xref: /llvm-project/llvm/lib/IR/ConstantFold.cpp (revision 02328e0465c256293950542f1a85eb55bcbc9d45)
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM.  This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
12 //
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/IR/ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalAlias.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/ErrorHandling.h"
32 using namespace llvm;
33 using namespace llvm::PatternMatch;
34 
35 //===----------------------------------------------------------------------===//
36 //                ConstantFold*Instruction Implementations
37 //===----------------------------------------------------------------------===//
38 
39 /// This function determines which opcode to use to fold two constant cast
40 /// expressions together. It uses CastInst::isEliminableCastPair to determine
41 /// the opcode. Consequently its just a wrapper around that function.
42 /// Determine if it is valid to fold a cast of a cast
43 static unsigned
44 foldConstantCastPair(
45   unsigned opc,          ///< opcode of the second cast constant expression
46   ConstantExpr *Op,      ///< the first cast constant expression
47   Type *DstTy            ///< destination type of the first cast
48 ) {
49   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
50   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
51   assert(CastInst::isCast(opc) && "Invalid cast opcode");
52 
53   // The types and opcodes for the two Cast constant expressions
54   Type *SrcTy = Op->getOperand(0)->getType();
55   Type *MidTy = Op->getType();
56   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
57   Instruction::CastOps secondOp = Instruction::CastOps(opc);
58 
59   // Assume that pointers are never more than 64 bits wide, and only use this
60   // for the middle type. Otherwise we could end up folding away illegal
61   // bitcasts between address spaces with different sizes.
62   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
63 
64   // Let CastInst::isEliminableCastPair do the heavy lifting.
65   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
66                                         nullptr, FakeIntPtrTy, nullptr);
67 }
68 
69 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
70   Type *SrcTy = V->getType();
71   if (SrcTy == DestTy)
72     return V; // no-op cast
73 
74   if (V->isAllOnesValue())
75     return Constant::getAllOnesValue(DestTy);
76 
77   // Handle ConstantInt -> ConstantFP
78   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
79     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
80     // This allows for other simplifications (although some of them
81     // can only be handled by Analysis/ConstantFolding.cpp).
82     if (isa<VectorType>(DestTy) && !isa<VectorType>(SrcTy))
83       return ConstantExpr::getBitCast(ConstantVector::get(V), DestTy);
84 
85     // Make sure dest type is compatible with the folded fp constant.
86     // See note below regarding the PPC_FP128 restriction.
87     if (!DestTy->isFPOrFPVectorTy() || DestTy->isPPC_FP128Ty() ||
88         DestTy->getScalarSizeInBits() != SrcTy->getScalarSizeInBits())
89       return nullptr;
90 
91     return ConstantFP::get(
92         DestTy,
93         APFloat(DestTy->getScalarType()->getFltSemantics(), CI->getValue()));
94   }
95 
96   // Handle ConstantFP -> ConstantInt
97   if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
98     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
99     // This allows for other simplifications (although some of them
100     // can only be handled by Analysis/ConstantFolding.cpp).
101     if (isa<VectorType>(DestTy) && !isa<VectorType>(SrcTy))
102       return ConstantExpr::getBitCast(ConstantVector::get(V), DestTy);
103 
104     // PPC_FP128 is really the sum of two consecutive doubles, where the first
105     // double is always stored first in memory, regardless of the target
106     // endianness. The memory layout of i128, however, depends on the target
107     // endianness, and so we can't fold this without target endianness
108     // information. This should instead be handled by
109     // Analysis/ConstantFolding.cpp
110     if (SrcTy->isPPC_FP128Ty())
111       return nullptr;
112 
113     // Make sure dest type is compatible with the folded integer constant.
114     if (!DestTy->isIntOrIntVectorTy() ||
115         DestTy->getScalarSizeInBits() != SrcTy->getScalarSizeInBits())
116       return nullptr;
117 
118     return ConstantInt::get(DestTy, FP->getValueAPF().bitcastToAPInt());
119   }
120 
121   return nullptr;
122 }
123 
124 static Constant *foldMaybeUndesirableCast(unsigned opc, Constant *V,
125                                           Type *DestTy) {
126   return ConstantExpr::isDesirableCastOp(opc)
127              ? ConstantExpr::getCast(opc, V, DestTy)
128              : ConstantFoldCastInstruction(opc, V, DestTy);
129 }
130 
131 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
132                                             Type *DestTy) {
133   if (isa<PoisonValue>(V))
134     return PoisonValue::get(DestTy);
135 
136   if (isa<UndefValue>(V)) {
137     // zext(undef) = 0, because the top bits will be zero.
138     // sext(undef) = 0, because the top bits will all be the same.
139     // [us]itofp(undef) = 0, because the result value is bounded.
140     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
141         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
142       return Constant::getNullValue(DestTy);
143     return UndefValue::get(DestTy);
144   }
145 
146   if (V->isNullValue() && !DestTy->isX86_AMXTy() &&
147       opc != Instruction::AddrSpaceCast)
148     return Constant::getNullValue(DestTy);
149 
150   // If the cast operand is a constant expression, there's a few things we can
151   // do to try to simplify it.
152   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
153     if (CE->isCast()) {
154       // Try hard to fold cast of cast because they are often eliminable.
155       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
156         return foldMaybeUndesirableCast(newOpc, CE->getOperand(0), DestTy);
157     }
158   }
159 
160   // If the cast operand is a constant vector, perform the cast by
161   // operating on each element. In the cast of bitcasts, the element
162   // count may be mismatched; don't attempt to handle that here.
163   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
164       DestTy->isVectorTy() &&
165       cast<FixedVectorType>(DestTy)->getNumElements() ==
166           cast<FixedVectorType>(V->getType())->getNumElements()) {
167     VectorType *DestVecTy = cast<VectorType>(DestTy);
168     Type *DstEltTy = DestVecTy->getElementType();
169     // Fast path for splatted constants.
170     if (Constant *Splat = V->getSplatValue()) {
171       Constant *Res = foldMaybeUndesirableCast(opc, Splat, DstEltTy);
172       if (!Res)
173         return nullptr;
174       return ConstantVector::getSplat(
175           cast<VectorType>(DestTy)->getElementCount(), Res);
176     }
177     SmallVector<Constant *, 16> res;
178     Type *Ty = IntegerType::get(V->getContext(), 32);
179     for (unsigned i = 0,
180                   e = cast<FixedVectorType>(V->getType())->getNumElements();
181          i != e; ++i) {
182       Constant *C = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
183       Constant *Casted = foldMaybeUndesirableCast(opc, C, DstEltTy);
184       if (!Casted)
185         return nullptr;
186       res.push_back(Casted);
187     }
188     return ConstantVector::get(res);
189   }
190 
191   // We actually have to do a cast now. Perform the cast according to the
192   // opcode specified.
193   switch (opc) {
194   default:
195     llvm_unreachable("Failed to cast constant expression");
196   case Instruction::FPTrunc:
197   case Instruction::FPExt:
198     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
199       bool ignored;
200       APFloat Val = FPC->getValueAPF();
201       Val.convert(DestTy->getScalarType()->getFltSemantics(),
202                   APFloat::rmNearestTiesToEven, &ignored);
203       return ConstantFP::get(DestTy, Val);
204     }
205     return nullptr; // Can't fold.
206   case Instruction::FPToUI:
207   case Instruction::FPToSI:
208     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
209       const APFloat &V = FPC->getValueAPF();
210       bool ignored;
211       APSInt IntVal(DestTy->getScalarSizeInBits(), opc == Instruction::FPToUI);
212       if (APFloat::opInvalidOp ==
213           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
214         // Undefined behavior invoked - the destination type can't represent
215         // the input constant.
216         return PoisonValue::get(DestTy);
217       }
218       return ConstantInt::get(DestTy, IntVal);
219     }
220     return nullptr; // Can't fold.
221   case Instruction::UIToFP:
222   case Instruction::SIToFP:
223     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
224       const APInt &api = CI->getValue();
225       APFloat apf(DestTy->getScalarType()->getFltSemantics(),
226                   APInt::getZero(DestTy->getScalarSizeInBits()));
227       apf.convertFromAPInt(api, opc==Instruction::SIToFP,
228                            APFloat::rmNearestTiesToEven);
229       return ConstantFP::get(DestTy, apf);
230     }
231     return nullptr;
232   case Instruction::ZExt:
233     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
234       uint32_t BitWidth = DestTy->getScalarSizeInBits();
235       return ConstantInt::get(DestTy, CI->getValue().zext(BitWidth));
236     }
237     return nullptr;
238   case Instruction::SExt:
239     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
240       uint32_t BitWidth = DestTy->getScalarSizeInBits();
241       return ConstantInt::get(DestTy, CI->getValue().sext(BitWidth));
242     }
243     return nullptr;
244   case Instruction::Trunc: {
245     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
246       uint32_t BitWidth = DestTy->getScalarSizeInBits();
247       return ConstantInt::get(DestTy, CI->getValue().trunc(BitWidth));
248     }
249 
250     return nullptr;
251   }
252   case Instruction::BitCast:
253     return FoldBitCast(V, DestTy);
254   case Instruction::AddrSpaceCast:
255   case Instruction::IntToPtr:
256   case Instruction::PtrToInt:
257     return nullptr;
258   }
259 }
260 
261 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
262                                               Constant *V1, Constant *V2) {
263   // Check for i1 and vector true/false conditions.
264   if (Cond->isNullValue()) return V2;
265   if (Cond->isAllOnesValue()) return V1;
266 
267   // If the condition is a vector constant, fold the result elementwise.
268   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
269     auto *V1VTy = CondV->getType();
270     SmallVector<Constant*, 16> Result;
271     Type *Ty = IntegerType::get(CondV->getContext(), 32);
272     for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
273       Constant *V;
274       Constant *V1Element = ConstantExpr::getExtractElement(V1,
275                                                     ConstantInt::get(Ty, i));
276       Constant *V2Element = ConstantExpr::getExtractElement(V2,
277                                                     ConstantInt::get(Ty, i));
278       auto *Cond = cast<Constant>(CondV->getOperand(i));
279       if (isa<PoisonValue>(Cond)) {
280         V = PoisonValue::get(V1Element->getType());
281       } else if (V1Element == V2Element) {
282         V = V1Element;
283       } else if (isa<UndefValue>(Cond)) {
284         V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
285       } else {
286         if (!isa<ConstantInt>(Cond)) break;
287         V = Cond->isNullValue() ? V2Element : V1Element;
288       }
289       Result.push_back(V);
290     }
291 
292     // If we were able to build the vector, return it.
293     if (Result.size() == V1VTy->getNumElements())
294       return ConstantVector::get(Result);
295   }
296 
297   if (isa<PoisonValue>(Cond))
298     return PoisonValue::get(V1->getType());
299 
300   if (isa<UndefValue>(Cond)) {
301     if (isa<UndefValue>(V1)) return V1;
302     return V2;
303   }
304 
305   if (V1 == V2) return V1;
306 
307   if (isa<PoisonValue>(V1))
308     return V2;
309   if (isa<PoisonValue>(V2))
310     return V1;
311 
312   // If the true or false value is undef, we can fold to the other value as
313   // long as the other value isn't poison.
314   auto NotPoison = [](Constant *C) {
315     if (isa<PoisonValue>(C))
316       return false;
317 
318     // TODO: We can analyze ConstExpr by opcode to determine if there is any
319     //       possibility of poison.
320     if (isa<ConstantExpr>(C))
321       return false;
322 
323     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) ||
324         isa<ConstantPointerNull>(C) || isa<Function>(C))
325       return true;
326 
327     if (C->getType()->isVectorTy())
328       return !C->containsPoisonElement() && !C->containsConstantExpression();
329 
330     // TODO: Recursively analyze aggregates or other constants.
331     return false;
332   };
333   if (isa<UndefValue>(V1) && NotPoison(V2)) return V2;
334   if (isa<UndefValue>(V2) && NotPoison(V1)) return V1;
335 
336   return nullptr;
337 }
338 
339 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
340                                                       Constant *Idx) {
341   auto *ValVTy = cast<VectorType>(Val->getType());
342 
343   // extractelt poison, C -> poison
344   // extractelt C, undef -> poison
345   if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx))
346     return PoisonValue::get(ValVTy->getElementType());
347 
348   // extractelt undef, C -> undef
349   if (isa<UndefValue>(Val))
350     return UndefValue::get(ValVTy->getElementType());
351 
352   auto *CIdx = dyn_cast<ConstantInt>(Idx);
353   if (!CIdx)
354     return nullptr;
355 
356   if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) {
357     // ee({w,x,y,z}, wrong_value) -> poison
358     if (CIdx->uge(ValFVTy->getNumElements()))
359       return PoisonValue::get(ValFVTy->getElementType());
360   }
361 
362   // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
363   if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
364     if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
365       SmallVector<Constant *, 8> Ops;
366       Ops.reserve(CE->getNumOperands());
367       for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
368         Constant *Op = CE->getOperand(i);
369         if (Op->getType()->isVectorTy()) {
370           Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
371           if (!ScalarOp)
372             return nullptr;
373           Ops.push_back(ScalarOp);
374         } else
375           Ops.push_back(Op);
376       }
377       return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
378                                  GEP->getSourceElementType());
379     } else if (CE->getOpcode() == Instruction::InsertElement) {
380       if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) {
381         if (APSInt::isSameValue(APSInt(IEIdx->getValue()),
382                                 APSInt(CIdx->getValue()))) {
383           return CE->getOperand(1);
384         } else {
385           return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx);
386         }
387       }
388     }
389   }
390 
391   if (Constant *C = Val->getAggregateElement(CIdx))
392     return C;
393 
394   // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x
395   if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) {
396     if (Constant *SplatVal = Val->getSplatValue())
397       return SplatVal;
398   }
399 
400   return nullptr;
401 }
402 
403 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
404                                                      Constant *Elt,
405                                                      Constant *Idx) {
406   if (isa<UndefValue>(Idx))
407     return PoisonValue::get(Val->getType());
408 
409   // Inserting null into all zeros is still all zeros.
410   // TODO: This is true for undef and poison splats too.
411   if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue())
412     return Val;
413 
414   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
415   if (!CIdx) return nullptr;
416 
417   // Do not iterate on scalable vector. The num of elements is unknown at
418   // compile-time.
419   if (isa<ScalableVectorType>(Val->getType()))
420     return nullptr;
421 
422   auto *ValTy = cast<FixedVectorType>(Val->getType());
423 
424   unsigned NumElts = ValTy->getNumElements();
425   if (CIdx->uge(NumElts))
426     return PoisonValue::get(Val->getType());
427 
428   SmallVector<Constant*, 16> Result;
429   Result.reserve(NumElts);
430   auto *Ty = Type::getInt32Ty(Val->getContext());
431   uint64_t IdxVal = CIdx->getZExtValue();
432   for (unsigned i = 0; i != NumElts; ++i) {
433     if (i == IdxVal) {
434       Result.push_back(Elt);
435       continue;
436     }
437 
438     Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
439     Result.push_back(C);
440   }
441 
442   return ConstantVector::get(Result);
443 }
444 
445 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2,
446                                                      ArrayRef<int> Mask) {
447   auto *V1VTy = cast<VectorType>(V1->getType());
448   unsigned MaskNumElts = Mask.size();
449   auto MaskEltCount =
450       ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy));
451   Type *EltTy = V1VTy->getElementType();
452 
453   // Poison shuffle mask -> poison value.
454   if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) {
455     return PoisonValue::get(VectorType::get(EltTy, MaskEltCount));
456   }
457 
458   // If the mask is all zeros this is a splat, no need to go through all
459   // elements.
460   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
461     Type *Ty = IntegerType::get(V1->getContext(), 32);
462     Constant *Elt =
463         ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0));
464 
465     if (Elt->isNullValue()) {
466       auto *VTy = VectorType::get(EltTy, MaskEltCount);
467       return ConstantAggregateZero::get(VTy);
468     } else if (!MaskEltCount.isScalable())
469       return ConstantVector::getSplat(MaskEltCount, Elt);
470   }
471 
472   // Do not iterate on scalable vector. The num of elements is unknown at
473   // compile-time.
474   if (isa<ScalableVectorType>(V1VTy))
475     return nullptr;
476 
477   unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue();
478 
479   // Loop over the shuffle mask, evaluating each element.
480   SmallVector<Constant*, 32> Result;
481   for (unsigned i = 0; i != MaskNumElts; ++i) {
482     int Elt = Mask[i];
483     if (Elt == -1) {
484       Result.push_back(UndefValue::get(EltTy));
485       continue;
486     }
487     Constant *InElt;
488     if (unsigned(Elt) >= SrcNumElts*2)
489       InElt = UndefValue::get(EltTy);
490     else if (unsigned(Elt) >= SrcNumElts) {
491       Type *Ty = IntegerType::get(V2->getContext(), 32);
492       InElt =
493         ConstantExpr::getExtractElement(V2,
494                                         ConstantInt::get(Ty, Elt - SrcNumElts));
495     } else {
496       Type *Ty = IntegerType::get(V1->getContext(), 32);
497       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
498     }
499     Result.push_back(InElt);
500   }
501 
502   return ConstantVector::get(Result);
503 }
504 
505 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
506                                                     ArrayRef<unsigned> Idxs) {
507   // Base case: no indices, so return the entire value.
508   if (Idxs.empty())
509     return Agg;
510 
511   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
512     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
513 
514   return nullptr;
515 }
516 
517 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
518                                                    Constant *Val,
519                                                    ArrayRef<unsigned> Idxs) {
520   // Base case: no indices, so replace the entire value.
521   if (Idxs.empty())
522     return Val;
523 
524   unsigned NumElts;
525   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
526     NumElts = ST->getNumElements();
527   else
528     NumElts = cast<ArrayType>(Agg->getType())->getNumElements();
529 
530   SmallVector<Constant*, 32> Result;
531   for (unsigned i = 0; i != NumElts; ++i) {
532     Constant *C = Agg->getAggregateElement(i);
533     if (!C) return nullptr;
534 
535     if (Idxs[0] == i)
536       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
537 
538     Result.push_back(C);
539   }
540 
541   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
542     return ConstantStruct::get(ST, Result);
543   return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result);
544 }
545 
546 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
547   assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
548 
549   // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
550   // vectors are always evaluated per element.
551   bool IsScalableVector = isa<ScalableVectorType>(C->getType());
552   bool HasScalarUndefOrScalableVectorUndef =
553       (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C);
554 
555   if (HasScalarUndefOrScalableVectorUndef) {
556     switch (static_cast<Instruction::UnaryOps>(Opcode)) {
557     case Instruction::FNeg:
558       return C; // -undef -> undef
559     case Instruction::UnaryOpsEnd:
560       llvm_unreachable("Invalid UnaryOp");
561     }
562   }
563 
564   // Constant should not be UndefValue, unless these are vector constants.
565   assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
566   // We only have FP UnaryOps right now.
567   assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
568 
569   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
570     const APFloat &CV = CFP->getValueAPF();
571     switch (Opcode) {
572     default:
573       break;
574     case Instruction::FNeg:
575       return ConstantFP::get(C->getType(), neg(CV));
576     }
577   } else if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
578     // Fast path for splatted constants.
579     if (Constant *Splat = C->getSplatValue())
580       if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat))
581         return ConstantVector::getSplat(VTy->getElementCount(), Elt);
582 
583     if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
584       // Fold each element and create a vector constant from those constants.
585       Type *Ty = IntegerType::get(FVTy->getContext(), 32);
586       SmallVector<Constant *, 16> Result;
587       for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
588         Constant *ExtractIdx = ConstantInt::get(Ty, i);
589         Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
590         Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt);
591         if (!Res)
592           return nullptr;
593         Result.push_back(Res);
594       }
595 
596       return ConstantVector::get(Result);
597     }
598   }
599 
600   // We don't know how to fold this.
601   return nullptr;
602 }
603 
604 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
605                                               Constant *C2) {
606   assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
607 
608   // Simplify BinOps with their identity values first. They are no-ops and we
609   // can always return the other value, including undef or poison values.
610   if (Constant *Identity = ConstantExpr::getBinOpIdentity(
611           Opcode, C1->getType(), /*AllowRHSIdentity*/ false)) {
612     if (C1 == Identity)
613       return C2;
614     if (C2 == Identity)
615       return C1;
616   } else if (Constant *Identity = ConstantExpr::getBinOpIdentity(
617                  Opcode, C1->getType(), /*AllowRHSIdentity*/ true)) {
618     if (C2 == Identity)
619       return C1;
620   }
621 
622   // Binary operations propagate poison.
623   if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
624     return PoisonValue::get(C1->getType());
625 
626   // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
627   // vectors are always evaluated per element.
628   bool IsScalableVector = isa<ScalableVectorType>(C1->getType());
629   bool HasScalarUndefOrScalableVectorUndef =
630       (!C1->getType()->isVectorTy() || IsScalableVector) &&
631       (isa<UndefValue>(C1) || isa<UndefValue>(C2));
632   if (HasScalarUndefOrScalableVectorUndef) {
633     switch (static_cast<Instruction::BinaryOps>(Opcode)) {
634     case Instruction::Xor:
635       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
636         // Handle undef ^ undef -> 0 special case. This is a common
637         // idiom (misuse).
638         return Constant::getNullValue(C1->getType());
639       [[fallthrough]];
640     case Instruction::Add:
641     case Instruction::Sub:
642       return UndefValue::get(C1->getType());
643     case Instruction::And:
644       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
645         return C1;
646       return Constant::getNullValue(C1->getType());   // undef & X -> 0
647     case Instruction::Mul: {
648       // undef * undef -> undef
649       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
650         return C1;
651       const APInt *CV;
652       // X * undef -> undef   if X is odd
653       if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
654         if ((*CV)[0])
655           return UndefValue::get(C1->getType());
656 
657       // X * undef -> 0       otherwise
658       return Constant::getNullValue(C1->getType());
659     }
660     case Instruction::SDiv:
661     case Instruction::UDiv:
662       // X / undef -> poison
663       // X / 0 -> poison
664       if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
665         return PoisonValue::get(C2->getType());
666       // undef / X -> 0       otherwise
667       return Constant::getNullValue(C1->getType());
668     case Instruction::URem:
669     case Instruction::SRem:
670       // X % undef -> poison
671       // X % 0 -> poison
672       if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
673         return PoisonValue::get(C2->getType());
674       // undef % X -> 0       otherwise
675       return Constant::getNullValue(C1->getType());
676     case Instruction::Or:                          // X | undef -> -1
677       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
678         return C1;
679       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
680     case Instruction::LShr:
681       // X >>l undef -> poison
682       if (isa<UndefValue>(C2))
683         return PoisonValue::get(C2->getType());
684       // undef >>l X -> 0
685       return Constant::getNullValue(C1->getType());
686     case Instruction::AShr:
687       // X >>a undef -> poison
688       if (isa<UndefValue>(C2))
689         return PoisonValue::get(C2->getType());
690       // TODO: undef >>a X -> poison if the shift is exact
691       // undef >>a X -> 0
692       return Constant::getNullValue(C1->getType());
693     case Instruction::Shl:
694       // X << undef -> undef
695       if (isa<UndefValue>(C2))
696         return PoisonValue::get(C2->getType());
697       // undef << X -> 0
698       return Constant::getNullValue(C1->getType());
699     case Instruction::FSub:
700       // -0.0 - undef --> undef (consistent with "fneg undef")
701       if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2))
702         return C2;
703       [[fallthrough]];
704     case Instruction::FAdd:
705     case Instruction::FMul:
706     case Instruction::FDiv:
707     case Instruction::FRem:
708       // [any flop] undef, undef -> undef
709       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
710         return C1;
711       // [any flop] C, undef -> NaN
712       // [any flop] undef, C -> NaN
713       // We could potentially specialize NaN/Inf constants vs. 'normal'
714       // constants (possibly differently depending on opcode and operand). This
715       // would allow returning undef sometimes. But it is always safe to fold to
716       // NaN because we can choose the undef operand as NaN, and any FP opcode
717       // with a NaN operand will propagate NaN.
718       return ConstantFP::getNaN(C1->getType());
719     case Instruction::BinaryOpsEnd:
720       llvm_unreachable("Invalid BinaryOp");
721     }
722   }
723 
724   // Neither constant should be UndefValue, unless these are vector constants.
725   assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
726 
727   // Handle simplifications when the RHS is a constant int.
728   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
729     if (C2 == ConstantExpr::getBinOpAbsorber(Opcode, C2->getType(),
730                                              /*AllowLHSConstant*/ false))
731       return C2;
732 
733     switch (Opcode) {
734     case Instruction::UDiv:
735     case Instruction::SDiv:
736       if (CI2->isZero())
737         return PoisonValue::get(CI2->getType());              // X / 0 == poison
738       break;
739     case Instruction::URem:
740     case Instruction::SRem:
741       if (CI2->isOne())
742         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
743       if (CI2->isZero())
744         return PoisonValue::get(CI2->getType());              // X % 0 == poison
745       break;
746     case Instruction::And:
747       assert(!CI2->isZero() && "And zero handled above");
748       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
749         // If and'ing the address of a global with a constant, fold it.
750         if (CE1->getOpcode() == Instruction::PtrToInt &&
751             isa<GlobalValue>(CE1->getOperand(0))) {
752           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
753 
754           Align GVAlign; // defaults to 1
755 
756           if (Module *TheModule = GV->getParent()) {
757             const DataLayout &DL = TheModule->getDataLayout();
758             GVAlign = GV->getPointerAlignment(DL);
759 
760             // If the function alignment is not specified then assume that it
761             // is 4.
762             // This is dangerous; on x86, the alignment of the pointer
763             // corresponds to the alignment of the function, but might be less
764             // than 4 if it isn't explicitly specified.
765             // However, a fix for this behaviour was reverted because it
766             // increased code size (see https://reviews.llvm.org/D55115)
767             // FIXME: This code should be deleted once existing targets have
768             // appropriate defaults
769             if (isa<Function>(GV) && !DL.getFunctionPtrAlign())
770               GVAlign = Align(4);
771           } else if (isa<GlobalVariable>(GV)) {
772             GVAlign = cast<GlobalVariable>(GV)->getAlign().valueOrOne();
773           }
774 
775           if (GVAlign > 1) {
776             unsigned DstWidth = CI2->getBitWidth();
777             unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign));
778             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
779 
780             // If checking bits we know are clear, return zero.
781             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
782               return Constant::getNullValue(CI2->getType());
783           }
784         }
785       }
786       break;
787     }
788   } else if (isa<ConstantInt>(C1)) {
789     // If C1 is a ConstantInt and C2 is not, swap the operands.
790     if (Instruction::isCommutative(Opcode))
791       return ConstantExpr::isDesirableBinOp(Opcode)
792                  ? ConstantExpr::get(Opcode, C2, C1)
793                  : ConstantFoldBinaryInstruction(Opcode, C2, C1);
794   }
795 
796   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
797     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
798       const APInt &C1V = CI1->getValue();
799       const APInt &C2V = CI2->getValue();
800       switch (Opcode) {
801       default:
802         break;
803       case Instruction::Add:
804         return ConstantInt::get(C1->getType(), C1V + C2V);
805       case Instruction::Sub:
806         return ConstantInt::get(C1->getType(), C1V - C2V);
807       case Instruction::Mul:
808         return ConstantInt::get(C1->getType(), C1V * C2V);
809       case Instruction::UDiv:
810         assert(!CI2->isZero() && "Div by zero handled above");
811         return ConstantInt::get(CI1->getType(), C1V.udiv(C2V));
812       case Instruction::SDiv:
813         assert(!CI2->isZero() && "Div by zero handled above");
814         if (C2V.isAllOnes() && C1V.isMinSignedValue())
815           return PoisonValue::get(CI1->getType());   // MIN_INT / -1 -> poison
816         return ConstantInt::get(CI1->getType(), C1V.sdiv(C2V));
817       case Instruction::URem:
818         assert(!CI2->isZero() && "Div by zero handled above");
819         return ConstantInt::get(C1->getType(), C1V.urem(C2V));
820       case Instruction::SRem:
821         assert(!CI2->isZero() && "Div by zero handled above");
822         if (C2V.isAllOnes() && C1V.isMinSignedValue())
823           return PoisonValue::get(C1->getType()); // MIN_INT % -1 -> poison
824         return ConstantInt::get(C1->getType(), C1V.srem(C2V));
825       case Instruction::And:
826         return ConstantInt::get(C1->getType(), C1V & C2V);
827       case Instruction::Or:
828         return ConstantInt::get(C1->getType(), C1V | C2V);
829       case Instruction::Xor:
830         return ConstantInt::get(C1->getType(), C1V ^ C2V);
831       case Instruction::Shl:
832         if (C2V.ult(C1V.getBitWidth()))
833           return ConstantInt::get(C1->getType(), C1V.shl(C2V));
834         return PoisonValue::get(C1->getType()); // too big shift is poison
835       case Instruction::LShr:
836         if (C2V.ult(C1V.getBitWidth()))
837           return ConstantInt::get(C1->getType(), C1V.lshr(C2V));
838         return PoisonValue::get(C1->getType()); // too big shift is poison
839       case Instruction::AShr:
840         if (C2V.ult(C1V.getBitWidth()))
841           return ConstantInt::get(C1->getType(), C1V.ashr(C2V));
842         return PoisonValue::get(C1->getType()); // too big shift is poison
843       }
844     }
845 
846     if (C1 == ConstantExpr::getBinOpAbsorber(Opcode, C1->getType(),
847                                              /*AllowLHSConstant*/ true))
848       return C1;
849   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
850     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
851       const APFloat &C1V = CFP1->getValueAPF();
852       const APFloat &C2V = CFP2->getValueAPF();
853       APFloat C3V = C1V;  // copy for modification
854       switch (Opcode) {
855       default:
856         break;
857       case Instruction::FAdd:
858         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
859         return ConstantFP::get(C1->getType(), C3V);
860       case Instruction::FSub:
861         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
862         return ConstantFP::get(C1->getType(), C3V);
863       case Instruction::FMul:
864         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
865         return ConstantFP::get(C1->getType(), C3V);
866       case Instruction::FDiv:
867         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
868         return ConstantFP::get(C1->getType(), C3V);
869       case Instruction::FRem:
870         (void)C3V.mod(C2V);
871         return ConstantFP::get(C1->getType(), C3V);
872       }
873     }
874   }
875 
876   if (auto *VTy = dyn_cast<VectorType>(C1->getType())) {
877     // Fast path for splatted constants.
878     if (Constant *C2Splat = C2->getSplatValue()) {
879       if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue())
880         return PoisonValue::get(VTy);
881       if (Constant *C1Splat = C1->getSplatValue()) {
882         Constant *Res =
883             ConstantExpr::isDesirableBinOp(Opcode)
884                 ? ConstantExpr::get(Opcode, C1Splat, C2Splat)
885                 : ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat);
886         if (!Res)
887           return nullptr;
888         return ConstantVector::getSplat(VTy->getElementCount(), Res);
889       }
890     }
891 
892     if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
893       // Fold each element and create a vector constant from those constants.
894       SmallVector<Constant*, 16> Result;
895       Type *Ty = IntegerType::get(FVTy->getContext(), 32);
896       for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
897         Constant *ExtractIdx = ConstantInt::get(Ty, i);
898         Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
899         Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
900         Constant *Res = ConstantExpr::isDesirableBinOp(Opcode)
901                             ? ConstantExpr::get(Opcode, LHS, RHS)
902                             : ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
903         if (!Res)
904           return nullptr;
905         Result.push_back(Res);
906       }
907 
908       return ConstantVector::get(Result);
909     }
910   }
911 
912   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
913     // There are many possible foldings we could do here.  We should probably
914     // at least fold add of a pointer with an integer into the appropriate
915     // getelementptr.  This will improve alias analysis a bit.
916 
917     // Given ((a + b) + c), if (b + c) folds to something interesting, return
918     // (a + (b + c)).
919     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
920       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
921       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
922         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
923     }
924   } else if (isa<ConstantExpr>(C2)) {
925     // If C2 is a constant expr and C1 isn't, flop them around and fold the
926     // other way if possible.
927     if (Instruction::isCommutative(Opcode))
928       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
929   }
930 
931   // i1 can be simplified in many cases.
932   if (C1->getType()->isIntegerTy(1)) {
933     switch (Opcode) {
934     case Instruction::Add:
935     case Instruction::Sub:
936       return ConstantExpr::getXor(C1, C2);
937     case Instruction::Shl:
938     case Instruction::LShr:
939     case Instruction::AShr:
940       // We can assume that C2 == 0.  If it were one the result would be
941       // undefined because the shift value is as large as the bitwidth.
942       return C1;
943     case Instruction::SDiv:
944     case Instruction::UDiv:
945       // We can assume that C2 == 1.  If it were zero the result would be
946       // undefined through division by zero.
947       return C1;
948     case Instruction::URem:
949     case Instruction::SRem:
950       // We can assume that C2 == 1.  If it were zero the result would be
951       // undefined through division by zero.
952       return ConstantInt::getFalse(C1->getContext());
953     default:
954       break;
955     }
956   }
957 
958   // We don't know how to fold this.
959   return nullptr;
960 }
961 
962 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
963                                                       const GlobalValue *GV2) {
964   auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
965     if (GV->isInterposable() || GV->hasGlobalUnnamedAddr())
966       return true;
967     if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
968       Type *Ty = GVar->getValueType();
969       // A global with opaque type might end up being zero sized.
970       if (!Ty->isSized())
971         return true;
972       // A global with an empty type might lie at the address of any other
973       // global.
974       if (Ty->isEmptyTy())
975         return true;
976     }
977     return false;
978   };
979   // Don't try to decide equality of aliases.
980   if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
981     if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
982       return ICmpInst::ICMP_NE;
983   return ICmpInst::BAD_ICMP_PREDICATE;
984 }
985 
986 /// This function determines if there is anything we can decide about the two
987 /// constants provided. This doesn't need to handle simple things like integer
988 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
989 /// If we can determine that the two constants have a particular relation to
990 /// each other, we should return the corresponding ICmp predicate, otherwise
991 /// return ICmpInst::BAD_ICMP_PREDICATE.
992 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2) {
993   assert(V1->getType() == V2->getType() &&
994          "Cannot compare different types of values!");
995   if (V1 == V2) return ICmpInst::ICMP_EQ;
996 
997   // The following folds only apply to pointers.
998   if (!V1->getType()->isPointerTy())
999     return ICmpInst::BAD_ICMP_PREDICATE;
1000 
1001   // To simplify this code we canonicalize the relation so that the first
1002   // operand is always the most "complex" of the two.  We consider simple
1003   // constants (like ConstantPointerNull) to be the simplest, followed by
1004   // BlockAddress, GlobalValues, and ConstantExpr's (the most complex).
1005   auto GetComplexity = [](Constant *V) {
1006     if (isa<ConstantExpr>(V))
1007       return 3;
1008     if (isa<GlobalValue>(V))
1009       return 2;
1010     if (isa<BlockAddress>(V))
1011       return 1;
1012     return 0;
1013   };
1014   if (GetComplexity(V1) < GetComplexity(V2)) {
1015     ICmpInst::Predicate SwappedRelation = evaluateICmpRelation(V2, V1);
1016     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1017       return ICmpInst::getSwappedPredicate(SwappedRelation);
1018     return ICmpInst::BAD_ICMP_PREDICATE;
1019   }
1020 
1021   if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1022     // Now we know that the RHS is a BlockAddress or simple constant.
1023     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1024       // Block address in another function can't equal this one, but block
1025       // addresses in the current function might be the same if blocks are
1026       // empty.
1027       if (BA2->getFunction() != BA->getFunction())
1028         return ICmpInst::ICMP_NE;
1029     } else if (isa<ConstantPointerNull>(V2)) {
1030       return ICmpInst::ICMP_NE;
1031     }
1032   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1033     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1034     // constant.
1035     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1036       return areGlobalsPotentiallyEqual(GV, GV2);
1037     } else if (isa<BlockAddress>(V2)) {
1038       return ICmpInst::ICMP_NE; // Globals never equal labels.
1039     } else if (isa<ConstantPointerNull>(V2)) {
1040       // GlobalVals can never be null unless they have external weak linkage.
1041       // We don't try to evaluate aliases here.
1042       // NOTE: We should not be doing this constant folding if null pointer
1043       // is considered valid for the function. But currently there is no way to
1044       // query it from the Constant type.
1045       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1046           !NullPointerIsDefined(nullptr /* F */,
1047                                 GV->getType()->getAddressSpace()))
1048         return ICmpInst::ICMP_UGT;
1049     }
1050   } else if (auto *CE1 = dyn_cast<ConstantExpr>(V1)) {
1051     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1052     // constantexpr, a global, block address, or a simple constant.
1053     Constant *CE1Op0 = CE1->getOperand(0);
1054 
1055     switch (CE1->getOpcode()) {
1056     case Instruction::GetElementPtr: {
1057       GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1058       // Ok, since this is a getelementptr, we know that the constant has a
1059       // pointer type.  Check the various cases.
1060       if (isa<ConstantPointerNull>(V2)) {
1061         // If we are comparing a GEP to a null pointer, check to see if the base
1062         // of the GEP equals the null pointer.
1063         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1064           // If its not weak linkage, the GVal must have a non-zero address
1065           // so the result is greater-than
1066           if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds())
1067             return ICmpInst::ICMP_UGT;
1068         }
1069       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1070         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1071           if (GV != GV2) {
1072             if (CE1GEP->hasAllZeroIndices())
1073               return areGlobalsPotentiallyEqual(GV, GV2);
1074             return ICmpInst::BAD_ICMP_PREDICATE;
1075           }
1076         }
1077       } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) {
1078         // By far the most common case to handle is when the base pointers are
1079         // obviously to the same global.
1080         const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand());
1081         if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1082           // Don't know relative ordering, but check for inequality.
1083           if (CE1Op0 != CE2Op0) {
1084             if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1085               return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1086                                                 cast<GlobalValue>(CE2Op0));
1087             return ICmpInst::BAD_ICMP_PREDICATE;
1088           }
1089         }
1090       }
1091       break;
1092     }
1093     default:
1094       break;
1095     }
1096   }
1097 
1098   return ICmpInst::BAD_ICMP_PREDICATE;
1099 }
1100 
1101 Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate,
1102                                                Constant *C1, Constant *C2) {
1103   Type *ResultTy;
1104   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1105     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1106                                VT->getElementCount());
1107   else
1108     ResultTy = Type::getInt1Ty(C1->getContext());
1109 
1110   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1111   if (Predicate == FCmpInst::FCMP_FALSE)
1112     return Constant::getNullValue(ResultTy);
1113 
1114   if (Predicate == FCmpInst::FCMP_TRUE)
1115     return Constant::getAllOnesValue(ResultTy);
1116 
1117   // Handle some degenerate cases first
1118   if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
1119     return PoisonValue::get(ResultTy);
1120 
1121   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1122     bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1123     // For EQ and NE, we can always pick a value for the undef to make the
1124     // predicate pass or fail, so we can return undef.
1125     // Also, if both operands are undef, we can return undef for int comparison.
1126     if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1127       return UndefValue::get(ResultTy);
1128 
1129     // Otherwise, for integer compare, pick the same value as the non-undef
1130     // operand, and fold it to true or false.
1131     if (isIntegerPredicate)
1132       return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1133 
1134     // Choosing NaN for the undef will always make unordered comparison succeed
1135     // and ordered comparison fails.
1136     return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1137   }
1138 
1139   if (C2->isNullValue()) {
1140     // The caller is expected to commute the operands if the constant expression
1141     // is C2.
1142     // C1 >= 0 --> true
1143     if (Predicate == ICmpInst::ICMP_UGE)
1144       return Constant::getAllOnesValue(ResultTy);
1145     // C1 < 0 --> false
1146     if (Predicate == ICmpInst::ICMP_ULT)
1147       return Constant::getNullValue(ResultTy);
1148   }
1149 
1150   // If the comparison is a comparison between two i1's, simplify it.
1151   if (C1->getType()->isIntegerTy(1)) {
1152     switch (Predicate) {
1153     case ICmpInst::ICMP_EQ:
1154       if (isa<ConstantInt>(C2))
1155         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1156       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1157     case ICmpInst::ICMP_NE:
1158       return ConstantExpr::getXor(C1, C2);
1159     default:
1160       break;
1161     }
1162   }
1163 
1164   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1165     const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1166     const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1167     return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate));
1168   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1169     const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1170     const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1171     return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate));
1172   } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) {
1173 
1174     // Fast path for splatted constants.
1175     if (Constant *C1Splat = C1->getSplatValue())
1176       if (Constant *C2Splat = C2->getSplatValue())
1177         if (Constant *Elt =
1178                 ConstantFoldCompareInstruction(Predicate, C1Splat, C2Splat))
1179           return ConstantVector::getSplat(C1VTy->getElementCount(), Elt);
1180 
1181     // Do not iterate on scalable vector. The number of elements is unknown at
1182     // compile-time.
1183     if (isa<ScalableVectorType>(C1VTy))
1184       return nullptr;
1185 
1186     // If we can constant fold the comparison of each element, constant fold
1187     // the whole vector comparison.
1188     SmallVector<Constant*, 4> ResElts;
1189     Type *Ty = IntegerType::get(C1->getContext(), 32);
1190     // Compare the elements, producing an i1 result or constant expr.
1191     for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue();
1192          I != E; ++I) {
1193       Constant *C1E =
1194           ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I));
1195       Constant *C2E =
1196           ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I));
1197       Constant *Elt = ConstantFoldCompareInstruction(Predicate, C1E, C2E);
1198       if (!Elt)
1199         return nullptr;
1200 
1201       ResElts.push_back(Elt);
1202     }
1203 
1204     return ConstantVector::get(ResElts);
1205   }
1206 
1207   if (C1->getType()->isFPOrFPVectorTy()) {
1208     if (C1 == C2) {
1209       // We know that C1 == C2 || isUnordered(C1, C2).
1210       if (Predicate == FCmpInst::FCMP_ONE)
1211         return ConstantInt::getFalse(ResultTy);
1212       else if (Predicate == FCmpInst::FCMP_UEQ)
1213         return ConstantInt::getTrue(ResultTy);
1214     }
1215   } else {
1216     // Evaluate the relation between the two constants, per the predicate.
1217     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1218     switch (evaluateICmpRelation(C1, C2)) {
1219     default: llvm_unreachable("Unknown relational!");
1220     case ICmpInst::BAD_ICMP_PREDICATE:
1221       break;  // Couldn't determine anything about these constants.
1222     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1223       // If we know the constants are equal, we can decide the result of this
1224       // computation precisely.
1225       Result = ICmpInst::isTrueWhenEqual(Predicate);
1226       break;
1227     case ICmpInst::ICMP_ULT:
1228       switch (Predicate) {
1229       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1230         Result = 1; break;
1231       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1232         Result = 0; break;
1233       default:
1234         break;
1235       }
1236       break;
1237     case ICmpInst::ICMP_SLT:
1238       switch (Predicate) {
1239       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1240         Result = 1; break;
1241       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1242         Result = 0; break;
1243       default:
1244         break;
1245       }
1246       break;
1247     case ICmpInst::ICMP_UGT:
1248       switch (Predicate) {
1249       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1250         Result = 1; break;
1251       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1252         Result = 0; break;
1253       default:
1254         break;
1255       }
1256       break;
1257     case ICmpInst::ICMP_SGT:
1258       switch (Predicate) {
1259       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1260         Result = 1; break;
1261       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1262         Result = 0; break;
1263       default:
1264         break;
1265       }
1266       break;
1267     case ICmpInst::ICMP_ULE:
1268       if (Predicate == ICmpInst::ICMP_UGT)
1269         Result = 0;
1270       if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE)
1271         Result = 1;
1272       break;
1273     case ICmpInst::ICMP_SLE:
1274       if (Predicate == ICmpInst::ICMP_SGT)
1275         Result = 0;
1276       if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE)
1277         Result = 1;
1278       break;
1279     case ICmpInst::ICMP_UGE:
1280       if (Predicate == ICmpInst::ICMP_ULT)
1281         Result = 0;
1282       if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE)
1283         Result = 1;
1284       break;
1285     case ICmpInst::ICMP_SGE:
1286       if (Predicate == ICmpInst::ICMP_SLT)
1287         Result = 0;
1288       if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE)
1289         Result = 1;
1290       break;
1291     case ICmpInst::ICMP_NE:
1292       if (Predicate == ICmpInst::ICMP_EQ)
1293         Result = 0;
1294       if (Predicate == ICmpInst::ICMP_NE)
1295         Result = 1;
1296       break;
1297     }
1298 
1299     // If we evaluated the result, return it now.
1300     if (Result != -1)
1301       return ConstantInt::get(ResultTy, Result);
1302 
1303     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1304         (C1->isNullValue() && !C2->isNullValue())) {
1305       // If C2 is a constant expr and C1 isn't, flip them around and fold the
1306       // other way if possible.
1307       // Also, if C1 is null and C2 isn't, flip them around.
1308       Predicate = ICmpInst::getSwappedPredicate(Predicate);
1309       return ConstantFoldCompareInstruction(Predicate, C2, C1);
1310     }
1311   }
1312   return nullptr;
1313 }
1314 
1315 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
1316                                           std::optional<ConstantRange> InRange,
1317                                           ArrayRef<Value *> Idxs) {
1318   if (Idxs.empty()) return C;
1319 
1320   Type *GEPTy = GetElementPtrInst::getGEPReturnType(
1321       C, ArrayRef((Value *const *)Idxs.data(), Idxs.size()));
1322 
1323   if (isa<PoisonValue>(C))
1324     return PoisonValue::get(GEPTy);
1325 
1326   if (isa<UndefValue>(C))
1327     return UndefValue::get(GEPTy);
1328 
1329   auto IsNoOp = [&]() {
1330     // Avoid losing inrange information.
1331     if (InRange)
1332       return false;
1333 
1334     return all_of(Idxs, [](Value *Idx) {
1335       Constant *IdxC = cast<Constant>(Idx);
1336       return IdxC->isNullValue() || isa<UndefValue>(IdxC);
1337     });
1338   };
1339   if (IsNoOp())
1340     return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
1341                ? ConstantVector::getSplat(
1342                      cast<VectorType>(GEPTy)->getElementCount(), C)
1343                : C;
1344 
1345   return nullptr;
1346 }
1347