1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the function verifier interface, that can be used for some 10 // basic correctness checking of input to the system. 11 // 12 // Note that this does not provide full `Java style' security and verifications, 13 // instead it just tries to ensure that code is well-formed. 14 // 15 // * Both of a binary operator's parameters are of the same type 16 // * Verify that the indices of mem access instructions match other operands 17 // * Verify that arithmetic and other things are only performed on first-class 18 // types. Verify that shifts & logicals only happen on integrals f.e. 19 // * All of the constants in a switch statement are of the correct type 20 // * The code is in valid SSA form 21 // * It should be illegal to put a label into any other type (like a structure) 22 // or to return one. [except constant arrays!] 23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad 24 // * PHI nodes must have an entry for each predecessor, with no extras. 25 // * PHI nodes must be the first thing in a basic block, all grouped together 26 // * All basic blocks should only end with terminator insts, not contain them 27 // * The entry node to a function must not have predecessors 28 // * All Instructions must be embedded into a basic block 29 // * Functions cannot take a void-typed parameter 30 // * Verify that a function's argument list agrees with it's declared type. 31 // * It is illegal to specify a name for a void value. 32 // * It is illegal to have a internal global value with no initializer 33 // * It is illegal to have a ret instruction that returns a value that does not 34 // agree with the function return value type. 35 // * Function call argument types match the function prototype 36 // * A landing pad is defined by a landingpad instruction, and can be jumped to 37 // only by the unwind edge of an invoke instruction. 38 // * A landingpad instruction must be the first non-PHI instruction in the 39 // block. 40 // * Landingpad instructions must be in a function with a personality function. 41 // * Convergence control intrinsics are introduced in ConvergentOperations.rst. 42 // The applied restrictions are too numerous to list here. 43 // * The convergence entry intrinsic and the loop heart must be the first 44 // non-PHI instruction in their respective block. This does not conflict with 45 // the landing pads, since these two kinds cannot occur in the same block. 46 // * All other things that are tested by asserts spread about the code... 47 // 48 //===----------------------------------------------------------------------===// 49 50 #include "llvm/IR/Verifier.h" 51 #include "llvm/ADT/APFloat.h" 52 #include "llvm/ADT/APInt.h" 53 #include "llvm/ADT/ArrayRef.h" 54 #include "llvm/ADT/DenseMap.h" 55 #include "llvm/ADT/MapVector.h" 56 #include "llvm/ADT/STLExtras.h" 57 #include "llvm/ADT/SmallPtrSet.h" 58 #include "llvm/ADT/SmallSet.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/ADT/StringRef.h" 62 #include "llvm/ADT/Twine.h" 63 #include "llvm/BinaryFormat/Dwarf.h" 64 #include "llvm/IR/Argument.h" 65 #include "llvm/IR/AttributeMask.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallingConv.h" 70 #include "llvm/IR/Comdat.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/ConstantRangeList.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/ConvergenceVerifier.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfo.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/EHPersonalities.h" 83 #include "llvm/IR/Function.h" 84 #include "llvm/IR/GCStrategy.h" 85 #include "llvm/IR/GlobalAlias.h" 86 #include "llvm/IR/GlobalValue.h" 87 #include "llvm/IR/GlobalVariable.h" 88 #include "llvm/IR/InlineAsm.h" 89 #include "llvm/IR/InstVisitor.h" 90 #include "llvm/IR/InstrTypes.h" 91 #include "llvm/IR/Instruction.h" 92 #include "llvm/IR/Instructions.h" 93 #include "llvm/IR/IntrinsicInst.h" 94 #include "llvm/IR/Intrinsics.h" 95 #include "llvm/IR/IntrinsicsAArch64.h" 96 #include "llvm/IR/IntrinsicsAMDGPU.h" 97 #include "llvm/IR/IntrinsicsARM.h" 98 #include "llvm/IR/IntrinsicsNVPTX.h" 99 #include "llvm/IR/IntrinsicsWebAssembly.h" 100 #include "llvm/IR/LLVMContext.h" 101 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 102 #include "llvm/IR/Metadata.h" 103 #include "llvm/IR/Module.h" 104 #include "llvm/IR/ModuleSlotTracker.h" 105 #include "llvm/IR/PassManager.h" 106 #include "llvm/IR/ProfDataUtils.h" 107 #include "llvm/IR/Statepoint.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/Use.h" 110 #include "llvm/IR/User.h" 111 #include "llvm/IR/VFABIDemangler.h" 112 #include "llvm/IR/Value.h" 113 #include "llvm/InitializePasses.h" 114 #include "llvm/Pass.h" 115 #include "llvm/Support/AMDGPUAddrSpace.h" 116 #include "llvm/Support/AtomicOrdering.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/ErrorHandling.h" 120 #include "llvm/Support/MathExtras.h" 121 #include "llvm/Support/ModRef.h" 122 #include "llvm/Support/raw_ostream.h" 123 #include <algorithm> 124 #include <cassert> 125 #include <cstdint> 126 #include <memory> 127 #include <optional> 128 #include <string> 129 #include <utility> 130 131 using namespace llvm; 132 133 static cl::opt<bool> VerifyNoAliasScopeDomination( 134 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), 135 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " 136 "scopes are not dominating")); 137 138 namespace llvm { 139 140 struct VerifierSupport { 141 raw_ostream *OS; 142 const Module &M; 143 ModuleSlotTracker MST; 144 Triple TT; 145 const DataLayout &DL; 146 LLVMContext &Context; 147 148 /// Track the brokenness of the module while recursively visiting. 149 bool Broken = false; 150 /// Broken debug info can be "recovered" from by stripping the debug info. 151 bool BrokenDebugInfo = false; 152 /// Whether to treat broken debug info as an error. 153 bool TreatBrokenDebugInfoAsError = true; 154 155 explicit VerifierSupport(raw_ostream *OS, const Module &M) 156 : OS(OS), M(M), MST(&M), TT(Triple::normalize(M.getTargetTriple())), 157 DL(M.getDataLayout()), Context(M.getContext()) {} 158 159 private: 160 void Write(const Module *M) { 161 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; 162 } 163 164 void Write(const Value *V) { 165 if (V) 166 Write(*V); 167 } 168 169 void Write(const Value &V) { 170 if (isa<Instruction>(V)) { 171 V.print(*OS, MST); 172 *OS << '\n'; 173 } else { 174 V.printAsOperand(*OS, true, MST); 175 *OS << '\n'; 176 } 177 } 178 179 void Write(const DbgRecord *DR) { 180 if (DR) { 181 DR->print(*OS, MST, false); 182 *OS << '\n'; 183 } 184 } 185 186 void Write(DbgVariableRecord::LocationType Type) { 187 switch (Type) { 188 case DbgVariableRecord::LocationType::Value: 189 *OS << "value"; 190 break; 191 case DbgVariableRecord::LocationType::Declare: 192 *OS << "declare"; 193 break; 194 case DbgVariableRecord::LocationType::Assign: 195 *OS << "assign"; 196 break; 197 case DbgVariableRecord::LocationType::End: 198 *OS << "end"; 199 break; 200 case DbgVariableRecord::LocationType::Any: 201 *OS << "any"; 202 break; 203 }; 204 } 205 206 void Write(const Metadata *MD) { 207 if (!MD) 208 return; 209 MD->print(*OS, MST, &M); 210 *OS << '\n'; 211 } 212 213 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { 214 Write(MD.get()); 215 } 216 217 void Write(const NamedMDNode *NMD) { 218 if (!NMD) 219 return; 220 NMD->print(*OS, MST); 221 *OS << '\n'; 222 } 223 224 void Write(Type *T) { 225 if (!T) 226 return; 227 *OS << ' ' << *T; 228 } 229 230 void Write(const Comdat *C) { 231 if (!C) 232 return; 233 *OS << *C; 234 } 235 236 void Write(const APInt *AI) { 237 if (!AI) 238 return; 239 *OS << *AI << '\n'; 240 } 241 242 void Write(const unsigned i) { *OS << i << '\n'; } 243 244 // NOLINTNEXTLINE(readability-identifier-naming) 245 void Write(const Attribute *A) { 246 if (!A) 247 return; 248 *OS << A->getAsString() << '\n'; 249 } 250 251 // NOLINTNEXTLINE(readability-identifier-naming) 252 void Write(const AttributeSet *AS) { 253 if (!AS) 254 return; 255 *OS << AS->getAsString() << '\n'; 256 } 257 258 // NOLINTNEXTLINE(readability-identifier-naming) 259 void Write(const AttributeList *AL) { 260 if (!AL) 261 return; 262 AL->print(*OS); 263 } 264 265 void Write(Printable P) { *OS << P << '\n'; } 266 267 template <typename T> void Write(ArrayRef<T> Vs) { 268 for (const T &V : Vs) 269 Write(V); 270 } 271 272 template <typename T1, typename... Ts> 273 void WriteTs(const T1 &V1, const Ts &... Vs) { 274 Write(V1); 275 WriteTs(Vs...); 276 } 277 278 template <typename... Ts> void WriteTs() {} 279 280 public: 281 /// A check failed, so printout out the condition and the message. 282 /// 283 /// This provides a nice place to put a breakpoint if you want to see why 284 /// something is not correct. 285 void CheckFailed(const Twine &Message) { 286 if (OS) 287 *OS << Message << '\n'; 288 Broken = true; 289 } 290 291 /// A check failed (with values to print). 292 /// 293 /// This calls the Message-only version so that the above is easier to set a 294 /// breakpoint on. 295 template <typename T1, typename... Ts> 296 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { 297 CheckFailed(Message); 298 if (OS) 299 WriteTs(V1, Vs...); 300 } 301 302 /// A debug info check failed. 303 void DebugInfoCheckFailed(const Twine &Message) { 304 if (OS) 305 *OS << Message << '\n'; 306 Broken |= TreatBrokenDebugInfoAsError; 307 BrokenDebugInfo = true; 308 } 309 310 /// A debug info check failed (with values to print). 311 template <typename T1, typename... Ts> 312 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, 313 const Ts &... Vs) { 314 DebugInfoCheckFailed(Message); 315 if (OS) 316 WriteTs(V1, Vs...); 317 } 318 }; 319 320 } // namespace llvm 321 322 namespace { 323 324 class Verifier : public InstVisitor<Verifier>, VerifierSupport { 325 friend class InstVisitor<Verifier>; 326 DominatorTree DT; 327 328 /// When verifying a basic block, keep track of all of the 329 /// instructions we have seen so far. 330 /// 331 /// This allows us to do efficient dominance checks for the case when an 332 /// instruction has an operand that is an instruction in the same block. 333 SmallPtrSet<Instruction *, 16> InstsInThisBlock; 334 335 /// Keep track of the metadata nodes that have been checked already. 336 SmallPtrSet<const Metadata *, 32> MDNodes; 337 338 /// Keep track which DISubprogram is attached to which function. 339 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; 340 341 /// Track all DICompileUnits visited. 342 SmallPtrSet<const Metadata *, 2> CUVisited; 343 344 /// The result type for a landingpad. 345 Type *LandingPadResultTy; 346 347 /// Whether we've seen a call to @llvm.localescape in this function 348 /// already. 349 bool SawFrameEscape; 350 351 /// Whether the current function has a DISubprogram attached to it. 352 bool HasDebugInfo = false; 353 354 /// Stores the count of how many objects were passed to llvm.localescape for a 355 /// given function and the largest index passed to llvm.localrecover. 356 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; 357 358 // Maps catchswitches and cleanuppads that unwind to siblings to the 359 // terminators that indicate the unwind, used to detect cycles therein. 360 MapVector<Instruction *, Instruction *> SiblingFuncletInfo; 361 362 /// Cache which blocks are in which funclet, if an EH funclet personality is 363 /// in use. Otherwise empty. 364 DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors; 365 366 /// Cache of constants visited in search of ConstantExprs. 367 SmallPtrSet<const Constant *, 32> ConstantExprVisited; 368 369 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. 370 SmallVector<const Function *, 4> DeoptimizeDeclarations; 371 372 /// Cache of attribute lists verified. 373 SmallPtrSet<const void *, 32> AttributeListsVisited; 374 375 // Verify that this GlobalValue is only used in this module. 376 // This map is used to avoid visiting uses twice. We can arrive at a user 377 // twice, if they have multiple operands. In particular for very large 378 // constant expressions, we can arrive at a particular user many times. 379 SmallPtrSet<const Value *, 32> GlobalValueVisited; 380 381 // Keeps track of duplicate function argument debug info. 382 SmallVector<const DILocalVariable *, 16> DebugFnArgs; 383 384 TBAAVerifier TBAAVerifyHelper; 385 ConvergenceVerifier ConvergenceVerifyHelper; 386 387 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; 388 389 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); 390 391 public: 392 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, 393 const Module &M) 394 : VerifierSupport(OS, M), LandingPadResultTy(nullptr), 395 SawFrameEscape(false), TBAAVerifyHelper(this) { 396 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; 397 } 398 399 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } 400 401 bool verify(const Function &F) { 402 assert(F.getParent() == &M && 403 "An instance of this class only works with a specific module!"); 404 405 // First ensure the function is well-enough formed to compute dominance 406 // information, and directly compute a dominance tree. We don't rely on the 407 // pass manager to provide this as it isolates us from a potentially 408 // out-of-date dominator tree and makes it significantly more complex to run 409 // this code outside of a pass manager. 410 // FIXME: It's really gross that we have to cast away constness here. 411 if (!F.empty()) 412 DT.recalculate(const_cast<Function &>(F)); 413 414 for (const BasicBlock &BB : F) { 415 if (!BB.empty() && BB.back().isTerminator()) 416 continue; 417 418 if (OS) { 419 *OS << "Basic Block in function '" << F.getName() 420 << "' does not have terminator!\n"; 421 BB.printAsOperand(*OS, true, MST); 422 *OS << "\n"; 423 } 424 return false; 425 } 426 427 auto FailureCB = [this](const Twine &Message) { 428 this->CheckFailed(Message); 429 }; 430 ConvergenceVerifyHelper.initialize(OS, FailureCB, F); 431 432 Broken = false; 433 // FIXME: We strip const here because the inst visitor strips const. 434 visit(const_cast<Function &>(F)); 435 verifySiblingFuncletUnwinds(); 436 437 if (ConvergenceVerifyHelper.sawTokens()) 438 ConvergenceVerifyHelper.verify(DT); 439 440 InstsInThisBlock.clear(); 441 DebugFnArgs.clear(); 442 LandingPadResultTy = nullptr; 443 SawFrameEscape = false; 444 SiblingFuncletInfo.clear(); 445 verifyNoAliasScopeDecl(); 446 NoAliasScopeDecls.clear(); 447 448 return !Broken; 449 } 450 451 /// Verify the module that this instance of \c Verifier was initialized with. 452 bool verify() { 453 Broken = false; 454 455 // Collect all declarations of the llvm.experimental.deoptimize intrinsic. 456 for (const Function &F : M) 457 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) 458 DeoptimizeDeclarations.push_back(&F); 459 460 // Now that we've visited every function, verify that we never asked to 461 // recover a frame index that wasn't escaped. 462 verifyFrameRecoverIndices(); 463 for (const GlobalVariable &GV : M.globals()) 464 visitGlobalVariable(GV); 465 466 for (const GlobalAlias &GA : M.aliases()) 467 visitGlobalAlias(GA); 468 469 for (const GlobalIFunc &GI : M.ifuncs()) 470 visitGlobalIFunc(GI); 471 472 for (const NamedMDNode &NMD : M.named_metadata()) 473 visitNamedMDNode(NMD); 474 475 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) 476 visitComdat(SMEC.getValue()); 477 478 visitModuleFlags(); 479 visitModuleIdents(); 480 visitModuleCommandLines(); 481 482 verifyCompileUnits(); 483 484 verifyDeoptimizeCallingConvs(); 485 DISubprogramAttachments.clear(); 486 return !Broken; 487 } 488 489 private: 490 /// Whether a metadata node is allowed to be, or contain, a DILocation. 491 enum class AreDebugLocsAllowed { No, Yes }; 492 493 /// Metadata that should be treated as a range, with slightly different 494 /// requirements. 495 enum class RangeLikeMetadataKind { 496 Range, // MD_range 497 AbsoluteSymbol, // MD_absolute_symbol 498 NoaliasAddrspace // MD_noalias_addrspace 499 }; 500 501 // Verification methods... 502 void visitGlobalValue(const GlobalValue &GV); 503 void visitGlobalVariable(const GlobalVariable &GV); 504 void visitGlobalAlias(const GlobalAlias &GA); 505 void visitGlobalIFunc(const GlobalIFunc &GI); 506 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); 507 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, 508 const GlobalAlias &A, const Constant &C); 509 void visitNamedMDNode(const NamedMDNode &NMD); 510 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); 511 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); 512 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); 513 void visitDIArgList(const DIArgList &AL, Function *F); 514 void visitComdat(const Comdat &C); 515 void visitModuleIdents(); 516 void visitModuleCommandLines(); 517 void visitModuleFlags(); 518 void visitModuleFlag(const MDNode *Op, 519 DenseMap<const MDString *, const MDNode *> &SeenIDs, 520 SmallVectorImpl<const MDNode *> &Requirements); 521 void visitModuleFlagCGProfileEntry(const MDOperand &MDO); 522 void visitFunction(const Function &F); 523 void visitBasicBlock(BasicBlock &BB); 524 void verifyRangeLikeMetadata(const Value &V, const MDNode *Range, Type *Ty, 525 RangeLikeMetadataKind Kind); 526 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); 527 void visitNoaliasAddrspaceMetadata(Instruction &I, MDNode *Range, Type *Ty); 528 void visitDereferenceableMetadata(Instruction &I, MDNode *MD); 529 void visitProfMetadata(Instruction &I, MDNode *MD); 530 void visitCallStackMetadata(MDNode *MD); 531 void visitMemProfMetadata(Instruction &I, MDNode *MD); 532 void visitCallsiteMetadata(Instruction &I, MDNode *MD); 533 void visitDIAssignIDMetadata(Instruction &I, MDNode *MD); 534 void visitMMRAMetadata(Instruction &I, MDNode *MD); 535 void visitAnnotationMetadata(MDNode *Annotation); 536 void visitAliasScopeMetadata(const MDNode *MD); 537 void visitAliasScopeListMetadata(const MDNode *MD); 538 void visitAccessGroupMetadata(const MDNode *MD); 539 540 template <class Ty> bool isValidMetadataArray(const MDTuple &N); 541 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); 542 #include "llvm/IR/Metadata.def" 543 void visitDIScope(const DIScope &N); 544 void visitDIVariable(const DIVariable &N); 545 void visitDILexicalBlockBase(const DILexicalBlockBase &N); 546 void visitDITemplateParameter(const DITemplateParameter &N); 547 548 void visitTemplateParams(const MDNode &N, const Metadata &RawParams); 549 550 void visit(DbgLabelRecord &DLR); 551 void visit(DbgVariableRecord &DVR); 552 // InstVisitor overrides... 553 using InstVisitor<Verifier>::visit; 554 void visitDbgRecords(Instruction &I); 555 void visit(Instruction &I); 556 557 void visitTruncInst(TruncInst &I); 558 void visitZExtInst(ZExtInst &I); 559 void visitSExtInst(SExtInst &I); 560 void visitFPTruncInst(FPTruncInst &I); 561 void visitFPExtInst(FPExtInst &I); 562 void visitFPToUIInst(FPToUIInst &I); 563 void visitFPToSIInst(FPToSIInst &I); 564 void visitUIToFPInst(UIToFPInst &I); 565 void visitSIToFPInst(SIToFPInst &I); 566 void visitIntToPtrInst(IntToPtrInst &I); 567 void visitPtrToIntInst(PtrToIntInst &I); 568 void visitBitCastInst(BitCastInst &I); 569 void visitAddrSpaceCastInst(AddrSpaceCastInst &I); 570 void visitPHINode(PHINode &PN); 571 void visitCallBase(CallBase &Call); 572 void visitUnaryOperator(UnaryOperator &U); 573 void visitBinaryOperator(BinaryOperator &B); 574 void visitICmpInst(ICmpInst &IC); 575 void visitFCmpInst(FCmpInst &FC); 576 void visitExtractElementInst(ExtractElementInst &EI); 577 void visitInsertElementInst(InsertElementInst &EI); 578 void visitShuffleVectorInst(ShuffleVectorInst &EI); 579 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } 580 void visitCallInst(CallInst &CI); 581 void visitInvokeInst(InvokeInst &II); 582 void visitGetElementPtrInst(GetElementPtrInst &GEP); 583 void visitLoadInst(LoadInst &LI); 584 void visitStoreInst(StoreInst &SI); 585 void verifyDominatesUse(Instruction &I, unsigned i); 586 void visitInstruction(Instruction &I); 587 void visitTerminator(Instruction &I); 588 void visitBranchInst(BranchInst &BI); 589 void visitReturnInst(ReturnInst &RI); 590 void visitSwitchInst(SwitchInst &SI); 591 void visitIndirectBrInst(IndirectBrInst &BI); 592 void visitCallBrInst(CallBrInst &CBI); 593 void visitSelectInst(SelectInst &SI); 594 void visitUserOp1(Instruction &I); 595 void visitUserOp2(Instruction &I) { visitUserOp1(I); } 596 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); 597 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); 598 void visitVPIntrinsic(VPIntrinsic &VPI); 599 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); 600 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); 601 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); 602 void visitAtomicRMWInst(AtomicRMWInst &RMWI); 603 void visitFenceInst(FenceInst &FI); 604 void visitAllocaInst(AllocaInst &AI); 605 void visitExtractValueInst(ExtractValueInst &EVI); 606 void visitInsertValueInst(InsertValueInst &IVI); 607 void visitEHPadPredecessors(Instruction &I); 608 void visitLandingPadInst(LandingPadInst &LPI); 609 void visitResumeInst(ResumeInst &RI); 610 void visitCatchPadInst(CatchPadInst &CPI); 611 void visitCatchReturnInst(CatchReturnInst &CatchReturn); 612 void visitCleanupPadInst(CleanupPadInst &CPI); 613 void visitFuncletPadInst(FuncletPadInst &FPI); 614 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); 615 void visitCleanupReturnInst(CleanupReturnInst &CRI); 616 617 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); 618 void verifySwiftErrorValue(const Value *SwiftErrorVal); 619 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context); 620 void verifyMustTailCall(CallInst &CI); 621 bool verifyAttributeCount(AttributeList Attrs, unsigned Params); 622 void verifyAttributeTypes(AttributeSet Attrs, const Value *V); 623 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); 624 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 625 const Value *V); 626 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 627 const Value *V, bool IsIntrinsic, bool IsInlineAsm); 628 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); 629 630 void visitConstantExprsRecursively(const Constant *EntryC); 631 void visitConstantExpr(const ConstantExpr *CE); 632 void visitConstantPtrAuth(const ConstantPtrAuth *CPA); 633 void verifyInlineAsmCall(const CallBase &Call); 634 void verifyStatepoint(const CallBase &Call); 635 void verifyFrameRecoverIndices(); 636 void verifySiblingFuncletUnwinds(); 637 638 void verifyFragmentExpression(const DbgVariableIntrinsic &I); 639 void verifyFragmentExpression(const DbgVariableRecord &I); 640 template <typename ValueOrMetadata> 641 void verifyFragmentExpression(const DIVariable &V, 642 DIExpression::FragmentInfo Fragment, 643 ValueOrMetadata *Desc); 644 void verifyFnArgs(const DbgVariableIntrinsic &I); 645 void verifyFnArgs(const DbgVariableRecord &DVR); 646 void verifyNotEntryValue(const DbgVariableIntrinsic &I); 647 void verifyNotEntryValue(const DbgVariableRecord &I); 648 649 /// Module-level debug info verification... 650 void verifyCompileUnits(); 651 652 /// Module-level verification that all @llvm.experimental.deoptimize 653 /// declarations share the same calling convention. 654 void verifyDeoptimizeCallingConvs(); 655 656 void verifyAttachedCallBundle(const CallBase &Call, 657 const OperandBundleUse &BU); 658 659 /// Verify the llvm.experimental.noalias.scope.decl declarations 660 void verifyNoAliasScopeDecl(); 661 }; 662 663 } // end anonymous namespace 664 665 /// We know that cond should be true, if not print an error message. 666 #define Check(C, ...) \ 667 do { \ 668 if (!(C)) { \ 669 CheckFailed(__VA_ARGS__); \ 670 return; \ 671 } \ 672 } while (false) 673 674 /// We know that a debug info condition should be true, if not print 675 /// an error message. 676 #define CheckDI(C, ...) \ 677 do { \ 678 if (!(C)) { \ 679 DebugInfoCheckFailed(__VA_ARGS__); \ 680 return; \ 681 } \ 682 } while (false) 683 684 void Verifier::visitDbgRecords(Instruction &I) { 685 if (!I.DebugMarker) 686 return; 687 CheckDI(I.DebugMarker->MarkedInstr == &I, 688 "Instruction has invalid DebugMarker", &I); 689 CheckDI(!isa<PHINode>(&I) || !I.hasDbgRecords(), 690 "PHI Node must not have any attached DbgRecords", &I); 691 for (DbgRecord &DR : I.getDbgRecordRange()) { 692 CheckDI(DR.getMarker() == I.DebugMarker, 693 "DbgRecord had invalid DebugMarker", &I, &DR); 694 if (auto *Loc = 695 dyn_cast_or_null<DILocation>(DR.getDebugLoc().getAsMDNode())) 696 visitMDNode(*Loc, AreDebugLocsAllowed::Yes); 697 if (auto *DVR = dyn_cast<DbgVariableRecord>(&DR)) { 698 visit(*DVR); 699 // These have to appear after `visit` for consistency with existing 700 // intrinsic behaviour. 701 verifyFragmentExpression(*DVR); 702 verifyNotEntryValue(*DVR); 703 } else if (auto *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 704 visit(*DLR); 705 } 706 } 707 } 708 709 void Verifier::visit(Instruction &I) { 710 visitDbgRecords(I); 711 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 712 Check(I.getOperand(i) != nullptr, "Operand is null", &I); 713 InstVisitor<Verifier>::visit(I); 714 } 715 716 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further. 717 static void forEachUser(const Value *User, 718 SmallPtrSet<const Value *, 32> &Visited, 719 llvm::function_ref<bool(const Value *)> Callback) { 720 if (!Visited.insert(User).second) 721 return; 722 723 SmallVector<const Value *> WorkList; 724 append_range(WorkList, User->materialized_users()); 725 while (!WorkList.empty()) { 726 const Value *Cur = WorkList.pop_back_val(); 727 if (!Visited.insert(Cur).second) 728 continue; 729 if (Callback(Cur)) 730 append_range(WorkList, Cur->materialized_users()); 731 } 732 } 733 734 void Verifier::visitGlobalValue(const GlobalValue &GV) { 735 Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), 736 "Global is external, but doesn't have external or weak linkage!", &GV); 737 738 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) { 739 740 if (MaybeAlign A = GO->getAlign()) { 741 Check(A->value() <= Value::MaximumAlignment, 742 "huge alignment values are unsupported", GO); 743 } 744 745 if (const MDNode *Associated = 746 GO->getMetadata(LLVMContext::MD_associated)) { 747 Check(Associated->getNumOperands() == 1, 748 "associated metadata must have one operand", &GV, Associated); 749 const Metadata *Op = Associated->getOperand(0).get(); 750 Check(Op, "associated metadata must have a global value", GO, Associated); 751 752 const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op); 753 Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated); 754 if (VM) { 755 Check(isa<PointerType>(VM->getValue()->getType()), 756 "associated value must be pointer typed", GV, Associated); 757 758 const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases(); 759 Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped), 760 "associated metadata must point to a GlobalObject", GO, Stripped); 761 Check(Stripped != GO, 762 "global values should not associate to themselves", GO, 763 Associated); 764 } 765 } 766 767 // FIXME: Why is getMetadata on GlobalValue protected? 768 if (const MDNode *AbsoluteSymbol = 769 GO->getMetadata(LLVMContext::MD_absolute_symbol)) { 770 verifyRangeLikeMetadata(*GO, AbsoluteSymbol, 771 DL.getIntPtrType(GO->getType()), 772 RangeLikeMetadataKind::AbsoluteSymbol); 773 } 774 } 775 776 Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), 777 "Only global variables can have appending linkage!", &GV); 778 779 if (GV.hasAppendingLinkage()) { 780 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); 781 Check(GVar && GVar->getValueType()->isArrayTy(), 782 "Only global arrays can have appending linkage!", GVar); 783 } 784 785 if (GV.isDeclarationForLinker()) 786 Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); 787 788 if (GV.hasDLLExportStorageClass()) { 789 Check(!GV.hasHiddenVisibility(), 790 "dllexport GlobalValue must have default or protected visibility", 791 &GV); 792 } 793 if (GV.hasDLLImportStorageClass()) { 794 Check(GV.hasDefaultVisibility(), 795 "dllimport GlobalValue must have default visibility", &GV); 796 Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!", 797 &GV); 798 799 Check((GV.isDeclaration() && 800 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || 801 GV.hasAvailableExternallyLinkage(), 802 "Global is marked as dllimport, but not external", &GV); 803 } 804 805 if (GV.isImplicitDSOLocal()) 806 Check(GV.isDSOLocal(), 807 "GlobalValue with local linkage or non-default " 808 "visibility must be dso_local!", 809 &GV); 810 811 if (GV.isTagged()) { 812 Check(!GV.hasSection(), "tagged GlobalValue must not be in section.", &GV); 813 } 814 815 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { 816 if (const Instruction *I = dyn_cast<Instruction>(V)) { 817 if (!I->getParent() || !I->getParent()->getParent()) 818 CheckFailed("Global is referenced by parentless instruction!", &GV, &M, 819 I); 820 else if (I->getParent()->getParent()->getParent() != &M) 821 CheckFailed("Global is referenced in a different module!", &GV, &M, I, 822 I->getParent()->getParent(), 823 I->getParent()->getParent()->getParent()); 824 return false; 825 } else if (const Function *F = dyn_cast<Function>(V)) { 826 if (F->getParent() != &M) 827 CheckFailed("Global is used by function in a different module", &GV, &M, 828 F, F->getParent()); 829 return false; 830 } 831 return true; 832 }); 833 } 834 835 void Verifier::visitGlobalVariable(const GlobalVariable &GV) { 836 Type *GVType = GV.getValueType(); 837 838 if (GV.hasInitializer()) { 839 Check(GV.getInitializer()->getType() == GVType, 840 "Global variable initializer type does not match global " 841 "variable type!", 842 &GV); 843 // If the global has common linkage, it must have a zero initializer and 844 // cannot be constant. 845 if (GV.hasCommonLinkage()) { 846 Check(GV.getInitializer()->isNullValue(), 847 "'common' global must have a zero initializer!", &GV); 848 Check(!GV.isConstant(), "'common' global may not be marked constant!", 849 &GV); 850 Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); 851 } 852 } 853 854 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || 855 GV.getName() == "llvm.global_dtors")) { 856 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(), 857 "invalid linkage for intrinsic global variable", &GV); 858 Check(GV.materialized_use_empty(), 859 "invalid uses of intrinsic global variable", &GV); 860 861 // Don't worry about emitting an error for it not being an array, 862 // visitGlobalValue will complain on appending non-array. 863 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 864 StructType *STy = dyn_cast<StructType>(ATy->getElementType()); 865 PointerType *FuncPtrTy = 866 PointerType::get(Context, DL.getProgramAddressSpace()); 867 Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) && 868 STy->getTypeAtIndex(0u)->isIntegerTy(32) && 869 STy->getTypeAtIndex(1) == FuncPtrTy, 870 "wrong type for intrinsic global variable", &GV); 871 Check(STy->getNumElements() == 3, 872 "the third field of the element type is mandatory, " 873 "specify ptr null to migrate from the obsoleted 2-field form"); 874 Type *ETy = STy->getTypeAtIndex(2); 875 Check(ETy->isPointerTy(), "wrong type for intrinsic global variable", 876 &GV); 877 } 878 } 879 880 if (GV.hasName() && (GV.getName() == "llvm.used" || 881 GV.getName() == "llvm.compiler.used")) { 882 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(), 883 "invalid linkage for intrinsic global variable", &GV); 884 Check(GV.materialized_use_empty(), 885 "invalid uses of intrinsic global variable", &GV); 886 887 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { 888 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); 889 Check(PTy, "wrong type for intrinsic global variable", &GV); 890 if (GV.hasInitializer()) { 891 const Constant *Init = GV.getInitializer(); 892 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); 893 Check(InitArray, "wrong initalizer for intrinsic global variable", 894 Init); 895 for (Value *Op : InitArray->operands()) { 896 Value *V = Op->stripPointerCasts(); 897 Check(isa<GlobalVariable>(V) || isa<Function>(V) || 898 isa<GlobalAlias>(V), 899 Twine("invalid ") + GV.getName() + " member", V); 900 Check(V->hasName(), 901 Twine("members of ") + GV.getName() + " must be named", V); 902 } 903 } 904 } 905 } 906 907 // Visit any debug info attachments. 908 SmallVector<MDNode *, 1> MDs; 909 GV.getMetadata(LLVMContext::MD_dbg, MDs); 910 for (auto *MD : MDs) { 911 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) 912 visitDIGlobalVariableExpression(*GVE); 913 else 914 CheckDI(false, "!dbg attachment of global variable must be a " 915 "DIGlobalVariableExpression"); 916 } 917 918 // Scalable vectors cannot be global variables, since we don't know 919 // the runtime size. 920 Check(!GVType->isScalableTy(), "Globals cannot contain scalable types", &GV); 921 922 // Check if it is or contains a target extension type that disallows being 923 // used as a global. 924 Check(!GVType->containsNonGlobalTargetExtType(), 925 "Global @" + GV.getName() + " has illegal target extension type", 926 GVType); 927 928 if (!GV.hasInitializer()) { 929 visitGlobalValue(GV); 930 return; 931 } 932 933 // Walk any aggregate initializers looking for bitcasts between address spaces 934 visitConstantExprsRecursively(GV.getInitializer()); 935 936 visitGlobalValue(GV); 937 } 938 939 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { 940 SmallPtrSet<const GlobalAlias*, 4> Visited; 941 Visited.insert(&GA); 942 visitAliaseeSubExpr(Visited, GA, C); 943 } 944 945 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, 946 const GlobalAlias &GA, const Constant &C) { 947 if (GA.hasAvailableExternallyLinkage()) { 948 Check(isa<GlobalValue>(C) && 949 cast<GlobalValue>(C).hasAvailableExternallyLinkage(), 950 "available_externally alias must point to available_externally " 951 "global value", 952 &GA); 953 } 954 if (const auto *GV = dyn_cast<GlobalValue>(&C)) { 955 if (!GA.hasAvailableExternallyLinkage()) { 956 Check(!GV->isDeclarationForLinker(), "Alias must point to a definition", 957 &GA); 958 } 959 960 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { 961 Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); 962 963 Check(!GA2->isInterposable(), 964 "Alias cannot point to an interposable alias", &GA); 965 } else { 966 // Only continue verifying subexpressions of GlobalAliases. 967 // Do not recurse into global initializers. 968 return; 969 } 970 } 971 972 if (const auto *CE = dyn_cast<ConstantExpr>(&C)) 973 visitConstantExprsRecursively(CE); 974 975 for (const Use &U : C.operands()) { 976 Value *V = &*U; 977 if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) 978 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); 979 else if (const auto *C2 = dyn_cast<Constant>(V)) 980 visitAliaseeSubExpr(Visited, GA, *C2); 981 } 982 } 983 984 void Verifier::visitGlobalAlias(const GlobalAlias &GA) { 985 Check(GlobalAlias::isValidLinkage(GA.getLinkage()), 986 "Alias should have private, internal, linkonce, weak, linkonce_odr, " 987 "weak_odr, external, or available_externally linkage!", 988 &GA); 989 const Constant *Aliasee = GA.getAliasee(); 990 Check(Aliasee, "Aliasee cannot be NULL!", &GA); 991 Check(GA.getType() == Aliasee->getType(), 992 "Alias and aliasee types should match!", &GA); 993 994 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), 995 "Aliasee should be either GlobalValue or ConstantExpr", &GA); 996 997 visitAliaseeSubExpr(GA, *Aliasee); 998 999 visitGlobalValue(GA); 1000 } 1001 1002 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) { 1003 Check(GlobalIFunc::isValidLinkage(GI.getLinkage()), 1004 "IFunc should have private, internal, linkonce, weak, linkonce_odr, " 1005 "weak_odr, or external linkage!", 1006 &GI); 1007 // Pierce through ConstantExprs and GlobalAliases and check that the resolver 1008 // is a Function definition. 1009 const Function *Resolver = GI.getResolverFunction(); 1010 Check(Resolver, "IFunc must have a Function resolver", &GI); 1011 Check(!Resolver->isDeclarationForLinker(), 1012 "IFunc resolver must be a definition", &GI); 1013 1014 // Check that the immediate resolver operand (prior to any bitcasts) has the 1015 // correct type. 1016 const Type *ResolverTy = GI.getResolver()->getType(); 1017 1018 Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()), 1019 "IFunc resolver must return a pointer", &GI); 1020 1021 Check(ResolverTy == PointerType::get(Context, GI.getAddressSpace()), 1022 "IFunc resolver has incorrect type", &GI); 1023 } 1024 1025 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { 1026 // There used to be various other llvm.dbg.* nodes, but we don't support 1027 // upgrading them and we want to reserve the namespace for future uses. 1028 if (NMD.getName().starts_with("llvm.dbg.")) 1029 CheckDI(NMD.getName() == "llvm.dbg.cu", 1030 "unrecognized named metadata node in the llvm.dbg namespace", &NMD); 1031 for (const MDNode *MD : NMD.operands()) { 1032 if (NMD.getName() == "llvm.dbg.cu") 1033 CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); 1034 1035 if (!MD) 1036 continue; 1037 1038 visitMDNode(*MD, AreDebugLocsAllowed::Yes); 1039 } 1040 } 1041 1042 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { 1043 // Only visit each node once. Metadata can be mutually recursive, so this 1044 // avoids infinite recursion here, as well as being an optimization. 1045 if (!MDNodes.insert(&MD).second) 1046 return; 1047 1048 Check(&MD.getContext() == &Context, 1049 "MDNode context does not match Module context!", &MD); 1050 1051 switch (MD.getMetadataID()) { 1052 default: 1053 llvm_unreachable("Invalid MDNode subclass"); 1054 case Metadata::MDTupleKind: 1055 break; 1056 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 1057 case Metadata::CLASS##Kind: \ 1058 visit##CLASS(cast<CLASS>(MD)); \ 1059 break; 1060 #include "llvm/IR/Metadata.def" 1061 } 1062 1063 for (const Metadata *Op : MD.operands()) { 1064 if (!Op) 1065 continue; 1066 Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", 1067 &MD, Op); 1068 CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, 1069 "DILocation not allowed within this metadata node", &MD, Op); 1070 if (auto *N = dyn_cast<MDNode>(Op)) { 1071 visitMDNode(*N, AllowLocs); 1072 continue; 1073 } 1074 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { 1075 visitValueAsMetadata(*V, nullptr); 1076 continue; 1077 } 1078 } 1079 1080 // Check these last, so we diagnose problems in operands first. 1081 Check(!MD.isTemporary(), "Expected no forward declarations!", &MD); 1082 Check(MD.isResolved(), "All nodes should be resolved!", &MD); 1083 } 1084 1085 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { 1086 Check(MD.getValue(), "Expected valid value", &MD); 1087 Check(!MD.getValue()->getType()->isMetadataTy(), 1088 "Unexpected metadata round-trip through values", &MD, MD.getValue()); 1089 1090 auto *L = dyn_cast<LocalAsMetadata>(&MD); 1091 if (!L) 1092 return; 1093 1094 Check(F, "function-local metadata used outside a function", L); 1095 1096 // If this was an instruction, bb, or argument, verify that it is in the 1097 // function that we expect. 1098 Function *ActualF = nullptr; 1099 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { 1100 Check(I->getParent(), "function-local metadata not in basic block", L, I); 1101 ActualF = I->getParent()->getParent(); 1102 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) 1103 ActualF = BB->getParent(); 1104 else if (Argument *A = dyn_cast<Argument>(L->getValue())) 1105 ActualF = A->getParent(); 1106 assert(ActualF && "Unimplemented function local metadata case!"); 1107 1108 Check(ActualF == F, "function-local metadata used in wrong function", L); 1109 } 1110 1111 void Verifier::visitDIArgList(const DIArgList &AL, Function *F) { 1112 for (const ValueAsMetadata *VAM : AL.getArgs()) 1113 visitValueAsMetadata(*VAM, F); 1114 } 1115 1116 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { 1117 Metadata *MD = MDV.getMetadata(); 1118 if (auto *N = dyn_cast<MDNode>(MD)) { 1119 visitMDNode(*N, AreDebugLocsAllowed::No); 1120 return; 1121 } 1122 1123 // Only visit each node once. Metadata can be mutually recursive, so this 1124 // avoids infinite recursion here, as well as being an optimization. 1125 if (!MDNodes.insert(MD).second) 1126 return; 1127 1128 if (auto *V = dyn_cast<ValueAsMetadata>(MD)) 1129 visitValueAsMetadata(*V, F); 1130 1131 if (auto *AL = dyn_cast<DIArgList>(MD)) 1132 visitDIArgList(*AL, F); 1133 } 1134 1135 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } 1136 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } 1137 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } 1138 1139 void Verifier::visitDILocation(const DILocation &N) { 1140 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1141 "location requires a valid scope", &N, N.getRawScope()); 1142 if (auto *IA = N.getRawInlinedAt()) 1143 CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); 1144 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1145 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1146 } 1147 1148 void Verifier::visitGenericDINode(const GenericDINode &N) { 1149 CheckDI(N.getTag(), "invalid tag", &N); 1150 } 1151 1152 void Verifier::visitDIScope(const DIScope &N) { 1153 if (auto *F = N.getRawFile()) 1154 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1155 } 1156 1157 void Verifier::visitDISubrange(const DISubrange &N) { 1158 CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); 1159 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1160 "Subrange can have any one of count or upperBound", &N); 1161 auto *CBound = N.getRawCountNode(); 1162 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) || 1163 isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1164 "Count must be signed constant or DIVariable or DIExpression", &N); 1165 auto Count = N.getCount(); 1166 CheckDI(!Count || !isa<ConstantInt *>(Count) || 1167 cast<ConstantInt *>(Count)->getSExtValue() >= -1, 1168 "invalid subrange count", &N); 1169 auto *LBound = N.getRawLowerBound(); 1170 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) || 1171 isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1172 "LowerBound must be signed constant or DIVariable or DIExpression", 1173 &N); 1174 auto *UBound = N.getRawUpperBound(); 1175 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) || 1176 isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1177 "UpperBound must be signed constant or DIVariable or DIExpression", 1178 &N); 1179 auto *Stride = N.getRawStride(); 1180 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) || 1181 isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1182 "Stride must be signed constant or DIVariable or DIExpression", &N); 1183 } 1184 1185 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { 1186 CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); 1187 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(), 1188 "GenericSubrange can have any one of count or upperBound", &N); 1189 auto *CBound = N.getRawCountNode(); 1190 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), 1191 "Count must be signed constant or DIVariable or DIExpression", &N); 1192 auto *LBound = N.getRawLowerBound(); 1193 CheckDI(LBound, "GenericSubrange must contain lowerBound", &N); 1194 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), 1195 "LowerBound must be signed constant or DIVariable or DIExpression", 1196 &N); 1197 auto *UBound = N.getRawUpperBound(); 1198 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), 1199 "UpperBound must be signed constant or DIVariable or DIExpression", 1200 &N); 1201 auto *Stride = N.getRawStride(); 1202 CheckDI(Stride, "GenericSubrange must contain stride", &N); 1203 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), 1204 "Stride must be signed constant or DIVariable or DIExpression", &N); 1205 } 1206 1207 void Verifier::visitDIEnumerator(const DIEnumerator &N) { 1208 CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); 1209 } 1210 1211 void Verifier::visitDIBasicType(const DIBasicType &N) { 1212 CheckDI(N.getTag() == dwarf::DW_TAG_base_type || 1213 N.getTag() == dwarf::DW_TAG_unspecified_type || 1214 N.getTag() == dwarf::DW_TAG_string_type, 1215 "invalid tag", &N); 1216 } 1217 1218 void Verifier::visitDIStringType(const DIStringType &N) { 1219 CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); 1220 CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags", 1221 &N); 1222 } 1223 1224 void Verifier::visitDIDerivedType(const DIDerivedType &N) { 1225 // Common scope checks. 1226 visitDIScope(N); 1227 1228 CheckDI(N.getTag() == dwarf::DW_TAG_typedef || 1229 N.getTag() == dwarf::DW_TAG_pointer_type || 1230 N.getTag() == dwarf::DW_TAG_ptr_to_member_type || 1231 N.getTag() == dwarf::DW_TAG_reference_type || 1232 N.getTag() == dwarf::DW_TAG_rvalue_reference_type || 1233 N.getTag() == dwarf::DW_TAG_const_type || 1234 N.getTag() == dwarf::DW_TAG_immutable_type || 1235 N.getTag() == dwarf::DW_TAG_volatile_type || 1236 N.getTag() == dwarf::DW_TAG_restrict_type || 1237 N.getTag() == dwarf::DW_TAG_atomic_type || 1238 N.getTag() == dwarf::DW_TAG_LLVM_ptrauth_type || 1239 N.getTag() == dwarf::DW_TAG_member || 1240 (N.getTag() == dwarf::DW_TAG_variable && N.isStaticMember()) || 1241 N.getTag() == dwarf::DW_TAG_inheritance || 1242 N.getTag() == dwarf::DW_TAG_friend || 1243 N.getTag() == dwarf::DW_TAG_set_type || 1244 N.getTag() == dwarf::DW_TAG_template_alias, 1245 "invalid tag", &N); 1246 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { 1247 CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, 1248 N.getRawExtraData()); 1249 } 1250 1251 if (N.getTag() == dwarf::DW_TAG_set_type) { 1252 if (auto *T = N.getRawBaseType()) { 1253 auto *Enum = dyn_cast_or_null<DICompositeType>(T); 1254 auto *Basic = dyn_cast_or_null<DIBasicType>(T); 1255 CheckDI( 1256 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || 1257 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || 1258 Basic->getEncoding() == dwarf::DW_ATE_signed || 1259 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || 1260 Basic->getEncoding() == dwarf::DW_ATE_signed_char || 1261 Basic->getEncoding() == dwarf::DW_ATE_boolean)), 1262 "invalid set base type", &N, T); 1263 } 1264 } 1265 1266 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1267 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N, 1268 N.getRawBaseType()); 1269 1270 if (N.getDWARFAddressSpace()) { 1271 CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type || 1272 N.getTag() == dwarf::DW_TAG_reference_type || 1273 N.getTag() == dwarf::DW_TAG_rvalue_reference_type, 1274 "DWARF address space only applies to pointer or reference types", 1275 &N); 1276 } 1277 } 1278 1279 /// Detect mutually exclusive flags. 1280 static bool hasConflictingReferenceFlags(unsigned Flags) { 1281 return ((Flags & DINode::FlagLValueReference) && 1282 (Flags & DINode::FlagRValueReference)) || 1283 ((Flags & DINode::FlagTypePassByValue) && 1284 (Flags & DINode::FlagTypePassByReference)); 1285 } 1286 1287 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { 1288 auto *Params = dyn_cast<MDTuple>(&RawParams); 1289 CheckDI(Params, "invalid template params", &N, &RawParams); 1290 for (Metadata *Op : Params->operands()) { 1291 CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", 1292 &N, Params, Op); 1293 } 1294 } 1295 1296 void Verifier::visitDICompositeType(const DICompositeType &N) { 1297 // Common scope checks. 1298 visitDIScope(N); 1299 1300 CheckDI(N.getTag() == dwarf::DW_TAG_array_type || 1301 N.getTag() == dwarf::DW_TAG_structure_type || 1302 N.getTag() == dwarf::DW_TAG_union_type || 1303 N.getTag() == dwarf::DW_TAG_enumeration_type || 1304 N.getTag() == dwarf::DW_TAG_class_type || 1305 N.getTag() == dwarf::DW_TAG_variant_part || 1306 N.getTag() == dwarf::DW_TAG_namelist, 1307 "invalid tag", &N); 1308 1309 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1310 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N, 1311 N.getRawBaseType()); 1312 1313 CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), 1314 "invalid composite elements", &N, N.getRawElements()); 1315 CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, 1316 N.getRawVTableHolder()); 1317 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1318 "invalid reference flags", &N); 1319 unsigned DIBlockByRefStruct = 1 << 4; 1320 CheckDI((N.getFlags() & DIBlockByRefStruct) == 0, 1321 "DIBlockByRefStruct on DICompositeType is no longer supported", &N); 1322 CheckDI(llvm::all_of(N.getElements(), [](const DINode *N) { return N; }), 1323 "DISubprogram contains null entry in `elements` field", &N); 1324 1325 if (N.isVector()) { 1326 const DINodeArray Elements = N.getElements(); 1327 CheckDI(Elements.size() == 1 && 1328 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, 1329 "invalid vector, expected one element of type subrange", &N); 1330 } 1331 1332 if (auto *Params = N.getRawTemplateParams()) 1333 visitTemplateParams(N, *Params); 1334 1335 if (auto *D = N.getRawDiscriminator()) { 1336 CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, 1337 "discriminator can only appear on variant part"); 1338 } 1339 1340 if (N.getRawDataLocation()) { 1341 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1342 "dataLocation can only appear in array type"); 1343 } 1344 1345 if (N.getRawAssociated()) { 1346 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1347 "associated can only appear in array type"); 1348 } 1349 1350 if (N.getRawAllocated()) { 1351 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1352 "allocated can only appear in array type"); 1353 } 1354 1355 if (N.getRawRank()) { 1356 CheckDI(N.getTag() == dwarf::DW_TAG_array_type, 1357 "rank can only appear in array type"); 1358 } 1359 1360 if (N.getTag() == dwarf::DW_TAG_array_type) { 1361 CheckDI(N.getRawBaseType(), "array types must have a base type", &N); 1362 } 1363 } 1364 1365 void Verifier::visitDISubroutineType(const DISubroutineType &N) { 1366 CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); 1367 if (auto *Types = N.getRawTypeArray()) { 1368 CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); 1369 for (Metadata *Ty : N.getTypeArray()->operands()) { 1370 CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); 1371 } 1372 } 1373 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1374 "invalid reference flags", &N); 1375 } 1376 1377 void Verifier::visitDIFile(const DIFile &N) { 1378 CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); 1379 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); 1380 if (Checksum) { 1381 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, 1382 "invalid checksum kind", &N); 1383 size_t Size; 1384 switch (Checksum->Kind) { 1385 case DIFile::CSK_MD5: 1386 Size = 32; 1387 break; 1388 case DIFile::CSK_SHA1: 1389 Size = 40; 1390 break; 1391 case DIFile::CSK_SHA256: 1392 Size = 64; 1393 break; 1394 } 1395 CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N); 1396 CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, 1397 "invalid checksum", &N); 1398 } 1399 } 1400 1401 void Verifier::visitDICompileUnit(const DICompileUnit &N) { 1402 CheckDI(N.isDistinct(), "compile units must be distinct", &N); 1403 CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); 1404 1405 // Don't bother verifying the compilation directory or producer string 1406 // as those could be empty. 1407 CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, 1408 N.getRawFile()); 1409 CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, 1410 N.getFile()); 1411 1412 CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), 1413 "invalid emission kind", &N); 1414 1415 if (auto *Array = N.getRawEnumTypes()) { 1416 CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); 1417 for (Metadata *Op : N.getEnumTypes()->operands()) { 1418 auto *Enum = dyn_cast_or_null<DICompositeType>(Op); 1419 CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, 1420 "invalid enum type", &N, N.getEnumTypes(), Op); 1421 } 1422 } 1423 if (auto *Array = N.getRawRetainedTypes()) { 1424 CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); 1425 for (Metadata *Op : N.getRetainedTypes()->operands()) { 1426 CheckDI( 1427 Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) && 1428 !cast<DISubprogram>(Op)->isDefinition())), 1429 "invalid retained type", &N, Op); 1430 } 1431 } 1432 if (auto *Array = N.getRawGlobalVariables()) { 1433 CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); 1434 for (Metadata *Op : N.getGlobalVariables()->operands()) { 1435 CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)), 1436 "invalid global variable ref", &N, Op); 1437 } 1438 } 1439 if (auto *Array = N.getRawImportedEntities()) { 1440 CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); 1441 for (Metadata *Op : N.getImportedEntities()->operands()) { 1442 CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", 1443 &N, Op); 1444 } 1445 } 1446 if (auto *Array = N.getRawMacros()) { 1447 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1448 for (Metadata *Op : N.getMacros()->operands()) { 1449 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1450 } 1451 } 1452 CUVisited.insert(&N); 1453 } 1454 1455 void Verifier::visitDISubprogram(const DISubprogram &N) { 1456 CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); 1457 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); 1458 if (auto *F = N.getRawFile()) 1459 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1460 else 1461 CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); 1462 if (auto *T = N.getRawType()) 1463 CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); 1464 CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N, 1465 N.getRawContainingType()); 1466 if (auto *Params = N.getRawTemplateParams()) 1467 visitTemplateParams(N, *Params); 1468 if (auto *S = N.getRawDeclaration()) 1469 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), 1470 "invalid subprogram declaration", &N, S); 1471 if (auto *RawNode = N.getRawRetainedNodes()) { 1472 auto *Node = dyn_cast<MDTuple>(RawNode); 1473 CheckDI(Node, "invalid retained nodes list", &N, RawNode); 1474 for (Metadata *Op : Node->operands()) { 1475 CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) || 1476 isa<DIImportedEntity>(Op)), 1477 "invalid retained nodes, expected DILocalVariable, DILabel or " 1478 "DIImportedEntity", 1479 &N, Node, Op); 1480 } 1481 } 1482 CheckDI(!hasConflictingReferenceFlags(N.getFlags()), 1483 "invalid reference flags", &N); 1484 1485 auto *Unit = N.getRawUnit(); 1486 if (N.isDefinition()) { 1487 // Subprogram definitions (not part of the type hierarchy). 1488 CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N); 1489 CheckDI(Unit, "subprogram definitions must have a compile unit", &N); 1490 CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); 1491 // There's no good way to cross the CU boundary to insert a nested 1492 // DISubprogram definition in one CU into a type defined in another CU. 1493 auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope()); 1494 if (CT && CT->getRawIdentifier() && 1495 M.getContext().isODRUniquingDebugTypes()) 1496 CheckDI(N.getDeclaration(), 1497 "definition subprograms cannot be nested within DICompositeType " 1498 "when enabling ODR", 1499 &N); 1500 } else { 1501 // Subprogram declarations (part of the type hierarchy). 1502 CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N); 1503 CheckDI(!N.getRawDeclaration(), 1504 "subprogram declaration must not have a declaration field"); 1505 } 1506 1507 if (auto *RawThrownTypes = N.getRawThrownTypes()) { 1508 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); 1509 CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); 1510 for (Metadata *Op : ThrownTypes->operands()) 1511 CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, 1512 Op); 1513 } 1514 1515 if (N.areAllCallsDescribed()) 1516 CheckDI(N.isDefinition(), 1517 "DIFlagAllCallsDescribed must be attached to a definition"); 1518 } 1519 1520 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { 1521 CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); 1522 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1523 "invalid local scope", &N, N.getRawScope()); 1524 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) 1525 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N); 1526 } 1527 1528 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { 1529 visitDILexicalBlockBase(N); 1530 1531 CheckDI(N.getLine() || !N.getColumn(), 1532 "cannot have column info without line info", &N); 1533 } 1534 1535 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { 1536 visitDILexicalBlockBase(N); 1537 } 1538 1539 void Verifier::visitDICommonBlock(const DICommonBlock &N) { 1540 CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); 1541 if (auto *S = N.getRawScope()) 1542 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1543 if (auto *S = N.getRawDecl()) 1544 CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); 1545 } 1546 1547 void Verifier::visitDINamespace(const DINamespace &N) { 1548 CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); 1549 if (auto *S = N.getRawScope()) 1550 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S); 1551 } 1552 1553 void Verifier::visitDIMacro(const DIMacro &N) { 1554 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || 1555 N.getMacinfoType() == dwarf::DW_MACINFO_undef, 1556 "invalid macinfo type", &N); 1557 CheckDI(!N.getName().empty(), "anonymous macro", &N); 1558 if (!N.getValue().empty()) { 1559 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); 1560 } 1561 } 1562 1563 void Verifier::visitDIMacroFile(const DIMacroFile &N) { 1564 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, 1565 "invalid macinfo type", &N); 1566 if (auto *F = N.getRawFile()) 1567 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1568 1569 if (auto *Array = N.getRawElements()) { 1570 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); 1571 for (Metadata *Op : N.getElements()->operands()) { 1572 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); 1573 } 1574 } 1575 } 1576 1577 void Verifier::visitDIModule(const DIModule &N) { 1578 CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); 1579 CheckDI(!N.getName().empty(), "anonymous module", &N); 1580 } 1581 1582 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { 1583 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1584 } 1585 1586 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { 1587 visitDITemplateParameter(N); 1588 1589 CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", 1590 &N); 1591 } 1592 1593 void Verifier::visitDITemplateValueParameter( 1594 const DITemplateValueParameter &N) { 1595 visitDITemplateParameter(N); 1596 1597 CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || 1598 N.getTag() == dwarf::DW_TAG_GNU_template_template_param || 1599 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, 1600 "invalid tag", &N); 1601 } 1602 1603 void Verifier::visitDIVariable(const DIVariable &N) { 1604 if (auto *S = N.getRawScope()) 1605 CheckDI(isa<DIScope>(S), "invalid scope", &N, S); 1606 if (auto *F = N.getRawFile()) 1607 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1608 } 1609 1610 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { 1611 // Checks common to all variables. 1612 visitDIVariable(N); 1613 1614 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1615 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1616 // Check only if the global variable is not an extern 1617 if (N.isDefinition()) 1618 CheckDI(N.getType(), "missing global variable type", &N); 1619 if (auto *Member = N.getRawStaticDataMemberDeclaration()) { 1620 CheckDI(isa<DIDerivedType>(Member), 1621 "invalid static data member declaration", &N, Member); 1622 } 1623 } 1624 1625 void Verifier::visitDILocalVariable(const DILocalVariable &N) { 1626 // Checks common to all variables. 1627 visitDIVariable(N); 1628 1629 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); 1630 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); 1631 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1632 "local variable requires a valid scope", &N, N.getRawScope()); 1633 if (auto Ty = N.getType()) 1634 CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); 1635 } 1636 1637 void Verifier::visitDIAssignID(const DIAssignID &N) { 1638 CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N); 1639 CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N); 1640 } 1641 1642 void Verifier::visitDILabel(const DILabel &N) { 1643 if (auto *S = N.getRawScope()) 1644 CheckDI(isa<DIScope>(S), "invalid scope", &N, S); 1645 if (auto *F = N.getRawFile()) 1646 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1647 1648 CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); 1649 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), 1650 "label requires a valid scope", &N, N.getRawScope()); 1651 } 1652 1653 void Verifier::visitDIExpression(const DIExpression &N) { 1654 CheckDI(N.isValid(), "invalid expression", &N); 1655 } 1656 1657 void Verifier::visitDIGlobalVariableExpression( 1658 const DIGlobalVariableExpression &GVE) { 1659 CheckDI(GVE.getVariable(), "missing variable"); 1660 if (auto *Var = GVE.getVariable()) 1661 visitDIGlobalVariable(*Var); 1662 if (auto *Expr = GVE.getExpression()) { 1663 visitDIExpression(*Expr); 1664 if (auto Fragment = Expr->getFragmentInfo()) 1665 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); 1666 } 1667 } 1668 1669 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { 1670 CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); 1671 if (auto *T = N.getRawType()) 1672 CheckDI(isType(T), "invalid type ref", &N, T); 1673 if (auto *F = N.getRawFile()) 1674 CheckDI(isa<DIFile>(F), "invalid file", &N, F); 1675 } 1676 1677 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { 1678 CheckDI(N.getTag() == dwarf::DW_TAG_imported_module || 1679 N.getTag() == dwarf::DW_TAG_imported_declaration, 1680 "invalid tag", &N); 1681 if (auto *S = N.getRawScope()) 1682 CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); 1683 CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, 1684 N.getRawEntity()); 1685 } 1686 1687 void Verifier::visitComdat(const Comdat &C) { 1688 // In COFF the Module is invalid if the GlobalValue has private linkage. 1689 // Entities with private linkage don't have entries in the symbol table. 1690 if (TT.isOSBinFormatCOFF()) 1691 if (const GlobalValue *GV = M.getNamedValue(C.getName())) 1692 Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage", 1693 GV); 1694 } 1695 1696 void Verifier::visitModuleIdents() { 1697 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); 1698 if (!Idents) 1699 return; 1700 1701 // llvm.ident takes a list of metadata entry. Each entry has only one string. 1702 // Scan each llvm.ident entry and make sure that this requirement is met. 1703 for (const MDNode *N : Idents->operands()) { 1704 Check(N->getNumOperands() == 1, 1705 "incorrect number of operands in llvm.ident metadata", N); 1706 Check(dyn_cast_or_null<MDString>(N->getOperand(0)), 1707 ("invalid value for llvm.ident metadata entry operand" 1708 "(the operand should be a string)"), 1709 N->getOperand(0)); 1710 } 1711 } 1712 1713 void Verifier::visitModuleCommandLines() { 1714 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); 1715 if (!CommandLines) 1716 return; 1717 1718 // llvm.commandline takes a list of metadata entry. Each entry has only one 1719 // string. Scan each llvm.commandline entry and make sure that this 1720 // requirement is met. 1721 for (const MDNode *N : CommandLines->operands()) { 1722 Check(N->getNumOperands() == 1, 1723 "incorrect number of operands in llvm.commandline metadata", N); 1724 Check(dyn_cast_or_null<MDString>(N->getOperand(0)), 1725 ("invalid value for llvm.commandline metadata entry operand" 1726 "(the operand should be a string)"), 1727 N->getOperand(0)); 1728 } 1729 } 1730 1731 void Verifier::visitModuleFlags() { 1732 const NamedMDNode *Flags = M.getModuleFlagsMetadata(); 1733 if (!Flags) return; 1734 1735 // Scan each flag, and track the flags and requirements. 1736 DenseMap<const MDString*, const MDNode*> SeenIDs; 1737 SmallVector<const MDNode*, 16> Requirements; 1738 uint64_t PAuthABIPlatform = -1; 1739 uint64_t PAuthABIVersion = -1; 1740 for (const MDNode *MDN : Flags->operands()) { 1741 visitModuleFlag(MDN, SeenIDs, Requirements); 1742 if (MDN->getNumOperands() != 3) 1743 continue; 1744 if (const auto *FlagName = dyn_cast_or_null<MDString>(MDN->getOperand(1))) { 1745 if (FlagName->getString() == "aarch64-elf-pauthabi-platform") { 1746 if (const auto *PAP = 1747 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2))) 1748 PAuthABIPlatform = PAP->getZExtValue(); 1749 } else if (FlagName->getString() == "aarch64-elf-pauthabi-version") { 1750 if (const auto *PAV = 1751 mdconst::dyn_extract_or_null<ConstantInt>(MDN->getOperand(2))) 1752 PAuthABIVersion = PAV->getZExtValue(); 1753 } 1754 } 1755 } 1756 1757 if ((PAuthABIPlatform == uint64_t(-1)) != (PAuthABIVersion == uint64_t(-1))) 1758 CheckFailed("either both or no 'aarch64-elf-pauthabi-platform' and " 1759 "'aarch64-elf-pauthabi-version' module flags must be present"); 1760 1761 // Validate that the requirements in the module are valid. 1762 for (const MDNode *Requirement : Requirements) { 1763 const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); 1764 const Metadata *ReqValue = Requirement->getOperand(1); 1765 1766 const MDNode *Op = SeenIDs.lookup(Flag); 1767 if (!Op) { 1768 CheckFailed("invalid requirement on flag, flag is not present in module", 1769 Flag); 1770 continue; 1771 } 1772 1773 if (Op->getOperand(2) != ReqValue) { 1774 CheckFailed(("invalid requirement on flag, " 1775 "flag does not have the required value"), 1776 Flag); 1777 continue; 1778 } 1779 } 1780 } 1781 1782 void 1783 Verifier::visitModuleFlag(const MDNode *Op, 1784 DenseMap<const MDString *, const MDNode *> &SeenIDs, 1785 SmallVectorImpl<const MDNode *> &Requirements) { 1786 // Each module flag should have three arguments, the merge behavior (a 1787 // constant int), the flag ID (an MDString), and the value. 1788 Check(Op->getNumOperands() == 3, 1789 "incorrect number of operands in module flag", Op); 1790 Module::ModFlagBehavior MFB; 1791 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { 1792 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), 1793 "invalid behavior operand in module flag (expected constant integer)", 1794 Op->getOperand(0)); 1795 Check(false, 1796 "invalid behavior operand in module flag (unexpected constant)", 1797 Op->getOperand(0)); 1798 } 1799 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); 1800 Check(ID, "invalid ID operand in module flag (expected metadata string)", 1801 Op->getOperand(1)); 1802 1803 // Check the values for behaviors with additional requirements. 1804 switch (MFB) { 1805 case Module::Error: 1806 case Module::Warning: 1807 case Module::Override: 1808 // These behavior types accept any value. 1809 break; 1810 1811 case Module::Min: { 1812 auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1813 Check(V && V->getValue().isNonNegative(), 1814 "invalid value for 'min' module flag (expected constant non-negative " 1815 "integer)", 1816 Op->getOperand(2)); 1817 break; 1818 } 1819 1820 case Module::Max: { 1821 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), 1822 "invalid value for 'max' module flag (expected constant integer)", 1823 Op->getOperand(2)); 1824 break; 1825 } 1826 1827 case Module::Require: { 1828 // The value should itself be an MDNode with two operands, a flag ID (an 1829 // MDString), and a value. 1830 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); 1831 Check(Value && Value->getNumOperands() == 2, 1832 "invalid value for 'require' module flag (expected metadata pair)", 1833 Op->getOperand(2)); 1834 Check(isa<MDString>(Value->getOperand(0)), 1835 ("invalid value for 'require' module flag " 1836 "(first value operand should be a string)"), 1837 Value->getOperand(0)); 1838 1839 // Append it to the list of requirements, to check once all module flags are 1840 // scanned. 1841 Requirements.push_back(Value); 1842 break; 1843 } 1844 1845 case Module::Append: 1846 case Module::AppendUnique: { 1847 // These behavior types require the operand be an MDNode. 1848 Check(isa<MDNode>(Op->getOperand(2)), 1849 "invalid value for 'append'-type module flag " 1850 "(expected a metadata node)", 1851 Op->getOperand(2)); 1852 break; 1853 } 1854 } 1855 1856 // Unless this is a "requires" flag, check the ID is unique. 1857 if (MFB != Module::Require) { 1858 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; 1859 Check(Inserted, 1860 "module flag identifiers must be unique (or of 'require' type)", ID); 1861 } 1862 1863 if (ID->getString() == "wchar_size") { 1864 ConstantInt *Value 1865 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1866 Check(Value, "wchar_size metadata requires constant integer argument"); 1867 } 1868 1869 if (ID->getString() == "Linker Options") { 1870 // If the llvm.linker.options named metadata exists, we assume that the 1871 // bitcode reader has upgraded the module flag. Otherwise the flag might 1872 // have been created by a client directly. 1873 Check(M.getNamedMetadata("llvm.linker.options"), 1874 "'Linker Options' named metadata no longer supported"); 1875 } 1876 1877 if (ID->getString() == "SemanticInterposition") { 1878 ConstantInt *Value = 1879 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); 1880 Check(Value, 1881 "SemanticInterposition metadata requires constant integer argument"); 1882 } 1883 1884 if (ID->getString() == "CG Profile") { 1885 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) 1886 visitModuleFlagCGProfileEntry(MDO); 1887 } 1888 } 1889 1890 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { 1891 auto CheckFunction = [&](const MDOperand &FuncMDO) { 1892 if (!FuncMDO) 1893 return; 1894 auto F = dyn_cast<ValueAsMetadata>(FuncMDO); 1895 Check(F && isa<Function>(F->getValue()->stripPointerCasts()), 1896 "expected a Function or null", FuncMDO); 1897 }; 1898 auto Node = dyn_cast_or_null<MDNode>(MDO); 1899 Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); 1900 CheckFunction(Node->getOperand(0)); 1901 CheckFunction(Node->getOperand(1)); 1902 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); 1903 Check(Count && Count->getType()->isIntegerTy(), 1904 "expected an integer constant", Node->getOperand(2)); 1905 } 1906 1907 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { 1908 for (Attribute A : Attrs) { 1909 1910 if (A.isStringAttribute()) { 1911 #define GET_ATTR_NAMES 1912 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) 1913 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ 1914 if (A.getKindAsString() == #DISPLAY_NAME) { \ 1915 auto V = A.getValueAsString(); \ 1916 if (!(V.empty() || V == "true" || V == "false")) \ 1917 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ 1918 ""); \ 1919 } 1920 1921 #include "llvm/IR/Attributes.inc" 1922 continue; 1923 } 1924 1925 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { 1926 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", 1927 V); 1928 return; 1929 } 1930 } 1931 } 1932 1933 // VerifyParameterAttrs - Check the given attributes for an argument or return 1934 // value of the specified type. The value V is printed in error messages. 1935 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, 1936 const Value *V) { 1937 if (!Attrs.hasAttributes()) 1938 return; 1939 1940 verifyAttributeTypes(Attrs, V); 1941 1942 for (Attribute Attr : Attrs) 1943 Check(Attr.isStringAttribute() || 1944 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), 1945 "Attribute '" + Attr.getAsString() + "' does not apply to parameters", 1946 V); 1947 1948 if (Attrs.hasAttribute(Attribute::ImmArg)) { 1949 Check(Attrs.getNumAttributes() == 1, 1950 "Attribute 'immarg' is incompatible with other attributes", V); 1951 } 1952 1953 // Check for mutually incompatible attributes. Only inreg is compatible with 1954 // sret. 1955 unsigned AttrCount = 0; 1956 AttrCount += Attrs.hasAttribute(Attribute::ByVal); 1957 AttrCount += Attrs.hasAttribute(Attribute::InAlloca); 1958 AttrCount += Attrs.hasAttribute(Attribute::Preallocated); 1959 AttrCount += Attrs.hasAttribute(Attribute::StructRet) || 1960 Attrs.hasAttribute(Attribute::InReg); 1961 AttrCount += Attrs.hasAttribute(Attribute::Nest); 1962 AttrCount += Attrs.hasAttribute(Attribute::ByRef); 1963 Check(AttrCount <= 1, 1964 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " 1965 "'byref', and 'sret' are incompatible!", 1966 V); 1967 1968 Check(!(Attrs.hasAttribute(Attribute::InAlloca) && 1969 Attrs.hasAttribute(Attribute::ReadOnly)), 1970 "Attributes " 1971 "'inalloca and readonly' are incompatible!", 1972 V); 1973 1974 Check(!(Attrs.hasAttribute(Attribute::StructRet) && 1975 Attrs.hasAttribute(Attribute::Returned)), 1976 "Attributes " 1977 "'sret and returned' are incompatible!", 1978 V); 1979 1980 Check(!(Attrs.hasAttribute(Attribute::ZExt) && 1981 Attrs.hasAttribute(Attribute::SExt)), 1982 "Attributes " 1983 "'zeroext and signext' are incompatible!", 1984 V); 1985 1986 Check(!(Attrs.hasAttribute(Attribute::ReadNone) && 1987 Attrs.hasAttribute(Attribute::ReadOnly)), 1988 "Attributes " 1989 "'readnone and readonly' are incompatible!", 1990 V); 1991 1992 Check(!(Attrs.hasAttribute(Attribute::ReadNone) && 1993 Attrs.hasAttribute(Attribute::WriteOnly)), 1994 "Attributes " 1995 "'readnone and writeonly' are incompatible!", 1996 V); 1997 1998 Check(!(Attrs.hasAttribute(Attribute::ReadOnly) && 1999 Attrs.hasAttribute(Attribute::WriteOnly)), 2000 "Attributes " 2001 "'readonly and writeonly' are incompatible!", 2002 V); 2003 2004 Check(!(Attrs.hasAttribute(Attribute::NoInline) && 2005 Attrs.hasAttribute(Attribute::AlwaysInline)), 2006 "Attributes " 2007 "'noinline and alwaysinline' are incompatible!", 2008 V); 2009 2010 Check(!(Attrs.hasAttribute(Attribute::Writable) && 2011 Attrs.hasAttribute(Attribute::ReadNone)), 2012 "Attributes writable and readnone are incompatible!", V); 2013 2014 Check(!(Attrs.hasAttribute(Attribute::Writable) && 2015 Attrs.hasAttribute(Attribute::ReadOnly)), 2016 "Attributes writable and readonly are incompatible!", V); 2017 2018 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty, Attrs); 2019 for (Attribute Attr : Attrs) { 2020 if (!Attr.isStringAttribute() && 2021 IncompatibleAttrs.contains(Attr.getKindAsEnum())) { 2022 CheckFailed("Attribute '" + Attr.getAsString() + 2023 "' applied to incompatible type!", V); 2024 return; 2025 } 2026 } 2027 2028 if (isa<PointerType>(Ty)) { 2029 if (Attrs.hasAttribute(Attribute::Alignment)) { 2030 Align AttrAlign = Attrs.getAlignment().valueOrOne(); 2031 Check(AttrAlign.value() <= Value::MaximumAlignment, 2032 "huge alignment values are unsupported", V); 2033 } 2034 if (Attrs.hasAttribute(Attribute::ByVal)) { 2035 Type *ByValTy = Attrs.getByValType(); 2036 SmallPtrSet<Type *, 4> Visited; 2037 Check(ByValTy->isSized(&Visited), 2038 "Attribute 'byval' does not support unsized types!", V); 2039 // Check if it is or contains a target extension type that disallows being 2040 // used on the stack. 2041 Check(!ByValTy->containsNonLocalTargetExtType(), 2042 "'byval' argument has illegal target extension type", V); 2043 Check(DL.getTypeAllocSize(ByValTy).getKnownMinValue() < (1ULL << 32), 2044 "huge 'byval' arguments are unsupported", V); 2045 } 2046 if (Attrs.hasAttribute(Attribute::ByRef)) { 2047 SmallPtrSet<Type *, 4> Visited; 2048 Check(Attrs.getByRefType()->isSized(&Visited), 2049 "Attribute 'byref' does not support unsized types!", V); 2050 Check(DL.getTypeAllocSize(Attrs.getByRefType()).getKnownMinValue() < 2051 (1ULL << 32), 2052 "huge 'byref' arguments are unsupported", V); 2053 } 2054 if (Attrs.hasAttribute(Attribute::InAlloca)) { 2055 SmallPtrSet<Type *, 4> Visited; 2056 Check(Attrs.getInAllocaType()->isSized(&Visited), 2057 "Attribute 'inalloca' does not support unsized types!", V); 2058 Check(DL.getTypeAllocSize(Attrs.getInAllocaType()).getKnownMinValue() < 2059 (1ULL << 32), 2060 "huge 'inalloca' arguments are unsupported", V); 2061 } 2062 if (Attrs.hasAttribute(Attribute::Preallocated)) { 2063 SmallPtrSet<Type *, 4> Visited; 2064 Check(Attrs.getPreallocatedType()->isSized(&Visited), 2065 "Attribute 'preallocated' does not support unsized types!", V); 2066 Check( 2067 DL.getTypeAllocSize(Attrs.getPreallocatedType()).getKnownMinValue() < 2068 (1ULL << 32), 2069 "huge 'preallocated' arguments are unsupported", V); 2070 } 2071 } 2072 2073 if (Attrs.hasAttribute(Attribute::Initializes)) { 2074 auto Inits = Attrs.getAttribute(Attribute::Initializes).getInitializes(); 2075 Check(!Inits.empty(), "Attribute 'initializes' does not support empty list", 2076 V); 2077 Check(ConstantRangeList::isOrderedRanges(Inits), 2078 "Attribute 'initializes' does not support unordered ranges", V); 2079 } 2080 2081 if (Attrs.hasAttribute(Attribute::NoFPClass)) { 2082 uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt(); 2083 Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set", 2084 V); 2085 Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0, 2086 "Invalid value for 'nofpclass' test mask", V); 2087 } 2088 if (Attrs.hasAttribute(Attribute::Range)) { 2089 const ConstantRange &CR = 2090 Attrs.getAttribute(Attribute::Range).getValueAsConstantRange(); 2091 Check(Ty->isIntOrIntVectorTy(CR.getBitWidth()), 2092 "Range bit width must match type bit width!", V); 2093 } 2094 } 2095 2096 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, 2097 const Value *V) { 2098 if (Attrs.hasFnAttr(Attr)) { 2099 StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); 2100 unsigned N; 2101 if (S.getAsInteger(10, N)) 2102 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); 2103 } 2104 } 2105 2106 // Check parameter attributes against a function type. 2107 // The value V is printed in error messages. 2108 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, 2109 const Value *V, bool IsIntrinsic, 2110 bool IsInlineAsm) { 2111 if (Attrs.isEmpty()) 2112 return; 2113 2114 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { 2115 Check(Attrs.hasParentContext(Context), 2116 "Attribute list does not match Module context!", &Attrs, V); 2117 for (const auto &AttrSet : Attrs) { 2118 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), 2119 "Attribute set does not match Module context!", &AttrSet, V); 2120 for (const auto &A : AttrSet) { 2121 Check(A.hasParentContext(Context), 2122 "Attribute does not match Module context!", &A, V); 2123 } 2124 } 2125 } 2126 2127 bool SawNest = false; 2128 bool SawReturned = false; 2129 bool SawSRet = false; 2130 bool SawSwiftSelf = false; 2131 bool SawSwiftAsync = false; 2132 bool SawSwiftError = false; 2133 2134 // Verify return value attributes. 2135 AttributeSet RetAttrs = Attrs.getRetAttrs(); 2136 for (Attribute RetAttr : RetAttrs) 2137 Check(RetAttr.isStringAttribute() || 2138 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), 2139 "Attribute '" + RetAttr.getAsString() + 2140 "' does not apply to function return values", 2141 V); 2142 2143 unsigned MaxParameterWidth = 0; 2144 auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) { 2145 if (Ty->isVectorTy()) { 2146 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) { 2147 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue(); 2148 if (Size > MaxParameterWidth) 2149 MaxParameterWidth = Size; 2150 } 2151 } 2152 }; 2153 GetMaxParameterWidth(FT->getReturnType()); 2154 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); 2155 2156 // Verify parameter attributes. 2157 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 2158 Type *Ty = FT->getParamType(i); 2159 AttributeSet ArgAttrs = Attrs.getParamAttrs(i); 2160 2161 if (!IsIntrinsic) { 2162 Check(!ArgAttrs.hasAttribute(Attribute::ImmArg), 2163 "immarg attribute only applies to intrinsics", V); 2164 if (!IsInlineAsm) 2165 Check(!ArgAttrs.hasAttribute(Attribute::ElementType), 2166 "Attribute 'elementtype' can only be applied to intrinsics" 2167 " and inline asm.", 2168 V); 2169 } 2170 2171 verifyParameterAttrs(ArgAttrs, Ty, V); 2172 GetMaxParameterWidth(Ty); 2173 2174 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 2175 Check(!SawNest, "More than one parameter has attribute nest!", V); 2176 SawNest = true; 2177 } 2178 2179 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 2180 Check(!SawReturned, "More than one parameter has attribute returned!", V); 2181 Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()), 2182 "Incompatible argument and return types for 'returned' attribute", 2183 V); 2184 SawReturned = true; 2185 } 2186 2187 if (ArgAttrs.hasAttribute(Attribute::StructRet)) { 2188 Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V); 2189 Check(i == 0 || i == 1, 2190 "Attribute 'sret' is not on first or second parameter!", V); 2191 SawSRet = true; 2192 } 2193 2194 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { 2195 Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); 2196 SawSwiftSelf = true; 2197 } 2198 2199 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { 2200 Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); 2201 SawSwiftAsync = true; 2202 } 2203 2204 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { 2205 Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V); 2206 SawSwiftError = true; 2207 } 2208 2209 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { 2210 Check(i == FT->getNumParams() - 1, 2211 "inalloca isn't on the last parameter!", V); 2212 } 2213 } 2214 2215 if (!Attrs.hasFnAttrs()) 2216 return; 2217 2218 verifyAttributeTypes(Attrs.getFnAttrs(), V); 2219 for (Attribute FnAttr : Attrs.getFnAttrs()) 2220 Check(FnAttr.isStringAttribute() || 2221 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), 2222 "Attribute '" + FnAttr.getAsString() + 2223 "' does not apply to functions!", 2224 V); 2225 2226 Check(!(Attrs.hasFnAttr(Attribute::NoInline) && 2227 Attrs.hasFnAttr(Attribute::AlwaysInline)), 2228 "Attributes 'noinline and alwaysinline' are incompatible!", V); 2229 2230 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { 2231 Check(Attrs.hasFnAttr(Attribute::NoInline), 2232 "Attribute 'optnone' requires 'noinline'!", V); 2233 2234 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 2235 "Attributes 'optsize and optnone' are incompatible!", V); 2236 2237 Check(!Attrs.hasFnAttr(Attribute::MinSize), 2238 "Attributes 'minsize and optnone' are incompatible!", V); 2239 2240 Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging), 2241 "Attributes 'optdebug and optnone' are incompatible!", V); 2242 } 2243 2244 Check(!(Attrs.hasFnAttr(Attribute::SanitizeRealtime) && 2245 Attrs.hasFnAttr(Attribute::SanitizeRealtimeBlocking)), 2246 "Attributes " 2247 "'sanitize_realtime and sanitize_realtime_blocking' are incompatible!", 2248 V); 2249 2250 if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) { 2251 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize), 2252 "Attributes 'optsize and optdebug' are incompatible!", V); 2253 2254 Check(!Attrs.hasFnAttr(Attribute::MinSize), 2255 "Attributes 'minsize and optdebug' are incompatible!", V); 2256 } 2257 2258 Check(!Attrs.hasAttrSomewhere(Attribute::Writable) || 2259 isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)), 2260 "Attribute writable and memory without argmem: write are incompatible!", 2261 V); 2262 2263 if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) { 2264 Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"), 2265 "Attributes 'aarch64_pstate_sm_enabled and " 2266 "aarch64_pstate_sm_compatible' are incompatible!", 2267 V); 2268 } 2269 2270 Check((Attrs.hasFnAttr("aarch64_new_za") + Attrs.hasFnAttr("aarch64_in_za") + 2271 Attrs.hasFnAttr("aarch64_inout_za") + 2272 Attrs.hasFnAttr("aarch64_out_za") + 2273 Attrs.hasFnAttr("aarch64_preserves_za") + 2274 Attrs.hasFnAttr("aarch64_za_state_agnostic")) <= 1, 2275 "Attributes 'aarch64_new_za', 'aarch64_in_za', 'aarch64_out_za', " 2276 "'aarch64_inout_za', 'aarch64_preserves_za' and " 2277 "'aarch64_za_state_agnostic' are mutually exclusive", 2278 V); 2279 2280 Check((Attrs.hasFnAttr("aarch64_new_zt0") + 2281 Attrs.hasFnAttr("aarch64_in_zt0") + 2282 Attrs.hasFnAttr("aarch64_inout_zt0") + 2283 Attrs.hasFnAttr("aarch64_out_zt0") + 2284 Attrs.hasFnAttr("aarch64_preserves_zt0") + 2285 Attrs.hasFnAttr("aarch64_za_state_agnostic")) <= 1, 2286 "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', " 2287 "'aarch64_inout_zt0', 'aarch64_preserves_zt0' and " 2288 "'aarch64_za_state_agnostic' are mutually exclusive", 2289 V); 2290 2291 if (Attrs.hasFnAttr(Attribute::JumpTable)) { 2292 const GlobalValue *GV = cast<GlobalValue>(V); 2293 Check(GV->hasGlobalUnnamedAddr(), 2294 "Attribute 'jumptable' requires 'unnamed_addr'", V); 2295 } 2296 2297 if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) { 2298 auto CheckParam = [&](StringRef Name, unsigned ParamNo) { 2299 if (ParamNo >= FT->getNumParams()) { 2300 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); 2301 return false; 2302 } 2303 2304 if (!FT->getParamType(ParamNo)->isIntegerTy()) { 2305 CheckFailed("'allocsize' " + Name + 2306 " argument must refer to an integer parameter", 2307 V); 2308 return false; 2309 } 2310 2311 return true; 2312 }; 2313 2314 if (!CheckParam("element size", Args->first)) 2315 return; 2316 2317 if (Args->second && !CheckParam("number of elements", *Args->second)) 2318 return; 2319 } 2320 2321 if (Attrs.hasFnAttr(Attribute::AllocKind)) { 2322 AllocFnKind K = Attrs.getAllocKind(); 2323 AllocFnKind Type = 2324 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free); 2325 if (!is_contained( 2326 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free}, 2327 Type)) 2328 CheckFailed( 2329 "'allockind()' requires exactly one of alloc, realloc, and free"); 2330 if ((Type == AllocFnKind::Free) && 2331 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed | 2332 AllocFnKind::Aligned)) != AllocFnKind::Unknown)) 2333 CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, " 2334 "or aligned modifiers."); 2335 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed; 2336 if ((K & ZeroedUninit) == ZeroedUninit) 2337 CheckFailed("'allockind()' can't be both zeroed and uninitialized"); 2338 } 2339 2340 if (Attrs.hasFnAttr(Attribute::VScaleRange)) { 2341 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin(); 2342 if (VScaleMin == 0) 2343 CheckFailed("'vscale_range' minimum must be greater than 0", V); 2344 else if (!isPowerOf2_32(VScaleMin)) 2345 CheckFailed("'vscale_range' minimum must be power-of-two value", V); 2346 std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax(); 2347 if (VScaleMax && VScaleMin > VScaleMax) 2348 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); 2349 else if (VScaleMax && !isPowerOf2_32(*VScaleMax)) 2350 CheckFailed("'vscale_range' maximum must be power-of-two value", V); 2351 } 2352 2353 if (Attrs.hasFnAttr("frame-pointer")) { 2354 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); 2355 if (FP != "all" && FP != "non-leaf" && FP != "none" && FP != "reserved") 2356 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); 2357 } 2358 2359 // Check EVEX512 feature. 2360 if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features") && 2361 TT.isX86()) { 2362 StringRef TF = Attrs.getFnAttr("target-features").getValueAsString(); 2363 Check(!TF.contains("+avx512f") || !TF.contains("-evex512"), 2364 "512-bit vector arguments require 'evex512' for AVX512", V); 2365 } 2366 2367 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); 2368 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); 2369 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); 2370 2371 if (auto A = Attrs.getFnAttr("sign-return-address"); A.isValid()) { 2372 StringRef S = A.getValueAsString(); 2373 if (S != "none" && S != "all" && S != "non-leaf") 2374 CheckFailed("invalid value for 'sign-return-address' attribute: " + S, V); 2375 } 2376 2377 if (auto A = Attrs.getFnAttr("sign-return-address-key"); A.isValid()) { 2378 StringRef S = A.getValueAsString(); 2379 if (S != "a_key" && S != "b_key") 2380 CheckFailed("invalid value for 'sign-return-address-key' attribute: " + S, 2381 V); 2382 if (auto AA = Attrs.getFnAttr("sign-return-address"); !AA.isValid()) { 2383 CheckFailed( 2384 "'sign-return-address-key' present without `sign-return-address`"); 2385 } 2386 } 2387 2388 if (auto A = Attrs.getFnAttr("branch-target-enforcement"); A.isValid()) { 2389 StringRef S = A.getValueAsString(); 2390 if (S != "" && S != "true" && S != "false") 2391 CheckFailed( 2392 "invalid value for 'branch-target-enforcement' attribute: " + S, V); 2393 } 2394 2395 if (auto A = Attrs.getFnAttr("branch-protection-pauth-lr"); A.isValid()) { 2396 StringRef S = A.getValueAsString(); 2397 if (S != "" && S != "true" && S != "false") 2398 CheckFailed( 2399 "invalid value for 'branch-protection-pauth-lr' attribute: " + S, V); 2400 } 2401 2402 if (auto A = Attrs.getFnAttr("guarded-control-stack"); A.isValid()) { 2403 StringRef S = A.getValueAsString(); 2404 if (S != "" && S != "true" && S != "false") 2405 CheckFailed("invalid value for 'guarded-control-stack' attribute: " + S, 2406 V); 2407 } 2408 2409 if (auto A = Attrs.getFnAttr("vector-function-abi-variant"); A.isValid()) { 2410 StringRef S = A.getValueAsString(); 2411 const std::optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, FT); 2412 if (!Info) 2413 CheckFailed("invalid name for a VFABI variant: " + S, V); 2414 } 2415 2416 if (auto A = Attrs.getFnAttr("denormal-fp-math"); A.isValid()) { 2417 StringRef S = A.getValueAsString(); 2418 if (!parseDenormalFPAttribute(S).isValid()) 2419 CheckFailed("invalid value for 'denormal-fp-math' attribute: " + S, V); 2420 } 2421 2422 if (auto A = Attrs.getFnAttr("denormal-fp-math-f32"); A.isValid()) { 2423 StringRef S = A.getValueAsString(); 2424 if (!parseDenormalFPAttribute(S).isValid()) 2425 CheckFailed("invalid value for 'denormal-fp-math-f32' attribute: " + S, 2426 V); 2427 } 2428 } 2429 2430 void Verifier::verifyFunctionMetadata( 2431 ArrayRef<std::pair<unsigned, MDNode *>> MDs) { 2432 for (const auto &Pair : MDs) { 2433 if (Pair.first == LLVMContext::MD_prof) { 2434 MDNode *MD = Pair.second; 2435 Check(MD->getNumOperands() >= 2, 2436 "!prof annotations should have no less than 2 operands", MD); 2437 2438 // Check first operand. 2439 Check(MD->getOperand(0) != nullptr, "first operand should not be null", 2440 MD); 2441 Check(isa<MDString>(MD->getOperand(0)), 2442 "expected string with name of the !prof annotation", MD); 2443 MDString *MDS = cast<MDString>(MD->getOperand(0)); 2444 StringRef ProfName = MDS->getString(); 2445 Check(ProfName == "function_entry_count" || 2446 ProfName == "synthetic_function_entry_count", 2447 "first operand should be 'function_entry_count'" 2448 " or 'synthetic_function_entry_count'", 2449 MD); 2450 2451 // Check second operand. 2452 Check(MD->getOperand(1) != nullptr, "second operand should not be null", 2453 MD); 2454 Check(isa<ConstantAsMetadata>(MD->getOperand(1)), 2455 "expected integer argument to function_entry_count", MD); 2456 } else if (Pair.first == LLVMContext::MD_kcfi_type) { 2457 MDNode *MD = Pair.second; 2458 Check(MD->getNumOperands() == 1, 2459 "!kcfi_type must have exactly one operand", MD); 2460 Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null", 2461 MD); 2462 Check(isa<ConstantAsMetadata>(MD->getOperand(0)), 2463 "expected a constant operand for !kcfi_type", MD); 2464 Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue(); 2465 Check(isa<ConstantInt>(C) && isa<IntegerType>(C->getType()), 2466 "expected a constant integer operand for !kcfi_type", MD); 2467 Check(cast<ConstantInt>(C)->getBitWidth() == 32, 2468 "expected a 32-bit integer constant operand for !kcfi_type", MD); 2469 } 2470 } 2471 } 2472 2473 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { 2474 if (!ConstantExprVisited.insert(EntryC).second) 2475 return; 2476 2477 SmallVector<const Constant *, 16> Stack; 2478 Stack.push_back(EntryC); 2479 2480 while (!Stack.empty()) { 2481 const Constant *C = Stack.pop_back_val(); 2482 2483 // Check this constant expression. 2484 if (const auto *CE = dyn_cast<ConstantExpr>(C)) 2485 visitConstantExpr(CE); 2486 2487 if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) 2488 visitConstantPtrAuth(CPA); 2489 2490 if (const auto *GV = dyn_cast<GlobalValue>(C)) { 2491 // Global Values get visited separately, but we do need to make sure 2492 // that the global value is in the correct module 2493 Check(GV->getParent() == &M, "Referencing global in another module!", 2494 EntryC, &M, GV, GV->getParent()); 2495 continue; 2496 } 2497 2498 // Visit all sub-expressions. 2499 for (const Use &U : C->operands()) { 2500 const auto *OpC = dyn_cast<Constant>(U); 2501 if (!OpC) 2502 continue; 2503 if (!ConstantExprVisited.insert(OpC).second) 2504 continue; 2505 Stack.push_back(OpC); 2506 } 2507 } 2508 } 2509 2510 void Verifier::visitConstantExpr(const ConstantExpr *CE) { 2511 if (CE->getOpcode() == Instruction::BitCast) 2512 Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), 2513 CE->getType()), 2514 "Invalid bitcast", CE); 2515 } 2516 2517 void Verifier::visitConstantPtrAuth(const ConstantPtrAuth *CPA) { 2518 Check(CPA->getPointer()->getType()->isPointerTy(), 2519 "signed ptrauth constant base pointer must have pointer type"); 2520 2521 Check(CPA->getType() == CPA->getPointer()->getType(), 2522 "signed ptrauth constant must have same type as its base pointer"); 2523 2524 Check(CPA->getKey()->getBitWidth() == 32, 2525 "signed ptrauth constant key must be i32 constant integer"); 2526 2527 Check(CPA->getAddrDiscriminator()->getType()->isPointerTy(), 2528 "signed ptrauth constant address discriminator must be a pointer"); 2529 2530 Check(CPA->getDiscriminator()->getBitWidth() == 64, 2531 "signed ptrauth constant discriminator must be i64 constant integer"); 2532 } 2533 2534 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { 2535 // There shouldn't be more attribute sets than there are parameters plus the 2536 // function and return value. 2537 return Attrs.getNumAttrSets() <= Params + 2; 2538 } 2539 2540 void Verifier::verifyInlineAsmCall(const CallBase &Call) { 2541 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 2542 unsigned ArgNo = 0; 2543 unsigned LabelNo = 0; 2544 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2545 if (CI.Type == InlineAsm::isLabel) { 2546 ++LabelNo; 2547 continue; 2548 } 2549 2550 // Only deal with constraints that correspond to call arguments. 2551 if (!CI.hasArg()) 2552 continue; 2553 2554 if (CI.isIndirect) { 2555 const Value *Arg = Call.getArgOperand(ArgNo); 2556 Check(Arg->getType()->isPointerTy(), 2557 "Operand for indirect constraint must have pointer type", &Call); 2558 2559 Check(Call.getParamElementType(ArgNo), 2560 "Operand for indirect constraint must have elementtype attribute", 2561 &Call); 2562 } else { 2563 Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType), 2564 "Elementtype attribute can only be applied for indirect " 2565 "constraints", 2566 &Call); 2567 } 2568 2569 ArgNo++; 2570 } 2571 2572 if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) { 2573 Check(LabelNo == CallBr->getNumIndirectDests(), 2574 "Number of label constraints does not match number of callbr dests", 2575 &Call); 2576 } else { 2577 Check(LabelNo == 0, "Label constraints can only be used with callbr", 2578 &Call); 2579 } 2580 } 2581 2582 /// Verify that statepoint intrinsic is well formed. 2583 void Verifier::verifyStatepoint(const CallBase &Call) { 2584 assert(Call.getCalledFunction() && 2585 Call.getCalledFunction()->getIntrinsicID() == 2586 Intrinsic::experimental_gc_statepoint); 2587 2588 Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && 2589 !Call.onlyAccessesArgMemory(), 2590 "gc.statepoint must read and write all memory to preserve " 2591 "reordering restrictions required by safepoint semantics", 2592 Call); 2593 2594 const int64_t NumPatchBytes = 2595 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); 2596 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); 2597 Check(NumPatchBytes >= 0, 2598 "gc.statepoint number of patchable bytes must be " 2599 "positive", 2600 Call); 2601 2602 Type *TargetElemType = Call.getParamElementType(2); 2603 Check(TargetElemType, 2604 "gc.statepoint callee argument must have elementtype attribute", Call); 2605 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType); 2606 Check(TargetFuncType, 2607 "gc.statepoint callee elementtype must be function type", Call); 2608 2609 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 2610 Check(NumCallArgs >= 0, 2611 "gc.statepoint number of arguments to underlying call " 2612 "must be positive", 2613 Call); 2614 const int NumParams = (int)TargetFuncType->getNumParams(); 2615 if (TargetFuncType->isVarArg()) { 2616 Check(NumCallArgs >= NumParams, 2617 "gc.statepoint mismatch in number of vararg call args", Call); 2618 2619 // TODO: Remove this limitation 2620 Check(TargetFuncType->getReturnType()->isVoidTy(), 2621 "gc.statepoint doesn't support wrapping non-void " 2622 "vararg functions yet", 2623 Call); 2624 } else 2625 Check(NumCallArgs == NumParams, 2626 "gc.statepoint mismatch in number of call args", Call); 2627 2628 const uint64_t Flags 2629 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 2630 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, 2631 "unknown flag used in gc.statepoint flags argument", Call); 2632 2633 // Verify that the types of the call parameter arguments match 2634 // the type of the wrapped callee. 2635 AttributeList Attrs = Call.getAttributes(); 2636 for (int i = 0; i < NumParams; i++) { 2637 Type *ParamType = TargetFuncType->getParamType(i); 2638 Type *ArgType = Call.getArgOperand(5 + i)->getType(); 2639 Check(ArgType == ParamType, 2640 "gc.statepoint call argument does not match wrapped " 2641 "function type", 2642 Call); 2643 2644 if (TargetFuncType->isVarArg()) { 2645 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); 2646 Check(!ArgAttrs.hasAttribute(Attribute::StructRet), 2647 "Attribute 'sret' cannot be used for vararg call arguments!", Call); 2648 } 2649 } 2650 2651 const int EndCallArgsInx = 4 + NumCallArgs; 2652 2653 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); 2654 Check(isa<ConstantInt>(NumTransitionArgsV), 2655 "gc.statepoint number of transition arguments " 2656 "must be constant integer", 2657 Call); 2658 const int NumTransitionArgs = 2659 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); 2660 Check(NumTransitionArgs == 0, 2661 "gc.statepoint w/inline transition bundle is deprecated", Call); 2662 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; 2663 2664 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); 2665 Check(isa<ConstantInt>(NumDeoptArgsV), 2666 "gc.statepoint number of deoptimization arguments " 2667 "must be constant integer", 2668 Call); 2669 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); 2670 Check(NumDeoptArgs == 0, 2671 "gc.statepoint w/inline deopt operands is deprecated", Call); 2672 2673 const int ExpectedNumArgs = 7 + NumCallArgs; 2674 Check(ExpectedNumArgs == (int)Call.arg_size(), 2675 "gc.statepoint too many arguments", Call); 2676 2677 // Check that the only uses of this gc.statepoint are gc.result or 2678 // gc.relocate calls which are tied to this statepoint and thus part 2679 // of the same statepoint sequence 2680 for (const User *U : Call.users()) { 2681 const CallInst *UserCall = dyn_cast<const CallInst>(U); 2682 Check(UserCall, "illegal use of statepoint token", Call, U); 2683 if (!UserCall) 2684 continue; 2685 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), 2686 "gc.result or gc.relocate are the only value uses " 2687 "of a gc.statepoint", 2688 Call, U); 2689 if (isa<GCResultInst>(UserCall)) { 2690 Check(UserCall->getArgOperand(0) == &Call, 2691 "gc.result connected to wrong gc.statepoint", Call, UserCall); 2692 } else if (isa<GCRelocateInst>(Call)) { 2693 Check(UserCall->getArgOperand(0) == &Call, 2694 "gc.relocate connected to wrong gc.statepoint", Call, UserCall); 2695 } 2696 } 2697 2698 // Note: It is legal for a single derived pointer to be listed multiple 2699 // times. It's non-optimal, but it is legal. It can also happen after 2700 // insertion if we strip a bitcast away. 2701 // Note: It is really tempting to check that each base is relocated and 2702 // that a derived pointer is never reused as a base pointer. This turns 2703 // out to be problematic since optimizations run after safepoint insertion 2704 // can recognize equality properties that the insertion logic doesn't know 2705 // about. See example statepoint.ll in the verifier subdirectory 2706 } 2707 2708 void Verifier::verifyFrameRecoverIndices() { 2709 for (auto &Counts : FrameEscapeInfo) { 2710 Function *F = Counts.first; 2711 unsigned EscapedObjectCount = Counts.second.first; 2712 unsigned MaxRecoveredIndex = Counts.second.second; 2713 Check(MaxRecoveredIndex <= EscapedObjectCount, 2714 "all indices passed to llvm.localrecover must be less than the " 2715 "number of arguments passed to llvm.localescape in the parent " 2716 "function", 2717 F); 2718 } 2719 } 2720 2721 static Instruction *getSuccPad(Instruction *Terminator) { 2722 BasicBlock *UnwindDest; 2723 if (auto *II = dyn_cast<InvokeInst>(Terminator)) 2724 UnwindDest = II->getUnwindDest(); 2725 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) 2726 UnwindDest = CSI->getUnwindDest(); 2727 else 2728 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); 2729 return &*UnwindDest->getFirstNonPHIIt(); 2730 } 2731 2732 void Verifier::verifySiblingFuncletUnwinds() { 2733 SmallPtrSet<Instruction *, 8> Visited; 2734 SmallPtrSet<Instruction *, 8> Active; 2735 for (const auto &Pair : SiblingFuncletInfo) { 2736 Instruction *PredPad = Pair.first; 2737 if (Visited.count(PredPad)) 2738 continue; 2739 Active.insert(PredPad); 2740 Instruction *Terminator = Pair.second; 2741 do { 2742 Instruction *SuccPad = getSuccPad(Terminator); 2743 if (Active.count(SuccPad)) { 2744 // Found a cycle; report error 2745 Instruction *CyclePad = SuccPad; 2746 SmallVector<Instruction *, 8> CycleNodes; 2747 do { 2748 CycleNodes.push_back(CyclePad); 2749 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; 2750 if (CycleTerminator != CyclePad) 2751 CycleNodes.push_back(CycleTerminator); 2752 CyclePad = getSuccPad(CycleTerminator); 2753 } while (CyclePad != SuccPad); 2754 Check(false, "EH pads can't handle each other's exceptions", 2755 ArrayRef<Instruction *>(CycleNodes)); 2756 } 2757 // Don't re-walk a node we've already checked 2758 if (!Visited.insert(SuccPad).second) 2759 break; 2760 // Walk to this successor if it has a map entry. 2761 PredPad = SuccPad; 2762 auto TermI = SiblingFuncletInfo.find(PredPad); 2763 if (TermI == SiblingFuncletInfo.end()) 2764 break; 2765 Terminator = TermI->second; 2766 Active.insert(PredPad); 2767 } while (true); 2768 // Each node only has one successor, so we've walked all the active 2769 // nodes' successors. 2770 Active.clear(); 2771 } 2772 } 2773 2774 // visitFunction - Verify that a function is ok. 2775 // 2776 void Verifier::visitFunction(const Function &F) { 2777 visitGlobalValue(F); 2778 2779 // Check function arguments. 2780 FunctionType *FT = F.getFunctionType(); 2781 unsigned NumArgs = F.arg_size(); 2782 2783 Check(&Context == &F.getContext(), 2784 "Function context does not match Module context!", &F); 2785 2786 Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); 2787 Check(FT->getNumParams() == NumArgs, 2788 "# formal arguments must match # of arguments for function type!", &F, 2789 FT); 2790 Check(F.getReturnType()->isFirstClassType() || 2791 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), 2792 "Functions cannot return aggregate values!", &F); 2793 2794 Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), 2795 "Invalid struct return type!", &F); 2796 2797 AttributeList Attrs = F.getAttributes(); 2798 2799 Check(verifyAttributeCount(Attrs, FT->getNumParams()), 2800 "Attribute after last parameter!", &F); 2801 2802 CheckDI(F.IsNewDbgInfoFormat == F.getParent()->IsNewDbgInfoFormat, 2803 "Function debug format should match parent module", &F, 2804 F.IsNewDbgInfoFormat, F.getParent(), 2805 F.getParent()->IsNewDbgInfoFormat); 2806 2807 bool IsIntrinsic = F.isIntrinsic(); 2808 2809 // Check function attributes. 2810 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false); 2811 2812 // On function declarations/definitions, we do not support the builtin 2813 // attribute. We do not check this in VerifyFunctionAttrs since that is 2814 // checking for Attributes that can/can not ever be on functions. 2815 Check(!Attrs.hasFnAttr(Attribute::Builtin), 2816 "Attribute 'builtin' can only be applied to a callsite.", &F); 2817 2818 Check(!Attrs.hasAttrSomewhere(Attribute::ElementType), 2819 "Attribute 'elementtype' can only be applied to a callsite.", &F); 2820 2821 if (Attrs.hasFnAttr(Attribute::Naked)) 2822 for (const Argument &Arg : F.args()) 2823 Check(Arg.use_empty(), "cannot use argument of naked function", &Arg); 2824 2825 // Check that this function meets the restrictions on this calling convention. 2826 // Sometimes varargs is used for perfectly forwarding thunks, so some of these 2827 // restrictions can be lifted. 2828 switch (F.getCallingConv()) { 2829 default: 2830 case CallingConv::C: 2831 break; 2832 case CallingConv::X86_INTR: { 2833 Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), 2834 "Calling convention parameter requires byval", &F); 2835 break; 2836 } 2837 case CallingConv::AMDGPU_KERNEL: 2838 case CallingConv::SPIR_KERNEL: 2839 case CallingConv::AMDGPU_CS_Chain: 2840 case CallingConv::AMDGPU_CS_ChainPreserve: 2841 Check(F.getReturnType()->isVoidTy(), 2842 "Calling convention requires void return type", &F); 2843 [[fallthrough]]; 2844 case CallingConv::AMDGPU_VS: 2845 case CallingConv::AMDGPU_HS: 2846 case CallingConv::AMDGPU_GS: 2847 case CallingConv::AMDGPU_PS: 2848 case CallingConv::AMDGPU_CS: 2849 Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F); 2850 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { 2851 const unsigned StackAS = DL.getAllocaAddrSpace(); 2852 unsigned i = 0; 2853 for (const Argument &Arg : F.args()) { 2854 Check(!Attrs.hasParamAttr(i, Attribute::ByVal), 2855 "Calling convention disallows byval", &F); 2856 Check(!Attrs.hasParamAttr(i, Attribute::Preallocated), 2857 "Calling convention disallows preallocated", &F); 2858 Check(!Attrs.hasParamAttr(i, Attribute::InAlloca), 2859 "Calling convention disallows inalloca", &F); 2860 2861 if (Attrs.hasParamAttr(i, Attribute::ByRef)) { 2862 // FIXME: Should also disallow LDS and GDS, but we don't have the enum 2863 // value here. 2864 Check(Arg.getType()->getPointerAddressSpace() != StackAS, 2865 "Calling convention disallows stack byref", &F); 2866 } 2867 2868 ++i; 2869 } 2870 } 2871 2872 [[fallthrough]]; 2873 case CallingConv::Fast: 2874 case CallingConv::Cold: 2875 case CallingConv::Intel_OCL_BI: 2876 case CallingConv::PTX_Kernel: 2877 case CallingConv::PTX_Device: 2878 Check(!F.isVarArg(), 2879 "Calling convention does not support varargs or " 2880 "perfect forwarding!", 2881 &F); 2882 break; 2883 } 2884 2885 // Check that the argument values match the function type for this function... 2886 unsigned i = 0; 2887 for (const Argument &Arg : F.args()) { 2888 Check(Arg.getType() == FT->getParamType(i), 2889 "Argument value does not match function argument type!", &Arg, 2890 FT->getParamType(i)); 2891 Check(Arg.getType()->isFirstClassType(), 2892 "Function arguments must have first-class types!", &Arg); 2893 if (!IsIntrinsic) { 2894 Check(!Arg.getType()->isMetadataTy(), 2895 "Function takes metadata but isn't an intrinsic", &Arg, &F); 2896 Check(!Arg.getType()->isTokenTy(), 2897 "Function takes token but isn't an intrinsic", &Arg, &F); 2898 Check(!Arg.getType()->isX86_AMXTy(), 2899 "Function takes x86_amx but isn't an intrinsic", &Arg, &F); 2900 } 2901 2902 // Check that swifterror argument is only used by loads and stores. 2903 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { 2904 verifySwiftErrorValue(&Arg); 2905 } 2906 ++i; 2907 } 2908 2909 if (!IsIntrinsic) { 2910 Check(!F.getReturnType()->isTokenTy(), 2911 "Function returns a token but isn't an intrinsic", &F); 2912 Check(!F.getReturnType()->isX86_AMXTy(), 2913 "Function returns a x86_amx but isn't an intrinsic", &F); 2914 } 2915 2916 // Get the function metadata attachments. 2917 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2918 F.getAllMetadata(MDs); 2919 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); 2920 verifyFunctionMetadata(MDs); 2921 2922 // Check validity of the personality function 2923 if (F.hasPersonalityFn()) { 2924 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); 2925 if (Per) 2926 Check(Per->getParent() == F.getParent(), 2927 "Referencing personality function in another module!", &F, 2928 F.getParent(), Per, Per->getParent()); 2929 } 2930 2931 // EH funclet coloring can be expensive, recompute on-demand 2932 BlockEHFuncletColors.clear(); 2933 2934 if (F.isMaterializable()) { 2935 // Function has a body somewhere we can't see. 2936 Check(MDs.empty(), "unmaterialized function cannot have metadata", &F, 2937 MDs.empty() ? nullptr : MDs.front().second); 2938 } else if (F.isDeclaration()) { 2939 for (const auto &I : MDs) { 2940 // This is used for call site debug information. 2941 CheckDI(I.first != LLVMContext::MD_dbg || 2942 !cast<DISubprogram>(I.second)->isDistinct(), 2943 "function declaration may only have a unique !dbg attachment", 2944 &F); 2945 Check(I.first != LLVMContext::MD_prof, 2946 "function declaration may not have a !prof attachment", &F); 2947 2948 // Verify the metadata itself. 2949 visitMDNode(*I.second, AreDebugLocsAllowed::Yes); 2950 } 2951 Check(!F.hasPersonalityFn(), 2952 "Function declaration shouldn't have a personality routine", &F); 2953 } else { 2954 // Verify that this function (which has a body) is not named "llvm.*". It 2955 // is not legal to define intrinsics. 2956 Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); 2957 2958 // Check the entry node 2959 const BasicBlock *Entry = &F.getEntryBlock(); 2960 Check(pred_empty(Entry), 2961 "Entry block to function must not have predecessors!", Entry); 2962 2963 // The address of the entry block cannot be taken, unless it is dead. 2964 if (Entry->hasAddressTaken()) { 2965 Check(!BlockAddress::lookup(Entry)->isConstantUsed(), 2966 "blockaddress may not be used with the entry block!", Entry); 2967 } 2968 2969 unsigned NumDebugAttachments = 0, NumProfAttachments = 0, 2970 NumKCFIAttachments = 0; 2971 // Visit metadata attachments. 2972 for (const auto &I : MDs) { 2973 // Verify that the attachment is legal. 2974 auto AllowLocs = AreDebugLocsAllowed::No; 2975 switch (I.first) { 2976 default: 2977 break; 2978 case LLVMContext::MD_dbg: { 2979 ++NumDebugAttachments; 2980 CheckDI(NumDebugAttachments == 1, 2981 "function must have a single !dbg attachment", &F, I.second); 2982 CheckDI(isa<DISubprogram>(I.second), 2983 "function !dbg attachment must be a subprogram", &F, I.second); 2984 CheckDI(cast<DISubprogram>(I.second)->isDistinct(), 2985 "function definition may only have a distinct !dbg attachment", 2986 &F); 2987 2988 auto *SP = cast<DISubprogram>(I.second); 2989 const Function *&AttachedTo = DISubprogramAttachments[SP]; 2990 CheckDI(!AttachedTo || AttachedTo == &F, 2991 "DISubprogram attached to more than one function", SP, &F); 2992 AttachedTo = &F; 2993 AllowLocs = AreDebugLocsAllowed::Yes; 2994 break; 2995 } 2996 case LLVMContext::MD_prof: 2997 ++NumProfAttachments; 2998 Check(NumProfAttachments == 1, 2999 "function must have a single !prof attachment", &F, I.second); 3000 break; 3001 case LLVMContext::MD_kcfi_type: 3002 ++NumKCFIAttachments; 3003 Check(NumKCFIAttachments == 1, 3004 "function must have a single !kcfi_type attachment", &F, 3005 I.second); 3006 break; 3007 } 3008 3009 // Verify the metadata itself. 3010 visitMDNode(*I.second, AllowLocs); 3011 } 3012 } 3013 3014 // If this function is actually an intrinsic, verify that it is only used in 3015 // direct call/invokes, never having its "address taken". 3016 // Only do this if the module is materialized, otherwise we don't have all the 3017 // uses. 3018 if (F.isIntrinsic() && F.getParent()->isMaterialized()) { 3019 const User *U; 3020 if (F.hasAddressTaken(&U, false, true, false, 3021 /*IgnoreARCAttachedCall=*/true)) 3022 Check(false, "Invalid user of intrinsic instruction!", U); 3023 } 3024 3025 // Check intrinsics' signatures. 3026 switch (F.getIntrinsicID()) { 3027 case Intrinsic::experimental_gc_get_pointer_base: { 3028 FunctionType *FT = F.getFunctionType(); 3029 Check(FT->getNumParams() == 1, "wrong number of parameters", F); 3030 Check(isa<PointerType>(F.getReturnType()), 3031 "gc.get.pointer.base must return a pointer", F); 3032 Check(FT->getParamType(0) == F.getReturnType(), 3033 "gc.get.pointer.base operand and result must be of the same type", F); 3034 break; 3035 } 3036 case Intrinsic::experimental_gc_get_pointer_offset: { 3037 FunctionType *FT = F.getFunctionType(); 3038 Check(FT->getNumParams() == 1, "wrong number of parameters", F); 3039 Check(isa<PointerType>(FT->getParamType(0)), 3040 "gc.get.pointer.offset operand must be a pointer", F); 3041 Check(F.getReturnType()->isIntegerTy(), 3042 "gc.get.pointer.offset must return integer", F); 3043 break; 3044 } 3045 } 3046 3047 auto *N = F.getSubprogram(); 3048 HasDebugInfo = (N != nullptr); 3049 if (!HasDebugInfo) 3050 return; 3051 3052 // Check that all !dbg attachments lead to back to N. 3053 // 3054 // FIXME: Check this incrementally while visiting !dbg attachments. 3055 // FIXME: Only check when N is the canonical subprogram for F. 3056 SmallPtrSet<const MDNode *, 32> Seen; 3057 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { 3058 // Be careful about using DILocation here since we might be dealing with 3059 // broken code (this is the Verifier after all). 3060 const DILocation *DL = dyn_cast_or_null<DILocation>(Node); 3061 if (!DL) 3062 return; 3063 if (!Seen.insert(DL).second) 3064 return; 3065 3066 Metadata *Parent = DL->getRawScope(); 3067 CheckDI(Parent && isa<DILocalScope>(Parent), 3068 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent); 3069 3070 DILocalScope *Scope = DL->getInlinedAtScope(); 3071 Check(Scope, "Failed to find DILocalScope", DL); 3072 3073 if (!Seen.insert(Scope).second) 3074 return; 3075 3076 DISubprogram *SP = Scope->getSubprogram(); 3077 3078 // Scope and SP could be the same MDNode and we don't want to skip 3079 // validation in that case 3080 if (SP && ((Scope != SP) && !Seen.insert(SP).second)) 3081 return; 3082 3083 CheckDI(SP->describes(&F), 3084 "!dbg attachment points at wrong subprogram for function", N, &F, 3085 &I, DL, Scope, SP); 3086 }; 3087 for (auto &BB : F) 3088 for (auto &I : BB) { 3089 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); 3090 // The llvm.loop annotations also contain two DILocations. 3091 if (auto MD = I.getMetadata(LLVMContext::MD_loop)) 3092 for (unsigned i = 1; i < MD->getNumOperands(); ++i) 3093 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); 3094 if (BrokenDebugInfo) 3095 return; 3096 } 3097 } 3098 3099 // verifyBasicBlock - Verify that a basic block is well formed... 3100 // 3101 void Verifier::visitBasicBlock(BasicBlock &BB) { 3102 InstsInThisBlock.clear(); 3103 ConvergenceVerifyHelper.visit(BB); 3104 3105 // Ensure that basic blocks have terminators! 3106 Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB); 3107 3108 // Check constraints that this basic block imposes on all of the PHI nodes in 3109 // it. 3110 if (isa<PHINode>(BB.front())) { 3111 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); 3112 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; 3113 llvm::sort(Preds); 3114 for (const PHINode &PN : BB.phis()) { 3115 Check(PN.getNumIncomingValues() == Preds.size(), 3116 "PHINode should have one entry for each predecessor of its " 3117 "parent basic block!", 3118 &PN); 3119 3120 // Get and sort all incoming values in the PHI node... 3121 Values.clear(); 3122 Values.reserve(PN.getNumIncomingValues()); 3123 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 3124 Values.push_back( 3125 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); 3126 llvm::sort(Values); 3127 3128 for (unsigned i = 0, e = Values.size(); i != e; ++i) { 3129 // Check to make sure that if there is more than one entry for a 3130 // particular basic block in this PHI node, that the incoming values are 3131 // all identical. 3132 // 3133 Check(i == 0 || Values[i].first != Values[i - 1].first || 3134 Values[i].second == Values[i - 1].second, 3135 "PHI node has multiple entries for the same basic block with " 3136 "different incoming values!", 3137 &PN, Values[i].first, Values[i].second, Values[i - 1].second); 3138 3139 // Check to make sure that the predecessors and PHI node entries are 3140 // matched up. 3141 Check(Values[i].first == Preds[i], 3142 "PHI node entries do not match predecessors!", &PN, 3143 Values[i].first, Preds[i]); 3144 } 3145 } 3146 } 3147 3148 // Check that all instructions have their parent pointers set up correctly. 3149 for (auto &I : BB) 3150 { 3151 Check(I.getParent() == &BB, "Instruction has bogus parent pointer!"); 3152 } 3153 3154 CheckDI(BB.IsNewDbgInfoFormat == BB.getParent()->IsNewDbgInfoFormat, 3155 "BB debug format should match parent function", &BB, 3156 BB.IsNewDbgInfoFormat, BB.getParent(), 3157 BB.getParent()->IsNewDbgInfoFormat); 3158 3159 // Confirm that no issues arise from the debug program. 3160 if (BB.IsNewDbgInfoFormat) 3161 CheckDI(!BB.getTrailingDbgRecords(), "Basic Block has trailing DbgRecords!", 3162 &BB); 3163 } 3164 3165 void Verifier::visitTerminator(Instruction &I) { 3166 // Ensure that terminators only exist at the end of the basic block. 3167 Check(&I == I.getParent()->getTerminator(), 3168 "Terminator found in the middle of a basic block!", I.getParent()); 3169 visitInstruction(I); 3170 } 3171 3172 void Verifier::visitBranchInst(BranchInst &BI) { 3173 if (BI.isConditional()) { 3174 Check(BI.getCondition()->getType()->isIntegerTy(1), 3175 "Branch condition is not 'i1' type!", &BI, BI.getCondition()); 3176 } 3177 visitTerminator(BI); 3178 } 3179 3180 void Verifier::visitReturnInst(ReturnInst &RI) { 3181 Function *F = RI.getParent()->getParent(); 3182 unsigned N = RI.getNumOperands(); 3183 if (F->getReturnType()->isVoidTy()) 3184 Check(N == 0, 3185 "Found return instr that returns non-void in Function of void " 3186 "return type!", 3187 &RI, F->getReturnType()); 3188 else 3189 Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), 3190 "Function return type does not match operand " 3191 "type of return inst!", 3192 &RI, F->getReturnType()); 3193 3194 // Check to make sure that the return value has necessary properties for 3195 // terminators... 3196 visitTerminator(RI); 3197 } 3198 3199 void Verifier::visitSwitchInst(SwitchInst &SI) { 3200 Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); 3201 // Check to make sure that all of the constants in the switch instruction 3202 // have the same type as the switched-on value. 3203 Type *SwitchTy = SI.getCondition()->getType(); 3204 SmallPtrSet<ConstantInt*, 32> Constants; 3205 for (auto &Case : SI.cases()) { 3206 Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)), 3207 "Case value is not a constant integer.", &SI); 3208 Check(Case.getCaseValue()->getType() == SwitchTy, 3209 "Switch constants must all be same type as switch value!", &SI); 3210 Check(Constants.insert(Case.getCaseValue()).second, 3211 "Duplicate integer as switch case", &SI, Case.getCaseValue()); 3212 } 3213 3214 visitTerminator(SI); 3215 } 3216 3217 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { 3218 Check(BI.getAddress()->getType()->isPointerTy(), 3219 "Indirectbr operand must have pointer type!", &BI); 3220 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) 3221 Check(BI.getDestination(i)->getType()->isLabelTy(), 3222 "Indirectbr destinations must all have pointer type!", &BI); 3223 3224 visitTerminator(BI); 3225 } 3226 3227 void Verifier::visitCallBrInst(CallBrInst &CBI) { 3228 Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI); 3229 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); 3230 Check(!IA->canThrow(), "Unwinding from Callbr is not allowed"); 3231 3232 verifyInlineAsmCall(CBI); 3233 visitTerminator(CBI); 3234 } 3235 3236 void Verifier::visitSelectInst(SelectInst &SI) { 3237 Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), 3238 SI.getOperand(2)), 3239 "Invalid operands for select instruction!", &SI); 3240 3241 Check(SI.getTrueValue()->getType() == SI.getType(), 3242 "Select values must have same type as select instruction!", &SI); 3243 visitInstruction(SI); 3244 } 3245 3246 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of 3247 /// a pass, if any exist, it's an error. 3248 /// 3249 void Verifier::visitUserOp1(Instruction &I) { 3250 Check(false, "User-defined operators should not live outside of a pass!", &I); 3251 } 3252 3253 void Verifier::visitTruncInst(TruncInst &I) { 3254 // Get the source and destination types 3255 Type *SrcTy = I.getOperand(0)->getType(); 3256 Type *DestTy = I.getType(); 3257 3258 // Get the size of the types in bits, we'll need this later 3259 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3260 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3261 3262 Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); 3263 Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); 3264 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3265 "trunc source and destination must both be a vector or neither", &I); 3266 Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); 3267 3268 visitInstruction(I); 3269 } 3270 3271 void Verifier::visitZExtInst(ZExtInst &I) { 3272 // Get the source and destination types 3273 Type *SrcTy = I.getOperand(0)->getType(); 3274 Type *DestTy = I.getType(); 3275 3276 // Get the size of the types in bits, we'll need this later 3277 Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); 3278 Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); 3279 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3280 "zext source and destination must both be a vector or neither", &I); 3281 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3282 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3283 3284 Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); 3285 3286 visitInstruction(I); 3287 } 3288 3289 void Verifier::visitSExtInst(SExtInst &I) { 3290 // Get the source and destination types 3291 Type *SrcTy = I.getOperand(0)->getType(); 3292 Type *DestTy = I.getType(); 3293 3294 // Get the size of the types in bits, we'll need this later 3295 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3296 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3297 3298 Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); 3299 Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); 3300 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3301 "sext source and destination must both be a vector or neither", &I); 3302 Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I); 3303 3304 visitInstruction(I); 3305 } 3306 3307 void Verifier::visitFPTruncInst(FPTruncInst &I) { 3308 // Get the source and destination types 3309 Type *SrcTy = I.getOperand(0)->getType(); 3310 Type *DestTy = I.getType(); 3311 // Get the size of the types in bits, we'll need this later 3312 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3313 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3314 3315 Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); 3316 Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); 3317 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3318 "fptrunc source and destination must both be a vector or neither", &I); 3319 Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); 3320 3321 visitInstruction(I); 3322 } 3323 3324 void Verifier::visitFPExtInst(FPExtInst &I) { 3325 // Get the source and destination types 3326 Type *SrcTy = I.getOperand(0)->getType(); 3327 Type *DestTy = I.getType(); 3328 3329 // Get the size of the types in bits, we'll need this later 3330 unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); 3331 unsigned DestBitSize = DestTy->getScalarSizeInBits(); 3332 3333 Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); 3334 Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); 3335 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), 3336 "fpext source and destination must both be a vector or neither", &I); 3337 Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); 3338 3339 visitInstruction(I); 3340 } 3341 3342 void Verifier::visitUIToFPInst(UIToFPInst &I) { 3343 // Get the source and destination types 3344 Type *SrcTy = I.getOperand(0)->getType(); 3345 Type *DestTy = I.getType(); 3346 3347 bool SrcVec = SrcTy->isVectorTy(); 3348 bool DstVec = DestTy->isVectorTy(); 3349 3350 Check(SrcVec == DstVec, 3351 "UIToFP source and dest must both be vector or scalar", &I); 3352 Check(SrcTy->isIntOrIntVectorTy(), 3353 "UIToFP source must be integer or integer vector", &I); 3354 Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", 3355 &I); 3356 3357 if (SrcVec && DstVec) 3358 Check(cast<VectorType>(SrcTy)->getElementCount() == 3359 cast<VectorType>(DestTy)->getElementCount(), 3360 "UIToFP source and dest vector length mismatch", &I); 3361 3362 visitInstruction(I); 3363 } 3364 3365 void Verifier::visitSIToFPInst(SIToFPInst &I) { 3366 // Get the source and destination types 3367 Type *SrcTy = I.getOperand(0)->getType(); 3368 Type *DestTy = I.getType(); 3369 3370 bool SrcVec = SrcTy->isVectorTy(); 3371 bool DstVec = DestTy->isVectorTy(); 3372 3373 Check(SrcVec == DstVec, 3374 "SIToFP source and dest must both be vector or scalar", &I); 3375 Check(SrcTy->isIntOrIntVectorTy(), 3376 "SIToFP source must be integer or integer vector", &I); 3377 Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", 3378 &I); 3379 3380 if (SrcVec && DstVec) 3381 Check(cast<VectorType>(SrcTy)->getElementCount() == 3382 cast<VectorType>(DestTy)->getElementCount(), 3383 "SIToFP source and dest vector length mismatch", &I); 3384 3385 visitInstruction(I); 3386 } 3387 3388 void Verifier::visitFPToUIInst(FPToUIInst &I) { 3389 // Get the source and destination types 3390 Type *SrcTy = I.getOperand(0)->getType(); 3391 Type *DestTy = I.getType(); 3392 3393 bool SrcVec = SrcTy->isVectorTy(); 3394 bool DstVec = DestTy->isVectorTy(); 3395 3396 Check(SrcVec == DstVec, 3397 "FPToUI source and dest must both be vector or scalar", &I); 3398 Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I); 3399 Check(DestTy->isIntOrIntVectorTy(), 3400 "FPToUI result must be integer or integer vector", &I); 3401 3402 if (SrcVec && DstVec) 3403 Check(cast<VectorType>(SrcTy)->getElementCount() == 3404 cast<VectorType>(DestTy)->getElementCount(), 3405 "FPToUI source and dest vector length mismatch", &I); 3406 3407 visitInstruction(I); 3408 } 3409 3410 void Verifier::visitFPToSIInst(FPToSIInst &I) { 3411 // Get the source and destination types 3412 Type *SrcTy = I.getOperand(0)->getType(); 3413 Type *DestTy = I.getType(); 3414 3415 bool SrcVec = SrcTy->isVectorTy(); 3416 bool DstVec = DestTy->isVectorTy(); 3417 3418 Check(SrcVec == DstVec, 3419 "FPToSI source and dest must both be vector or scalar", &I); 3420 Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I); 3421 Check(DestTy->isIntOrIntVectorTy(), 3422 "FPToSI result must be integer or integer vector", &I); 3423 3424 if (SrcVec && DstVec) 3425 Check(cast<VectorType>(SrcTy)->getElementCount() == 3426 cast<VectorType>(DestTy)->getElementCount(), 3427 "FPToSI source and dest vector length mismatch", &I); 3428 3429 visitInstruction(I); 3430 } 3431 3432 void Verifier::visitPtrToIntInst(PtrToIntInst &I) { 3433 // Get the source and destination types 3434 Type *SrcTy = I.getOperand(0)->getType(); 3435 Type *DestTy = I.getType(); 3436 3437 Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); 3438 3439 Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); 3440 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", 3441 &I); 3442 3443 if (SrcTy->isVectorTy()) { 3444 auto *VSrc = cast<VectorType>(SrcTy); 3445 auto *VDest = cast<VectorType>(DestTy); 3446 Check(VSrc->getElementCount() == VDest->getElementCount(), 3447 "PtrToInt Vector width mismatch", &I); 3448 } 3449 3450 visitInstruction(I); 3451 } 3452 3453 void Verifier::visitIntToPtrInst(IntToPtrInst &I) { 3454 // Get the source and destination types 3455 Type *SrcTy = I.getOperand(0)->getType(); 3456 Type *DestTy = I.getType(); 3457 3458 Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I); 3459 Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); 3460 3461 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", 3462 &I); 3463 if (SrcTy->isVectorTy()) { 3464 auto *VSrc = cast<VectorType>(SrcTy); 3465 auto *VDest = cast<VectorType>(DestTy); 3466 Check(VSrc->getElementCount() == VDest->getElementCount(), 3467 "IntToPtr Vector width mismatch", &I); 3468 } 3469 visitInstruction(I); 3470 } 3471 3472 void Verifier::visitBitCastInst(BitCastInst &I) { 3473 Check( 3474 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), 3475 "Invalid bitcast", &I); 3476 visitInstruction(I); 3477 } 3478 3479 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { 3480 Type *SrcTy = I.getOperand(0)->getType(); 3481 Type *DestTy = I.getType(); 3482 3483 Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", 3484 &I); 3485 Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", 3486 &I); 3487 Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), 3488 "AddrSpaceCast must be between different address spaces", &I); 3489 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) 3490 Check(SrcVTy->getElementCount() == 3491 cast<VectorType>(DestTy)->getElementCount(), 3492 "AddrSpaceCast vector pointer number of elements mismatch", &I); 3493 visitInstruction(I); 3494 } 3495 3496 /// visitPHINode - Ensure that a PHI node is well formed. 3497 /// 3498 void Verifier::visitPHINode(PHINode &PN) { 3499 // Ensure that the PHI nodes are all grouped together at the top of the block. 3500 // This can be tested by checking whether the instruction before this is 3501 // either nonexistent (because this is begin()) or is a PHI node. If not, 3502 // then there is some other instruction before a PHI. 3503 Check(&PN == &PN.getParent()->front() || 3504 isa<PHINode>(--BasicBlock::iterator(&PN)), 3505 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); 3506 3507 // Check that a PHI doesn't yield a Token. 3508 Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); 3509 3510 // Check that all of the values of the PHI node have the same type as the 3511 // result. 3512 for (Value *IncValue : PN.incoming_values()) { 3513 Check(PN.getType() == IncValue->getType(), 3514 "PHI node operands are not the same type as the result!", &PN); 3515 } 3516 3517 // All other PHI node constraints are checked in the visitBasicBlock method. 3518 3519 visitInstruction(PN); 3520 } 3521 3522 void Verifier::visitCallBase(CallBase &Call) { 3523 Check(Call.getCalledOperand()->getType()->isPointerTy(), 3524 "Called function must be a pointer!", Call); 3525 FunctionType *FTy = Call.getFunctionType(); 3526 3527 // Verify that the correct number of arguments are being passed 3528 if (FTy->isVarArg()) 3529 Check(Call.arg_size() >= FTy->getNumParams(), 3530 "Called function requires more parameters than were provided!", Call); 3531 else 3532 Check(Call.arg_size() == FTy->getNumParams(), 3533 "Incorrect number of arguments passed to called function!", Call); 3534 3535 // Verify that all arguments to the call match the function type. 3536 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3537 Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i), 3538 "Call parameter type does not match function signature!", 3539 Call.getArgOperand(i), FTy->getParamType(i), Call); 3540 3541 AttributeList Attrs = Call.getAttributes(); 3542 3543 Check(verifyAttributeCount(Attrs, Call.arg_size()), 3544 "Attribute after last parameter!", Call); 3545 3546 Function *Callee = 3547 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); 3548 bool IsIntrinsic = Callee && Callee->isIntrinsic(); 3549 if (IsIntrinsic) 3550 Check(Callee->getValueType() == FTy, 3551 "Intrinsic called with incompatible signature", Call); 3552 3553 // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling 3554 // convention. 3555 auto CC = Call.getCallingConv(); 3556 Check(CC != CallingConv::AMDGPU_CS_Chain && 3557 CC != CallingConv::AMDGPU_CS_ChainPreserve, 3558 "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions " 3559 "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.", 3560 Call); 3561 3562 // Disallow passing/returning values with alignment higher than we can 3563 // represent. 3564 // FIXME: Consider making DataLayout cap the alignment, so this isn't 3565 // necessary. 3566 auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) { 3567 if (!Ty->isSized()) 3568 return; 3569 Align ABIAlign = DL.getABITypeAlign(Ty); 3570 Check(ABIAlign.value() <= Value::MaximumAlignment, 3571 "Incorrect alignment of " + Message + " to called function!", Call); 3572 }; 3573 3574 if (!IsIntrinsic) { 3575 VerifyTypeAlign(FTy->getReturnType(), "return type"); 3576 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3577 Type *Ty = FTy->getParamType(i); 3578 VerifyTypeAlign(Ty, "argument passed"); 3579 } 3580 } 3581 3582 if (Attrs.hasFnAttr(Attribute::Speculatable)) { 3583 // Don't allow speculatable on call sites, unless the underlying function 3584 // declaration is also speculatable. 3585 Check(Callee && Callee->isSpeculatable(), 3586 "speculatable attribute may not apply to call sites", Call); 3587 } 3588 3589 if (Attrs.hasFnAttr(Attribute::Preallocated)) { 3590 Check(Call.getCalledFunction()->getIntrinsicID() == 3591 Intrinsic::call_preallocated_arg, 3592 "preallocated as a call site attribute can only be on " 3593 "llvm.call.preallocated.arg"); 3594 } 3595 3596 // Verify call attributes. 3597 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm()); 3598 3599 // Conservatively check the inalloca argument. 3600 // We have a bug if we can find that there is an underlying alloca without 3601 // inalloca. 3602 if (Call.hasInAllocaArgument()) { 3603 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); 3604 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) 3605 Check(AI->isUsedWithInAlloca(), 3606 "inalloca argument for call has mismatched alloca", AI, Call); 3607 } 3608 3609 // For each argument of the callsite, if it has the swifterror argument, 3610 // make sure the underlying alloca/parameter it comes from has a swifterror as 3611 // well. 3612 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3613 if (Call.paramHasAttr(i, Attribute::SwiftError)) { 3614 Value *SwiftErrorArg = Call.getArgOperand(i); 3615 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { 3616 Check(AI->isSwiftError(), 3617 "swifterror argument for call has mismatched alloca", AI, Call); 3618 continue; 3619 } 3620 auto ArgI = dyn_cast<Argument>(SwiftErrorArg); 3621 Check(ArgI, "swifterror argument should come from an alloca or parameter", 3622 SwiftErrorArg, Call); 3623 Check(ArgI->hasSwiftErrorAttr(), 3624 "swifterror argument for call has mismatched parameter", ArgI, 3625 Call); 3626 } 3627 3628 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { 3629 // Don't allow immarg on call sites, unless the underlying declaration 3630 // also has the matching immarg. 3631 Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), 3632 "immarg may not apply only to call sites", Call.getArgOperand(i), 3633 Call); 3634 } 3635 3636 if (Call.paramHasAttr(i, Attribute::ImmArg)) { 3637 Value *ArgVal = Call.getArgOperand(i); 3638 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), 3639 "immarg operand has non-immediate parameter", ArgVal, Call); 3640 } 3641 3642 if (Call.paramHasAttr(i, Attribute::Preallocated)) { 3643 Value *ArgVal = Call.getArgOperand(i); 3644 bool hasOB = 3645 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; 3646 bool isMustTail = Call.isMustTailCall(); 3647 Check(hasOB != isMustTail, 3648 "preallocated operand either requires a preallocated bundle or " 3649 "the call to be musttail (but not both)", 3650 ArgVal, Call); 3651 } 3652 } 3653 3654 if (FTy->isVarArg()) { 3655 // FIXME? is 'nest' even legal here? 3656 bool SawNest = false; 3657 bool SawReturned = false; 3658 3659 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { 3660 if (Attrs.hasParamAttr(Idx, Attribute::Nest)) 3661 SawNest = true; 3662 if (Attrs.hasParamAttr(Idx, Attribute::Returned)) 3663 SawReturned = true; 3664 } 3665 3666 // Check attributes on the varargs part. 3667 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { 3668 Type *Ty = Call.getArgOperand(Idx)->getType(); 3669 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); 3670 verifyParameterAttrs(ArgAttrs, Ty, &Call); 3671 3672 if (ArgAttrs.hasAttribute(Attribute::Nest)) { 3673 Check(!SawNest, "More than one parameter has attribute nest!", Call); 3674 SawNest = true; 3675 } 3676 3677 if (ArgAttrs.hasAttribute(Attribute::Returned)) { 3678 Check(!SawReturned, "More than one parameter has attribute returned!", 3679 Call); 3680 Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), 3681 "Incompatible argument and return types for 'returned' " 3682 "attribute", 3683 Call); 3684 SawReturned = true; 3685 } 3686 3687 // Statepoint intrinsic is vararg but the wrapped function may be not. 3688 // Allow sret here and check the wrapped function in verifyStatepoint. 3689 if (!Call.getCalledFunction() || 3690 Call.getCalledFunction()->getIntrinsicID() != 3691 Intrinsic::experimental_gc_statepoint) 3692 Check(!ArgAttrs.hasAttribute(Attribute::StructRet), 3693 "Attribute 'sret' cannot be used for vararg call arguments!", 3694 Call); 3695 3696 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) 3697 Check(Idx == Call.arg_size() - 1, 3698 "inalloca isn't on the last argument!", Call); 3699 } 3700 } 3701 3702 // Verify that there's no metadata unless it's a direct call to an intrinsic. 3703 if (!IsIntrinsic) { 3704 for (Type *ParamTy : FTy->params()) { 3705 Check(!ParamTy->isMetadataTy(), 3706 "Function has metadata parameter but isn't an intrinsic", Call); 3707 Check(!ParamTy->isTokenTy(), 3708 "Function has token parameter but isn't an intrinsic", Call); 3709 } 3710 } 3711 3712 // Verify that indirect calls don't return tokens. 3713 if (!Call.getCalledFunction()) { 3714 Check(!FTy->getReturnType()->isTokenTy(), 3715 "Return type cannot be token for indirect call!"); 3716 Check(!FTy->getReturnType()->isX86_AMXTy(), 3717 "Return type cannot be x86_amx for indirect call!"); 3718 } 3719 3720 if (Function *F = Call.getCalledFunction()) 3721 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) 3722 visitIntrinsicCall(ID, Call); 3723 3724 // Verify that a callsite has at most one "deopt", at most one "funclet", at 3725 // most one "gc-transition", at most one "cfguardtarget", at most one 3726 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle. 3727 bool FoundDeoptBundle = false, FoundFuncletBundle = false, 3728 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, 3729 FoundPreallocatedBundle = false, FoundGCLiveBundle = false, 3730 FoundPtrauthBundle = false, FoundKCFIBundle = false, 3731 FoundAttachedCallBundle = false; 3732 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { 3733 OperandBundleUse BU = Call.getOperandBundleAt(i); 3734 uint32_t Tag = BU.getTagID(); 3735 if (Tag == LLVMContext::OB_deopt) { 3736 Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); 3737 FoundDeoptBundle = true; 3738 } else if (Tag == LLVMContext::OB_gc_transition) { 3739 Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", 3740 Call); 3741 FoundGCTransitionBundle = true; 3742 } else if (Tag == LLVMContext::OB_funclet) { 3743 Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); 3744 FoundFuncletBundle = true; 3745 Check(BU.Inputs.size() == 1, 3746 "Expected exactly one funclet bundle operand", Call); 3747 Check(isa<FuncletPadInst>(BU.Inputs.front()), 3748 "Funclet bundle operands should correspond to a FuncletPadInst", 3749 Call); 3750 } else if (Tag == LLVMContext::OB_cfguardtarget) { 3751 Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles", 3752 Call); 3753 FoundCFGuardTargetBundle = true; 3754 Check(BU.Inputs.size() == 1, 3755 "Expected exactly one cfguardtarget bundle operand", Call); 3756 } else if (Tag == LLVMContext::OB_ptrauth) { 3757 Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call); 3758 FoundPtrauthBundle = true; 3759 Check(BU.Inputs.size() == 2, 3760 "Expected exactly two ptrauth bundle operands", Call); 3761 Check(isa<ConstantInt>(BU.Inputs[0]) && 3762 BU.Inputs[0]->getType()->isIntegerTy(32), 3763 "Ptrauth bundle key operand must be an i32 constant", Call); 3764 Check(BU.Inputs[1]->getType()->isIntegerTy(64), 3765 "Ptrauth bundle discriminator operand must be an i64", Call); 3766 } else if (Tag == LLVMContext::OB_kcfi) { 3767 Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call); 3768 FoundKCFIBundle = true; 3769 Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand", 3770 Call); 3771 Check(isa<ConstantInt>(BU.Inputs[0]) && 3772 BU.Inputs[0]->getType()->isIntegerTy(32), 3773 "Kcfi bundle operand must be an i32 constant", Call); 3774 } else if (Tag == LLVMContext::OB_preallocated) { 3775 Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", 3776 Call); 3777 FoundPreallocatedBundle = true; 3778 Check(BU.Inputs.size() == 1, 3779 "Expected exactly one preallocated bundle operand", Call); 3780 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); 3781 Check(Input && 3782 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, 3783 "\"preallocated\" argument must be a token from " 3784 "llvm.call.preallocated.setup", 3785 Call); 3786 } else if (Tag == LLVMContext::OB_gc_live) { 3787 Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call); 3788 FoundGCLiveBundle = true; 3789 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { 3790 Check(!FoundAttachedCallBundle, 3791 "Multiple \"clang.arc.attachedcall\" operand bundles", Call); 3792 FoundAttachedCallBundle = true; 3793 verifyAttachedCallBundle(Call, BU); 3794 } 3795 } 3796 3797 // Verify that callee and callsite agree on whether to use pointer auth. 3798 Check(!(Call.getCalledFunction() && FoundPtrauthBundle), 3799 "Direct call cannot have a ptrauth bundle", Call); 3800 3801 // Verify that each inlinable callsite of a debug-info-bearing function in a 3802 // debug-info-bearing function has a debug location attached to it. Failure to 3803 // do so causes assertion failures when the inliner sets up inline scope info 3804 // (Interposable functions are not inlinable, neither are functions without 3805 // definitions.) 3806 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && 3807 !Call.getCalledFunction()->isInterposable() && 3808 !Call.getCalledFunction()->isDeclaration() && 3809 Call.getCalledFunction()->getSubprogram()) 3810 CheckDI(Call.getDebugLoc(), 3811 "inlinable function call in a function with " 3812 "debug info must have a !dbg location", 3813 Call); 3814 3815 if (Call.isInlineAsm()) 3816 verifyInlineAsmCall(Call); 3817 3818 ConvergenceVerifyHelper.visit(Call); 3819 3820 visitInstruction(Call); 3821 } 3822 3823 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, 3824 StringRef Context) { 3825 Check(!Attrs.contains(Attribute::InAlloca), 3826 Twine("inalloca attribute not allowed in ") + Context); 3827 Check(!Attrs.contains(Attribute::InReg), 3828 Twine("inreg attribute not allowed in ") + Context); 3829 Check(!Attrs.contains(Attribute::SwiftError), 3830 Twine("swifterror attribute not allowed in ") + Context); 3831 Check(!Attrs.contains(Attribute::Preallocated), 3832 Twine("preallocated attribute not allowed in ") + Context); 3833 Check(!Attrs.contains(Attribute::ByRef), 3834 Twine("byref attribute not allowed in ") + Context); 3835 } 3836 3837 /// Two types are "congruent" if they are identical, or if they are both pointer 3838 /// types with different pointee types and the same address space. 3839 static bool isTypeCongruent(Type *L, Type *R) { 3840 if (L == R) 3841 return true; 3842 PointerType *PL = dyn_cast<PointerType>(L); 3843 PointerType *PR = dyn_cast<PointerType>(R); 3844 if (!PL || !PR) 3845 return false; 3846 return PL->getAddressSpace() == PR->getAddressSpace(); 3847 } 3848 3849 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) { 3850 static const Attribute::AttrKind ABIAttrs[] = { 3851 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, 3852 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, 3853 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, 3854 Attribute::ByRef}; 3855 AttrBuilder Copy(C); 3856 for (auto AK : ABIAttrs) { 3857 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); 3858 if (Attr.isValid()) 3859 Copy.addAttribute(Attr); 3860 } 3861 3862 // `align` is ABI-affecting only in combination with `byval` or `byref`. 3863 if (Attrs.hasParamAttr(I, Attribute::Alignment) && 3864 (Attrs.hasParamAttr(I, Attribute::ByVal) || 3865 Attrs.hasParamAttr(I, Attribute::ByRef))) 3866 Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); 3867 return Copy; 3868 } 3869 3870 void Verifier::verifyMustTailCall(CallInst &CI) { 3871 Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); 3872 3873 Function *F = CI.getParent()->getParent(); 3874 FunctionType *CallerTy = F->getFunctionType(); 3875 FunctionType *CalleeTy = CI.getFunctionType(); 3876 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(), 3877 "cannot guarantee tail call due to mismatched varargs", &CI); 3878 Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), 3879 "cannot guarantee tail call due to mismatched return types", &CI); 3880 3881 // - The calling conventions of the caller and callee must match. 3882 Check(F->getCallingConv() == CI.getCallingConv(), 3883 "cannot guarantee tail call due to mismatched calling conv", &CI); 3884 3885 // - The call must immediately precede a :ref:`ret <i_ret>` instruction, 3886 // or a pointer bitcast followed by a ret instruction. 3887 // - The ret instruction must return the (possibly bitcasted) value 3888 // produced by the call or void. 3889 Value *RetVal = &CI; 3890 Instruction *Next = CI.getNextNode(); 3891 3892 // Handle the optional bitcast. 3893 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { 3894 Check(BI->getOperand(0) == RetVal, 3895 "bitcast following musttail call must use the call", BI); 3896 RetVal = BI; 3897 Next = BI->getNextNode(); 3898 } 3899 3900 // Check the return. 3901 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); 3902 Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI); 3903 Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || 3904 isa<UndefValue>(Ret->getReturnValue()), 3905 "musttail call result must be returned", Ret); 3906 3907 AttributeList CallerAttrs = F->getAttributes(); 3908 AttributeList CalleeAttrs = CI.getAttributes(); 3909 if (CI.getCallingConv() == CallingConv::SwiftTail || 3910 CI.getCallingConv() == CallingConv::Tail) { 3911 StringRef CCName = 3912 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; 3913 3914 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes 3915 // are allowed in swifttailcc call 3916 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3917 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3918 SmallString<32> Context{CCName, StringRef(" musttail caller")}; 3919 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3920 } 3921 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { 3922 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3923 SmallString<32> Context{CCName, StringRef(" musttail callee")}; 3924 verifyTailCCMustTailAttrs(ABIAttrs, Context); 3925 } 3926 // - Varargs functions are not allowed 3927 Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + 3928 " tail call for varargs function"); 3929 return; 3930 } 3931 3932 // - The caller and callee prototypes must match. Pointer types of 3933 // parameters or return types may differ in pointee type, but not 3934 // address space. 3935 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { 3936 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(), 3937 "cannot guarantee tail call due to mismatched parameter counts", &CI); 3938 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3939 Check( 3940 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), 3941 "cannot guarantee tail call due to mismatched parameter types", &CI); 3942 } 3943 } 3944 3945 // - All ABI-impacting function attributes, such as sret, byval, inreg, 3946 // returned, preallocated, and inalloca, must match. 3947 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { 3948 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); 3949 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); 3950 Check(CallerABIAttrs == CalleeABIAttrs, 3951 "cannot guarantee tail call due to mismatched ABI impacting " 3952 "function attributes", 3953 &CI, CI.getOperand(I)); 3954 } 3955 } 3956 3957 void Verifier::visitCallInst(CallInst &CI) { 3958 visitCallBase(CI); 3959 3960 if (CI.isMustTailCall()) 3961 verifyMustTailCall(CI); 3962 } 3963 3964 void Verifier::visitInvokeInst(InvokeInst &II) { 3965 visitCallBase(II); 3966 3967 // Verify that the first non-PHI instruction of the unwind destination is an 3968 // exception handling instruction. 3969 Check( 3970 II.getUnwindDest()->isEHPad(), 3971 "The unwind destination does not have an exception handling instruction!", 3972 &II); 3973 3974 visitTerminator(II); 3975 } 3976 3977 /// visitUnaryOperator - Check the argument to the unary operator. 3978 /// 3979 void Verifier::visitUnaryOperator(UnaryOperator &U) { 3980 Check(U.getType() == U.getOperand(0)->getType(), 3981 "Unary operators must have same type for" 3982 "operands and result!", 3983 &U); 3984 3985 switch (U.getOpcode()) { 3986 // Check that floating-point arithmetic operators are only used with 3987 // floating-point operands. 3988 case Instruction::FNeg: 3989 Check(U.getType()->isFPOrFPVectorTy(), 3990 "FNeg operator only works with float types!", &U); 3991 break; 3992 default: 3993 llvm_unreachable("Unknown UnaryOperator opcode!"); 3994 } 3995 3996 visitInstruction(U); 3997 } 3998 3999 /// visitBinaryOperator - Check that both arguments to the binary operator are 4000 /// of the same type! 4001 /// 4002 void Verifier::visitBinaryOperator(BinaryOperator &B) { 4003 Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(), 4004 "Both operands to a binary operator are not of the same type!", &B); 4005 4006 switch (B.getOpcode()) { 4007 // Check that integer arithmetic operators are only used with 4008 // integral operands. 4009 case Instruction::Add: 4010 case Instruction::Sub: 4011 case Instruction::Mul: 4012 case Instruction::SDiv: 4013 case Instruction::UDiv: 4014 case Instruction::SRem: 4015 case Instruction::URem: 4016 Check(B.getType()->isIntOrIntVectorTy(), 4017 "Integer arithmetic operators only work with integral types!", &B); 4018 Check(B.getType() == B.getOperand(0)->getType(), 4019 "Integer arithmetic operators must have same type " 4020 "for operands and result!", 4021 &B); 4022 break; 4023 // Check that floating-point arithmetic operators are only used with 4024 // floating-point operands. 4025 case Instruction::FAdd: 4026 case Instruction::FSub: 4027 case Instruction::FMul: 4028 case Instruction::FDiv: 4029 case Instruction::FRem: 4030 Check(B.getType()->isFPOrFPVectorTy(), 4031 "Floating-point arithmetic operators only work with " 4032 "floating-point types!", 4033 &B); 4034 Check(B.getType() == B.getOperand(0)->getType(), 4035 "Floating-point arithmetic operators must have same type " 4036 "for operands and result!", 4037 &B); 4038 break; 4039 // Check that logical operators are only used with integral operands. 4040 case Instruction::And: 4041 case Instruction::Or: 4042 case Instruction::Xor: 4043 Check(B.getType()->isIntOrIntVectorTy(), 4044 "Logical operators only work with integral types!", &B); 4045 Check(B.getType() == B.getOperand(0)->getType(), 4046 "Logical operators must have same type for operands and result!", &B); 4047 break; 4048 case Instruction::Shl: 4049 case Instruction::LShr: 4050 case Instruction::AShr: 4051 Check(B.getType()->isIntOrIntVectorTy(), 4052 "Shifts only work with integral types!", &B); 4053 Check(B.getType() == B.getOperand(0)->getType(), 4054 "Shift return type must be same as operands!", &B); 4055 break; 4056 default: 4057 llvm_unreachable("Unknown BinaryOperator opcode!"); 4058 } 4059 4060 visitInstruction(B); 4061 } 4062 4063 void Verifier::visitICmpInst(ICmpInst &IC) { 4064 // Check that the operands are the same type 4065 Type *Op0Ty = IC.getOperand(0)->getType(); 4066 Type *Op1Ty = IC.getOperand(1)->getType(); 4067 Check(Op0Ty == Op1Ty, 4068 "Both operands to ICmp instruction are not of the same type!", &IC); 4069 // Check that the operands are the right type 4070 Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), 4071 "Invalid operand types for ICmp instruction", &IC); 4072 // Check that the predicate is valid. 4073 Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC); 4074 4075 visitInstruction(IC); 4076 } 4077 4078 void Verifier::visitFCmpInst(FCmpInst &FC) { 4079 // Check that the operands are the same type 4080 Type *Op0Ty = FC.getOperand(0)->getType(); 4081 Type *Op1Ty = FC.getOperand(1)->getType(); 4082 Check(Op0Ty == Op1Ty, 4083 "Both operands to FCmp instruction are not of the same type!", &FC); 4084 // Check that the operands are the right type 4085 Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction", 4086 &FC); 4087 // Check that the predicate is valid. 4088 Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC); 4089 4090 visitInstruction(FC); 4091 } 4092 4093 void Verifier::visitExtractElementInst(ExtractElementInst &EI) { 4094 Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), 4095 "Invalid extractelement operands!", &EI); 4096 visitInstruction(EI); 4097 } 4098 4099 void Verifier::visitInsertElementInst(InsertElementInst &IE) { 4100 Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), 4101 IE.getOperand(2)), 4102 "Invalid insertelement operands!", &IE); 4103 visitInstruction(IE); 4104 } 4105 4106 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { 4107 Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), 4108 SV.getShuffleMask()), 4109 "Invalid shufflevector operands!", &SV); 4110 visitInstruction(SV); 4111 } 4112 4113 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { 4114 Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); 4115 4116 Check(isa<PointerType>(TargetTy), 4117 "GEP base pointer is not a vector or a vector of pointers", &GEP); 4118 Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); 4119 4120 if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) { 4121 Check(!STy->isScalableTy(), 4122 "getelementptr cannot target structure that contains scalable vector" 4123 "type", 4124 &GEP); 4125 } 4126 4127 SmallVector<Value *, 16> Idxs(GEP.indices()); 4128 Check( 4129 all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }), 4130 "GEP indexes must be integers", &GEP); 4131 Type *ElTy = 4132 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); 4133 Check(ElTy, "Invalid indices for GEP pointer type!", &GEP); 4134 4135 PointerType *PtrTy = dyn_cast<PointerType>(GEP.getType()->getScalarType()); 4136 4137 Check(PtrTy && GEP.getResultElementType() == ElTy, 4138 "GEP is not of right type for indices!", &GEP, ElTy); 4139 4140 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { 4141 // Additional checks for vector GEPs. 4142 ElementCount GEPWidth = GEPVTy->getElementCount(); 4143 if (GEP.getPointerOperandType()->isVectorTy()) 4144 Check( 4145 GEPWidth == 4146 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), 4147 "Vector GEP result width doesn't match operand's", &GEP); 4148 for (Value *Idx : Idxs) { 4149 Type *IndexTy = Idx->getType(); 4150 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { 4151 ElementCount IndexWidth = IndexVTy->getElementCount(); 4152 Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); 4153 } 4154 Check(IndexTy->isIntOrIntVectorTy(), 4155 "All GEP indices should be of integer type"); 4156 } 4157 } 4158 4159 Check(GEP.getAddressSpace() == PtrTy->getAddressSpace(), 4160 "GEP address space doesn't match type", &GEP); 4161 4162 visitInstruction(GEP); 4163 } 4164 4165 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { 4166 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); 4167 } 4168 4169 /// Verify !range and !absolute_symbol metadata. These have the same 4170 /// restrictions, except !absolute_symbol allows the full set. 4171 void Verifier::verifyRangeLikeMetadata(const Value &I, const MDNode *Range, 4172 Type *Ty, RangeLikeMetadataKind Kind) { 4173 unsigned NumOperands = Range->getNumOperands(); 4174 Check(NumOperands % 2 == 0, "Unfinished range!", Range); 4175 unsigned NumRanges = NumOperands / 2; 4176 Check(NumRanges >= 1, "It should have at least one range!", Range); 4177 4178 ConstantRange LastRange(1, true); // Dummy initial value 4179 for (unsigned i = 0; i < NumRanges; ++i) { 4180 ConstantInt *Low = 4181 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); 4182 Check(Low, "The lower limit must be an integer!", Low); 4183 ConstantInt *High = 4184 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); 4185 Check(High, "The upper limit must be an integer!", High); 4186 4187 Check(High->getType() == Low->getType(), "Range pair types must match!", 4188 &I); 4189 4190 if (Kind == RangeLikeMetadataKind::NoaliasAddrspace) { 4191 Check(High->getType()->isIntegerTy(32), 4192 "noalias.addrspace type must be i32!", &I); 4193 } else { 4194 Check(High->getType() == Ty->getScalarType(), 4195 "Range types must match instruction type!", &I); 4196 } 4197 4198 APInt HighV = High->getValue(); 4199 APInt LowV = Low->getValue(); 4200 4201 // ConstantRange asserts if the ranges are the same except for the min/max 4202 // value. Leave the cases it tolerates for the empty range error below. 4203 Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(), 4204 "The upper and lower limits cannot be the same value", &I); 4205 4206 ConstantRange CurRange(LowV, HighV); 4207 Check(!CurRange.isEmptySet() && 4208 (Kind == RangeLikeMetadataKind::AbsoluteSymbol || 4209 !CurRange.isFullSet()), 4210 "Range must not be empty!", Range); 4211 if (i != 0) { 4212 Check(CurRange.intersectWith(LastRange).isEmptySet(), 4213 "Intervals are overlapping", Range); 4214 Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order", 4215 Range); 4216 Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous", 4217 Range); 4218 } 4219 LastRange = ConstantRange(LowV, HighV); 4220 } 4221 if (NumRanges > 2) { 4222 APInt FirstLow = 4223 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); 4224 APInt FirstHigh = 4225 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); 4226 ConstantRange FirstRange(FirstLow, FirstHigh); 4227 Check(FirstRange.intersectWith(LastRange).isEmptySet(), 4228 "Intervals are overlapping", Range); 4229 Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", 4230 Range); 4231 } 4232 } 4233 4234 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { 4235 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && 4236 "precondition violation"); 4237 verifyRangeLikeMetadata(I, Range, Ty, RangeLikeMetadataKind::Range); 4238 } 4239 4240 void Verifier::visitNoaliasAddrspaceMetadata(Instruction &I, MDNode *Range, 4241 Type *Ty) { 4242 assert(Range && Range == I.getMetadata(LLVMContext::MD_noalias_addrspace) && 4243 "precondition violation"); 4244 verifyRangeLikeMetadata(I, Range, Ty, 4245 RangeLikeMetadataKind::NoaliasAddrspace); 4246 } 4247 4248 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { 4249 unsigned Size = DL.getTypeSizeInBits(Ty); 4250 Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); 4251 Check(!(Size & (Size - 1)), 4252 "atomic memory access' operand must have a power-of-two size", Ty, I); 4253 } 4254 4255 void Verifier::visitLoadInst(LoadInst &LI) { 4256 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); 4257 Check(PTy, "Load operand must be a pointer.", &LI); 4258 Type *ElTy = LI.getType(); 4259 if (MaybeAlign A = LI.getAlign()) { 4260 Check(A->value() <= Value::MaximumAlignment, 4261 "huge alignment values are unsupported", &LI); 4262 } 4263 Check(ElTy->isSized(), "loading unsized types is not allowed", &LI); 4264 if (LI.isAtomic()) { 4265 Check(LI.getOrdering() != AtomicOrdering::Release && 4266 LI.getOrdering() != AtomicOrdering::AcquireRelease, 4267 "Load cannot have Release ordering", &LI); 4268 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 4269 "atomic load operand must have integer, pointer, or floating point " 4270 "type!", 4271 ElTy, &LI); 4272 checkAtomicMemAccessSize(ElTy, &LI); 4273 } else { 4274 Check(LI.getSyncScopeID() == SyncScope::System, 4275 "Non-atomic load cannot have SynchronizationScope specified", &LI); 4276 } 4277 4278 visitInstruction(LI); 4279 } 4280 4281 void Verifier::visitStoreInst(StoreInst &SI) { 4282 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); 4283 Check(PTy, "Store operand must be a pointer.", &SI); 4284 Type *ElTy = SI.getOperand(0)->getType(); 4285 if (MaybeAlign A = SI.getAlign()) { 4286 Check(A->value() <= Value::MaximumAlignment, 4287 "huge alignment values are unsupported", &SI); 4288 } 4289 Check(ElTy->isSized(), "storing unsized types is not allowed", &SI); 4290 if (SI.isAtomic()) { 4291 Check(SI.getOrdering() != AtomicOrdering::Acquire && 4292 SI.getOrdering() != AtomicOrdering::AcquireRelease, 4293 "Store cannot have Acquire ordering", &SI); 4294 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), 4295 "atomic store operand must have integer, pointer, or floating point " 4296 "type!", 4297 ElTy, &SI); 4298 checkAtomicMemAccessSize(ElTy, &SI); 4299 } else { 4300 Check(SI.getSyncScopeID() == SyncScope::System, 4301 "Non-atomic store cannot have SynchronizationScope specified", &SI); 4302 } 4303 visitInstruction(SI); 4304 } 4305 4306 /// Check that SwiftErrorVal is used as a swifterror argument in CS. 4307 void Verifier::verifySwiftErrorCall(CallBase &Call, 4308 const Value *SwiftErrorVal) { 4309 for (const auto &I : llvm::enumerate(Call.args())) { 4310 if (I.value() == SwiftErrorVal) { 4311 Check(Call.paramHasAttr(I.index(), Attribute::SwiftError), 4312 "swifterror value when used in a callsite should be marked " 4313 "with swifterror attribute", 4314 SwiftErrorVal, Call); 4315 } 4316 } 4317 } 4318 4319 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { 4320 // Check that swifterror value is only used by loads, stores, or as 4321 // a swifterror argument. 4322 for (const User *U : SwiftErrorVal->users()) { 4323 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || 4324 isa<InvokeInst>(U), 4325 "swifterror value can only be loaded and stored from, or " 4326 "as a swifterror argument!", 4327 SwiftErrorVal, U); 4328 // If it is used by a store, check it is the second operand. 4329 if (auto StoreI = dyn_cast<StoreInst>(U)) 4330 Check(StoreI->getOperand(1) == SwiftErrorVal, 4331 "swifterror value should be the second operand when used " 4332 "by stores", 4333 SwiftErrorVal, U); 4334 if (auto *Call = dyn_cast<CallBase>(U)) 4335 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); 4336 } 4337 } 4338 4339 void Verifier::visitAllocaInst(AllocaInst &AI) { 4340 Type *Ty = AI.getAllocatedType(); 4341 SmallPtrSet<Type*, 4> Visited; 4342 Check(Ty->isSized(&Visited), "Cannot allocate unsized type", &AI); 4343 // Check if it's a target extension type that disallows being used on the 4344 // stack. 4345 Check(!Ty->containsNonLocalTargetExtType(), 4346 "Alloca has illegal target extension type", &AI); 4347 Check(AI.getArraySize()->getType()->isIntegerTy(), 4348 "Alloca array size must have integer type", &AI); 4349 if (MaybeAlign A = AI.getAlign()) { 4350 Check(A->value() <= Value::MaximumAlignment, 4351 "huge alignment values are unsupported", &AI); 4352 } 4353 4354 if (AI.isSwiftError()) { 4355 Check(Ty->isPointerTy(), "swifterror alloca must have pointer type", &AI); 4356 Check(!AI.isArrayAllocation(), 4357 "swifterror alloca must not be array allocation", &AI); 4358 verifySwiftErrorValue(&AI); 4359 } 4360 4361 visitInstruction(AI); 4362 } 4363 4364 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { 4365 Type *ElTy = CXI.getOperand(1)->getType(); 4366 Check(ElTy->isIntOrPtrTy(), 4367 "cmpxchg operand must have integer or pointer type", ElTy, &CXI); 4368 checkAtomicMemAccessSize(ElTy, &CXI); 4369 visitInstruction(CXI); 4370 } 4371 4372 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { 4373 Check(RMWI.getOrdering() != AtomicOrdering::Unordered, 4374 "atomicrmw instructions cannot be unordered.", &RMWI); 4375 auto Op = RMWI.getOperation(); 4376 Type *ElTy = RMWI.getOperand(1)->getType(); 4377 if (Op == AtomicRMWInst::Xchg) { 4378 Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() || 4379 ElTy->isPointerTy(), 4380 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 4381 " operand must have integer or floating point type!", 4382 &RMWI, ElTy); 4383 } else if (AtomicRMWInst::isFPOperation(Op)) { 4384 Check(ElTy->isFPOrFPVectorTy() && !isa<ScalableVectorType>(ElTy), 4385 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 4386 " operand must have floating-point or fixed vector of floating-point " 4387 "type!", 4388 &RMWI, ElTy); 4389 } else { 4390 Check(ElTy->isIntegerTy(), 4391 "atomicrmw " + AtomicRMWInst::getOperationName(Op) + 4392 " operand must have integer type!", 4393 &RMWI, ElTy); 4394 } 4395 checkAtomicMemAccessSize(ElTy, &RMWI); 4396 Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, 4397 "Invalid binary operation!", &RMWI); 4398 visitInstruction(RMWI); 4399 } 4400 4401 void Verifier::visitFenceInst(FenceInst &FI) { 4402 const AtomicOrdering Ordering = FI.getOrdering(); 4403 Check(Ordering == AtomicOrdering::Acquire || 4404 Ordering == AtomicOrdering::Release || 4405 Ordering == AtomicOrdering::AcquireRelease || 4406 Ordering == AtomicOrdering::SequentiallyConsistent, 4407 "fence instructions may only have acquire, release, acq_rel, or " 4408 "seq_cst ordering.", 4409 &FI); 4410 visitInstruction(FI); 4411 } 4412 4413 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { 4414 Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), 4415 EVI.getIndices()) == EVI.getType(), 4416 "Invalid ExtractValueInst operands!", &EVI); 4417 4418 visitInstruction(EVI); 4419 } 4420 4421 void Verifier::visitInsertValueInst(InsertValueInst &IVI) { 4422 Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), 4423 IVI.getIndices()) == 4424 IVI.getOperand(1)->getType(), 4425 "Invalid InsertValueInst operands!", &IVI); 4426 4427 visitInstruction(IVI); 4428 } 4429 4430 static Value *getParentPad(Value *EHPad) { 4431 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) 4432 return FPI->getParentPad(); 4433 4434 return cast<CatchSwitchInst>(EHPad)->getParentPad(); 4435 } 4436 4437 void Verifier::visitEHPadPredecessors(Instruction &I) { 4438 assert(I.isEHPad()); 4439 4440 BasicBlock *BB = I.getParent(); 4441 Function *F = BB->getParent(); 4442 4443 Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); 4444 4445 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { 4446 // The landingpad instruction defines its parent as a landing pad block. The 4447 // landing pad block may be branched to only by the unwind edge of an 4448 // invoke. 4449 for (BasicBlock *PredBB : predecessors(BB)) { 4450 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); 4451 Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, 4452 "Block containing LandingPadInst must be jumped to " 4453 "only by the unwind edge of an invoke.", 4454 LPI); 4455 } 4456 return; 4457 } 4458 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { 4459 if (!pred_empty(BB)) 4460 Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), 4461 "Block containg CatchPadInst must be jumped to " 4462 "only by its catchswitch.", 4463 CPI); 4464 Check(BB != CPI->getCatchSwitch()->getUnwindDest(), 4465 "Catchswitch cannot unwind to one of its catchpads", 4466 CPI->getCatchSwitch(), CPI); 4467 return; 4468 } 4469 4470 // Verify that each pred has a legal terminator with a legal to/from EH 4471 // pad relationship. 4472 Instruction *ToPad = &I; 4473 Value *ToPadParent = getParentPad(ToPad); 4474 for (BasicBlock *PredBB : predecessors(BB)) { 4475 Instruction *TI = PredBB->getTerminator(); 4476 Value *FromPad; 4477 if (auto *II = dyn_cast<InvokeInst>(TI)) { 4478 Check(II->getUnwindDest() == BB && II->getNormalDest() != BB, 4479 "EH pad must be jumped to via an unwind edge", ToPad, II); 4480 auto *CalledFn = 4481 dyn_cast<Function>(II->getCalledOperand()->stripPointerCasts()); 4482 if (CalledFn && CalledFn->isIntrinsic() && II->doesNotThrow() && 4483 !IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID())) 4484 continue; 4485 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) 4486 FromPad = Bundle->Inputs[0]; 4487 else 4488 FromPad = ConstantTokenNone::get(II->getContext()); 4489 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { 4490 FromPad = CRI->getOperand(0); 4491 Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); 4492 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { 4493 FromPad = CSI; 4494 } else { 4495 Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); 4496 } 4497 4498 // The edge may exit from zero or more nested pads. 4499 SmallSet<Value *, 8> Seen; 4500 for (;; FromPad = getParentPad(FromPad)) { 4501 Check(FromPad != ToPad, 4502 "EH pad cannot handle exceptions raised within it", FromPad, TI); 4503 if (FromPad == ToPadParent) { 4504 // This is a legal unwind edge. 4505 break; 4506 } 4507 Check(!isa<ConstantTokenNone>(FromPad), 4508 "A single unwind edge may only enter one EH pad", TI); 4509 Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads", 4510 FromPad); 4511 4512 // This will be diagnosed on the corresponding instruction already. We 4513 // need the extra check here to make sure getParentPad() works. 4514 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad), 4515 "Parent pad must be catchpad/cleanuppad/catchswitch", TI); 4516 } 4517 } 4518 } 4519 4520 void Verifier::visitLandingPadInst(LandingPadInst &LPI) { 4521 // The landingpad instruction is ill-formed if it doesn't have any clauses and 4522 // isn't a cleanup. 4523 Check(LPI.getNumClauses() > 0 || LPI.isCleanup(), 4524 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); 4525 4526 visitEHPadPredecessors(LPI); 4527 4528 if (!LandingPadResultTy) 4529 LandingPadResultTy = LPI.getType(); 4530 else 4531 Check(LandingPadResultTy == LPI.getType(), 4532 "The landingpad instruction should have a consistent result type " 4533 "inside a function.", 4534 &LPI); 4535 4536 Function *F = LPI.getParent()->getParent(); 4537 Check(F->hasPersonalityFn(), 4538 "LandingPadInst needs to be in a function with a personality.", &LPI); 4539 4540 // The landingpad instruction must be the first non-PHI instruction in the 4541 // block. 4542 Check(LPI.getParent()->getLandingPadInst() == &LPI, 4543 "LandingPadInst not the first non-PHI instruction in the block.", &LPI); 4544 4545 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { 4546 Constant *Clause = LPI.getClause(i); 4547 if (LPI.isCatch(i)) { 4548 Check(isa<PointerType>(Clause->getType()), 4549 "Catch operand does not have pointer type!", &LPI); 4550 } else { 4551 Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); 4552 Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), 4553 "Filter operand is not an array of constants!", &LPI); 4554 } 4555 } 4556 4557 visitInstruction(LPI); 4558 } 4559 4560 void Verifier::visitResumeInst(ResumeInst &RI) { 4561 Check(RI.getFunction()->hasPersonalityFn(), 4562 "ResumeInst needs to be in a function with a personality.", &RI); 4563 4564 if (!LandingPadResultTy) 4565 LandingPadResultTy = RI.getValue()->getType(); 4566 else 4567 Check(LandingPadResultTy == RI.getValue()->getType(), 4568 "The resume instruction should have a consistent result type " 4569 "inside a function.", 4570 &RI); 4571 4572 visitTerminator(RI); 4573 } 4574 4575 void Verifier::visitCatchPadInst(CatchPadInst &CPI) { 4576 BasicBlock *BB = CPI.getParent(); 4577 4578 Function *F = BB->getParent(); 4579 Check(F->hasPersonalityFn(), 4580 "CatchPadInst needs to be in a function with a personality.", &CPI); 4581 4582 Check(isa<CatchSwitchInst>(CPI.getParentPad()), 4583 "CatchPadInst needs to be directly nested in a CatchSwitchInst.", 4584 CPI.getParentPad()); 4585 4586 // The catchpad instruction must be the first non-PHI instruction in the 4587 // block. 4588 Check(&*BB->getFirstNonPHIIt() == &CPI, 4589 "CatchPadInst not the first non-PHI instruction in the block.", &CPI); 4590 4591 visitEHPadPredecessors(CPI); 4592 visitFuncletPadInst(CPI); 4593 } 4594 4595 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { 4596 Check(isa<CatchPadInst>(CatchReturn.getOperand(0)), 4597 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, 4598 CatchReturn.getOperand(0)); 4599 4600 visitTerminator(CatchReturn); 4601 } 4602 4603 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { 4604 BasicBlock *BB = CPI.getParent(); 4605 4606 Function *F = BB->getParent(); 4607 Check(F->hasPersonalityFn(), 4608 "CleanupPadInst needs to be in a function with a personality.", &CPI); 4609 4610 // The cleanuppad instruction must be the first non-PHI instruction in the 4611 // block. 4612 Check(&*BB->getFirstNonPHIIt() == &CPI, 4613 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI); 4614 4615 auto *ParentPad = CPI.getParentPad(); 4616 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4617 "CleanupPadInst has an invalid parent.", &CPI); 4618 4619 visitEHPadPredecessors(CPI); 4620 visitFuncletPadInst(CPI); 4621 } 4622 4623 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { 4624 User *FirstUser = nullptr; 4625 Value *FirstUnwindPad = nullptr; 4626 SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); 4627 SmallSet<FuncletPadInst *, 8> Seen; 4628 4629 while (!Worklist.empty()) { 4630 FuncletPadInst *CurrentPad = Worklist.pop_back_val(); 4631 Check(Seen.insert(CurrentPad).second, 4632 "FuncletPadInst must not be nested within itself", CurrentPad); 4633 Value *UnresolvedAncestorPad = nullptr; 4634 for (User *U : CurrentPad->users()) { 4635 BasicBlock *UnwindDest; 4636 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { 4637 UnwindDest = CRI->getUnwindDest(); 4638 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { 4639 // We allow catchswitch unwind to caller to nest 4640 // within an outer pad that unwinds somewhere else, 4641 // because catchswitch doesn't have a nounwind variant. 4642 // See e.g. SimplifyCFGOpt::SimplifyUnreachable. 4643 if (CSI->unwindsToCaller()) 4644 continue; 4645 UnwindDest = CSI->getUnwindDest(); 4646 } else if (auto *II = dyn_cast<InvokeInst>(U)) { 4647 UnwindDest = II->getUnwindDest(); 4648 } else if (isa<CallInst>(U)) { 4649 // Calls which don't unwind may be found inside funclet 4650 // pads that unwind somewhere else. We don't *require* 4651 // such calls to be annotated nounwind. 4652 continue; 4653 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { 4654 // The unwind dest for a cleanup can only be found by 4655 // recursive search. Add it to the worklist, and we'll 4656 // search for its first use that determines where it unwinds. 4657 Worklist.push_back(CPI); 4658 continue; 4659 } else { 4660 Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); 4661 continue; 4662 } 4663 4664 Value *UnwindPad; 4665 bool ExitsFPI; 4666 if (UnwindDest) { 4667 UnwindPad = &*UnwindDest->getFirstNonPHIIt(); 4668 if (!cast<Instruction>(UnwindPad)->isEHPad()) 4669 continue; 4670 Value *UnwindParent = getParentPad(UnwindPad); 4671 // Ignore unwind edges that don't exit CurrentPad. 4672 if (UnwindParent == CurrentPad) 4673 continue; 4674 // Determine whether the original funclet pad is exited, 4675 // and if we are scanning nested pads determine how many 4676 // of them are exited so we can stop searching their 4677 // children. 4678 Value *ExitedPad = CurrentPad; 4679 ExitsFPI = false; 4680 do { 4681 if (ExitedPad == &FPI) { 4682 ExitsFPI = true; 4683 // Now we can resolve any ancestors of CurrentPad up to 4684 // FPI, but not including FPI since we need to make sure 4685 // to check all direct users of FPI for consistency. 4686 UnresolvedAncestorPad = &FPI; 4687 break; 4688 } 4689 Value *ExitedParent = getParentPad(ExitedPad); 4690 if (ExitedParent == UnwindParent) { 4691 // ExitedPad is the ancestor-most pad which this unwind 4692 // edge exits, so we can resolve up to it, meaning that 4693 // ExitedParent is the first ancestor still unresolved. 4694 UnresolvedAncestorPad = ExitedParent; 4695 break; 4696 } 4697 ExitedPad = ExitedParent; 4698 } while (!isa<ConstantTokenNone>(ExitedPad)); 4699 } else { 4700 // Unwinding to caller exits all pads. 4701 UnwindPad = ConstantTokenNone::get(FPI.getContext()); 4702 ExitsFPI = true; 4703 UnresolvedAncestorPad = &FPI; 4704 } 4705 4706 if (ExitsFPI) { 4707 // This unwind edge exits FPI. Make sure it agrees with other 4708 // such edges. 4709 if (FirstUser) { 4710 Check(UnwindPad == FirstUnwindPad, 4711 "Unwind edges out of a funclet " 4712 "pad must have the same unwind " 4713 "dest", 4714 &FPI, U, FirstUser); 4715 } else { 4716 FirstUser = U; 4717 FirstUnwindPad = UnwindPad; 4718 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds 4719 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && 4720 getParentPad(UnwindPad) == getParentPad(&FPI)) 4721 SiblingFuncletInfo[&FPI] = cast<Instruction>(U); 4722 } 4723 } 4724 // Make sure we visit all uses of FPI, but for nested pads stop as 4725 // soon as we know where they unwind to. 4726 if (CurrentPad != &FPI) 4727 break; 4728 } 4729 if (UnresolvedAncestorPad) { 4730 if (CurrentPad == UnresolvedAncestorPad) { 4731 // When CurrentPad is FPI itself, we don't mark it as resolved even if 4732 // we've found an unwind edge that exits it, because we need to verify 4733 // all direct uses of FPI. 4734 assert(CurrentPad == &FPI); 4735 continue; 4736 } 4737 // Pop off the worklist any nested pads that we've found an unwind 4738 // destination for. The pads on the worklist are the uncles, 4739 // great-uncles, etc. of CurrentPad. We've found an unwind destination 4740 // for all ancestors of CurrentPad up to but not including 4741 // UnresolvedAncestorPad. 4742 Value *ResolvedPad = CurrentPad; 4743 while (!Worklist.empty()) { 4744 Value *UnclePad = Worklist.back(); 4745 Value *AncestorPad = getParentPad(UnclePad); 4746 // Walk ResolvedPad up the ancestor list until we either find the 4747 // uncle's parent or the last resolved ancestor. 4748 while (ResolvedPad != AncestorPad) { 4749 Value *ResolvedParent = getParentPad(ResolvedPad); 4750 if (ResolvedParent == UnresolvedAncestorPad) { 4751 break; 4752 } 4753 ResolvedPad = ResolvedParent; 4754 } 4755 // If the resolved ancestor search didn't find the uncle's parent, 4756 // then the uncle is not yet resolved. 4757 if (ResolvedPad != AncestorPad) 4758 break; 4759 // This uncle is resolved, so pop it from the worklist. 4760 Worklist.pop_back(); 4761 } 4762 } 4763 } 4764 4765 if (FirstUnwindPad) { 4766 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { 4767 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); 4768 Value *SwitchUnwindPad; 4769 if (SwitchUnwindDest) 4770 SwitchUnwindPad = &*SwitchUnwindDest->getFirstNonPHIIt(); 4771 else 4772 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); 4773 Check(SwitchUnwindPad == FirstUnwindPad, 4774 "Unwind edges out of a catch must have the same unwind dest as " 4775 "the parent catchswitch", 4776 &FPI, FirstUser, CatchSwitch); 4777 } 4778 } 4779 4780 visitInstruction(FPI); 4781 } 4782 4783 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { 4784 BasicBlock *BB = CatchSwitch.getParent(); 4785 4786 Function *F = BB->getParent(); 4787 Check(F->hasPersonalityFn(), 4788 "CatchSwitchInst needs to be in a function with a personality.", 4789 &CatchSwitch); 4790 4791 // The catchswitch instruction must be the first non-PHI instruction in the 4792 // block. 4793 Check(&*BB->getFirstNonPHIIt() == &CatchSwitch, 4794 "CatchSwitchInst not the first non-PHI instruction in the block.", 4795 &CatchSwitch); 4796 4797 auto *ParentPad = CatchSwitch.getParentPad(); 4798 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), 4799 "CatchSwitchInst has an invalid parent.", ParentPad); 4800 4801 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { 4802 BasicBlock::iterator I = UnwindDest->getFirstNonPHIIt(); 4803 Check(I->isEHPad() && !isa<LandingPadInst>(I), 4804 "CatchSwitchInst must unwind to an EH block which is not a " 4805 "landingpad.", 4806 &CatchSwitch); 4807 4808 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds 4809 if (getParentPad(&*I) == ParentPad) 4810 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; 4811 } 4812 4813 Check(CatchSwitch.getNumHandlers() != 0, 4814 "CatchSwitchInst cannot have empty handler list", &CatchSwitch); 4815 4816 for (BasicBlock *Handler : CatchSwitch.handlers()) { 4817 Check(isa<CatchPadInst>(Handler->getFirstNonPHIIt()), 4818 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); 4819 } 4820 4821 visitEHPadPredecessors(CatchSwitch); 4822 visitTerminator(CatchSwitch); 4823 } 4824 4825 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { 4826 Check(isa<CleanupPadInst>(CRI.getOperand(0)), 4827 "CleanupReturnInst needs to be provided a CleanupPad", &CRI, 4828 CRI.getOperand(0)); 4829 4830 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { 4831 BasicBlock::iterator I = UnwindDest->getFirstNonPHIIt(); 4832 Check(I->isEHPad() && !isa<LandingPadInst>(I), 4833 "CleanupReturnInst must unwind to an EH block which is not a " 4834 "landingpad.", 4835 &CRI); 4836 } 4837 4838 visitTerminator(CRI); 4839 } 4840 4841 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { 4842 Instruction *Op = cast<Instruction>(I.getOperand(i)); 4843 // If the we have an invalid invoke, don't try to compute the dominance. 4844 // We already reject it in the invoke specific checks and the dominance 4845 // computation doesn't handle multiple edges. 4846 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { 4847 if (II->getNormalDest() == II->getUnwindDest()) 4848 return; 4849 } 4850 4851 // Quick check whether the def has already been encountered in the same block. 4852 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI 4853 // uses are defined to happen on the incoming edge, not at the instruction. 4854 // 4855 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) 4856 // wrapping an SSA value, assert that we've already encountered it. See 4857 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. 4858 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) 4859 return; 4860 4861 const Use &U = I.getOperandUse(i); 4862 Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I); 4863 } 4864 4865 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { 4866 Check(I.getType()->isPointerTy(), 4867 "dereferenceable, dereferenceable_or_null " 4868 "apply only to pointer types", 4869 &I); 4870 Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), 4871 "dereferenceable, dereferenceable_or_null apply only to load" 4872 " and inttoptr instructions, use attributes for calls or invokes", 4873 &I); 4874 Check(MD->getNumOperands() == 1, 4875 "dereferenceable, dereferenceable_or_null " 4876 "take one operand!", 4877 &I); 4878 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 4879 Check(CI && CI->getType()->isIntegerTy(64), 4880 "dereferenceable, " 4881 "dereferenceable_or_null metadata value must be an i64!", 4882 &I); 4883 } 4884 4885 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { 4886 Check(MD->getNumOperands() >= 2, 4887 "!prof annotations should have no less than 2 operands", MD); 4888 4889 // Check first operand. 4890 Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD); 4891 Check(isa<MDString>(MD->getOperand(0)), 4892 "expected string with name of the !prof annotation", MD); 4893 MDString *MDS = cast<MDString>(MD->getOperand(0)); 4894 StringRef ProfName = MDS->getString(); 4895 4896 // Check consistency of !prof branch_weights metadata. 4897 if (ProfName == "branch_weights") { 4898 unsigned NumBranchWeights = getNumBranchWeights(*MD); 4899 if (isa<InvokeInst>(&I)) { 4900 Check(NumBranchWeights == 1 || NumBranchWeights == 2, 4901 "Wrong number of InvokeInst branch_weights operands", MD); 4902 } else { 4903 unsigned ExpectedNumOperands = 0; 4904 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 4905 ExpectedNumOperands = BI->getNumSuccessors(); 4906 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 4907 ExpectedNumOperands = SI->getNumSuccessors(); 4908 else if (isa<CallInst>(&I)) 4909 ExpectedNumOperands = 1; 4910 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 4911 ExpectedNumOperands = IBI->getNumDestinations(); 4912 else if (isa<SelectInst>(&I)) 4913 ExpectedNumOperands = 2; 4914 else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I)) 4915 ExpectedNumOperands = CI->getNumSuccessors(); 4916 else 4917 CheckFailed("!prof branch_weights are not allowed for this instruction", 4918 MD); 4919 4920 Check(NumBranchWeights == ExpectedNumOperands, "Wrong number of operands", 4921 MD); 4922 } 4923 for (unsigned i = getBranchWeightOffset(MD); i < MD->getNumOperands(); 4924 ++i) { 4925 auto &MDO = MD->getOperand(i); 4926 Check(MDO, "second operand should not be null", MD); 4927 Check(mdconst::dyn_extract<ConstantInt>(MDO), 4928 "!prof brunch_weights operand is not a const int"); 4929 } 4930 } 4931 } 4932 4933 void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) { 4934 assert(I.hasMetadata(LLVMContext::MD_DIAssignID)); 4935 bool ExpectedInstTy = 4936 isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I); 4937 CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind", 4938 I, MD); 4939 // Iterate over the MetadataAsValue uses of the DIAssignID - these should 4940 // only be found as DbgAssignIntrinsic operands. 4941 if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) { 4942 for (auto *User : AsValue->users()) { 4943 CheckDI(isa<DbgAssignIntrinsic>(User), 4944 "!DIAssignID should only be used by llvm.dbg.assign intrinsics", 4945 MD, User); 4946 // All of the dbg.assign intrinsics should be in the same function as I. 4947 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User)) 4948 CheckDI(DAI->getFunction() == I.getFunction(), 4949 "dbg.assign not in same function as inst", DAI, &I); 4950 } 4951 } 4952 for (DbgVariableRecord *DVR : 4953 cast<DIAssignID>(MD)->getAllDbgVariableRecordUsers()) { 4954 CheckDI(DVR->isDbgAssign(), 4955 "!DIAssignID should only be used by Assign DVRs.", MD, DVR); 4956 CheckDI(DVR->getFunction() == I.getFunction(), 4957 "DVRAssign not in same function as inst", DVR, &I); 4958 } 4959 } 4960 4961 void Verifier::visitMMRAMetadata(Instruction &I, MDNode *MD) { 4962 Check(canInstructionHaveMMRAs(I), 4963 "!mmra metadata attached to unexpected instruction kind", I, MD); 4964 4965 // MMRA Metadata should either be a tag, e.g. !{!"foo", !"bar"}, or a 4966 // list of tags such as !2 in the following example: 4967 // !0 = !{!"a", !"b"} 4968 // !1 = !{!"c", !"d"} 4969 // !2 = !{!0, !1} 4970 if (MMRAMetadata::isTagMD(MD)) 4971 return; 4972 4973 Check(isa<MDTuple>(MD), "!mmra expected to be a metadata tuple", I, MD); 4974 for (const MDOperand &MDOp : MD->operands()) 4975 Check(MMRAMetadata::isTagMD(MDOp.get()), 4976 "!mmra metadata tuple operand is not an MMRA tag", I, MDOp.get()); 4977 } 4978 4979 void Verifier::visitCallStackMetadata(MDNode *MD) { 4980 // Call stack metadata should consist of a list of at least 1 constant int 4981 // (representing a hash of the location). 4982 Check(MD->getNumOperands() >= 1, 4983 "call stack metadata should have at least 1 operand", MD); 4984 4985 for (const auto &Op : MD->operands()) 4986 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op), 4987 "call stack metadata operand should be constant integer", Op); 4988 } 4989 4990 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) { 4991 Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I); 4992 Check(MD->getNumOperands() >= 1, 4993 "!memprof annotations should have at least 1 metadata operand " 4994 "(MemInfoBlock)", 4995 MD); 4996 4997 // Check each MIB 4998 for (auto &MIBOp : MD->operands()) { 4999 MDNode *MIB = dyn_cast<MDNode>(MIBOp); 5000 // The first operand of an MIB should be the call stack metadata. 5001 // There rest of the operands should be MDString tags, and there should be 5002 // at least one. 5003 Check(MIB->getNumOperands() >= 2, 5004 "Each !memprof MemInfoBlock should have at least 2 operands", MIB); 5005 5006 // Check call stack metadata (first operand). 5007 Check(MIB->getOperand(0) != nullptr, 5008 "!memprof MemInfoBlock first operand should not be null", MIB); 5009 Check(isa<MDNode>(MIB->getOperand(0)), 5010 "!memprof MemInfoBlock first operand should be an MDNode", MIB); 5011 MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0)); 5012 visitCallStackMetadata(StackMD); 5013 5014 // The next set of 1 or more operands should be MDString. 5015 unsigned I = 1; 5016 for (; I < MIB->getNumOperands(); ++I) { 5017 if (!isa<MDString>(MIB->getOperand(I))) { 5018 Check(I > 1, 5019 "!memprof MemInfoBlock second operand should be an MDString", 5020 MIB); 5021 break; 5022 } 5023 } 5024 5025 // Any remaining should be MDNode that are pairs of integers 5026 for (; I < MIB->getNumOperands(); ++I) { 5027 MDNode *OpNode = dyn_cast<MDNode>(MIB->getOperand(I)); 5028 Check(OpNode, "Not all !memprof MemInfoBlock operands 2 to N are MDNode", 5029 MIB); 5030 Check(OpNode->getNumOperands() == 2, 5031 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with 2 " 5032 "operands", 5033 MIB); 5034 // Check that all of Op's operands are ConstantInt. 5035 Check(llvm::all_of(OpNode->operands(), 5036 [](const MDOperand &Op) { 5037 return mdconst::hasa<ConstantInt>(Op); 5038 }), 5039 "Not all !memprof MemInfoBlock operands 2 to N are MDNode with " 5040 "ConstantInt operands", 5041 MIB); 5042 } 5043 } 5044 } 5045 5046 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) { 5047 Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I); 5048 // Verify the partial callstack annotated from memprof profiles. This callsite 5049 // is a part of a profiled allocation callstack. 5050 visitCallStackMetadata(MD); 5051 } 5052 5053 void Verifier::visitAnnotationMetadata(MDNode *Annotation) { 5054 Check(isa<MDTuple>(Annotation), "annotation must be a tuple"); 5055 Check(Annotation->getNumOperands() >= 1, 5056 "annotation must have at least one operand"); 5057 for (const MDOperand &Op : Annotation->operands()) { 5058 bool TupleOfStrings = 5059 isa<MDTuple>(Op.get()) && 5060 all_of(cast<MDTuple>(Op)->operands(), [](auto &Annotation) { 5061 return isa<MDString>(Annotation.get()); 5062 }); 5063 Check(isa<MDString>(Op.get()) || TupleOfStrings, 5064 "operands must be a string or a tuple of strings"); 5065 } 5066 } 5067 5068 void Verifier::visitAliasScopeMetadata(const MDNode *MD) { 5069 unsigned NumOps = MD->getNumOperands(); 5070 Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands", 5071 MD); 5072 Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)), 5073 "first scope operand must be self-referential or string", MD); 5074 if (NumOps == 3) 5075 Check(isa<MDString>(MD->getOperand(2)), 5076 "third scope operand must be string (if used)", MD); 5077 5078 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1)); 5079 Check(Domain != nullptr, "second scope operand must be MDNode", MD); 5080 5081 unsigned NumDomainOps = Domain->getNumOperands(); 5082 Check(NumDomainOps >= 1 && NumDomainOps <= 2, 5083 "domain must have one or two operands", Domain); 5084 Check(Domain->getOperand(0).get() == Domain || 5085 isa<MDString>(Domain->getOperand(0)), 5086 "first domain operand must be self-referential or string", Domain); 5087 if (NumDomainOps == 2) 5088 Check(isa<MDString>(Domain->getOperand(1)), 5089 "second domain operand must be string (if used)", Domain); 5090 } 5091 5092 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) { 5093 for (const MDOperand &Op : MD->operands()) { 5094 const MDNode *OpMD = dyn_cast<MDNode>(Op); 5095 Check(OpMD != nullptr, "scope list must consist of MDNodes", MD); 5096 visitAliasScopeMetadata(OpMD); 5097 } 5098 } 5099 5100 void Verifier::visitAccessGroupMetadata(const MDNode *MD) { 5101 auto IsValidAccessScope = [](const MDNode *MD) { 5102 return MD->getNumOperands() == 0 && MD->isDistinct(); 5103 }; 5104 5105 // It must be either an access scope itself... 5106 if (IsValidAccessScope(MD)) 5107 return; 5108 5109 // ...or a list of access scopes. 5110 for (const MDOperand &Op : MD->operands()) { 5111 const MDNode *OpMD = dyn_cast<MDNode>(Op); 5112 Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD); 5113 Check(IsValidAccessScope(OpMD), 5114 "Access scope list contains invalid access scope", MD); 5115 } 5116 } 5117 5118 /// verifyInstruction - Verify that an instruction is well formed. 5119 /// 5120 void Verifier::visitInstruction(Instruction &I) { 5121 BasicBlock *BB = I.getParent(); 5122 Check(BB, "Instruction not embedded in basic block!", &I); 5123 5124 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential 5125 for (User *U : I.users()) { 5126 Check(U != (User *)&I || !DT.isReachableFromEntry(BB), 5127 "Only PHI nodes may reference their own value!", &I); 5128 } 5129 } 5130 5131 // Check that void typed values don't have names 5132 Check(!I.getType()->isVoidTy() || !I.hasName(), 5133 "Instruction has a name, but provides a void value!", &I); 5134 5135 // Check that the return value of the instruction is either void or a legal 5136 // value type. 5137 Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), 5138 "Instruction returns a non-scalar type!", &I); 5139 5140 // Check that the instruction doesn't produce metadata. Calls are already 5141 // checked against the callee type. 5142 Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), 5143 "Invalid use of metadata!", &I); 5144 5145 // Check that all uses of the instruction, if they are instructions 5146 // themselves, actually have parent basic blocks. If the use is not an 5147 // instruction, it is an error! 5148 for (Use &U : I.uses()) { 5149 if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) 5150 Check(Used->getParent() != nullptr, 5151 "Instruction referencing" 5152 " instruction not embedded in a basic block!", 5153 &I, Used); 5154 else { 5155 CheckFailed("Use of instruction is not an instruction!", U); 5156 return; 5157 } 5158 } 5159 5160 // Get a pointer to the call base of the instruction if it is some form of 5161 // call. 5162 const CallBase *CBI = dyn_cast<CallBase>(&I); 5163 5164 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 5165 Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); 5166 5167 // Check to make sure that only first-class-values are operands to 5168 // instructions. 5169 if (!I.getOperand(i)->getType()->isFirstClassType()) { 5170 Check(false, "Instruction operands must be first-class values!", &I); 5171 } 5172 5173 if (Function *F = dyn_cast<Function>(I.getOperand(i))) { 5174 // This code checks whether the function is used as the operand of a 5175 // clang_arc_attachedcall operand bundle. 5176 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI, 5177 int Idx) { 5178 return CBI && CBI->isOperandBundleOfType( 5179 LLVMContext::OB_clang_arc_attachedcall, Idx); 5180 }; 5181 5182 // Check to make sure that the "address of" an intrinsic function is never 5183 // taken. Ignore cases where the address of the intrinsic function is used 5184 // as the argument of operand bundle "clang.arc.attachedcall" as those 5185 // cases are handled in verifyAttachedCallBundle. 5186 Check((!F->isIntrinsic() || 5187 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) || 5188 IsAttachedCallOperand(F, CBI, i)), 5189 "Cannot take the address of an intrinsic!", &I); 5190 Check(!F->isIntrinsic() || isa<CallInst>(I) || 5191 F->getIntrinsicID() == Intrinsic::donothing || 5192 F->getIntrinsicID() == Intrinsic::seh_try_begin || 5193 F->getIntrinsicID() == Intrinsic::seh_try_end || 5194 F->getIntrinsicID() == Intrinsic::seh_scope_begin || 5195 F->getIntrinsicID() == Intrinsic::seh_scope_end || 5196 F->getIntrinsicID() == Intrinsic::coro_resume || 5197 F->getIntrinsicID() == Intrinsic::coro_destroy || 5198 F->getIntrinsicID() == Intrinsic::coro_await_suspend_void || 5199 F->getIntrinsicID() == Intrinsic::coro_await_suspend_bool || 5200 F->getIntrinsicID() == Intrinsic::coro_await_suspend_handle || 5201 F->getIntrinsicID() == 5202 Intrinsic::experimental_patchpoint_void || 5203 F->getIntrinsicID() == Intrinsic::experimental_patchpoint || 5204 F->getIntrinsicID() == Intrinsic::fake_use || 5205 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || 5206 F->getIntrinsicID() == Intrinsic::wasm_rethrow || 5207 IsAttachedCallOperand(F, CBI, i), 5208 "Cannot invoke an intrinsic other than donothing, patchpoint, " 5209 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall", 5210 &I); 5211 Check(F->getParent() == &M, "Referencing function in another module!", &I, 5212 &M, F, F->getParent()); 5213 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { 5214 Check(OpBB->getParent() == BB->getParent(), 5215 "Referring to a basic block in another function!", &I); 5216 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { 5217 Check(OpArg->getParent() == BB->getParent(), 5218 "Referring to an argument in another function!", &I); 5219 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { 5220 Check(GV->getParent() == &M, "Referencing global in another module!", &I, 5221 &M, GV, GV->getParent()); 5222 } else if (Instruction *OpInst = dyn_cast<Instruction>(I.getOperand(i))) { 5223 Check(OpInst->getFunction() == BB->getParent(), 5224 "Referring to an instruction in another function!", &I); 5225 verifyDominatesUse(I, i); 5226 } else if (isa<InlineAsm>(I.getOperand(i))) { 5227 Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), 5228 "Cannot take the address of an inline asm!", &I); 5229 } else if (auto *CPA = dyn_cast<ConstantPtrAuth>(I.getOperand(i))) { 5230 visitConstantExprsRecursively(CPA); 5231 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { 5232 if (CE->getType()->isPtrOrPtrVectorTy()) { 5233 // If we have a ConstantExpr pointer, we need to see if it came from an 5234 // illegal bitcast. 5235 visitConstantExprsRecursively(CE); 5236 } 5237 } 5238 } 5239 5240 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { 5241 Check(I.getType()->isFPOrFPVectorTy(), 5242 "fpmath requires a floating point result!", &I); 5243 Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); 5244 if (ConstantFP *CFP0 = 5245 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { 5246 const APFloat &Accuracy = CFP0->getValueAPF(); 5247 Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), 5248 "fpmath accuracy must have float type", &I); 5249 Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), 5250 "fpmath accuracy not a positive number!", &I); 5251 } else { 5252 Check(false, "invalid fpmath accuracy!", &I); 5253 } 5254 } 5255 5256 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { 5257 Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), 5258 "Ranges are only for loads, calls and invokes!", &I); 5259 visitRangeMetadata(I, Range, I.getType()); 5260 } 5261 5262 if (MDNode *Range = I.getMetadata(LLVMContext::MD_noalias_addrspace)) { 5263 Check(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<AtomicRMWInst>(I) || 5264 isa<AtomicCmpXchgInst>(I) || isa<CallInst>(I), 5265 "noalias.addrspace are only for memory operations!", &I); 5266 visitNoaliasAddrspaceMetadata(I, Range, I.getType()); 5267 } 5268 5269 if (I.hasMetadata(LLVMContext::MD_invariant_group)) { 5270 Check(isa<LoadInst>(I) || isa<StoreInst>(I), 5271 "invariant.group metadata is only for loads and stores", &I); 5272 } 5273 5274 if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) { 5275 Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types", 5276 &I); 5277 Check(isa<LoadInst>(I), 5278 "nonnull applies only to load instructions, use attributes" 5279 " for calls or invokes", 5280 &I); 5281 Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I); 5282 } 5283 5284 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) 5285 visitDereferenceableMetadata(I, MD); 5286 5287 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) 5288 visitDereferenceableMetadata(I, MD); 5289 5290 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) 5291 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); 5292 5293 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias)) 5294 visitAliasScopeListMetadata(MD); 5295 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope)) 5296 visitAliasScopeListMetadata(MD); 5297 5298 if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group)) 5299 visitAccessGroupMetadata(MD); 5300 5301 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { 5302 Check(I.getType()->isPointerTy(), "align applies only to pointer types", 5303 &I); 5304 Check(isa<LoadInst>(I), 5305 "align applies only to load instructions, " 5306 "use attributes for calls or invokes", 5307 &I); 5308 Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); 5309 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); 5310 Check(CI && CI->getType()->isIntegerTy(64), 5311 "align metadata value must be an i64!", &I); 5312 uint64_t Align = CI->getZExtValue(); 5313 Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!", 5314 &I); 5315 Check(Align <= Value::MaximumAlignment, 5316 "alignment is larger that implementation defined limit", &I); 5317 } 5318 5319 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) 5320 visitProfMetadata(I, MD); 5321 5322 if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof)) 5323 visitMemProfMetadata(I, MD); 5324 5325 if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite)) 5326 visitCallsiteMetadata(I, MD); 5327 5328 if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID)) 5329 visitDIAssignIDMetadata(I, MD); 5330 5331 if (MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra)) 5332 visitMMRAMetadata(I, MMRA); 5333 5334 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) 5335 visitAnnotationMetadata(Annotation); 5336 5337 if (MDNode *N = I.getDebugLoc().getAsMDNode()) { 5338 CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); 5339 visitMDNode(*N, AreDebugLocsAllowed::Yes); 5340 } 5341 5342 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 5343 verifyFragmentExpression(*DII); 5344 verifyNotEntryValue(*DII); 5345 } 5346 5347 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 5348 I.getAllMetadata(MDs); 5349 for (auto Attachment : MDs) { 5350 unsigned Kind = Attachment.first; 5351 auto AllowLocs = 5352 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) 5353 ? AreDebugLocsAllowed::Yes 5354 : AreDebugLocsAllowed::No; 5355 visitMDNode(*Attachment.second, AllowLocs); 5356 } 5357 5358 InstsInThisBlock.insert(&I); 5359 } 5360 5361 /// Allow intrinsics to be verified in different ways. 5362 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { 5363 Function *IF = Call.getCalledFunction(); 5364 Check(IF->isDeclaration(), "Intrinsic functions should never be defined!", 5365 IF); 5366 5367 // Verify that the intrinsic prototype lines up with what the .td files 5368 // describe. 5369 FunctionType *IFTy = IF->getFunctionType(); 5370 bool IsVarArg = IFTy->isVarArg(); 5371 5372 SmallVector<Intrinsic::IITDescriptor, 8> Table; 5373 getIntrinsicInfoTableEntries(ID, Table); 5374 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 5375 5376 // Walk the descriptors to extract overloaded types. 5377 SmallVector<Type *, 4> ArgTys; 5378 Intrinsic::MatchIntrinsicTypesResult Res = 5379 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); 5380 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, 5381 "Intrinsic has incorrect return type!", IF); 5382 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, 5383 "Intrinsic has incorrect argument type!", IF); 5384 5385 // Verify if the intrinsic call matches the vararg property. 5386 if (IsVarArg) 5387 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 5388 "Intrinsic was not defined with variable arguments!", IF); 5389 else 5390 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), 5391 "Callsite was not defined with variable arguments!", IF); 5392 5393 // All descriptors should be absorbed by now. 5394 Check(TableRef.empty(), "Intrinsic has too few arguments!", IF); 5395 5396 // Now that we have the intrinsic ID and the actual argument types (and we 5397 // know they are legal for the intrinsic!) get the intrinsic name through the 5398 // usual means. This allows us to verify the mangling of argument types into 5399 // the name. 5400 const std::string ExpectedName = 5401 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); 5402 Check(ExpectedName == IF->getName(), 5403 "Intrinsic name not mangled correctly for type arguments! " 5404 "Should be: " + 5405 ExpectedName, 5406 IF); 5407 5408 // If the intrinsic takes MDNode arguments, verify that they are either global 5409 // or are local to *this* function. 5410 for (Value *V : Call.args()) { 5411 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 5412 visitMetadataAsValue(*MD, Call.getCaller()); 5413 if (auto *Const = dyn_cast<Constant>(V)) 5414 Check(!Const->getType()->isX86_AMXTy(), 5415 "const x86_amx is not allowed in argument!"); 5416 } 5417 5418 switch (ID) { 5419 default: 5420 break; 5421 case Intrinsic::assume: { 5422 for (auto &Elem : Call.bundle_op_infos()) { 5423 unsigned ArgCount = Elem.End - Elem.Begin; 5424 // Separate storage assumptions are special insofar as they're the only 5425 // operand bundles allowed on assumes that aren't parameter attributes. 5426 if (Elem.Tag->getKey() == "separate_storage") { 5427 Check(ArgCount == 2, 5428 "separate_storage assumptions should have 2 arguments", Call); 5429 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() && 5430 Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(), 5431 "arguments to separate_storage assumptions should be pointers", 5432 Call); 5433 return; 5434 } 5435 Check(Elem.Tag->getKey() == "ignore" || 5436 Attribute::isExistingAttribute(Elem.Tag->getKey()), 5437 "tags must be valid attribute names", Call); 5438 Attribute::AttrKind Kind = 5439 Attribute::getAttrKindFromName(Elem.Tag->getKey()); 5440 if (Kind == Attribute::Alignment) { 5441 Check(ArgCount <= 3 && ArgCount >= 2, 5442 "alignment assumptions should have 2 or 3 arguments", Call); 5443 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), 5444 "first argument should be a pointer", Call); 5445 Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), 5446 "second argument should be an integer", Call); 5447 if (ArgCount == 3) 5448 Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), 5449 "third argument should be an integer if present", Call); 5450 return; 5451 } 5452 Check(ArgCount <= 2, "too many arguments", Call); 5453 if (Kind == Attribute::None) 5454 break; 5455 if (Attribute::isIntAttrKind(Kind)) { 5456 Check(ArgCount == 2, "this attribute should have 2 arguments", Call); 5457 Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), 5458 "the second argument should be a constant integral value", Call); 5459 } else if (Attribute::canUseAsParamAttr(Kind)) { 5460 Check((ArgCount) == 1, "this attribute should have one argument", Call); 5461 } else if (Attribute::canUseAsFnAttr(Kind)) { 5462 Check((ArgCount) == 0, "this attribute has no argument", Call); 5463 } 5464 } 5465 break; 5466 } 5467 case Intrinsic::ucmp: 5468 case Intrinsic::scmp: { 5469 Type *SrcTy = Call.getOperand(0)->getType(); 5470 Type *DestTy = Call.getType(); 5471 5472 Check(DestTy->getScalarSizeInBits() >= 2, 5473 "result type must be at least 2 bits wide", Call); 5474 5475 bool IsDestTypeVector = DestTy->isVectorTy(); 5476 Check(SrcTy->isVectorTy() == IsDestTypeVector, 5477 "ucmp/scmp argument and result types must both be either vector or " 5478 "scalar types", 5479 Call); 5480 if (IsDestTypeVector) { 5481 auto SrcVecLen = cast<VectorType>(SrcTy)->getElementCount(); 5482 auto DestVecLen = cast<VectorType>(DestTy)->getElementCount(); 5483 Check(SrcVecLen == DestVecLen, 5484 "return type and arguments must have the same number of " 5485 "elements", 5486 Call); 5487 } 5488 break; 5489 } 5490 case Intrinsic::coro_id: { 5491 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); 5492 if (isa<ConstantPointerNull>(InfoArg)) 5493 break; 5494 auto *GV = dyn_cast<GlobalVariable>(InfoArg); 5495 Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), 5496 "info argument of llvm.coro.id must refer to an initialized " 5497 "constant"); 5498 Constant *Init = GV->getInitializer(); 5499 Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), 5500 "info argument of llvm.coro.id must refer to either a struct or " 5501 "an array"); 5502 break; 5503 } 5504 case Intrinsic::is_fpclass: { 5505 const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1)); 5506 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0, 5507 "unsupported bits for llvm.is.fpclass test mask"); 5508 break; 5509 } 5510 case Intrinsic::fptrunc_round: { 5511 // Check the rounding mode 5512 Metadata *MD = nullptr; 5513 auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1)); 5514 if (MAV) 5515 MD = MAV->getMetadata(); 5516 5517 Check(MD != nullptr, "missing rounding mode argument", Call); 5518 5519 Check(isa<MDString>(MD), 5520 ("invalid value for llvm.fptrunc.round metadata operand" 5521 " (the operand should be a string)"), 5522 MD); 5523 5524 std::optional<RoundingMode> RoundMode = 5525 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 5526 Check(RoundMode && *RoundMode != RoundingMode::Dynamic, 5527 "unsupported rounding mode argument", Call); 5528 break; 5529 } 5530 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 5531 #include "llvm/IR/VPIntrinsics.def" 5532 #undef BEGIN_REGISTER_VP_INTRINSIC 5533 visitVPIntrinsic(cast<VPIntrinsic>(Call)); 5534 break; 5535 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ 5536 case Intrinsic::INTRINSIC: 5537 #include "llvm/IR/ConstrainedOps.def" 5538 #undef INSTRUCTION 5539 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); 5540 break; 5541 case Intrinsic::dbg_declare: // llvm.dbg.declare 5542 Check(isa<MetadataAsValue>(Call.getArgOperand(0)), 5543 "invalid llvm.dbg.declare intrinsic call 1", Call); 5544 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); 5545 break; 5546 case Intrinsic::dbg_value: // llvm.dbg.value 5547 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); 5548 break; 5549 case Intrinsic::dbg_assign: // llvm.dbg.assign 5550 visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call)); 5551 break; 5552 case Intrinsic::dbg_label: // llvm.dbg.label 5553 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); 5554 break; 5555 case Intrinsic::memcpy: 5556 case Intrinsic::memcpy_inline: 5557 case Intrinsic::memmove: 5558 case Intrinsic::memset: 5559 case Intrinsic::memset_inline: 5560 case Intrinsic::experimental_memset_pattern: { 5561 break; 5562 } 5563 case Intrinsic::memcpy_element_unordered_atomic: 5564 case Intrinsic::memmove_element_unordered_atomic: 5565 case Intrinsic::memset_element_unordered_atomic: { 5566 const auto *AMI = cast<AtomicMemIntrinsic>(&Call); 5567 5568 ConstantInt *ElementSizeCI = 5569 cast<ConstantInt>(AMI->getRawElementSizeInBytes()); 5570 const APInt &ElementSizeVal = ElementSizeCI->getValue(); 5571 Check(ElementSizeVal.isPowerOf2(), 5572 "element size of the element-wise atomic memory intrinsic " 5573 "must be a power of 2", 5574 Call); 5575 5576 auto IsValidAlignment = [&](MaybeAlign Alignment) { 5577 return Alignment && ElementSizeVal.ule(Alignment->value()); 5578 }; 5579 Check(IsValidAlignment(AMI->getDestAlign()), 5580 "incorrect alignment of the destination argument", Call); 5581 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { 5582 Check(IsValidAlignment(AMT->getSourceAlign()), 5583 "incorrect alignment of the source argument", Call); 5584 } 5585 break; 5586 } 5587 case Intrinsic::call_preallocated_setup: { 5588 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 5589 Check(NumArgs != nullptr, 5590 "llvm.call.preallocated.setup argument must be a constant"); 5591 bool FoundCall = false; 5592 for (User *U : Call.users()) { 5593 auto *UseCall = dyn_cast<CallBase>(U); 5594 Check(UseCall != nullptr, 5595 "Uses of llvm.call.preallocated.setup must be calls"); 5596 const Function *Fn = UseCall->getCalledFunction(); 5597 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { 5598 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); 5599 Check(AllocArgIndex != nullptr, 5600 "llvm.call.preallocated.alloc arg index must be a constant"); 5601 auto AllocArgIndexInt = AllocArgIndex->getValue(); 5602 Check(AllocArgIndexInt.sge(0) && 5603 AllocArgIndexInt.slt(NumArgs->getValue()), 5604 "llvm.call.preallocated.alloc arg index must be between 0 and " 5605 "corresponding " 5606 "llvm.call.preallocated.setup's argument count"); 5607 } else if (Fn && Fn->getIntrinsicID() == 5608 Intrinsic::call_preallocated_teardown) { 5609 // nothing to do 5610 } else { 5611 Check(!FoundCall, "Can have at most one call corresponding to a " 5612 "llvm.call.preallocated.setup"); 5613 FoundCall = true; 5614 size_t NumPreallocatedArgs = 0; 5615 for (unsigned i = 0; i < UseCall->arg_size(); i++) { 5616 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { 5617 ++NumPreallocatedArgs; 5618 } 5619 } 5620 Check(NumPreallocatedArgs != 0, 5621 "cannot use preallocated intrinsics on a call without " 5622 "preallocated arguments"); 5623 Check(NumArgs->equalsInt(NumPreallocatedArgs), 5624 "llvm.call.preallocated.setup arg size must be equal to number " 5625 "of preallocated arguments " 5626 "at call site", 5627 Call, *UseCall); 5628 // getOperandBundle() cannot be called if more than one of the operand 5629 // bundle exists. There is already a check elsewhere for this, so skip 5630 // here if we see more than one. 5631 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > 5632 1) { 5633 return; 5634 } 5635 auto PreallocatedBundle = 5636 UseCall->getOperandBundle(LLVMContext::OB_preallocated); 5637 Check(PreallocatedBundle, 5638 "Use of llvm.call.preallocated.setup outside intrinsics " 5639 "must be in \"preallocated\" operand bundle"); 5640 Check(PreallocatedBundle->Inputs.front().get() == &Call, 5641 "preallocated bundle must have token from corresponding " 5642 "llvm.call.preallocated.setup"); 5643 } 5644 } 5645 break; 5646 } 5647 case Intrinsic::call_preallocated_arg: { 5648 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 5649 Check(Token && Token->getCalledFunction()->getIntrinsicID() == 5650 Intrinsic::call_preallocated_setup, 5651 "llvm.call.preallocated.arg token argument must be a " 5652 "llvm.call.preallocated.setup"); 5653 Check(Call.hasFnAttr(Attribute::Preallocated), 5654 "llvm.call.preallocated.arg must be called with a \"preallocated\" " 5655 "call site attribute"); 5656 break; 5657 } 5658 case Intrinsic::call_preallocated_teardown: { 5659 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); 5660 Check(Token && Token->getCalledFunction()->getIntrinsicID() == 5661 Intrinsic::call_preallocated_setup, 5662 "llvm.call.preallocated.teardown token argument must be a " 5663 "llvm.call.preallocated.setup"); 5664 break; 5665 } 5666 case Intrinsic::gcroot: 5667 case Intrinsic::gcwrite: 5668 case Intrinsic::gcread: 5669 if (ID == Intrinsic::gcroot) { 5670 AllocaInst *AI = 5671 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); 5672 Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); 5673 Check(isa<Constant>(Call.getArgOperand(1)), 5674 "llvm.gcroot parameter #2 must be a constant.", Call); 5675 if (!AI->getAllocatedType()->isPointerTy()) { 5676 Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)), 5677 "llvm.gcroot parameter #1 must either be a pointer alloca, " 5678 "or argument #2 must be a non-null constant.", 5679 Call); 5680 } 5681 } 5682 5683 Check(Call.getParent()->getParent()->hasGC(), 5684 "Enclosing function does not use GC.", Call); 5685 break; 5686 case Intrinsic::init_trampoline: 5687 Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), 5688 "llvm.init_trampoline parameter #2 must resolve to a function.", 5689 Call); 5690 break; 5691 case Intrinsic::prefetch: 5692 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2, 5693 "rw argument to llvm.prefetch must be 0-1", Call); 5694 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 5695 "locality argument to llvm.prefetch must be 0-3", Call); 5696 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2, 5697 "cache type argument to llvm.prefetch must be 0-1", Call); 5698 break; 5699 case Intrinsic::stackprotector: 5700 Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), 5701 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); 5702 break; 5703 case Intrinsic::localescape: { 5704 BasicBlock *BB = Call.getParent(); 5705 Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block", 5706 Call); 5707 Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function", 5708 Call); 5709 for (Value *Arg : Call.args()) { 5710 if (isa<ConstantPointerNull>(Arg)) 5711 continue; // Null values are allowed as placeholders. 5712 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); 5713 Check(AI && AI->isStaticAlloca(), 5714 "llvm.localescape only accepts static allocas", Call); 5715 } 5716 FrameEscapeInfo[BB->getParent()].first = Call.arg_size(); 5717 SawFrameEscape = true; 5718 break; 5719 } 5720 case Intrinsic::localrecover: { 5721 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); 5722 Function *Fn = dyn_cast<Function>(FnArg); 5723 Check(Fn && !Fn->isDeclaration(), 5724 "llvm.localrecover first " 5725 "argument must be function defined in this module", 5726 Call); 5727 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); 5728 auto &Entry = FrameEscapeInfo[Fn]; 5729 Entry.second = unsigned( 5730 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); 5731 break; 5732 } 5733 5734 case Intrinsic::experimental_gc_statepoint: 5735 if (auto *CI = dyn_cast<CallInst>(&Call)) 5736 Check(!CI->isInlineAsm(), 5737 "gc.statepoint support for inline assembly unimplemented", CI); 5738 Check(Call.getParent()->getParent()->hasGC(), 5739 "Enclosing function does not use GC.", Call); 5740 5741 verifyStatepoint(Call); 5742 break; 5743 case Intrinsic::experimental_gc_result: { 5744 Check(Call.getParent()->getParent()->hasGC(), 5745 "Enclosing function does not use GC.", Call); 5746 5747 auto *Statepoint = Call.getArgOperand(0); 5748 if (isa<UndefValue>(Statepoint)) 5749 break; 5750 5751 // Are we tied to a statepoint properly? 5752 const auto *StatepointCall = dyn_cast<CallBase>(Statepoint); 5753 const Function *StatepointFn = 5754 StatepointCall ? StatepointCall->getCalledFunction() : nullptr; 5755 Check(StatepointFn && StatepointFn->isDeclaration() && 5756 StatepointFn->getIntrinsicID() == 5757 Intrinsic::experimental_gc_statepoint, 5758 "gc.result operand #1 must be from a statepoint", Call, 5759 Call.getArgOperand(0)); 5760 5761 // Check that result type matches wrapped callee. 5762 auto *TargetFuncType = 5763 cast<FunctionType>(StatepointCall->getParamElementType(2)); 5764 Check(Call.getType() == TargetFuncType->getReturnType(), 5765 "gc.result result type does not match wrapped callee", Call); 5766 break; 5767 } 5768 case Intrinsic::experimental_gc_relocate: { 5769 Check(Call.arg_size() == 3, "wrong number of arguments", Call); 5770 5771 Check(isa<PointerType>(Call.getType()->getScalarType()), 5772 "gc.relocate must return a pointer or a vector of pointers", Call); 5773 5774 // Check that this relocate is correctly tied to the statepoint 5775 5776 // This is case for relocate on the unwinding path of an invoke statepoint 5777 if (LandingPadInst *LandingPad = 5778 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { 5779 5780 const BasicBlock *InvokeBB = 5781 LandingPad->getParent()->getUniquePredecessor(); 5782 5783 // Landingpad relocates should have only one predecessor with invoke 5784 // statepoint terminator 5785 Check(InvokeBB, "safepoints should have unique landingpads", 5786 LandingPad->getParent()); 5787 Check(InvokeBB->getTerminator(), "safepoint block should be well formed", 5788 InvokeBB); 5789 Check(isa<GCStatepointInst>(InvokeBB->getTerminator()), 5790 "gc relocate should be linked to a statepoint", InvokeBB); 5791 } else { 5792 // In all other cases relocate should be tied to the statepoint directly. 5793 // This covers relocates on a normal return path of invoke statepoint and 5794 // relocates of a call statepoint. 5795 auto *Token = Call.getArgOperand(0); 5796 Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token), 5797 "gc relocate is incorrectly tied to the statepoint", Call, Token); 5798 } 5799 5800 // Verify rest of the relocate arguments. 5801 const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint(); 5802 5803 // Both the base and derived must be piped through the safepoint. 5804 Value *Base = Call.getArgOperand(1); 5805 Check(isa<ConstantInt>(Base), 5806 "gc.relocate operand #2 must be integer offset", Call); 5807 5808 Value *Derived = Call.getArgOperand(2); 5809 Check(isa<ConstantInt>(Derived), 5810 "gc.relocate operand #3 must be integer offset", Call); 5811 5812 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); 5813 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); 5814 5815 // Check the bounds 5816 if (isa<UndefValue>(StatepointCall)) 5817 break; 5818 if (auto Opt = cast<GCStatepointInst>(StatepointCall) 5819 .getOperandBundle(LLVMContext::OB_gc_live)) { 5820 Check(BaseIndex < Opt->Inputs.size(), 5821 "gc.relocate: statepoint base index out of bounds", Call); 5822 Check(DerivedIndex < Opt->Inputs.size(), 5823 "gc.relocate: statepoint derived index out of bounds", Call); 5824 } 5825 5826 // Relocated value must be either a pointer type or vector-of-pointer type, 5827 // but gc_relocate does not need to return the same pointer type as the 5828 // relocated pointer. It can be casted to the correct type later if it's 5829 // desired. However, they must have the same address space and 'vectorness' 5830 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); 5831 auto *ResultType = Call.getType(); 5832 auto *DerivedType = Relocate.getDerivedPtr()->getType(); 5833 auto *BaseType = Relocate.getBasePtr()->getType(); 5834 5835 Check(BaseType->isPtrOrPtrVectorTy(), 5836 "gc.relocate: relocated value must be a pointer", Call); 5837 Check(DerivedType->isPtrOrPtrVectorTy(), 5838 "gc.relocate: relocated value must be a pointer", Call); 5839 5840 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(), 5841 "gc.relocate: vector relocates to vector and pointer to pointer", 5842 Call); 5843 Check( 5844 ResultType->getPointerAddressSpace() == 5845 DerivedType->getPointerAddressSpace(), 5846 "gc.relocate: relocating a pointer shouldn't change its address space", 5847 Call); 5848 5849 auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC()); 5850 Check(GC, "gc.relocate: calling function must have GCStrategy", 5851 Call.getFunction()); 5852 if (GC) { 5853 auto isGCPtr = [&GC](Type *PTy) { 5854 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true); 5855 }; 5856 Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call); 5857 Check(isGCPtr(BaseType), 5858 "gc.relocate: relocated value must be a gc pointer", Call); 5859 Check(isGCPtr(DerivedType), 5860 "gc.relocate: relocated value must be a gc pointer", Call); 5861 } 5862 break; 5863 } 5864 case Intrinsic::experimental_patchpoint: { 5865 if (Call.getCallingConv() == CallingConv::AnyReg) { 5866 Check(Call.getType()->isSingleValueType(), 5867 "patchpoint: invalid return type used with anyregcc", Call); 5868 } 5869 break; 5870 } 5871 case Intrinsic::eh_exceptioncode: 5872 case Intrinsic::eh_exceptionpointer: { 5873 Check(isa<CatchPadInst>(Call.getArgOperand(0)), 5874 "eh.exceptionpointer argument must be a catchpad", Call); 5875 break; 5876 } 5877 case Intrinsic::get_active_lane_mask: { 5878 Check(Call.getType()->isVectorTy(), 5879 "get_active_lane_mask: must return a " 5880 "vector", 5881 Call); 5882 auto *ElemTy = Call.getType()->getScalarType(); 5883 Check(ElemTy->isIntegerTy(1), 5884 "get_active_lane_mask: element type is not " 5885 "i1", 5886 Call); 5887 break; 5888 } 5889 case Intrinsic::experimental_get_vector_length: { 5890 ConstantInt *VF = cast<ConstantInt>(Call.getArgOperand(1)); 5891 Check(!VF->isNegative() && !VF->isZero(), 5892 "get_vector_length: VF must be positive", Call); 5893 break; 5894 } 5895 case Intrinsic::masked_load: { 5896 Check(Call.getType()->isVectorTy(), "masked_load: must return a vector", 5897 Call); 5898 5899 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); 5900 Value *Mask = Call.getArgOperand(2); 5901 Value *PassThru = Call.getArgOperand(3); 5902 Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", 5903 Call); 5904 Check(Alignment->getValue().isPowerOf2(), 5905 "masked_load: alignment must be a power of 2", Call); 5906 Check(PassThru->getType() == Call.getType(), 5907 "masked_load: pass through and return type must match", Call); 5908 Check(cast<VectorType>(Mask->getType())->getElementCount() == 5909 cast<VectorType>(Call.getType())->getElementCount(), 5910 "masked_load: vector mask must be same length as return", Call); 5911 break; 5912 } 5913 case Intrinsic::masked_store: { 5914 Value *Val = Call.getArgOperand(0); 5915 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); 5916 Value *Mask = Call.getArgOperand(3); 5917 Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", 5918 Call); 5919 Check(Alignment->getValue().isPowerOf2(), 5920 "masked_store: alignment must be a power of 2", Call); 5921 Check(cast<VectorType>(Mask->getType())->getElementCount() == 5922 cast<VectorType>(Val->getType())->getElementCount(), 5923 "masked_store: vector mask must be same length as value", Call); 5924 break; 5925 } 5926 5927 case Intrinsic::masked_gather: { 5928 const APInt &Alignment = 5929 cast<ConstantInt>(Call.getArgOperand(1))->getValue(); 5930 Check(Alignment.isZero() || Alignment.isPowerOf2(), 5931 "masked_gather: alignment must be 0 or a power of 2", Call); 5932 break; 5933 } 5934 case Intrinsic::masked_scatter: { 5935 const APInt &Alignment = 5936 cast<ConstantInt>(Call.getArgOperand(2))->getValue(); 5937 Check(Alignment.isZero() || Alignment.isPowerOf2(), 5938 "masked_scatter: alignment must be 0 or a power of 2", Call); 5939 break; 5940 } 5941 5942 case Intrinsic::experimental_guard: { 5943 Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); 5944 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5945 "experimental_guard must have exactly one " 5946 "\"deopt\" operand bundle"); 5947 break; 5948 } 5949 5950 case Intrinsic::experimental_deoptimize: { 5951 Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", 5952 Call); 5953 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, 5954 "experimental_deoptimize must have exactly one " 5955 "\"deopt\" operand bundle"); 5956 Check(Call.getType() == Call.getFunction()->getReturnType(), 5957 "experimental_deoptimize return type must match caller return type"); 5958 5959 if (isa<CallInst>(Call)) { 5960 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); 5961 Check(RI, 5962 "calls to experimental_deoptimize must be followed by a return"); 5963 5964 if (!Call.getType()->isVoidTy() && RI) 5965 Check(RI->getReturnValue() == &Call, 5966 "calls to experimental_deoptimize must be followed by a return " 5967 "of the value computed by experimental_deoptimize"); 5968 } 5969 5970 break; 5971 } 5972 case Intrinsic::vastart: { 5973 Check(Call.getFunction()->isVarArg(), 5974 "va_start called in a non-varargs function"); 5975 break; 5976 } 5977 case Intrinsic::vector_reduce_and: 5978 case Intrinsic::vector_reduce_or: 5979 case Intrinsic::vector_reduce_xor: 5980 case Intrinsic::vector_reduce_add: 5981 case Intrinsic::vector_reduce_mul: 5982 case Intrinsic::vector_reduce_smax: 5983 case Intrinsic::vector_reduce_smin: 5984 case Intrinsic::vector_reduce_umax: 5985 case Intrinsic::vector_reduce_umin: { 5986 Type *ArgTy = Call.getArgOperand(0)->getType(); 5987 Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), 5988 "Intrinsic has incorrect argument type!"); 5989 break; 5990 } 5991 case Intrinsic::vector_reduce_fmax: 5992 case Intrinsic::vector_reduce_fmin: { 5993 Type *ArgTy = Call.getArgOperand(0)->getType(); 5994 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 5995 "Intrinsic has incorrect argument type!"); 5996 break; 5997 } 5998 case Intrinsic::vector_reduce_fadd: 5999 case Intrinsic::vector_reduce_fmul: { 6000 // Unlike the other reductions, the first argument is a start value. The 6001 // second argument is the vector to be reduced. 6002 Type *ArgTy = Call.getArgOperand(1)->getType(); 6003 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), 6004 "Intrinsic has incorrect argument type!"); 6005 break; 6006 } 6007 case Intrinsic::smul_fix: 6008 case Intrinsic::smul_fix_sat: 6009 case Intrinsic::umul_fix: 6010 case Intrinsic::umul_fix_sat: 6011 case Intrinsic::sdiv_fix: 6012 case Intrinsic::sdiv_fix_sat: 6013 case Intrinsic::udiv_fix: 6014 case Intrinsic::udiv_fix_sat: { 6015 Value *Op1 = Call.getArgOperand(0); 6016 Value *Op2 = Call.getArgOperand(1); 6017 Check(Op1->getType()->isIntOrIntVectorTy(), 6018 "first operand of [us][mul|div]_fix[_sat] must be an int type or " 6019 "vector of ints"); 6020 Check(Op2->getType()->isIntOrIntVectorTy(), 6021 "second operand of [us][mul|div]_fix[_sat] must be an int type or " 6022 "vector of ints"); 6023 6024 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); 6025 Check(Op3->getType()->isIntegerTy(), 6026 "third operand of [us][mul|div]_fix[_sat] must be an int type"); 6027 Check(Op3->getBitWidth() <= 32, 6028 "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits"); 6029 6030 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || 6031 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { 6032 Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), 6033 "the scale of s[mul|div]_fix[_sat] must be less than the width of " 6034 "the operands"); 6035 } else { 6036 Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), 6037 "the scale of u[mul|div]_fix[_sat] must be less than or equal " 6038 "to the width of the operands"); 6039 } 6040 break; 6041 } 6042 case Intrinsic::lrint: 6043 case Intrinsic::llrint: 6044 case Intrinsic::lround: 6045 case Intrinsic::llround: { 6046 Type *ValTy = Call.getArgOperand(0)->getType(); 6047 Type *ResultTy = Call.getType(); 6048 auto *VTy = dyn_cast<VectorType>(ValTy); 6049 auto *RTy = dyn_cast<VectorType>(ResultTy); 6050 Check(ValTy->isFPOrFPVectorTy() && ResultTy->isIntOrIntVectorTy(), 6051 ExpectedName + ": argument must be floating-point or vector " 6052 "of floating-points, and result must be integer or " 6053 "vector of integers", 6054 &Call); 6055 Check(ValTy->isVectorTy() == ResultTy->isVectorTy(), 6056 ExpectedName + ": argument and result disagree on vector use", &Call); 6057 if (VTy) { 6058 Check(VTy->getElementCount() == RTy->getElementCount(), 6059 ExpectedName + ": argument must be same length as result", &Call); 6060 } 6061 break; 6062 } 6063 case Intrinsic::bswap: { 6064 Type *Ty = Call.getType(); 6065 unsigned Size = Ty->getScalarSizeInBits(); 6066 Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call); 6067 break; 6068 } 6069 case Intrinsic::invariant_start: { 6070 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); 6071 Check(InvariantSize && 6072 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), 6073 "invariant_start parameter must be -1, 0 or a positive number", 6074 &Call); 6075 break; 6076 } 6077 case Intrinsic::matrix_multiply: 6078 case Intrinsic::matrix_transpose: 6079 case Intrinsic::matrix_column_major_load: 6080 case Intrinsic::matrix_column_major_store: { 6081 Function *IF = Call.getCalledFunction(); 6082 ConstantInt *Stride = nullptr; 6083 ConstantInt *NumRows; 6084 ConstantInt *NumColumns; 6085 VectorType *ResultTy; 6086 Type *Op0ElemTy = nullptr; 6087 Type *Op1ElemTy = nullptr; 6088 switch (ID) { 6089 case Intrinsic::matrix_multiply: { 6090 NumRows = cast<ConstantInt>(Call.getArgOperand(2)); 6091 ConstantInt *N = cast<ConstantInt>(Call.getArgOperand(3)); 6092 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 6093 Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType()) 6094 ->getNumElements() == 6095 NumRows->getZExtValue() * N->getZExtValue(), 6096 "First argument of a matrix operation does not match specified " 6097 "shape!"); 6098 Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType()) 6099 ->getNumElements() == 6100 N->getZExtValue() * NumColumns->getZExtValue(), 6101 "Second argument of a matrix operation does not match specified " 6102 "shape!"); 6103 6104 ResultTy = cast<VectorType>(Call.getType()); 6105 Op0ElemTy = 6106 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 6107 Op1ElemTy = 6108 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); 6109 break; 6110 } 6111 case Intrinsic::matrix_transpose: 6112 NumRows = cast<ConstantInt>(Call.getArgOperand(1)); 6113 NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); 6114 ResultTy = cast<VectorType>(Call.getType()); 6115 Op0ElemTy = 6116 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 6117 break; 6118 case Intrinsic::matrix_column_major_load: { 6119 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); 6120 NumRows = cast<ConstantInt>(Call.getArgOperand(3)); 6121 NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); 6122 ResultTy = cast<VectorType>(Call.getType()); 6123 break; 6124 } 6125 case Intrinsic::matrix_column_major_store: { 6126 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); 6127 NumRows = cast<ConstantInt>(Call.getArgOperand(4)); 6128 NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); 6129 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 6130 Op0ElemTy = 6131 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); 6132 break; 6133 } 6134 default: 6135 llvm_unreachable("unexpected intrinsic"); 6136 } 6137 6138 Check(ResultTy->getElementType()->isIntegerTy() || 6139 ResultTy->getElementType()->isFloatingPointTy(), 6140 "Result type must be an integer or floating-point type!", IF); 6141 6142 if (Op0ElemTy) 6143 Check(ResultTy->getElementType() == Op0ElemTy, 6144 "Vector element type mismatch of the result and first operand " 6145 "vector!", 6146 IF); 6147 6148 if (Op1ElemTy) 6149 Check(ResultTy->getElementType() == Op1ElemTy, 6150 "Vector element type mismatch of the result and second operand " 6151 "vector!", 6152 IF); 6153 6154 Check(cast<FixedVectorType>(ResultTy)->getNumElements() == 6155 NumRows->getZExtValue() * NumColumns->getZExtValue(), 6156 "Result of a matrix operation does not fit in the returned vector!"); 6157 6158 if (Stride) 6159 Check(Stride->getZExtValue() >= NumRows->getZExtValue(), 6160 "Stride must be greater or equal than the number of rows!", IF); 6161 6162 break; 6163 } 6164 case Intrinsic::vector_splice: { 6165 VectorType *VecTy = cast<VectorType>(Call.getType()); 6166 int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue(); 6167 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue(); 6168 if (Call.getParent() && Call.getParent()->getParent()) { 6169 AttributeList Attrs = Call.getParent()->getParent()->getAttributes(); 6170 if (Attrs.hasFnAttr(Attribute::VScaleRange)) 6171 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin(); 6172 } 6173 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) || 6174 (Idx >= 0 && Idx < KnownMinNumElements), 6175 "The splice index exceeds the range [-VL, VL-1] where VL is the " 6176 "known minimum number of elements in the vector. For scalable " 6177 "vectors the minimum number of elements is determined from " 6178 "vscale_range.", 6179 &Call); 6180 break; 6181 } 6182 case Intrinsic::stepvector: { 6183 VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); 6184 Check(VecTy && VecTy->getScalarType()->isIntegerTy() && 6185 VecTy->getScalarSizeInBits() >= 8, 6186 "stepvector only supported for vectors of integers " 6187 "with a bitwidth of at least 8.", 6188 &Call); 6189 break; 6190 } 6191 case Intrinsic::experimental_vector_match: { 6192 Value *Op1 = Call.getArgOperand(0); 6193 Value *Op2 = Call.getArgOperand(1); 6194 Value *Mask = Call.getArgOperand(2); 6195 6196 VectorType *Op1Ty = dyn_cast<VectorType>(Op1->getType()); 6197 VectorType *Op2Ty = dyn_cast<VectorType>(Op2->getType()); 6198 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); 6199 6200 Check(Op1Ty && Op2Ty && MaskTy, "Operands must be vectors.", &Call); 6201 Check(isa<FixedVectorType>(Op2Ty), 6202 "Second operand must be a fixed length vector.", &Call); 6203 Check(Op1Ty->getElementType()->isIntegerTy(), 6204 "First operand must be a vector of integers.", &Call); 6205 Check(Op1Ty->getElementType() == Op2Ty->getElementType(), 6206 "First two operands must have the same element type.", &Call); 6207 Check(Op1Ty->getElementCount() == MaskTy->getElementCount(), 6208 "First operand and mask must have the same number of elements.", 6209 &Call); 6210 Check(MaskTy->getElementType()->isIntegerTy(1), 6211 "Mask must be a vector of i1's.", &Call); 6212 Check(Call.getType() == MaskTy, "Return type must match the mask type.", 6213 &Call); 6214 break; 6215 } 6216 case Intrinsic::vector_insert: { 6217 Value *Vec = Call.getArgOperand(0); 6218 Value *SubVec = Call.getArgOperand(1); 6219 Value *Idx = Call.getArgOperand(2); 6220 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6221 6222 VectorType *VecTy = cast<VectorType>(Vec->getType()); 6223 VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); 6224 6225 ElementCount VecEC = VecTy->getElementCount(); 6226 ElementCount SubVecEC = SubVecTy->getElementCount(); 6227 Check(VecTy->getElementType() == SubVecTy->getElementType(), 6228 "vector_insert parameters must have the same element " 6229 "type.", 6230 &Call); 6231 Check(IdxN % SubVecEC.getKnownMinValue() == 0, 6232 "vector_insert index must be a constant multiple of " 6233 "the subvector's known minimum vector length."); 6234 6235 // If this insertion is not the 'mixed' case where a fixed vector is 6236 // inserted into a scalable vector, ensure that the insertion of the 6237 // subvector does not overrun the parent vector. 6238 if (VecEC.isScalable() == SubVecEC.isScalable()) { 6239 Check(IdxN < VecEC.getKnownMinValue() && 6240 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 6241 "subvector operand of vector_insert would overrun the " 6242 "vector being inserted into."); 6243 } 6244 break; 6245 } 6246 case Intrinsic::vector_extract: { 6247 Value *Vec = Call.getArgOperand(0); 6248 Value *Idx = Call.getArgOperand(1); 6249 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6250 6251 VectorType *ResultTy = cast<VectorType>(Call.getType()); 6252 VectorType *VecTy = cast<VectorType>(Vec->getType()); 6253 6254 ElementCount VecEC = VecTy->getElementCount(); 6255 ElementCount ResultEC = ResultTy->getElementCount(); 6256 6257 Check(ResultTy->getElementType() == VecTy->getElementType(), 6258 "vector_extract result must have the same element " 6259 "type as the input vector.", 6260 &Call); 6261 Check(IdxN % ResultEC.getKnownMinValue() == 0, 6262 "vector_extract index must be a constant multiple of " 6263 "the result type's known minimum vector length."); 6264 6265 // If this extraction is not the 'mixed' case where a fixed vector is 6266 // extracted from a scalable vector, ensure that the extraction does not 6267 // overrun the parent vector. 6268 if (VecEC.isScalable() == ResultEC.isScalable()) { 6269 Check(IdxN < VecEC.getKnownMinValue() && 6270 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), 6271 "vector_extract would overrun."); 6272 } 6273 break; 6274 } 6275 case Intrinsic::experimental_vector_partial_reduce_add: { 6276 VectorType *AccTy = cast<VectorType>(Call.getArgOperand(0)->getType()); 6277 VectorType *VecTy = cast<VectorType>(Call.getArgOperand(1)->getType()); 6278 6279 unsigned VecWidth = VecTy->getElementCount().getKnownMinValue(); 6280 unsigned AccWidth = AccTy->getElementCount().getKnownMinValue(); 6281 6282 Check((VecWidth % AccWidth) == 0, 6283 "Invalid vector widths for partial " 6284 "reduction. The width of the input vector " 6285 "must be a positive integer multiple of " 6286 "the width of the accumulator vector."); 6287 break; 6288 } 6289 case Intrinsic::experimental_noalias_scope_decl: { 6290 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); 6291 break; 6292 } 6293 case Intrinsic::preserve_array_access_index: 6294 case Intrinsic::preserve_struct_access_index: 6295 case Intrinsic::aarch64_ldaxr: 6296 case Intrinsic::aarch64_ldxr: 6297 case Intrinsic::arm_ldaex: 6298 case Intrinsic::arm_ldrex: { 6299 Type *ElemTy = Call.getParamElementType(0); 6300 Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.", 6301 &Call); 6302 break; 6303 } 6304 case Intrinsic::aarch64_stlxr: 6305 case Intrinsic::aarch64_stxr: 6306 case Intrinsic::arm_stlex: 6307 case Intrinsic::arm_strex: { 6308 Type *ElemTy = Call.getAttributes().getParamElementType(1); 6309 Check(ElemTy, 6310 "Intrinsic requires elementtype attribute on second argument.", 6311 &Call); 6312 break; 6313 } 6314 case Intrinsic::aarch64_prefetch: { 6315 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2, 6316 "write argument to llvm.aarch64.prefetch must be 0 or 1", Call); 6317 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, 6318 "target argument to llvm.aarch64.prefetch must be 0-3", Call); 6319 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2, 6320 "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call); 6321 Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2, 6322 "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call); 6323 break; 6324 } 6325 case Intrinsic::callbr_landingpad: { 6326 const auto *CBR = dyn_cast<CallBrInst>(Call.getOperand(0)); 6327 Check(CBR, "intrinstic requires callbr operand", &Call); 6328 if (!CBR) 6329 break; 6330 6331 const BasicBlock *LandingPadBB = Call.getParent(); 6332 const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor(); 6333 if (!PredBB) { 6334 CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call); 6335 break; 6336 } 6337 if (!isa<CallBrInst>(PredBB->getTerminator())) { 6338 CheckFailed("Intrinsic must have corresponding callbr in predecessor", 6339 &Call); 6340 break; 6341 } 6342 Check(llvm::is_contained(CBR->getIndirectDests(), LandingPadBB), 6343 "Intrinsic's corresponding callbr must have intrinsic's parent basic " 6344 "block in indirect destination list", 6345 &Call); 6346 const Instruction &First = *LandingPadBB->begin(); 6347 Check(&First == &Call, "No other instructions may proceed intrinsic", 6348 &Call); 6349 break; 6350 } 6351 case Intrinsic::amdgcn_cs_chain: { 6352 auto CallerCC = Call.getCaller()->getCallingConv(); 6353 switch (CallerCC) { 6354 case CallingConv::AMDGPU_CS: 6355 case CallingConv::AMDGPU_CS_Chain: 6356 case CallingConv::AMDGPU_CS_ChainPreserve: 6357 break; 6358 default: 6359 CheckFailed("Intrinsic can only be used from functions with the " 6360 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve " 6361 "calling conventions", 6362 &Call); 6363 break; 6364 } 6365 6366 Check(Call.paramHasAttr(2, Attribute::InReg), 6367 "SGPR arguments must have the `inreg` attribute", &Call); 6368 Check(!Call.paramHasAttr(3, Attribute::InReg), 6369 "VGPR arguments must not have the `inreg` attribute", &Call); 6370 break; 6371 } 6372 case Intrinsic::amdgcn_set_inactive_chain_arg: { 6373 auto CallerCC = Call.getCaller()->getCallingConv(); 6374 switch (CallerCC) { 6375 case CallingConv::AMDGPU_CS_Chain: 6376 case CallingConv::AMDGPU_CS_ChainPreserve: 6377 break; 6378 default: 6379 CheckFailed("Intrinsic can only be used from functions with the " 6380 "amdgpu_cs_chain or amdgpu_cs_chain_preserve " 6381 "calling conventions", 6382 &Call); 6383 break; 6384 } 6385 6386 unsigned InactiveIdx = 1; 6387 Check(!Call.paramHasAttr(InactiveIdx, Attribute::InReg), 6388 "Value for inactive lanes must not have the `inreg` attribute", 6389 &Call); 6390 Check(isa<Argument>(Call.getArgOperand(InactiveIdx)), 6391 "Value for inactive lanes must be a function argument", &Call); 6392 Check(!cast<Argument>(Call.getArgOperand(InactiveIdx))->hasInRegAttr(), 6393 "Value for inactive lanes must be a VGPR function argument", &Call); 6394 break; 6395 } 6396 case Intrinsic::amdgcn_s_prefetch_data: { 6397 Check( 6398 AMDGPU::isFlatGlobalAddrSpace( 6399 Call.getArgOperand(0)->getType()->getPointerAddressSpace()), 6400 "llvm.amdgcn.s.prefetch.data only supports global or constant memory"); 6401 break; 6402 } 6403 case Intrinsic::amdgcn_mfma_scale_f32_16x16x128_f8f6f4: 6404 case Intrinsic::amdgcn_mfma_scale_f32_32x32x64_f8f6f4: { 6405 Value *Src0 = Call.getArgOperand(0); 6406 Value *Src1 = Call.getArgOperand(1); 6407 6408 uint64_t CBSZ = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); 6409 uint64_t BLGP = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); 6410 Check(CBSZ <= 4, "invalid value for cbsz format", Call, 6411 Call.getArgOperand(3)); 6412 Check(BLGP <= 4, "invalid value for blgp format", Call, 6413 Call.getArgOperand(4)); 6414 6415 // AMDGPU::MFMAScaleFormats values 6416 auto getFormatNumRegs = [](unsigned FormatVal) { 6417 switch (FormatVal) { 6418 case 0: 6419 case 1: 6420 return 8u; 6421 case 2: 6422 case 3: 6423 return 6u; 6424 case 4: 6425 return 4u; 6426 default: 6427 llvm_unreachable("invalid format value"); 6428 } 6429 }; 6430 6431 auto isValidSrcASrcBVector = [](FixedVectorType *Ty) { 6432 if (!Ty || !Ty->getElementType()->isIntegerTy(32)) 6433 return false; 6434 unsigned NumElts = Ty->getNumElements(); 6435 return NumElts == 4 || NumElts == 6 || NumElts == 8; 6436 }; 6437 6438 auto *Src0Ty = dyn_cast<FixedVectorType>(Src0->getType()); 6439 auto *Src1Ty = dyn_cast<FixedVectorType>(Src1->getType()); 6440 Check(isValidSrcASrcBVector(Src0Ty), 6441 "operand 0 must be 4, 6 or 8 element i32 vector", &Call, Src0); 6442 Check(isValidSrcASrcBVector(Src1Ty), 6443 "operand 1 must be 4, 6 or 8 element i32 vector", &Call, Src1); 6444 6445 // Permit excess registers for the format. 6446 Check(Src0Ty->getNumElements() >= getFormatNumRegs(CBSZ), 6447 "invalid vector type for format", &Call, Src0, Call.getArgOperand(3)); 6448 Check(Src1Ty->getNumElements() >= getFormatNumRegs(BLGP), 6449 "invalid vector type for format", &Call, Src1, Call.getArgOperand(5)); 6450 break; 6451 } 6452 case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32: 6453 case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: { 6454 Value *V = Call.getArgOperand(0); 6455 unsigned RegCount = cast<ConstantInt>(V)->getZExtValue(); 6456 Check(RegCount % 8 == 0, 6457 "reg_count argument to nvvm.setmaxnreg must be in multiples of 8"); 6458 Check((RegCount >= 24 && RegCount <= 256), 6459 "reg_count argument to nvvm.setmaxnreg must be within [24, 256]"); 6460 break; 6461 } 6462 case Intrinsic::experimental_convergence_entry: 6463 case Intrinsic::experimental_convergence_anchor: 6464 break; 6465 case Intrinsic::experimental_convergence_loop: 6466 break; 6467 case Intrinsic::ptrmask: { 6468 Type *Ty0 = Call.getArgOperand(0)->getType(); 6469 Type *Ty1 = Call.getArgOperand(1)->getType(); 6470 Check(Ty0->isPtrOrPtrVectorTy(), 6471 "llvm.ptrmask intrinsic first argument must be pointer or vector " 6472 "of pointers", 6473 &Call); 6474 Check( 6475 Ty0->isVectorTy() == Ty1->isVectorTy(), 6476 "llvm.ptrmask intrinsic arguments must be both scalars or both vectors", 6477 &Call); 6478 if (Ty0->isVectorTy()) 6479 Check(cast<VectorType>(Ty0)->getElementCount() == 6480 cast<VectorType>(Ty1)->getElementCount(), 6481 "llvm.ptrmask intrinsic arguments must have the same number of " 6482 "elements", 6483 &Call); 6484 Check(DL.getIndexTypeSizeInBits(Ty0) == Ty1->getScalarSizeInBits(), 6485 "llvm.ptrmask intrinsic second argument bitwidth must match " 6486 "pointer index type size of first argument", 6487 &Call); 6488 break; 6489 } 6490 case Intrinsic::threadlocal_address: { 6491 const Value &Arg0 = *Call.getArgOperand(0); 6492 Check(isa<GlobalValue>(Arg0), 6493 "llvm.threadlocal.address first argument must be a GlobalValue"); 6494 Check(cast<GlobalValue>(Arg0).isThreadLocal(), 6495 "llvm.threadlocal.address operand isThreadLocal() must be true"); 6496 break; 6497 } 6498 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_cta: 6499 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_cluster: 6500 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_gpu: 6501 case Intrinsic::nvvm_fence_proxy_tensormap_generic_acquire_sys: { 6502 unsigned size = cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue(); 6503 Check(size == 128, " The only supported value for size operand is 128"); 6504 break; 6505 } 6506 }; 6507 6508 // Verify that there aren't any unmediated control transfers between funclets. 6509 if (IntrinsicInst::mayLowerToFunctionCall(ID)) { 6510 Function *F = Call.getParent()->getParent(); 6511 if (F->hasPersonalityFn() && 6512 isScopedEHPersonality(classifyEHPersonality(F->getPersonalityFn()))) { 6513 // Run EH funclet coloring on-demand and cache results for other intrinsic 6514 // calls in this function 6515 if (BlockEHFuncletColors.empty()) 6516 BlockEHFuncletColors = colorEHFunclets(*F); 6517 6518 // Check for catch-/cleanup-pad in first funclet block 6519 bool InEHFunclet = false; 6520 BasicBlock *CallBB = Call.getParent(); 6521 const ColorVector &CV = BlockEHFuncletColors.find(CallBB)->second; 6522 assert(CV.size() > 0 && "Uncolored block"); 6523 for (BasicBlock *ColorFirstBB : CV) 6524 if (auto It = ColorFirstBB->getFirstNonPHIIt(); 6525 It != ColorFirstBB->end()) 6526 if (dyn_cast_or_null<FuncletPadInst>(&*It)) 6527 InEHFunclet = true; 6528 6529 // Check for funclet operand bundle 6530 bool HasToken = false; 6531 for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I) 6532 if (Call.getOperandBundleAt(I).getTagID() == LLVMContext::OB_funclet) 6533 HasToken = true; 6534 6535 // This would cause silent code truncation in WinEHPrepare 6536 if (InEHFunclet) 6537 Check(HasToken, "Missing funclet token on intrinsic call", &Call); 6538 } 6539 } 6540 } 6541 6542 /// Carefully grab the subprogram from a local scope. 6543 /// 6544 /// This carefully grabs the subprogram from a local scope, avoiding the 6545 /// built-in assertions that would typically fire. 6546 static DISubprogram *getSubprogram(Metadata *LocalScope) { 6547 if (!LocalScope) 6548 return nullptr; 6549 6550 if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) 6551 return SP; 6552 6553 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) 6554 return getSubprogram(LB->getRawScope()); 6555 6556 // Just return null; broken scope chains are checked elsewhere. 6557 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); 6558 return nullptr; 6559 } 6560 6561 void Verifier::visit(DbgLabelRecord &DLR) { 6562 CheckDI(isa<DILabel>(DLR.getRawLabel()), 6563 "invalid #dbg_label intrinsic variable", &DLR, DLR.getRawLabel()); 6564 6565 // Ignore broken !dbg attachments; they're checked elsewhere. 6566 if (MDNode *N = DLR.getDebugLoc().getAsMDNode()) 6567 if (!isa<DILocation>(N)) 6568 return; 6569 6570 BasicBlock *BB = DLR.getParent(); 6571 Function *F = BB ? BB->getParent() : nullptr; 6572 6573 // The scopes for variables and !dbg attachments must agree. 6574 DILabel *Label = DLR.getLabel(); 6575 DILocation *Loc = DLR.getDebugLoc(); 6576 CheckDI(Loc, "#dbg_label record requires a !dbg attachment", &DLR, BB, F); 6577 6578 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 6579 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 6580 if (!LabelSP || !LocSP) 6581 return; 6582 6583 CheckDI(LabelSP == LocSP, 6584 "mismatched subprogram between #dbg_label label and !dbg attachment", 6585 &DLR, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 6586 Loc->getScope()->getSubprogram()); 6587 } 6588 6589 void Verifier::visit(DbgVariableRecord &DVR) { 6590 BasicBlock *BB = DVR.getParent(); 6591 Function *F = BB->getParent(); 6592 6593 CheckDI(DVR.getType() == DbgVariableRecord::LocationType::Value || 6594 DVR.getType() == DbgVariableRecord::LocationType::Declare || 6595 DVR.getType() == DbgVariableRecord::LocationType::Assign, 6596 "invalid #dbg record type", &DVR, DVR.getType()); 6597 6598 // The location for a DbgVariableRecord must be either a ValueAsMetadata, 6599 // DIArgList, or an empty MDNode (which is a legacy representation for an 6600 // "undef" location). 6601 auto *MD = DVR.getRawLocation(); 6602 CheckDI(MD && (isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 6603 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands())), 6604 "invalid #dbg record address/value", &DVR, MD); 6605 if (auto *VAM = dyn_cast<ValueAsMetadata>(MD)) 6606 visitValueAsMetadata(*VAM, F); 6607 else if (auto *AL = dyn_cast<DIArgList>(MD)) 6608 visitDIArgList(*AL, F); 6609 6610 CheckDI(isa_and_nonnull<DILocalVariable>(DVR.getRawVariable()), 6611 "invalid #dbg record variable", &DVR, DVR.getRawVariable()); 6612 visitMDNode(*DVR.getRawVariable(), AreDebugLocsAllowed::No); 6613 6614 CheckDI(isa_and_nonnull<DIExpression>(DVR.getRawExpression()), 6615 "invalid #dbg record expression", &DVR, DVR.getRawExpression()); 6616 visitMDNode(*DVR.getExpression(), AreDebugLocsAllowed::No); 6617 6618 if (DVR.isDbgAssign()) { 6619 CheckDI(isa_and_nonnull<DIAssignID>(DVR.getRawAssignID()), 6620 "invalid #dbg_assign DIAssignID", &DVR, DVR.getRawAssignID()); 6621 visitMDNode(*cast<DIAssignID>(DVR.getRawAssignID()), 6622 AreDebugLocsAllowed::No); 6623 6624 const auto *RawAddr = DVR.getRawAddress(); 6625 // Similarly to the location above, the address for an assign 6626 // DbgVariableRecord must be a ValueAsMetadata or an empty MDNode, which 6627 // represents an undef address. 6628 CheckDI( 6629 isa<ValueAsMetadata>(RawAddr) || 6630 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()), 6631 "invalid #dbg_assign address", &DVR, DVR.getRawAddress()); 6632 if (auto *VAM = dyn_cast<ValueAsMetadata>(RawAddr)) 6633 visitValueAsMetadata(*VAM, F); 6634 6635 CheckDI(isa_and_nonnull<DIExpression>(DVR.getRawAddressExpression()), 6636 "invalid #dbg_assign address expression", &DVR, 6637 DVR.getRawAddressExpression()); 6638 visitMDNode(*DVR.getAddressExpression(), AreDebugLocsAllowed::No); 6639 6640 // All of the linked instructions should be in the same function as DVR. 6641 for (Instruction *I : at::getAssignmentInsts(&DVR)) 6642 CheckDI(DVR.getFunction() == I->getFunction(), 6643 "inst not in same function as #dbg_assign", I, &DVR); 6644 } 6645 6646 // This check is redundant with one in visitLocalVariable(). 6647 DILocalVariable *Var = DVR.getVariable(); 6648 CheckDI(isType(Var->getRawType()), "invalid type ref", Var, 6649 Var->getRawType()); 6650 6651 auto *DLNode = DVR.getDebugLoc().getAsMDNode(); 6652 CheckDI(isa_and_nonnull<DILocation>(DLNode), "invalid #dbg record DILocation", 6653 &DVR, DLNode); 6654 DILocation *Loc = DVR.getDebugLoc(); 6655 6656 // The scopes for variables and !dbg attachments must agree. 6657 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 6658 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 6659 if (!VarSP || !LocSP) 6660 return; // Broken scope chains are checked elsewhere. 6661 6662 CheckDI(VarSP == LocSP, 6663 "mismatched subprogram between #dbg record variable and DILocation", 6664 &DVR, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 6665 Loc->getScope()->getSubprogram()); 6666 6667 verifyFnArgs(DVR); 6668 } 6669 6670 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) { 6671 if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) { 6672 auto *RetTy = cast<VectorType>(VPCast->getType()); 6673 auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType()); 6674 Check(RetTy->getElementCount() == ValTy->getElementCount(), 6675 "VP cast intrinsic first argument and result vector lengths must be " 6676 "equal", 6677 *VPCast); 6678 6679 switch (VPCast->getIntrinsicID()) { 6680 default: 6681 llvm_unreachable("Unknown VP cast intrinsic"); 6682 case Intrinsic::vp_trunc: 6683 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(), 6684 "llvm.vp.trunc intrinsic first argument and result element type " 6685 "must be integer", 6686 *VPCast); 6687 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(), 6688 "llvm.vp.trunc intrinsic the bit size of first argument must be " 6689 "larger than the bit size of the return type", 6690 *VPCast); 6691 break; 6692 case Intrinsic::vp_zext: 6693 case Intrinsic::vp_sext: 6694 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(), 6695 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result " 6696 "element type must be integer", 6697 *VPCast); 6698 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(), 6699 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first " 6700 "argument must be smaller than the bit size of the return type", 6701 *VPCast); 6702 break; 6703 case Intrinsic::vp_fptoui: 6704 case Intrinsic::vp_fptosi: 6705 case Intrinsic::vp_lrint: 6706 case Intrinsic::vp_llrint: 6707 Check( 6708 RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(), 6709 "llvm.vp.fptoui, llvm.vp.fptosi, llvm.vp.lrint or llvm.vp.llrint" "intrinsic first argument element " 6710 "type must be floating-point and result element type must be integer", 6711 *VPCast); 6712 break; 6713 case Intrinsic::vp_uitofp: 6714 case Intrinsic::vp_sitofp: 6715 Check( 6716 RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(), 6717 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element " 6718 "type must be integer and result element type must be floating-point", 6719 *VPCast); 6720 break; 6721 case Intrinsic::vp_fptrunc: 6722 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(), 6723 "llvm.vp.fptrunc intrinsic first argument and result element type " 6724 "must be floating-point", 6725 *VPCast); 6726 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(), 6727 "llvm.vp.fptrunc intrinsic the bit size of first argument must be " 6728 "larger than the bit size of the return type", 6729 *VPCast); 6730 break; 6731 case Intrinsic::vp_fpext: 6732 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(), 6733 "llvm.vp.fpext intrinsic first argument and result element type " 6734 "must be floating-point", 6735 *VPCast); 6736 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(), 6737 "llvm.vp.fpext intrinsic the bit size of first argument must be " 6738 "smaller than the bit size of the return type", 6739 *VPCast); 6740 break; 6741 case Intrinsic::vp_ptrtoint: 6742 Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(), 6743 "llvm.vp.ptrtoint intrinsic first argument element type must be " 6744 "pointer and result element type must be integer", 6745 *VPCast); 6746 break; 6747 case Intrinsic::vp_inttoptr: 6748 Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(), 6749 "llvm.vp.inttoptr intrinsic first argument element type must be " 6750 "integer and result element type must be pointer", 6751 *VPCast); 6752 break; 6753 } 6754 } 6755 if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) { 6756 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate(); 6757 Check(CmpInst::isFPPredicate(Pred), 6758 "invalid predicate for VP FP comparison intrinsic", &VPI); 6759 } 6760 if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) { 6761 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate(); 6762 Check(CmpInst::isIntPredicate(Pred), 6763 "invalid predicate for VP integer comparison intrinsic", &VPI); 6764 } 6765 if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) { 6766 auto TestMask = cast<ConstantInt>(VPI.getOperand(1)); 6767 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0, 6768 "unsupported bits for llvm.vp.is.fpclass test mask"); 6769 } 6770 } 6771 6772 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { 6773 unsigned NumOperands = FPI.getNonMetadataArgCount(); 6774 bool HasRoundingMD = 6775 Intrinsic::hasConstrainedFPRoundingModeOperand(FPI.getIntrinsicID()); 6776 6777 // Add the expected number of metadata operands. 6778 NumOperands += (1 + HasRoundingMD); 6779 6780 // Compare intrinsics carry an extra predicate metadata operand. 6781 if (isa<ConstrainedFPCmpIntrinsic>(FPI)) 6782 NumOperands += 1; 6783 Check((FPI.arg_size() == NumOperands), 6784 "invalid arguments for constrained FP intrinsic", &FPI); 6785 6786 switch (FPI.getIntrinsicID()) { 6787 case Intrinsic::experimental_constrained_lrint: 6788 case Intrinsic::experimental_constrained_llrint: { 6789 Type *ValTy = FPI.getArgOperand(0)->getType(); 6790 Type *ResultTy = FPI.getType(); 6791 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 6792 "Intrinsic does not support vectors", &FPI); 6793 break; 6794 } 6795 6796 case Intrinsic::experimental_constrained_lround: 6797 case Intrinsic::experimental_constrained_llround: { 6798 Type *ValTy = FPI.getArgOperand(0)->getType(); 6799 Type *ResultTy = FPI.getType(); 6800 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), 6801 "Intrinsic does not support vectors", &FPI); 6802 break; 6803 } 6804 6805 case Intrinsic::experimental_constrained_fcmp: 6806 case Intrinsic::experimental_constrained_fcmps: { 6807 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); 6808 Check(CmpInst::isFPPredicate(Pred), 6809 "invalid predicate for constrained FP comparison intrinsic", &FPI); 6810 break; 6811 } 6812 6813 case Intrinsic::experimental_constrained_fptosi: 6814 case Intrinsic::experimental_constrained_fptoui: { 6815 Value *Operand = FPI.getArgOperand(0); 6816 ElementCount SrcEC; 6817 Check(Operand->getType()->isFPOrFPVectorTy(), 6818 "Intrinsic first argument must be floating point", &FPI); 6819 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 6820 SrcEC = cast<VectorType>(OperandT)->getElementCount(); 6821 } 6822 6823 Operand = &FPI; 6824 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(), 6825 "Intrinsic first argument and result disagree on vector use", &FPI); 6826 Check(Operand->getType()->isIntOrIntVectorTy(), 6827 "Intrinsic result must be an integer", &FPI); 6828 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 6829 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(), 6830 "Intrinsic first argument and result vector lengths must be equal", 6831 &FPI); 6832 } 6833 break; 6834 } 6835 6836 case Intrinsic::experimental_constrained_sitofp: 6837 case Intrinsic::experimental_constrained_uitofp: { 6838 Value *Operand = FPI.getArgOperand(0); 6839 ElementCount SrcEC; 6840 Check(Operand->getType()->isIntOrIntVectorTy(), 6841 "Intrinsic first argument must be integer", &FPI); 6842 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 6843 SrcEC = cast<VectorType>(OperandT)->getElementCount(); 6844 } 6845 6846 Operand = &FPI; 6847 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(), 6848 "Intrinsic first argument and result disagree on vector use", &FPI); 6849 Check(Operand->getType()->isFPOrFPVectorTy(), 6850 "Intrinsic result must be a floating point", &FPI); 6851 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { 6852 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(), 6853 "Intrinsic first argument and result vector lengths must be equal", 6854 &FPI); 6855 } 6856 break; 6857 } 6858 6859 case Intrinsic::experimental_constrained_fptrunc: 6860 case Intrinsic::experimental_constrained_fpext: { 6861 Value *Operand = FPI.getArgOperand(0); 6862 Type *OperandTy = Operand->getType(); 6863 Value *Result = &FPI; 6864 Type *ResultTy = Result->getType(); 6865 Check(OperandTy->isFPOrFPVectorTy(), 6866 "Intrinsic first argument must be FP or FP vector", &FPI); 6867 Check(ResultTy->isFPOrFPVectorTy(), 6868 "Intrinsic result must be FP or FP vector", &FPI); 6869 Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(), 6870 "Intrinsic first argument and result disagree on vector use", &FPI); 6871 if (OperandTy->isVectorTy()) { 6872 Check(cast<VectorType>(OperandTy)->getElementCount() == 6873 cast<VectorType>(ResultTy)->getElementCount(), 6874 "Intrinsic first argument and result vector lengths must be equal", 6875 &FPI); 6876 } 6877 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { 6878 Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), 6879 "Intrinsic first argument's type must be larger than result type", 6880 &FPI); 6881 } else { 6882 Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), 6883 "Intrinsic first argument's type must be smaller than result type", 6884 &FPI); 6885 } 6886 break; 6887 } 6888 6889 default: 6890 break; 6891 } 6892 6893 // If a non-metadata argument is passed in a metadata slot then the 6894 // error will be caught earlier when the incorrect argument doesn't 6895 // match the specification in the intrinsic call table. Thus, no 6896 // argument type check is needed here. 6897 6898 Check(FPI.getExceptionBehavior().has_value(), 6899 "invalid exception behavior argument", &FPI); 6900 if (HasRoundingMD) { 6901 Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument", 6902 &FPI); 6903 } 6904 } 6905 6906 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { 6907 auto *MD = DII.getRawLocation(); 6908 CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || 6909 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), 6910 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); 6911 CheckDI(isa<DILocalVariable>(DII.getRawVariable()), 6912 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, 6913 DII.getRawVariable()); 6914 CheckDI(isa<DIExpression>(DII.getRawExpression()), 6915 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, 6916 DII.getRawExpression()); 6917 6918 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) { 6919 CheckDI(isa<DIAssignID>(DAI->getRawAssignID()), 6920 "invalid llvm.dbg.assign intrinsic DIAssignID", &DII, 6921 DAI->getRawAssignID()); 6922 const auto *RawAddr = DAI->getRawAddress(); 6923 CheckDI( 6924 isa<ValueAsMetadata>(RawAddr) || 6925 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()), 6926 "invalid llvm.dbg.assign intrinsic address", &DII, 6927 DAI->getRawAddress()); 6928 CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()), 6929 "invalid llvm.dbg.assign intrinsic address expression", &DII, 6930 DAI->getRawAddressExpression()); 6931 // All of the linked instructions should be in the same function as DII. 6932 for (Instruction *I : at::getAssignmentInsts(DAI)) 6933 CheckDI(DAI->getFunction() == I->getFunction(), 6934 "inst not in same function as dbg.assign", I, DAI); 6935 } 6936 6937 // Ignore broken !dbg attachments; they're checked elsewhere. 6938 if (MDNode *N = DII.getDebugLoc().getAsMDNode()) 6939 if (!isa<DILocation>(N)) 6940 return; 6941 6942 BasicBlock *BB = DII.getParent(); 6943 Function *F = BB ? BB->getParent() : nullptr; 6944 6945 // The scopes for variables and !dbg attachments must agree. 6946 DILocalVariable *Var = DII.getVariable(); 6947 DILocation *Loc = DII.getDebugLoc(); 6948 CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", 6949 &DII, BB, F); 6950 6951 DISubprogram *VarSP = getSubprogram(Var->getRawScope()); 6952 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 6953 if (!VarSP || !LocSP) 6954 return; // Broken scope chains are checked elsewhere. 6955 6956 CheckDI(VarSP == LocSP, 6957 "mismatched subprogram between llvm.dbg." + Kind + 6958 " variable and !dbg attachment", 6959 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, 6960 Loc->getScope()->getSubprogram()); 6961 6962 // This check is redundant with one in visitLocalVariable(). 6963 CheckDI(isType(Var->getRawType()), "invalid type ref", Var, 6964 Var->getRawType()); 6965 verifyFnArgs(DII); 6966 } 6967 6968 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { 6969 CheckDI(isa<DILabel>(DLI.getRawLabel()), 6970 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, 6971 DLI.getRawLabel()); 6972 6973 // Ignore broken !dbg attachments; they're checked elsewhere. 6974 if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) 6975 if (!isa<DILocation>(N)) 6976 return; 6977 6978 BasicBlock *BB = DLI.getParent(); 6979 Function *F = BB ? BB->getParent() : nullptr; 6980 6981 // The scopes for variables and !dbg attachments must agree. 6982 DILabel *Label = DLI.getLabel(); 6983 DILocation *Loc = DLI.getDebugLoc(); 6984 Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI, 6985 BB, F); 6986 6987 DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); 6988 DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); 6989 if (!LabelSP || !LocSP) 6990 return; 6991 6992 CheckDI(LabelSP == LocSP, 6993 "mismatched subprogram between llvm.dbg." + Kind + 6994 " label and !dbg attachment", 6995 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, 6996 Loc->getScope()->getSubprogram()); 6997 } 6998 6999 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { 7000 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); 7001 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 7002 7003 // We don't know whether this intrinsic verified correctly. 7004 if (!V || !E || !E->isValid()) 7005 return; 7006 7007 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 7008 auto Fragment = E->getFragmentInfo(); 7009 if (!Fragment) 7010 return; 7011 7012 // The frontend helps out GDB by emitting the members of local anonymous 7013 // unions as artificial local variables with shared storage. When SROA splits 7014 // the storage for artificial local variables that are smaller than the entire 7015 // union, the overhang piece will be outside of the allotted space for the 7016 // variable and this check fails. 7017 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 7018 if (V->isArtificial()) 7019 return; 7020 7021 verifyFragmentExpression(*V, *Fragment, &I); 7022 } 7023 void Verifier::verifyFragmentExpression(const DbgVariableRecord &DVR) { 7024 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(DVR.getRawVariable()); 7025 DIExpression *E = dyn_cast_or_null<DIExpression>(DVR.getRawExpression()); 7026 7027 // We don't know whether this intrinsic verified correctly. 7028 if (!V || !E || !E->isValid()) 7029 return; 7030 7031 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. 7032 auto Fragment = E->getFragmentInfo(); 7033 if (!Fragment) 7034 return; 7035 7036 // The frontend helps out GDB by emitting the members of local anonymous 7037 // unions as artificial local variables with shared storage. When SROA splits 7038 // the storage for artificial local variables that are smaller than the entire 7039 // union, the overhang piece will be outside of the allotted space for the 7040 // variable and this check fails. 7041 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. 7042 if (V->isArtificial()) 7043 return; 7044 7045 verifyFragmentExpression(*V, *Fragment, &DVR); 7046 } 7047 7048 template <typename ValueOrMetadata> 7049 void Verifier::verifyFragmentExpression(const DIVariable &V, 7050 DIExpression::FragmentInfo Fragment, 7051 ValueOrMetadata *Desc) { 7052 // If there's no size, the type is broken, but that should be checked 7053 // elsewhere. 7054 auto VarSize = V.getSizeInBits(); 7055 if (!VarSize) 7056 return; 7057 7058 unsigned FragSize = Fragment.SizeInBits; 7059 unsigned FragOffset = Fragment.OffsetInBits; 7060 CheckDI(FragSize + FragOffset <= *VarSize, 7061 "fragment is larger than or outside of variable", Desc, &V); 7062 CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); 7063 } 7064 7065 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { 7066 // This function does not take the scope of noninlined function arguments into 7067 // account. Don't run it if current function is nodebug, because it may 7068 // contain inlined debug intrinsics. 7069 if (!HasDebugInfo) 7070 return; 7071 7072 // For performance reasons only check non-inlined ones. 7073 if (I.getDebugLoc()->getInlinedAt()) 7074 return; 7075 7076 DILocalVariable *Var = I.getVariable(); 7077 CheckDI(Var, "dbg intrinsic without variable"); 7078 7079 unsigned ArgNo = Var->getArg(); 7080 if (!ArgNo) 7081 return; 7082 7083 // Verify there are no duplicate function argument debug info entries. 7084 // These will cause hard-to-debug assertions in the DWARF backend. 7085 if (DebugFnArgs.size() < ArgNo) 7086 DebugFnArgs.resize(ArgNo, nullptr); 7087 7088 auto *Prev = DebugFnArgs[ArgNo - 1]; 7089 DebugFnArgs[ArgNo - 1] = Var; 7090 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, 7091 Prev, Var); 7092 } 7093 void Verifier::verifyFnArgs(const DbgVariableRecord &DVR) { 7094 // This function does not take the scope of noninlined function arguments into 7095 // account. Don't run it if current function is nodebug, because it may 7096 // contain inlined debug intrinsics. 7097 if (!HasDebugInfo) 7098 return; 7099 7100 // For performance reasons only check non-inlined ones. 7101 if (DVR.getDebugLoc()->getInlinedAt()) 7102 return; 7103 7104 DILocalVariable *Var = DVR.getVariable(); 7105 CheckDI(Var, "#dbg record without variable"); 7106 7107 unsigned ArgNo = Var->getArg(); 7108 if (!ArgNo) 7109 return; 7110 7111 // Verify there are no duplicate function argument debug info entries. 7112 // These will cause hard-to-debug assertions in the DWARF backend. 7113 if (DebugFnArgs.size() < ArgNo) 7114 DebugFnArgs.resize(ArgNo, nullptr); 7115 7116 auto *Prev = DebugFnArgs[ArgNo - 1]; 7117 DebugFnArgs[ArgNo - 1] = Var; 7118 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &DVR, 7119 Prev, Var); 7120 } 7121 7122 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { 7123 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); 7124 7125 // We don't know whether this intrinsic verified correctly. 7126 if (!E || !E->isValid()) 7127 return; 7128 7129 if (isa<ValueAsMetadata>(I.getRawLocation())) { 7130 Value *VarValue = I.getVariableLocationOp(0); 7131 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue)) 7132 return; 7133 // We allow EntryValues for swift async arguments, as they have an 7134 // ABI-guarantee to be turned into a specific register. 7135 if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue); 7136 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync)) 7137 return; 7138 } 7139 7140 CheckDI(!E->isEntryValue(), 7141 "Entry values are only allowed in MIR unless they target a " 7142 "swiftasync Argument", 7143 &I); 7144 } 7145 void Verifier::verifyNotEntryValue(const DbgVariableRecord &DVR) { 7146 DIExpression *E = dyn_cast_or_null<DIExpression>(DVR.getRawExpression()); 7147 7148 // We don't know whether this intrinsic verified correctly. 7149 if (!E || !E->isValid()) 7150 return; 7151 7152 if (isa<ValueAsMetadata>(DVR.getRawLocation())) { 7153 Value *VarValue = DVR.getVariableLocationOp(0); 7154 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue)) 7155 return; 7156 // We allow EntryValues for swift async arguments, as they have an 7157 // ABI-guarantee to be turned into a specific register. 7158 if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue); 7159 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync)) 7160 return; 7161 } 7162 7163 CheckDI(!E->isEntryValue(), 7164 "Entry values are only allowed in MIR unless they target a " 7165 "swiftasync Argument", 7166 &DVR); 7167 } 7168 7169 void Verifier::verifyCompileUnits() { 7170 // When more than one Module is imported into the same context, such as during 7171 // an LTO build before linking the modules, ODR type uniquing may cause types 7172 // to point to a different CU. This check does not make sense in this case. 7173 if (M.getContext().isODRUniquingDebugTypes()) 7174 return; 7175 auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); 7176 SmallPtrSet<const Metadata *, 2> Listed; 7177 if (CUs) 7178 Listed.insert(CUs->op_begin(), CUs->op_end()); 7179 for (const auto *CU : CUVisited) 7180 CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); 7181 CUVisited.clear(); 7182 } 7183 7184 void Verifier::verifyDeoptimizeCallingConvs() { 7185 if (DeoptimizeDeclarations.empty()) 7186 return; 7187 7188 const Function *First = DeoptimizeDeclarations[0]; 7189 for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) { 7190 Check(First->getCallingConv() == F->getCallingConv(), 7191 "All llvm.experimental.deoptimize declarations must have the same " 7192 "calling convention", 7193 First, F); 7194 } 7195 } 7196 7197 void Verifier::verifyAttachedCallBundle(const CallBase &Call, 7198 const OperandBundleUse &BU) { 7199 FunctionType *FTy = Call.getFunctionType(); 7200 7201 Check((FTy->getReturnType()->isPointerTy() || 7202 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), 7203 "a call with operand bundle \"clang.arc.attachedcall\" must call a " 7204 "function returning a pointer or a non-returning function that has a " 7205 "void return type", 7206 Call); 7207 7208 Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()), 7209 "operand bundle \"clang.arc.attachedcall\" requires one function as " 7210 "an argument", 7211 Call); 7212 7213 auto *Fn = cast<Function>(BU.Inputs.front()); 7214 Intrinsic::ID IID = Fn->getIntrinsicID(); 7215 7216 if (IID) { 7217 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue || 7218 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue), 7219 "invalid function argument", Call); 7220 } else { 7221 StringRef FnName = Fn->getName(); 7222 Check((FnName == "objc_retainAutoreleasedReturnValue" || 7223 FnName == "objc_unsafeClaimAutoreleasedReturnValue"), 7224 "invalid function argument", Call); 7225 } 7226 } 7227 7228 void Verifier::verifyNoAliasScopeDecl() { 7229 if (NoAliasScopeDecls.empty()) 7230 return; 7231 7232 // only a single scope must be declared at a time. 7233 for (auto *II : NoAliasScopeDecls) { 7234 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && 7235 "Not a llvm.experimental.noalias.scope.decl ?"); 7236 const auto *ScopeListMV = dyn_cast<MetadataAsValue>( 7237 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 7238 Check(ScopeListMV != nullptr, 7239 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " 7240 "argument", 7241 II); 7242 7243 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); 7244 Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II); 7245 Check(ScopeListMD->getNumOperands() == 1, 7246 "!id.scope.list must point to a list with a single scope", II); 7247 visitAliasScopeListMetadata(ScopeListMD); 7248 } 7249 7250 // Only check the domination rule when requested. Once all passes have been 7251 // adapted this option can go away. 7252 if (!VerifyNoAliasScopeDomination) 7253 return; 7254 7255 // Now sort the intrinsics based on the scope MDNode so that declarations of 7256 // the same scopes are next to each other. 7257 auto GetScope = [](IntrinsicInst *II) { 7258 const auto *ScopeListMV = cast<MetadataAsValue>( 7259 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); 7260 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); 7261 }; 7262 7263 // We are sorting on MDNode pointers here. For valid input IR this is ok. 7264 // TODO: Sort on Metadata ID to avoid non-deterministic error messages. 7265 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { 7266 return GetScope(Lhs) < GetScope(Rhs); 7267 }; 7268 7269 llvm::sort(NoAliasScopeDecls, Compare); 7270 7271 // Go over the intrinsics and check that for the same scope, they are not 7272 // dominating each other. 7273 auto ItCurrent = NoAliasScopeDecls.begin(); 7274 while (ItCurrent != NoAliasScopeDecls.end()) { 7275 auto CurScope = GetScope(*ItCurrent); 7276 auto ItNext = ItCurrent; 7277 do { 7278 ++ItNext; 7279 } while (ItNext != NoAliasScopeDecls.end() && 7280 GetScope(*ItNext) == CurScope); 7281 7282 // [ItCurrent, ItNext) represents the declarations for the same scope. 7283 // Ensure they are not dominating each other.. but only if it is not too 7284 // expensive. 7285 if (ItNext - ItCurrent < 32) 7286 for (auto *I : llvm::make_range(ItCurrent, ItNext)) 7287 for (auto *J : llvm::make_range(ItCurrent, ItNext)) 7288 if (I != J) 7289 Check(!DT.dominates(I, J), 7290 "llvm.experimental.noalias.scope.decl dominates another one " 7291 "with the same scope", 7292 I); 7293 ItCurrent = ItNext; 7294 } 7295 } 7296 7297 //===----------------------------------------------------------------------===// 7298 // Implement the public interfaces to this file... 7299 //===----------------------------------------------------------------------===// 7300 7301 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { 7302 Function &F = const_cast<Function &>(f); 7303 7304 // Don't use a raw_null_ostream. Printing IR is expensive. 7305 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); 7306 7307 // Note that this function's return value is inverted from what you would 7308 // expect of a function called "verify". 7309 return !V.verify(F); 7310 } 7311 7312 bool llvm::verifyModule(const Module &M, raw_ostream *OS, 7313 bool *BrokenDebugInfo) { 7314 // Don't use a raw_null_ostream. Printing IR is expensive. 7315 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); 7316 7317 bool Broken = false; 7318 for (const Function &F : M) 7319 Broken |= !V.verify(F); 7320 7321 Broken |= !V.verify(); 7322 if (BrokenDebugInfo) 7323 *BrokenDebugInfo = V.hasBrokenDebugInfo(); 7324 // Note that this function's return value is inverted from what you would 7325 // expect of a function called "verify". 7326 return Broken; 7327 } 7328 7329 namespace { 7330 7331 struct VerifierLegacyPass : public FunctionPass { 7332 static char ID; 7333 7334 std::unique_ptr<Verifier> V; 7335 bool FatalErrors = true; 7336 7337 VerifierLegacyPass() : FunctionPass(ID) { 7338 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 7339 } 7340 explicit VerifierLegacyPass(bool FatalErrors) 7341 : FunctionPass(ID), 7342 FatalErrors(FatalErrors) { 7343 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 7344 } 7345 7346 bool doInitialization(Module &M) override { 7347 V = std::make_unique<Verifier>( 7348 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); 7349 return false; 7350 } 7351 7352 bool runOnFunction(Function &F) override { 7353 if (!V->verify(F) && FatalErrors) { 7354 errs() << "in function " << F.getName() << '\n'; 7355 report_fatal_error("Broken function found, compilation aborted!"); 7356 } 7357 return false; 7358 } 7359 7360 bool doFinalization(Module &M) override { 7361 bool HasErrors = false; 7362 for (Function &F : M) 7363 if (F.isDeclaration()) 7364 HasErrors |= !V->verify(F); 7365 7366 HasErrors |= !V->verify(); 7367 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) 7368 report_fatal_error("Broken module found, compilation aborted!"); 7369 return false; 7370 } 7371 7372 void getAnalysisUsage(AnalysisUsage &AU) const override { 7373 AU.setPreservesAll(); 7374 } 7375 }; 7376 7377 } // end anonymous namespace 7378 7379 /// Helper to issue failure from the TBAA verification 7380 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { 7381 if (Diagnostic) 7382 return Diagnostic->CheckFailed(Args...); 7383 } 7384 7385 #define CheckTBAA(C, ...) \ 7386 do { \ 7387 if (!(C)) { \ 7388 CheckFailed(__VA_ARGS__); \ 7389 return false; \ 7390 } \ 7391 } while (false) 7392 7393 /// Verify that \p BaseNode can be used as the "base type" in the struct-path 7394 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a 7395 /// struct-type node describing an aggregate data structure (like a struct). 7396 TBAAVerifier::TBAABaseNodeSummary 7397 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, 7398 bool IsNewFormat) { 7399 if (BaseNode->getNumOperands() < 2) { 7400 CheckFailed("Base nodes must have at least two operands", &I, BaseNode); 7401 return {true, ~0u}; 7402 } 7403 7404 auto Itr = TBAABaseNodes.find(BaseNode); 7405 if (Itr != TBAABaseNodes.end()) 7406 return Itr->second; 7407 7408 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); 7409 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); 7410 (void)InsertResult; 7411 assert(InsertResult.second && "We just checked!"); 7412 return Result; 7413 } 7414 7415 TBAAVerifier::TBAABaseNodeSummary 7416 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, 7417 bool IsNewFormat) { 7418 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; 7419 7420 if (BaseNode->getNumOperands() == 2) { 7421 // Scalar nodes can only be accessed at offset 0. 7422 return isValidScalarTBAANode(BaseNode) 7423 ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) 7424 : InvalidNode; 7425 } 7426 7427 if (IsNewFormat) { 7428 if (BaseNode->getNumOperands() % 3 != 0) { 7429 CheckFailed("Access tag nodes must have the number of operands that is a " 7430 "multiple of 3!", BaseNode); 7431 return InvalidNode; 7432 } 7433 } else { 7434 if (BaseNode->getNumOperands() % 2 != 1) { 7435 CheckFailed("Struct tag nodes must have an odd number of operands!", 7436 BaseNode); 7437 return InvalidNode; 7438 } 7439 } 7440 7441 // Check the type size field. 7442 if (IsNewFormat) { 7443 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 7444 BaseNode->getOperand(1)); 7445 if (!TypeSizeNode) { 7446 CheckFailed("Type size nodes must be constants!", &I, BaseNode); 7447 return InvalidNode; 7448 } 7449 } 7450 7451 // Check the type name field. In the new format it can be anything. 7452 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { 7453 CheckFailed("Struct tag nodes have a string as their first operand", 7454 BaseNode); 7455 return InvalidNode; 7456 } 7457 7458 bool Failed = false; 7459 7460 std::optional<APInt> PrevOffset; 7461 unsigned BitWidth = ~0u; 7462 7463 // We've already checked that BaseNode is not a degenerate root node with one 7464 // operand in \c verifyTBAABaseNode, so this loop should run at least once. 7465 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 7466 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 7467 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 7468 Idx += NumOpsPerField) { 7469 const MDOperand &FieldTy = BaseNode->getOperand(Idx); 7470 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); 7471 if (!isa<MDNode>(FieldTy)) { 7472 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); 7473 Failed = true; 7474 continue; 7475 } 7476 7477 auto *OffsetEntryCI = 7478 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); 7479 if (!OffsetEntryCI) { 7480 CheckFailed("Offset entries must be constants!", &I, BaseNode); 7481 Failed = true; 7482 continue; 7483 } 7484 7485 if (BitWidth == ~0u) 7486 BitWidth = OffsetEntryCI->getBitWidth(); 7487 7488 if (OffsetEntryCI->getBitWidth() != BitWidth) { 7489 CheckFailed( 7490 "Bitwidth between the offsets and struct type entries must match", &I, 7491 BaseNode); 7492 Failed = true; 7493 continue; 7494 } 7495 7496 // NB! As far as I can tell, we generate a non-strictly increasing offset 7497 // sequence only from structs that have zero size bit fields. When 7498 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we 7499 // pick the field lexically the latest in struct type metadata node. This 7500 // mirrors the actual behavior of the alias analysis implementation. 7501 bool IsAscending = 7502 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); 7503 7504 if (!IsAscending) { 7505 CheckFailed("Offsets must be increasing!", &I, BaseNode); 7506 Failed = true; 7507 } 7508 7509 PrevOffset = OffsetEntryCI->getValue(); 7510 7511 if (IsNewFormat) { 7512 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 7513 BaseNode->getOperand(Idx + 2)); 7514 if (!MemberSizeNode) { 7515 CheckFailed("Member size entries must be constants!", &I, BaseNode); 7516 Failed = true; 7517 continue; 7518 } 7519 } 7520 } 7521 7522 return Failed ? InvalidNode 7523 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); 7524 } 7525 7526 static bool IsRootTBAANode(const MDNode *MD) { 7527 return MD->getNumOperands() < 2; 7528 } 7529 7530 static bool IsScalarTBAANodeImpl(const MDNode *MD, 7531 SmallPtrSetImpl<const MDNode *> &Visited) { 7532 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) 7533 return false; 7534 7535 if (!isa<MDString>(MD->getOperand(0))) 7536 return false; 7537 7538 if (MD->getNumOperands() == 3) { 7539 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); 7540 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) 7541 return false; 7542 } 7543 7544 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 7545 return Parent && Visited.insert(Parent).second && 7546 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); 7547 } 7548 7549 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { 7550 auto ResultIt = TBAAScalarNodes.find(MD); 7551 if (ResultIt != TBAAScalarNodes.end()) 7552 return ResultIt->second; 7553 7554 SmallPtrSet<const MDNode *, 4> Visited; 7555 bool Result = IsScalarTBAANodeImpl(MD, Visited); 7556 auto InsertResult = TBAAScalarNodes.insert({MD, Result}); 7557 (void)InsertResult; 7558 assert(InsertResult.second && "Just checked!"); 7559 7560 return Result; 7561 } 7562 7563 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p 7564 /// Offset in place to be the offset within the field node returned. 7565 /// 7566 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. 7567 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, 7568 const MDNode *BaseNode, 7569 APInt &Offset, 7570 bool IsNewFormat) { 7571 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); 7572 7573 // Scalar nodes have only one possible "field" -- their parent in the access 7574 // hierarchy. Offset must be zero at this point, but our caller is supposed 7575 // to check that. 7576 if (BaseNode->getNumOperands() == 2) 7577 return cast<MDNode>(BaseNode->getOperand(1)); 7578 7579 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; 7580 unsigned NumOpsPerField = IsNewFormat ? 3 : 2; 7581 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); 7582 Idx += NumOpsPerField) { 7583 auto *OffsetEntryCI = 7584 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); 7585 if (OffsetEntryCI->getValue().ugt(Offset)) { 7586 if (Idx == FirstFieldOpNo) { 7587 CheckFailed("Could not find TBAA parent in struct type node", &I, 7588 BaseNode, &Offset); 7589 return nullptr; 7590 } 7591 7592 unsigned PrevIdx = Idx - NumOpsPerField; 7593 auto *PrevOffsetEntryCI = 7594 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); 7595 Offset -= PrevOffsetEntryCI->getValue(); 7596 return cast<MDNode>(BaseNode->getOperand(PrevIdx)); 7597 } 7598 } 7599 7600 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; 7601 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( 7602 BaseNode->getOperand(LastIdx + 1)); 7603 Offset -= LastOffsetEntryCI->getValue(); 7604 return cast<MDNode>(BaseNode->getOperand(LastIdx)); 7605 } 7606 7607 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { 7608 if (!Type || Type->getNumOperands() < 3) 7609 return false; 7610 7611 // In the new format type nodes shall have a reference to the parent type as 7612 // its first operand. 7613 return isa_and_nonnull<MDNode>(Type->getOperand(0)); 7614 } 7615 7616 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { 7617 CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands", 7618 &I, MD); 7619 7620 CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 7621 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || 7622 isa<AtomicCmpXchgInst>(I), 7623 "This instruction shall not have a TBAA access tag!", &I); 7624 7625 bool IsStructPathTBAA = 7626 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; 7627 7628 CheckTBAA(IsStructPathTBAA, 7629 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", 7630 &I); 7631 7632 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); 7633 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); 7634 7635 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); 7636 7637 if (IsNewFormat) { 7638 CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, 7639 "Access tag metadata must have either 4 or 5 operands", &I, MD); 7640 } else { 7641 CheckTBAA(MD->getNumOperands() < 5, 7642 "Struct tag metadata must have either 3 or 4 operands", &I, MD); 7643 } 7644 7645 // Check the access size field. 7646 if (IsNewFormat) { 7647 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( 7648 MD->getOperand(3)); 7649 CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); 7650 } 7651 7652 // Check the immutability flag. 7653 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; 7654 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { 7655 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( 7656 MD->getOperand(ImmutabilityFlagOpNo)); 7657 CheckTBAA(IsImmutableCI, 7658 "Immutability tag on struct tag metadata must be a constant", &I, 7659 MD); 7660 CheckTBAA( 7661 IsImmutableCI->isZero() || IsImmutableCI->isOne(), 7662 "Immutability part of the struct tag metadata must be either 0 or 1", 7663 &I, MD); 7664 } 7665 7666 CheckTBAA(BaseNode && AccessType, 7667 "Malformed struct tag metadata: base and access-type " 7668 "should be non-null and point to Metadata nodes", 7669 &I, MD, BaseNode, AccessType); 7670 7671 if (!IsNewFormat) { 7672 CheckTBAA(isValidScalarTBAANode(AccessType), 7673 "Access type node must be a valid scalar type", &I, MD, 7674 AccessType); 7675 } 7676 7677 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); 7678 CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD); 7679 7680 APInt Offset = OffsetCI->getValue(); 7681 bool SeenAccessTypeInPath = false; 7682 7683 SmallPtrSet<MDNode *, 4> StructPath; 7684 7685 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); 7686 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, 7687 IsNewFormat)) { 7688 if (!StructPath.insert(BaseNode).second) { 7689 CheckFailed("Cycle detected in struct path", &I, MD); 7690 return false; 7691 } 7692 7693 bool Invalid; 7694 unsigned BaseNodeBitWidth; 7695 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, 7696 IsNewFormat); 7697 7698 // If the base node is invalid in itself, then we've already printed all the 7699 // errors we wanted to print. 7700 if (Invalid) 7701 return false; 7702 7703 SeenAccessTypeInPath |= BaseNode == AccessType; 7704 7705 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) 7706 CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access", 7707 &I, MD, &Offset); 7708 7709 CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() || 7710 (BaseNodeBitWidth == 0 && Offset == 0) || 7711 (IsNewFormat && BaseNodeBitWidth == ~0u), 7712 "Access bit-width not the same as description bit-width", &I, MD, 7713 BaseNodeBitWidth, Offset.getBitWidth()); 7714 7715 if (IsNewFormat && SeenAccessTypeInPath) 7716 break; 7717 } 7718 7719 CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I, 7720 MD); 7721 return true; 7722 } 7723 7724 char VerifierLegacyPass::ID = 0; 7725 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) 7726 7727 FunctionPass *llvm::createVerifierPass(bool FatalErrors) { 7728 return new VerifierLegacyPass(FatalErrors); 7729 } 7730 7731 AnalysisKey VerifierAnalysis::Key; 7732 VerifierAnalysis::Result VerifierAnalysis::run(Module &M, 7733 ModuleAnalysisManager &) { 7734 Result Res; 7735 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); 7736 return Res; 7737 } 7738 7739 VerifierAnalysis::Result VerifierAnalysis::run(Function &F, 7740 FunctionAnalysisManager &) { 7741 return { llvm::verifyFunction(F, &dbgs()), false }; 7742 } 7743 7744 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { 7745 auto Res = AM.getResult<VerifierAnalysis>(M); 7746 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) 7747 report_fatal_error("Broken module found, compilation aborted!"); 7748 7749 return PreservedAnalyses::all(); 7750 } 7751 7752 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 7753 auto res = AM.getResult<VerifierAnalysis>(F); 7754 if (res.IRBroken && FatalErrors) 7755 report_fatal_error("Broken function found, compilation aborted!"); 7756 7757 return PreservedAnalyses::all(); 7758 } 7759