 888 if (DstGV->getAlign() != SrcGV->getAlign()) 889 return stringErr( 890 "Appending variables with different alignment need to be linked!"); 891 892 if (DstGV->getVisibility() != SrcGV->getVisibility()) 893 return stringErr( 894 "Appending variables with different visibility need to be linked!"); 895 896 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr()) 897 return stringErr( 898 "Appending variables with different unnamed_addr need to be linked!"); 899 900 if (DstGV->getSection() != SrcGV->getSection()) 901 return stringErr( 902 "Appending variables with different section name need to be linked!"); 903 904 if (DstGV->getAddressSpace() != SrcGV->getAddressSpace()) 905 return stringErr("Appending variables with different address spaces need " 906 "to be linked!"); 907 } 908 909 // Do not need to do anything if source is a declaration. 910 if (SrcGV->isDeclaration()) 911 return DstGV; 912 913 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType())) 914 ->getElementType(); 915 916 // FIXME: This upgrade is done during linking to support the C API. Once the 917 // old form is deprecated, we should move this upgrade to 918 // llvm::UpgradeGlobalVariable() and simplify the logic here and in 919 // Mapper::mapAppendingVariable() in ValueMapper.cpp. 920 StringRef Name = SrcGV->getName(); 921 bool IsNewStructor = false; 922 bool IsOldStructor = false; 923 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") { 924 if (cast<StructType>(EltTy)->getNumElements() == 3) 925 IsNewStructor = true; 926 else 927 IsOldStructor = true; 928 } 929 930 PointerType *VoidPtrTy = PointerType::get(SrcGV->getContext(), 0); 931 if (IsOldStructor) { 932 auto &ST = *cast<StructType>(EltTy); 933 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 934 EltTy = StructType::get(SrcGV->getContext(), Tys, false); 935 } 936 937 uint64_t DstNumElements = 0; 938 if (DstGV && !DstGV->isDeclaration()) { 939 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType()); 940 DstNumElements = DstTy->getNumElements(); 941 942 // Check to see that they two arrays agree on type. 943 if (EltTy != DstTy->getElementType()) 944 return stringErr("Appending variables with different element types!"); 945 } 946 947 SmallVector<Constant *, 16> SrcElements; 948 getArrayElements(SrcGV->getInitializer(), SrcElements); 949 950 if (IsNewStructor) { 951 erase_if(SrcElements, [this](Constant *E) { 952 auto *Key = 953 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts()); 954 if (!Key) 955 return false; 956 GlobalValue *DGV = getLinkedToGlobal(Key); 957 return !shouldLink(DGV, *Key); 958 }); 959 } 960 uint64_t NewSize = DstNumElements + SrcElements.size(); 961 ArrayType *NewType = ArrayType::get(EltTy, NewSize); 962 963 // Create the new global variable. 964 GlobalVariable *NG = new GlobalVariable( 965 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(), 966 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(), 967 SrcGV->getAddressSpace()); 968 969 NG->copyAttributesFrom(SrcGV); 970 forceRenaming(NG, SrcGV->getName()); 971 972 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType())); 973 974 Mapper.scheduleMapAppendingVariable( 975 *NG, 976 (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr, 977 IsOldStructor, SrcElements); 978 979 // Replace any uses of the two global variables with uses of the new 980 // global. 981 if (DstGV) { 982 RAUWWorklist.push_back(std::make_pair(DstGV, NG)); 983 } 984 985 return Ret; 986 } 987 988 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) { 989 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage()) 990 return true; 991 992 if (DGV && !DGV->isDeclarationForLinker()) 993 return false; 994 995 if (SGV.isDeclaration() || DoneLinkingBodies) 996 return false; 997 998 // Callback to the client to give a chance to lazily add the Global to the 999 // list of value to link. 1000 bool LazilyAdded = false; 1001 if (AddLazyFor) 1002 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) { 1003 maybeAdd(&GV); 1004 LazilyAdded = true; 1005 }); 1006 return LazilyAdded; 1007 } 1008 1009 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV, 1010 bool ForIndirectSymbol) { 1011 GlobalValue *DGV = getLinkedToGlobal(SGV); 1012 1013 bool ShouldLink = shouldLink(DGV, *SGV); 1014 1015 // just missing from map 1016 if (ShouldLink) { 1017 auto I = ValueMap.find(SGV); 1018 if (I != ValueMap.end()) 1019 return cast<Constant>(I->second); 1020 1021 I = IndirectSymbolValueMap.find(SGV); 1022 if (I != IndirectSymbolValueMap.end()) 1023 return cast<Constant>(I->second); 1024 } 1025 1026 if (!ShouldLink && ForIndirectSymbol) 1027 DGV = nullptr; 1028 1029 // Handle the ultra special appending linkage case first. 1030 if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage())) 1031 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV), 1032 cast<GlobalVariable>(SGV)); 1033 1034 bool NeedsRenaming = false; 1035 GlobalValue *NewGV; 1036 if (DGV && !ShouldLink) { 1037 NewGV = DGV; 1038 } else { 1039 // If we are done linking global value bodies (i.e. we are performing 1040 // metadata linking), don't link in the global value due to this 1041 // reference, simply map it to null. 1042 if (DoneLinkingBodies) 1043 return nullptr; 1044 1045 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol); 1046 if (ShouldLink || !ForIndirectSymbol) 1047 NeedsRenaming = true; 1048 } 1049 1050 // Overloaded intrinsics have overloaded types names as part of their 1051 // names. If we renamed overloaded types we should rename the intrinsic 1052 // as well. 1053 if (Function *F = dyn_cast<Function>(NewGV)) 1054 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 1055 // Note: remangleIntrinsicFunction does not copy metadata and as such 1056 // F should not occur in the set of objects with unmapped metadata. 1057 // If this assertion fails then remangleIntrinsicFunction needs updating. 1058 assert(!UnmappedMetadata.count(F) && "intrinsic has unmapped metadata"); 1059 NewGV->eraseFromParent(); 1060 NewGV = *Remangled; 1061 NeedsRenaming = false; 1062 } 1063 1064 if (NeedsRenaming) 1065 forceRenaming(NewGV, SGV->getName()); 1066 1067 if (ShouldLink || ForIndirectSymbol) { 1068 if (const Comdat *SC = SGV->getComdat()) { 1069 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) { 1070 Comdat *DC = DstM.getOrInsertComdat(SC->getName()); 1071 DC->setSelectionKind(SC->getSelectionKind()); 1072 GO->setComdat(DC); 1073 } 1074 } 1075 } 1076 1077 if (!ShouldLink && ForIndirectSymbol) 1078 NewGV->setLinkage(GlobalValue::InternalLinkage); 1079 1080 Constant *C = NewGV; 1081 // Only create a bitcast if necessary. In particular, with 1082 // DebugTypeODRUniquing we may reach metadata in the destination module 1083 // containing a GV from the source module, in which case SGV will be 1084 // the same as DGV and NewGV, and TypeMap.get() will assert since it 1085 // assumes it is being invoked on a type in the source module. 1086 if (DGV && NewGV != SGV) { 1087 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1088 NewGV, TypeMap.get(SGV->getType())); 1089 } 1090 1091 if (DGV && NewGV != DGV) { 1092 // Schedule "replace all uses with" to happen after materializing is 1093 // done. It is not safe to do it now, since ValueMapper may be holding 1094 // pointers to constants that will get deleted if RAUW runs. 1095 RAUWWorklist.push_back(std::make_pair( 1096 DGV, 1097 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType()))); 1098 } 1099 1100 return C; 1101 } 1102 1103 /// Update the initializers in the Dest module now that all globals that may be 1104 /// referenced are in Dest. 1105 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) { 1106 // Figure out what the initializer looks like in the dest module. 1107 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer()); 1108 } 1109 1110 /// Copy the source function over into the dest function and fix up references 1111 /// to values. At this point we know that Dest is an external function, and 1112 /// that Src is not. 1113 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) { 1114 assert(Dst.isDeclaration() && !Src.isDeclaration()); 1115 1116 // Materialize if needed. 1117 if (Error Err = Src.materialize()) 1118 return Err; 1119 1120 // Link in the operands without remapping. 1121 if (Src.hasPrefixData()) 1122 Dst.setPrefixData(Src.getPrefixData()); 1123 if (Src.hasPrologueData()) 1124 Dst.setPrologueData(Src.getPrologueData()); 1125 if (Src.hasPersonalityFn()) 1126 Dst.setPersonalityFn(Src.getPersonalityFn()); 1127 assert(Src.IsNewDbgInfoFormat == Dst.IsNewDbgInfoFormat); 1128 1129 // Copy over the metadata attachments without remapping. 1130 Dst.copyMetadata(&Src, 0); 1131 1132 // Steal arguments and splice the body of Src into Dst. 1133 Dst.stealArgumentListFrom(Src); 1134 Dst.splice(Dst.end(), &Src); 1135 1136 // Everything has been moved over. Remap it. 1137 Mapper.scheduleRemapFunction(Dst); 1138 return Error::success(); 1139 } 1140 1141 void IRLinker::linkAliasAliasee(GlobalAlias &Dst, GlobalAlias &Src) { 1142 Mapper.scheduleMapGlobalAlias(Dst, *Src.getAliasee(), IndirectSymbolMCID); 1143 } 1144 1145 void IRLinker::linkIFuncResolver(GlobalIFunc &Dst, GlobalIFunc &Src) { 1146 Mapper.scheduleMapGlobalIFunc(Dst, *Src.getResolver(), IndirectSymbolMCID); 1147 } 1148 1149 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) { 1150 if (auto *F = dyn_cast<Function>(&Src)) 1151 return linkFunctionBody(cast<Function>(Dst), *F); 1152 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) { 1153 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar); 1154 return Error::success(); 1155 } 1156 if (auto *GA = dyn_cast<GlobalAlias>(&Src)) { 1157 linkAliasAliasee(cast<GlobalAlias>(Dst), *GA); 1158 return Error::success(); 1159 } 1160 linkIFuncResolver(cast<GlobalIFunc>(Dst), cast<GlobalIFunc>(Src)); 1161 return Error::success(); 1162 } 1163 1164 void IRLinker::flushRAUWWorklist() { 1165 for (const auto &Elem : RAUWWorklist) { 1166 GlobalValue *Old; 1167 Value *New; 1168 std::tie(Old, New) = Elem; 1169 1170 Old->replaceAllUsesWith(New); 1171 Old->eraseFromParent(); 1172 } 1173 RAUWWorklist.clear(); 1174 } 1175 1176 void IRLinker::prepareCompileUnitsForImport() { 1177 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu"); 1178 if (!SrcCompileUnits) 1179 return; 1180 // When importing for ThinLTO, prevent importing of types listed on 1181 // the DICompileUnit that we don't need a copy of in the importing 1182 // module. They will be emitted by the originating module. 1183 for (MDNode *N : SrcCompileUnits->operands()) { 1184 auto *CU = cast<DICompileUnit>(N); 1185 assert(CU && "Expected valid compile unit"); 1186 // Enums, macros, and retained types don't need to be listed on the 1187 // imported DICompileUnit. This means they will only be imported 1188 // if reached from the mapped IR. 1189 CU->replaceEnumTypes(nullptr); 1190 CU->replaceMacros(nullptr); 1191 CU->replaceRetainedTypes(nullptr); 1192 1193 // The original definition (or at least its debug info - if the variable is 1194 // internalized and optimized away) will remain in the source module, so 1195 // there's no need to import them. 1196 // If LLVM ever does more advanced optimizations on global variables 1197 // (removing/localizing write operations, for instance) that can track 1198 // through debug info, this decision may need to be revisited - but do so 1199 // with care when it comes to debug info size. Emitting small CUs containing 1200 // only a few imported entities into every destination module may be very 1201 // size inefficient. 1202 CU->replaceGlobalVariables(nullptr); 1203 1204 CU->replaceImportedEntities(nullptr); 1205 } 1206 } 1207 1208 /// Insert all of the named MDNodes in Src into the Dest module. 1209 void IRLinker::linkNamedMDNodes() { 1210 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1211 for (const NamedMDNode &NMD : SrcM->named_metadata()) { 1212 // Don't link module flags here. Do them separately. 1213 if (&NMD == SrcModFlags) 1214 continue; 1215 // Don't import pseudo probe descriptors here for thinLTO. They will be 1216 // emitted by the originating module. 1217 if (IsPerformingImport && NMD.getName() == PseudoProbeDescMetadataName) { 1218 if (!DstM.getNamedMetadata(NMD.getName())) 1219 emitWarning("Pseudo-probe ignored: source module '" + 1220 SrcM->getModuleIdentifier() + 1221 "' is compiled with -fpseudo-probe-for-profiling while " 1222 "destination module '" + 1223 DstM.getModuleIdentifier() + "' is not\n"); 1224 continue; 1225 } 1226 // The stats are computed per module and will all be merged in the binary. 1227 // Importing the metadata will cause duplication of the stats. 1228 if (IsPerformingImport && NMD.getName() == "llvm.stats") 1229 continue; 1230 1231 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName()); 1232 // Add Src elements into Dest node. 1233 for (const MDNode *Op : NMD.operands()) 1234 DestNMD->addOperand(Mapper.mapMDNode(*Op)); 1235 } 1236 } 1237 1238 /// Merge the linker flags in Src into the Dest module. 1239 Error IRLinker::linkModuleFlagsMetadata() { 1240 // If the source module has no module flags, we are done. 1241 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata(); 1242 if (!SrcModFlags) 1243 return Error::success(); 1244 1245 // Check for module flag for updates before do anything. 1246 UpgradeModuleFlags(*SrcM); 1247 1248 // If the destination module doesn't have module flags yet, then just copy 1249 // over the source module's flags. 1250 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata(); 1251 if (DstModFlags->getNumOperands() == 0) { 1252 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) 1253 DstModFlags->addOperand(SrcModFlags->getOperand(I)); 1254 1255 return Error::success(); 1256 } 1257 1258 // First build a map of the existing module flags and requirements. 1259 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags; 1260 SmallSetVector<MDNode *, 16> Requirements; 1261 SmallVector<unsigned, 0> Mins; 1262 DenseSet<MDString *> SeenMin; 1263 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) { 1264 MDNode *Op = DstModFlags->getOperand(I); 1265 uint64_t Behavior = 1266 mdconst::extract<ConstantInt>(Op->getOperand(0))->getZExtValue(); 1267 MDString *ID = cast<MDString>(Op->getOperand(1)); 1268 1269 if (Behavior == Module::Require) { 1270 Requirements.insert(cast<MDNode>(Op->getOperand(2))); 1271 } else { 1272 if (Behavior == Module::Min) 1273 Mins.push_back(I); 1274 Flags[ID] = std::make_pair(Op, I); 1275 } 1276 } 1277 1278 // Merge in the flags from the source module, and also collect its set of 1279 // requirements. 1280 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) { 1281 MDNode *SrcOp = SrcModFlags->getOperand(I); 1282 ConstantInt *SrcBehavior = 1283 mdconst::extract<ConstantInt>(SrcOp->getOperand(0)); 1284 MDString *ID = cast<MDString>(SrcOp->getOperand(1)); 1285 MDNode *DstOp; 1286 unsigned DstIndex; 1287 std::tie(DstOp, DstIndex) = Flags.lookup(ID); 1288 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue(); 1289 SeenMin.insert(ID); 1290 1291 // If this is a requirement, add it and continue. 1292 if (SrcBehaviorValue == Module::Require) { 1293 // If the destination module does not already have this requirement, add 1294 // it. 1295 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) { 1296 DstModFlags->addOperand(SrcOp); 1297 } 1298 continue; 1299 } 1300 1301 // If there is no existing flag with this ID, just add it. 1302 if (!DstOp) { 1303 if (SrcBehaviorValue == Module::Min) { 1304 Mins.push_back(DstModFlags->getNumOperands()); 1305 SeenMin.erase(ID); 1306 } 1307 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands()); 1308 DstModFlags->addOperand(SrcOp); 1309 continue; 1310 } 1311 1312 // Otherwise, perform a merge. 1313 ConstantInt *DstBehavior = 1314 mdconst::extract<ConstantInt>(DstOp->getOperand(0)); 1315 unsigned DstBehaviorValue = DstBehavior->getZExtValue(); 1316 1317 auto overrideDstValue = [&]() { 1318 DstModFlags->setOperand(DstIndex, SrcOp); 1319 Flags[ID].first = SrcOp; 1320 }; 1321 1322 // If either flag has override behavior, handle it first. 1323 if (DstBehaviorValue == Module::Override) { 1324 // Diagnose inconsistent flags which both have override behavior. 1325 if (SrcBehaviorValue == Module::Override && 1326 SrcOp->getOperand(2) != DstOp->getOperand(2)) 1327 return stringErr("linking module flags '" + ID->getString() + 1328 "': IDs have conflicting override values in '" + 1329 SrcM->getModuleIdentifier() + "' and '" + 1330 DstM.getModuleIdentifier() + "'"); 1331 continue; 1332 } else if (SrcBehaviorValue == Module::Override) { 1333 // Update the destination flag to that of the source. 1334 overrideDstValue(); 1335 continue; 1336 } 1337 1338 // Diagnose inconsistent merge behavior types. 1339 if (SrcBehaviorValue != DstBehaviorValue) { 1340 bool MinAndWarn = (SrcBehaviorValue == Module::Min && 1341 DstBehaviorValue == Module::Warning) || 1342 (DstBehaviorValue == Module::Min && 1343 SrcBehaviorValue == Module::Warning); 1344 bool MaxAndWarn = (SrcBehaviorValue == Module::Max && 1345 DstBehaviorValue == Module::Warning) || 1346 (DstBehaviorValue == Module::Max && 1347 SrcBehaviorValue == Module::Warning); 1348 if (!(MaxAndWarn || MinAndWarn)) 1349 return stringErr("linking module flags '" + ID->getString() + 1350 "': IDs have conflicting behaviors in '" + 1351 SrcM->getModuleIdentifier() + "' and '" + 1352 DstM.getModuleIdentifier() + "'"); 1353 } 1354 1355 auto ensureDistinctOp = [&](MDNode *DstValue) { 1356 assert(isa<MDTuple>(DstValue) && 1357 "Expected MDTuple when appending module flags"); 1358 if (DstValue->isDistinct()) 1359 return dyn_cast<MDTuple>(DstValue); 1360 ArrayRef<MDOperand> DstOperands = DstValue->operands(); 1361 MDTuple *New = MDTuple::getDistinct( 1362 DstM.getContext(), SmallVector<Metadata *, 4>(DstOperands)); 1363 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New}; 1364 MDNode *Flag = MDTuple::getDistinct(DstM.getContext(), FlagOps); 1365 DstModFlags->setOperand(DstIndex, Flag); 1366 Flags[ID].first = Flag; 1367 return New; 1368 }; 1369 1370 // Emit a warning if the values differ and either source or destination 1371 // request Warning behavior. 1372 if ((DstBehaviorValue == Module::Warning || 1373 SrcBehaviorValue == Module::Warning) && 1374 SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1375 std::string Str; 1376 raw_string_ostream(Str) 1377 << "linking module flags '" << ID->getString() 1378 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2) 1379 << "' from " << SrcM->getModuleIdentifier() << " with '" 1380 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier() 1381 << ')'; 1382 emitWarning(Str); 1383 } 1384 1385 // Choose the minimum if either source or destination request Min behavior. 1386 if (DstBehaviorValue == Module::Min || SrcBehaviorValue == Module::Min) { 1387 ConstantInt *DstValue = 1388 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1389 ConstantInt *SrcValue = 1390 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1391 1392 // The resulting flag should have a Min behavior, and contain the minimum 1393 // value from between the source and destination values. 1394 Metadata *FlagOps[] = { 1395 (DstBehaviorValue != Module::Min ? SrcOp : DstOp)->getOperand(0), ID, 1396 (SrcValue->getZExtValue() < DstValue->getZExtValue() ? SrcOp : DstOp) 1397 ->getOperand(2)}; 1398 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1399 DstModFlags->setOperand(DstIndex, Flag); 1400 Flags[ID].first = Flag; 1401 continue; 1402 } 1403 1404 // Choose the maximum if either source or destination request Max behavior. 1405 if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) { 1406 ConstantInt *DstValue = 1407 mdconst::extract<ConstantInt>(DstOp->getOperand(2)); 1408 ConstantInt *SrcValue = 1409 mdconst::extract<ConstantInt>(SrcOp->getOperand(2)); 1410 1411 // The resulting flag should have a Max behavior, and contain the maximum 1412 // value from between the source and destination values. 1413 Metadata *FlagOps[] = { 1414 (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID, 1415 (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp) 1416 ->getOperand(2)}; 1417 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps); 1418 DstModFlags->setOperand(DstIndex, Flag); 1419 Flags[ID].first = Flag; 1420 continue; 1421 } 1422 1423 // Perform the merge for standard behavior types. 1424 switch (SrcBehaviorValue) { 1425 case Module::Require: 1426 case Module::Override: 1427 llvm_unreachable("not possible"); 1428 case Module::Error: { 1429 // Emit an error if the values differ. 1430 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) { 1431 std::string Str; 1432 raw_string_ostream(Str) 1433 << "linking module flags '" << ID->getString() 1434 << "': IDs have conflicting values: '" << *SrcOp->getOperand(2) 1435 << "' from " << SrcM->getModuleIdentifier() << ", and '" 1436 << *DstOp->getOperand(2) << "' from " + DstM.getModuleIdentifier(); 1437 return stringErr(Str); 1438 } 1439 continue; 1440 } 1441 case Module::Warning: { 1442 break; 1443 } 1444 case Module::Max: { 1445 break; 1446 } 1447 case Module::Append: { 1448 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2))); 1449 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1450 for (const auto &O : SrcValue->operands()) 1451 DstValue->push_back(O); 1452 break; 1453 } 1454 case Module::AppendUnique: { 1455 SmallSetVector<Metadata *, 16> Elts; 1456 MDTuple *DstValue = ensureDistinctOp(cast<MDNode>(DstOp->getOperand(2))); 1457 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2)); 1458 Elts.insert(DstValue->op_begin(), DstValue->op_end()); 1459 Elts.insert(SrcValue->op_begin(), SrcValue->op_end()); 1460 for (auto I = DstValue->getNumOperands(); I < Elts.size(); I++) 1461 DstValue->push_back(Elts[I]); 1462 break; 1463 } 1464 } 1465 1466 } 1467 1468 // For the Min behavior, set the value to 0 if either module does not have the 1469 // flag. 1470 for (auto Idx : Mins) { 1471 MDNode *Op = DstModFlags->getOperand(Idx); 1472 MDString *ID = cast<MDString>(Op->getOperand(1)); 1473 if (!SeenMin.count(ID)) { 1474 ConstantInt *V = mdconst::extract<ConstantInt>(Op->getOperand(2)); 1475 Metadata *FlagOps[] = { 1476 Op->getOperand(0), ID, 1477 ConstantAsMetadata::get(ConstantInt::get(V->getType(), 0))}; 1478 DstModFlags->setOperand(Idx, MDNode::get(DstM.getContext(), FlagOps)); 1479 } 1480 } 1481 1482 // Check all of the requirements. 1483 for (MDNode *Requirement : Requirements) { 1484 MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1485 Metadata *ReqValue = Requirement->getOperand(1); 1486 1487 MDNode *Op = Flags[Flag].first; 1488 if (!Op || Op->getOperand(2) != ReqValue) 1489 return stringErr("linking module flags '" + Flag->getString() + 1490 "': does not have the required value"); 1491 } 1492 return Error::success(); 1493 } 1494 1495 /// Return InlineAsm adjusted with target-specific directives if required. 1496 /// For ARM and Thumb, we have to add directives to select the appropriate ISA 1497 /// to support mixing module-level inline assembly from ARM and Thumb modules. 1498 static std::string adjustInlineAsm(const std::string &InlineAsm, 1499 const Triple &Triple) { 1500 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb) 1501 return ".text\n.balign 2\n.thumb\n" + InlineAsm; 1502 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb) 1503 return ".text\n.balign 4\n.arm\n" + InlineAsm; 1504 return InlineAsm; 1505 } 1506 1507 void IRLinker::updateAttributes(GlobalValue &GV) { 1508 /// Remove nocallback attribute while linking, because nocallback attribute 1509 /// indicates that the function is only allowed to jump back into caller's 1510 /// module only by a return or an exception. When modules are linked, this 1511 /// property cannot be guaranteed anymore. For example, the nocallback 1512 /// function may contain a call to another module. But if we merge its caller 1513 /// and callee module here, and not the module containing the nocallback 1514 /// function definition itself, the nocallback property will be violated 1515 /// (since the nocallback function will call back into the newly merged module 1516 /// containing both its caller and callee). This could happen if the module 1517 /// containing the nocallback function definition is native code, so it does 1518 /// not participate in the LTO link. Note if the nocallback function does 1519 /// participate in the LTO link, and thus ends up in the merged module 1520 /// containing its caller and callee, removing the attribute doesn't hurt as 1521 /// it has no effect on definitions in the same module. 1522 if (auto *F = dyn_cast<Function>(&GV)) { 1523 if (!F->isIntrinsic()) 1524 F->removeFnAttr(llvm::Attribute::NoCallback); 1525 1526 // Remove nocallback attribute when it is on a call-site. 1527 for (BasicBlock &BB : *F) 1528 for (Instruction &I : BB) 1529 if (CallBase *CI = dyn_cast<CallBase>(&I)) 1530 CI->removeFnAttr(Attribute::NoCallback); 1531 } 1532 } 1533 1534 Error IRLinker::run() { 1535 // Ensure metadata materialized before value mapping. 1536 if (SrcM->getMaterializer()) 1537 if (Error Err = SrcM->getMaterializer()->materializeMetadata()) 1538 return Err; 1539 1540 // Convert source module to match dest for the duration of the link. 1541 ScopedDbgInfoFormatSetter FormatSetter(*SrcM, DstM.IsNewDbgInfoFormat); 1542 1543 // Inherit the target data from the source module if the destination 1544 // module doesn't have one already. 1545 if (DstM.getDataLayout().isDefault()) 1546 DstM.setDataLayout(SrcM->getDataLayout()); 1547 1548 // Copy the target triple from the source to dest if the dest's is empty. 1549 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty()) 1550 DstM.setTargetTriple(SrcM->getTargetTriple()); 1551 1552 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple()); 1553 1554 // During CUDA compilation we have to link with the bitcode supplied with 1555 // CUDA. libdevice bitcode either has no data layout set (pre-CUDA-11), or has 1556 // the layout that is different from the one used by LLVM/clang (it does not 1557 // include i128). Issuing a warning is not very helpful as there's not much 1558 // the user can do about it. 1559 bool EnableDLWarning = true; 1560 bool EnableTripleWarning = true; 1561 if (SrcTriple.isNVPTX() && DstTriple.isNVPTX()) { 1562 bool SrcHasLibDeviceDL = 1563 (SrcM->getDataLayoutStr().empty() || 1564 SrcM->getDataLayoutStr() == "e-i64:64-v16:16-v32:32-n16:32:64"); 1565 // libdevice bitcode uses nvptx64-nvidia-gpulibs or just 1566 // 'nvptx-unknown-unknown' triple (before CUDA-10.x) and is compatible with 1567 // all NVPTX variants. 1568 bool SrcHasLibDeviceTriple = (SrcTriple.getVendor() == Triple::NVIDIA && 1569 SrcTriple.getOSName() == "gpulibs") || 1570 (SrcTriple.getVendorName() == "unknown" && 1571 SrcTriple.getOSName() == "unknown"); 1572 EnableTripleWarning = !SrcHasLibDeviceTriple; 1573 EnableDLWarning = !(SrcHasLibDeviceTriple && SrcHasLibDeviceDL); 1574 } 1575 1576 if (EnableDLWarning && (SrcM->getDataLayout() != DstM.getDataLayout())) { 1577 emitWarning("Linking two modules of different data layouts: '" + 1578 SrcM->getModuleIdentifier() + "' is '" + 1579 SrcM->getDataLayoutStr() + "' whereas '" + 1580 DstM.getModuleIdentifier() + "' is '" + 1581 DstM.getDataLayoutStr() + "'\n"); 1582 } 1583 1584 if (EnableTripleWarning && !SrcM->getTargetTriple().empty() && 1585 !SrcTriple.isCompatibleWith(DstTriple)) 1586 emitWarning("Linking two modules of different target triples: '" + 1587 SrcM->getModuleIdentifier() + "' is '" + 1588 SrcM->getTargetTriple() + "' whereas '" + 1589 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() + 1590 "'\n"); 1591 1592 DstM.setTargetTriple(SrcTriple.merge(DstTriple)); 1593 1594 // Loop over all of the linked values to compute type mappings. 1595 computeTypeMapping(); 1596 1597 std::reverse(Worklist.begin(), Worklist.end()); 1598 while (!Worklist.empty()) { 1599 GlobalValue *GV = Worklist.back(); 1600 Worklist.pop_back(); 1601 1602 // Already mapped. 1603 if (ValueMap.find(GV) != ValueMap.end() || 1604 IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end()) 1605 continue; 1606 1607 assert(!GV->isDeclaration()); 1608 Mapper.mapValue(*GV); 1609 if (FoundError) 1610 return std::move(*FoundError); 1611 flushRAUWWorklist(); 1612 } 1613 1614 // Note that we are done linking global value bodies. This prevents 1615 // metadata linking from creating new references. 1616 DoneLinkingBodies = true; 1617 Mapper.addFlags(RF_NullMapMissingGlobalValues); 1618 1619 // Remap all of the named MDNodes in Src into the DstM module. We do this 1620 // after linking GlobalValues so that MDNodes that reference GlobalValues 1621 // are properly remapped. 1622 linkNamedMDNodes(); 1623 1624 // Clean up any global objects with potentially unmapped metadata. 1625 // Specifically declarations which did not become definitions. 1626 for (GlobalObject *NGO : UnmappedMetadata) { 1627 if (NGO->isDeclaration()) 1628 Mapper.remapGlobalObjectMetadata(*NGO); 1629 } 1630 1631 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) { 1632 // Append the module inline asm string. 1633 DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(), 1634 SrcTriple)); 1635 } else if (IsPerformingImport) { 1636 // Import any symver directives for symbols in DstM. 1637 ModuleSymbolTable::CollectAsmSymvers(*SrcM, 1638 [&](StringRef Name, StringRef Alias) { 1639 if (DstM.getNamedValue(Name)) { 1640 SmallString<256> S(".symver "); 1641 S += Name; 1642 S += ", "; 1643 S += Alias; 1644 DstM.appendModuleInlineAsm(S); 1645 } 1646 }); 1647 } 1648 1649 // Reorder the globals just added to the destination module to match their 1650 // original order in the source module. 1651 for (GlobalVariable &GV : SrcM->globals()) { 1652 if (GV.hasAppendingLinkage()) 1653 continue; 1654 Value *NewValue = Mapper.mapValue(GV); 1655 if (NewValue) { 1656 auto *NewGV = dyn_cast<GlobalVariable>(NewValue->stripPointerCasts()); 1657 if (NewGV) { 1658 NewGV->removeFromParent(); 1659 DstM.insertGlobalVariable(NewGV); 1660 } 1661 } 1662 } 1663 1664 // Merge the module flags into the DstM module. 1665 return linkModuleFlagsMetadata(); 1666 } 1667 1668 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P) 1669 : ETypes(E), IsPacked(P) {} 1670 1671 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST) 1672 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {} 1673 1674 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const { 1675 return IsPacked == That.IsPacked && ETypes == That.ETypes; 1676 } 1677 1678 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const { 1679 return !this->operator==(That); 1680 } 1681 1682 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() { 1683 return DenseMapInfo<StructType *>::getEmptyKey(); 1684 } 1685 1686 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() { 1687 return DenseMapInfo<StructType *>::getTombstoneKey(); 1688 } 1689 1690 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) { 1691 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()), 1692 Key.IsPacked); 1693 } 1694 1695 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) { 1696 return getHashValue(KeyTy(ST)); 1697 } 1698 1699 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS, 1700 const StructType *RHS) { 1701 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1702 return false; 1703 return LHS == KeyTy(RHS); 1704 } 1705 1706 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS, 1707 const StructType *RHS) { 1708 if (RHS == getEmptyKey() || RHS == getTombstoneKey()) 1709 return LHS == RHS; 1710 return KeyTy(LHS) == KeyTy(RHS); 1711 } 1712 1713 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) { 1714 assert(!Ty->isOpaque()); 1715 NonOpaqueStructTypes.insert(Ty); 1716 } 1717 1718 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) { 1719 assert(!Ty->isOpaque()); 1720 NonOpaqueStructTypes.insert(Ty); 1721 bool Removed = OpaqueStructTypes.erase(Ty); 1722 (void)Removed; 1723 assert(Removed); 1724 } 1725 1726 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) { 1727 assert(Ty->isOpaque()); 1728 OpaqueStructTypes.insert(Ty); 1729 } 1730 1731 StructType * 1732 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes, 1733 bool IsPacked) { 1734 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked); 1735 auto I = NonOpaqueStructTypes.find_as(Key); 1736 return I == NonOpaqueStructTypes.end() ? nullptr : *I; 1737 } 1738 1739 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) { 1740 if (Ty->isOpaque()) 1741 return OpaqueStructTypes.count(Ty); 1742 auto I = NonOpaqueStructTypes.find(Ty); 1743 return I == NonOpaqueStructTypes.end() ? false : *I == Ty; 1744 } 1745 1746 IRMover::IRMover(Module &M) : Composite(M) { 1747 TypeFinder StructTypes; 1748 StructTypes.run(M, /* OnlyNamed */ false); 1749 for (StructType *Ty : StructTypes) { 1750 if (Ty->isOpaque()) 1751 IdentifiedStructTypes.addOpaque(Ty); 1752 else 1753 IdentifiedStructTypes.addNonOpaque(Ty); 1754 } 1755 // Self-map metadatas in the destination module. This is needed when 1756 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the 1757 // destination module may be reached from the source module. 1758 for (const auto *MD : StructTypes.getVisitedMetadata()) { 1759 SharedMDs[MD].reset(const_cast<MDNode *>(MD)); 1760 } 1761 } 1762 1763 Error IRMover::move(std::unique_ptr<Module> Src, 1764 ArrayRef<GlobalValue *> ValuesToLink, 1765 LazyCallback AddLazyFor, bool IsPerformingImport) { 1766 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes, 1767 std::move(Src), ValuesToLink, std::move(AddLazyFor), 1768 IsPerformingImport); 1769 Error E = TheIRLinker.run(); 1770 Composite.dropTriviallyDeadConstantArrays(); 1771 return E; 1772 } 1773