1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements folding of constants for LLVM. This implements the 10 // (internal) ConstantFold.h interface, which is used by the 11 // ConstantExpr::get* methods to automatically fold constants when possible. 12 // 13 // The current constant folding implementation is implemented in two pieces: the 14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid 15 // a dependence in IR on Target. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/IR/ConstantFold.h" 20 #include "llvm/ADT/APSInt.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalAlias.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Support/ErrorHandling.h" 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 //===----------------------------------------------------------------------===// 36 // ConstantFold*Instruction Implementations 37 //===----------------------------------------------------------------------===// 38 39 /// This function determines which opcode to use to fold two constant cast 40 /// expressions together. It uses CastInst::isEliminableCastPair to determine 41 /// the opcode. Consequently its just a wrapper around that function. 42 /// Determine if it is valid to fold a cast of a cast 43 static unsigned 44 foldConstantCastPair( 45 unsigned opc, ///< opcode of the second cast constant expression 46 ConstantExpr *Op, ///< the first cast constant expression 47 Type *DstTy ///< destination type of the first cast 48 ) { 49 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); 50 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); 51 assert(CastInst::isCast(opc) && "Invalid cast opcode"); 52 53 // The types and opcodes for the two Cast constant expressions 54 Type *SrcTy = Op->getOperand(0)->getType(); 55 Type *MidTy = Op->getType(); 56 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); 57 Instruction::CastOps secondOp = Instruction::CastOps(opc); 58 59 // Assume that pointers are never more than 64 bits wide, and only use this 60 // for the middle type. Otherwise we could end up folding away illegal 61 // bitcasts between address spaces with different sizes. 62 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); 63 64 // Let CastInst::isEliminableCastPair do the heavy lifting. 65 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, 66 nullptr, FakeIntPtrTy, nullptr); 67 } 68 69 static Constant *FoldBitCast(Constant *V, Type *DestTy) { 70 Type *SrcTy = V->getType(); 71 if (SrcTy == DestTy) 72 return V; // no-op cast 73 74 if (V->isAllOnesValue()) 75 return Constant::getAllOnesValue(DestTy); 76 77 // Handle ConstantInt -> ConstantFP 78 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 79 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 80 // This allows for other simplifications (although some of them 81 // can only be handled by Analysis/ConstantFolding.cpp). 82 if (isa<VectorType>(DestTy) && !isa<VectorType>(SrcTy)) 83 return ConstantExpr::getBitCast(ConstantVector::get(V), DestTy); 84 85 // Make sure dest type is compatible with the folded fp constant. 86 // See note below regarding the PPC_FP128 restriction. 87 if (!DestTy->isFPOrFPVectorTy() || DestTy->isPPC_FP128Ty() || 88 DestTy->getScalarSizeInBits() != SrcTy->getScalarSizeInBits()) 89 return nullptr; 90 91 return ConstantFP::get( 92 DestTy, 93 APFloat(DestTy->getScalarType()->getFltSemantics(), CI->getValue())); 94 } 95 96 // Handle ConstantFP -> ConstantInt 97 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { 98 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 99 // This allows for other simplifications (although some of them 100 // can only be handled by Analysis/ConstantFolding.cpp). 101 if (isa<VectorType>(DestTy) && !isa<VectorType>(SrcTy)) 102 return ConstantExpr::getBitCast(ConstantVector::get(V), DestTy); 103 104 // PPC_FP128 is really the sum of two consecutive doubles, where the first 105 // double is always stored first in memory, regardless of the target 106 // endianness. The memory layout of i128, however, depends on the target 107 // endianness, and so we can't fold this without target endianness 108 // information. This should instead be handled by 109 // Analysis/ConstantFolding.cpp 110 if (SrcTy->isPPC_FP128Ty()) 111 return nullptr; 112 113 // Make sure dest type is compatible with the folded integer constant. 114 if (!DestTy->isIntOrIntVectorTy() || 115 DestTy->getScalarSizeInBits() != SrcTy->getScalarSizeInBits()) 116 return nullptr; 117 118 return ConstantInt::get(DestTy, FP->getValueAPF().bitcastToAPInt()); 119 } 120 121 return nullptr; 122 } 123 124 static Constant *foldMaybeUndesirableCast(unsigned opc, Constant *V, 125 Type *DestTy) { 126 return ConstantExpr::isDesirableCastOp(opc) 127 ? ConstantExpr::getCast(opc, V, DestTy) 128 : ConstantFoldCastInstruction(opc, V, DestTy); 129 } 130 131 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, 132 Type *DestTy) { 133 if (isa<PoisonValue>(V)) 134 return PoisonValue::get(DestTy); 135 136 if (isa<UndefValue>(V)) { 137 // zext(undef) = 0, because the top bits will be zero. 138 // sext(undef) = 0, because the top bits will all be the same. 139 // [us]itofp(undef) = 0, because the result value is bounded. 140 if (opc == Instruction::ZExt || opc == Instruction::SExt || 141 opc == Instruction::UIToFP || opc == Instruction::SIToFP) 142 return Constant::getNullValue(DestTy); 143 return UndefValue::get(DestTy); 144 } 145 146 if (V->isNullValue() && !DestTy->isX86_AMXTy() && 147 opc != Instruction::AddrSpaceCast) 148 return Constant::getNullValue(DestTy); 149 150 // If the cast operand is a constant expression, there's a few things we can 151 // do to try to simplify it. 152 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 153 if (CE->isCast()) { 154 // Try hard to fold cast of cast because they are often eliminable. 155 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) 156 return foldMaybeUndesirableCast(newOpc, CE->getOperand(0), DestTy); 157 } 158 } 159 160 // If the cast operand is a constant vector, perform the cast by 161 // operating on each element. In the cast of bitcasts, the element 162 // count may be mismatched; don't attempt to handle that here. 163 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && 164 DestTy->isVectorTy() && 165 cast<FixedVectorType>(DestTy)->getNumElements() == 166 cast<FixedVectorType>(V->getType())->getNumElements()) { 167 VectorType *DestVecTy = cast<VectorType>(DestTy); 168 Type *DstEltTy = DestVecTy->getElementType(); 169 // Fast path for splatted constants. 170 if (Constant *Splat = V->getSplatValue()) { 171 Constant *Res = foldMaybeUndesirableCast(opc, Splat, DstEltTy); 172 if (!Res) 173 return nullptr; 174 return ConstantVector::getSplat( 175 cast<VectorType>(DestTy)->getElementCount(), Res); 176 } 177 SmallVector<Constant *, 16> res; 178 Type *Ty = IntegerType::get(V->getContext(), 32); 179 for (unsigned i = 0, 180 e = cast<FixedVectorType>(V->getType())->getNumElements(); 181 i != e; ++i) { 182 Constant *C = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 183 Constant *Casted = foldMaybeUndesirableCast(opc, C, DstEltTy); 184 if (!Casted) 185 return nullptr; 186 res.push_back(Casted); 187 } 188 return ConstantVector::get(res); 189 } 190 191 // We actually have to do a cast now. Perform the cast according to the 192 // opcode specified. 193 switch (opc) { 194 default: 195 llvm_unreachable("Failed to cast constant expression"); 196 case Instruction::FPTrunc: 197 case Instruction::FPExt: 198 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 199 bool ignored; 200 APFloat Val = FPC->getValueAPF(); 201 Val.convert(DestTy->getScalarType()->getFltSemantics(), 202 APFloat::rmNearestTiesToEven, &ignored); 203 return ConstantFP::get(DestTy, Val); 204 } 205 return nullptr; // Can't fold. 206 case Instruction::FPToUI: 207 case Instruction::FPToSI: 208 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 209 const APFloat &V = FPC->getValueAPF(); 210 bool ignored; 211 APSInt IntVal(DestTy->getScalarSizeInBits(), opc == Instruction::FPToUI); 212 if (APFloat::opInvalidOp == 213 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { 214 // Undefined behavior invoked - the destination type can't represent 215 // the input constant. 216 return PoisonValue::get(DestTy); 217 } 218 return ConstantInt::get(DestTy, IntVal); 219 } 220 return nullptr; // Can't fold. 221 case Instruction::UIToFP: 222 case Instruction::SIToFP: 223 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 224 const APInt &api = CI->getValue(); 225 APFloat apf(DestTy->getScalarType()->getFltSemantics(), 226 APInt::getZero(DestTy->getScalarSizeInBits())); 227 apf.convertFromAPInt(api, opc==Instruction::SIToFP, 228 APFloat::rmNearestTiesToEven); 229 return ConstantFP::get(DestTy, apf); 230 } 231 return nullptr; 232 case Instruction::ZExt: 233 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 234 uint32_t BitWidth = DestTy->getScalarSizeInBits(); 235 return ConstantInt::get(DestTy, CI->getValue().zext(BitWidth)); 236 } 237 return nullptr; 238 case Instruction::SExt: 239 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 240 uint32_t BitWidth = DestTy->getScalarSizeInBits(); 241 return ConstantInt::get(DestTy, CI->getValue().sext(BitWidth)); 242 } 243 return nullptr; 244 case Instruction::Trunc: { 245 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 246 uint32_t BitWidth = DestTy->getScalarSizeInBits(); 247 return ConstantInt::get(DestTy, CI->getValue().trunc(BitWidth)); 248 } 249 250 return nullptr; 251 } 252 case Instruction::BitCast: 253 return FoldBitCast(V, DestTy); 254 case Instruction::AddrSpaceCast: 255 case Instruction::IntToPtr: 256 case Instruction::PtrToInt: 257 return nullptr; 258 } 259 } 260 261 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, 262 Constant *V1, Constant *V2) { 263 // Check for i1 and vector true/false conditions. 264 if (Cond->isNullValue()) return V2; 265 if (Cond->isAllOnesValue()) return V1; 266 267 // If the condition is a vector constant, fold the result elementwise. 268 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { 269 auto *V1VTy = CondV->getType(); 270 SmallVector<Constant*, 16> Result; 271 Type *Ty = IntegerType::get(CondV->getContext(), 32); 272 for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) { 273 Constant *V; 274 Constant *V1Element = ConstantExpr::getExtractElement(V1, 275 ConstantInt::get(Ty, i)); 276 Constant *V2Element = ConstantExpr::getExtractElement(V2, 277 ConstantInt::get(Ty, i)); 278 auto *Cond = cast<Constant>(CondV->getOperand(i)); 279 if (isa<PoisonValue>(Cond)) { 280 V = PoisonValue::get(V1Element->getType()); 281 } else if (V1Element == V2Element) { 282 V = V1Element; 283 } else if (isa<UndefValue>(Cond)) { 284 V = isa<UndefValue>(V1Element) ? V1Element : V2Element; 285 } else { 286 if (!isa<ConstantInt>(Cond)) break; 287 V = Cond->isNullValue() ? V2Element : V1Element; 288 } 289 Result.push_back(V); 290 } 291 292 // If we were able to build the vector, return it. 293 if (Result.size() == V1VTy->getNumElements()) 294 return ConstantVector::get(Result); 295 } 296 297 if (isa<PoisonValue>(Cond)) 298 return PoisonValue::get(V1->getType()); 299 300 if (isa<UndefValue>(Cond)) { 301 if (isa<UndefValue>(V1)) return V1; 302 return V2; 303 } 304 305 if (V1 == V2) return V1; 306 307 if (isa<PoisonValue>(V1)) 308 return V2; 309 if (isa<PoisonValue>(V2)) 310 return V1; 311 312 // If the true or false value is undef, we can fold to the other value as 313 // long as the other value isn't poison. 314 auto NotPoison = [](Constant *C) { 315 if (isa<PoisonValue>(C)) 316 return false; 317 318 // TODO: We can analyze ConstExpr by opcode to determine if there is any 319 // possibility of poison. 320 if (isa<ConstantExpr>(C)) 321 return false; 322 323 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) || 324 isa<ConstantPointerNull>(C) || isa<Function>(C)) 325 return true; 326 327 if (C->getType()->isVectorTy()) 328 return !C->containsPoisonElement() && !C->containsConstantExpression(); 329 330 // TODO: Recursively analyze aggregates or other constants. 331 return false; 332 }; 333 if (isa<UndefValue>(V1) && NotPoison(V2)) return V2; 334 if (isa<UndefValue>(V2) && NotPoison(V1)) return V1; 335 336 return nullptr; 337 } 338 339 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, 340 Constant *Idx) { 341 auto *ValVTy = cast<VectorType>(Val->getType()); 342 343 // extractelt poison, C -> poison 344 // extractelt C, undef -> poison 345 if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx)) 346 return PoisonValue::get(ValVTy->getElementType()); 347 348 // extractelt undef, C -> undef 349 if (isa<UndefValue>(Val)) 350 return UndefValue::get(ValVTy->getElementType()); 351 352 auto *CIdx = dyn_cast<ConstantInt>(Idx); 353 if (!CIdx) 354 return nullptr; 355 356 if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) { 357 // ee({w,x,y,z}, wrong_value) -> poison 358 if (CIdx->uge(ValFVTy->getNumElements())) 359 return PoisonValue::get(ValFVTy->getElementType()); 360 } 361 362 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...) 363 if (auto *CE = dyn_cast<ConstantExpr>(Val)) { 364 if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 365 SmallVector<Constant *, 8> Ops; 366 Ops.reserve(CE->getNumOperands()); 367 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 368 Constant *Op = CE->getOperand(i); 369 if (Op->getType()->isVectorTy()) { 370 Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx); 371 if (!ScalarOp) 372 return nullptr; 373 Ops.push_back(ScalarOp); 374 } else 375 Ops.push_back(Op); 376 } 377 return CE->getWithOperands(Ops, ValVTy->getElementType(), false, 378 GEP->getSourceElementType()); 379 } else if (CE->getOpcode() == Instruction::InsertElement) { 380 if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) { 381 if (APSInt::isSameValue(APSInt(IEIdx->getValue()), 382 APSInt(CIdx->getValue()))) { 383 return CE->getOperand(1); 384 } else { 385 return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx); 386 } 387 } 388 } 389 } 390 391 if (Constant *C = Val->getAggregateElement(CIdx)) 392 return C; 393 394 // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x 395 if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) { 396 if (Constant *SplatVal = Val->getSplatValue()) 397 return SplatVal; 398 } 399 400 return nullptr; 401 } 402 403 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, 404 Constant *Elt, 405 Constant *Idx) { 406 if (isa<UndefValue>(Idx)) 407 return PoisonValue::get(Val->getType()); 408 409 // Inserting null into all zeros is still all zeros. 410 // TODO: This is true for undef and poison splats too. 411 if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue()) 412 return Val; 413 414 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); 415 if (!CIdx) return nullptr; 416 417 // Do not iterate on scalable vector. The num of elements is unknown at 418 // compile-time. 419 if (isa<ScalableVectorType>(Val->getType())) 420 return nullptr; 421 422 auto *ValTy = cast<FixedVectorType>(Val->getType()); 423 424 unsigned NumElts = ValTy->getNumElements(); 425 if (CIdx->uge(NumElts)) 426 return PoisonValue::get(Val->getType()); 427 428 SmallVector<Constant*, 16> Result; 429 Result.reserve(NumElts); 430 auto *Ty = Type::getInt32Ty(Val->getContext()); 431 uint64_t IdxVal = CIdx->getZExtValue(); 432 for (unsigned i = 0; i != NumElts; ++i) { 433 if (i == IdxVal) { 434 Result.push_back(Elt); 435 continue; 436 } 437 438 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); 439 Result.push_back(C); 440 } 441 442 return ConstantVector::get(Result); 443 } 444 445 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, 446 ArrayRef<int> Mask) { 447 auto *V1VTy = cast<VectorType>(V1->getType()); 448 unsigned MaskNumElts = Mask.size(); 449 auto MaskEltCount = 450 ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy)); 451 Type *EltTy = V1VTy->getElementType(); 452 453 // Poison shuffle mask -> poison value. 454 if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) { 455 return PoisonValue::get(VectorType::get(EltTy, MaskEltCount)); 456 } 457 458 // If the mask is all zeros this is a splat, no need to go through all 459 // elements. 460 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 461 Type *Ty = IntegerType::get(V1->getContext(), 32); 462 Constant *Elt = 463 ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0)); 464 465 if (Elt->isNullValue()) { 466 auto *VTy = VectorType::get(EltTy, MaskEltCount); 467 return ConstantAggregateZero::get(VTy); 468 } else if (!MaskEltCount.isScalable()) 469 return ConstantVector::getSplat(MaskEltCount, Elt); 470 } 471 472 // Do not iterate on scalable vector. The num of elements is unknown at 473 // compile-time. 474 if (isa<ScalableVectorType>(V1VTy)) 475 return nullptr; 476 477 unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue(); 478 479 // Loop over the shuffle mask, evaluating each element. 480 SmallVector<Constant*, 32> Result; 481 for (unsigned i = 0; i != MaskNumElts; ++i) { 482 int Elt = Mask[i]; 483 if (Elt == -1) { 484 Result.push_back(UndefValue::get(EltTy)); 485 continue; 486 } 487 Constant *InElt; 488 if (unsigned(Elt) >= SrcNumElts*2) 489 InElt = UndefValue::get(EltTy); 490 else if (unsigned(Elt) >= SrcNumElts) { 491 Type *Ty = IntegerType::get(V2->getContext(), 32); 492 InElt = 493 ConstantExpr::getExtractElement(V2, 494 ConstantInt::get(Ty, Elt - SrcNumElts)); 495 } else { 496 Type *Ty = IntegerType::get(V1->getContext(), 32); 497 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); 498 } 499 Result.push_back(InElt); 500 } 501 502 return ConstantVector::get(Result); 503 } 504 505 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, 506 ArrayRef<unsigned> Idxs) { 507 // Base case: no indices, so return the entire value. 508 if (Idxs.empty()) 509 return Agg; 510 511 if (Constant *C = Agg->getAggregateElement(Idxs[0])) 512 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); 513 514 return nullptr; 515 } 516 517 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, 518 Constant *Val, 519 ArrayRef<unsigned> Idxs) { 520 // Base case: no indices, so replace the entire value. 521 if (Idxs.empty()) 522 return Val; 523 524 unsigned NumElts; 525 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 526 NumElts = ST->getNumElements(); 527 else 528 NumElts = cast<ArrayType>(Agg->getType())->getNumElements(); 529 530 SmallVector<Constant*, 32> Result; 531 for (unsigned i = 0; i != NumElts; ++i) { 532 Constant *C = Agg->getAggregateElement(i); 533 if (!C) return nullptr; 534 535 if (Idxs[0] == i) 536 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); 537 538 Result.push_back(C); 539 } 540 541 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 542 return ConstantStruct::get(ST, Result); 543 return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result); 544 } 545 546 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { 547 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); 548 549 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 550 // vectors are always evaluated per element. 551 bool IsScalableVector = isa<ScalableVectorType>(C->getType()); 552 bool HasScalarUndefOrScalableVectorUndef = 553 (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C); 554 555 if (HasScalarUndefOrScalableVectorUndef) { 556 switch (static_cast<Instruction::UnaryOps>(Opcode)) { 557 case Instruction::FNeg: 558 return C; // -undef -> undef 559 case Instruction::UnaryOpsEnd: 560 llvm_unreachable("Invalid UnaryOp"); 561 } 562 } 563 564 // Constant should not be UndefValue, unless these are vector constants. 565 assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue"); 566 // We only have FP UnaryOps right now. 567 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); 568 569 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 570 const APFloat &CV = CFP->getValueAPF(); 571 switch (Opcode) { 572 default: 573 break; 574 case Instruction::FNeg: 575 return ConstantFP::get(C->getType(), neg(CV)); 576 } 577 } else if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 578 // Fast path for splatted constants. 579 if (Constant *Splat = C->getSplatValue()) 580 if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat)) 581 return ConstantVector::getSplat(VTy->getElementCount(), Elt); 582 583 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 584 // Fold each element and create a vector constant from those constants. 585 Type *Ty = IntegerType::get(FVTy->getContext(), 32); 586 SmallVector<Constant *, 16> Result; 587 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) { 588 Constant *ExtractIdx = ConstantInt::get(Ty, i); 589 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); 590 Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt); 591 if (!Res) 592 return nullptr; 593 Result.push_back(Res); 594 } 595 596 return ConstantVector::get(Result); 597 } 598 } 599 600 // We don't know how to fold this. 601 return nullptr; 602 } 603 604 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, 605 Constant *C2) { 606 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); 607 608 // Simplify BinOps with their identity values first. They are no-ops and we 609 // can always return the other value, including undef or poison values. 610 if (Constant *Identity = ConstantExpr::getBinOpIdentity( 611 Opcode, C1->getType(), /*AllowRHSIdentity*/ false)) { 612 if (C1 == Identity) 613 return C2; 614 if (C2 == Identity) 615 return C1; 616 } else if (Constant *Identity = ConstantExpr::getBinOpIdentity( 617 Opcode, C1->getType(), /*AllowRHSIdentity*/ true)) { 618 if (C2 == Identity) 619 return C1; 620 } 621 622 // Binary operations propagate poison. 623 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 624 return PoisonValue::get(C1->getType()); 625 626 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 627 // vectors are always evaluated per element. 628 bool IsScalableVector = isa<ScalableVectorType>(C1->getType()); 629 bool HasScalarUndefOrScalableVectorUndef = 630 (!C1->getType()->isVectorTy() || IsScalableVector) && 631 (isa<UndefValue>(C1) || isa<UndefValue>(C2)); 632 if (HasScalarUndefOrScalableVectorUndef) { 633 switch (static_cast<Instruction::BinaryOps>(Opcode)) { 634 case Instruction::Xor: 635 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 636 // Handle undef ^ undef -> 0 special case. This is a common 637 // idiom (misuse). 638 return Constant::getNullValue(C1->getType()); 639 [[fallthrough]]; 640 case Instruction::Add: 641 case Instruction::Sub: 642 return UndefValue::get(C1->getType()); 643 case Instruction::And: 644 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef 645 return C1; 646 return Constant::getNullValue(C1->getType()); // undef & X -> 0 647 case Instruction::Mul: { 648 // undef * undef -> undef 649 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 650 return C1; 651 const APInt *CV; 652 // X * undef -> undef if X is odd 653 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) 654 if ((*CV)[0]) 655 return UndefValue::get(C1->getType()); 656 657 // X * undef -> 0 otherwise 658 return Constant::getNullValue(C1->getType()); 659 } 660 case Instruction::SDiv: 661 case Instruction::UDiv: 662 // X / undef -> poison 663 // X / 0 -> poison 664 if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) 665 return PoisonValue::get(C2->getType()); 666 // undef / X -> 0 otherwise 667 return Constant::getNullValue(C1->getType()); 668 case Instruction::URem: 669 case Instruction::SRem: 670 // X % undef -> poison 671 // X % 0 -> poison 672 if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) 673 return PoisonValue::get(C2->getType()); 674 // undef % X -> 0 otherwise 675 return Constant::getNullValue(C1->getType()); 676 case Instruction::Or: // X | undef -> -1 677 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef 678 return C1; 679 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 680 case Instruction::LShr: 681 // X >>l undef -> poison 682 if (isa<UndefValue>(C2)) 683 return PoisonValue::get(C2->getType()); 684 // undef >>l X -> 0 685 return Constant::getNullValue(C1->getType()); 686 case Instruction::AShr: 687 // X >>a undef -> poison 688 if (isa<UndefValue>(C2)) 689 return PoisonValue::get(C2->getType()); 690 // TODO: undef >>a X -> poison if the shift is exact 691 // undef >>a X -> 0 692 return Constant::getNullValue(C1->getType()); 693 case Instruction::Shl: 694 // X << undef -> undef 695 if (isa<UndefValue>(C2)) 696 return PoisonValue::get(C2->getType()); 697 // undef << X -> 0 698 return Constant::getNullValue(C1->getType()); 699 case Instruction::FSub: 700 // -0.0 - undef --> undef (consistent with "fneg undef") 701 if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2)) 702 return C2; 703 [[fallthrough]]; 704 case Instruction::FAdd: 705 case Instruction::FMul: 706 case Instruction::FDiv: 707 case Instruction::FRem: 708 // [any flop] undef, undef -> undef 709 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 710 return C1; 711 // [any flop] C, undef -> NaN 712 // [any flop] undef, C -> NaN 713 // We could potentially specialize NaN/Inf constants vs. 'normal' 714 // constants (possibly differently depending on opcode and operand). This 715 // would allow returning undef sometimes. But it is always safe to fold to 716 // NaN because we can choose the undef operand as NaN, and any FP opcode 717 // with a NaN operand will propagate NaN. 718 return ConstantFP::getNaN(C1->getType()); 719 case Instruction::BinaryOpsEnd: 720 llvm_unreachable("Invalid BinaryOp"); 721 } 722 } 723 724 // Neither constant should be UndefValue, unless these are vector constants. 725 assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue"); 726 727 // Handle simplifications when the RHS is a constant int. 728 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 729 if (C2 == ConstantExpr::getBinOpAbsorber(Opcode, C2->getType(), 730 /*AllowLHSConstant*/ false)) 731 return C2; 732 733 switch (Opcode) { 734 case Instruction::UDiv: 735 case Instruction::SDiv: 736 if (CI2->isZero()) 737 return PoisonValue::get(CI2->getType()); // X / 0 == poison 738 break; 739 case Instruction::URem: 740 case Instruction::SRem: 741 if (CI2->isOne()) 742 return Constant::getNullValue(CI2->getType()); // X % 1 == 0 743 if (CI2->isZero()) 744 return PoisonValue::get(CI2->getType()); // X % 0 == poison 745 break; 746 case Instruction::And: 747 assert(!CI2->isZero() && "And zero handled above"); 748 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 749 // If and'ing the address of a global with a constant, fold it. 750 if (CE1->getOpcode() == Instruction::PtrToInt && 751 isa<GlobalValue>(CE1->getOperand(0))) { 752 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); 753 754 Align GVAlign; // defaults to 1 755 756 if (Module *TheModule = GV->getParent()) { 757 const DataLayout &DL = TheModule->getDataLayout(); 758 GVAlign = GV->getPointerAlignment(DL); 759 760 // If the function alignment is not specified then assume that it 761 // is 4. 762 // This is dangerous; on x86, the alignment of the pointer 763 // corresponds to the alignment of the function, but might be less 764 // than 4 if it isn't explicitly specified. 765 // However, a fix for this behaviour was reverted because it 766 // increased code size (see https://reviews.llvm.org/D55115) 767 // FIXME: This code should be deleted once existing targets have 768 // appropriate defaults 769 if (isa<Function>(GV) && !DL.getFunctionPtrAlign()) 770 GVAlign = Align(4); 771 } else if (isa<GlobalVariable>(GV)) { 772 GVAlign = cast<GlobalVariable>(GV)->getAlign().valueOrOne(); 773 } 774 775 if (GVAlign > 1) { 776 unsigned DstWidth = CI2->getBitWidth(); 777 unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign)); 778 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); 779 780 // If checking bits we know are clear, return zero. 781 if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) 782 return Constant::getNullValue(CI2->getType()); 783 } 784 } 785 } 786 break; 787 } 788 } else if (isa<ConstantInt>(C1)) { 789 // If C1 is a ConstantInt and C2 is not, swap the operands. 790 if (Instruction::isCommutative(Opcode)) 791 return ConstantExpr::isDesirableBinOp(Opcode) 792 ? ConstantExpr::get(Opcode, C2, C1) 793 : ConstantFoldBinaryInstruction(Opcode, C2, C1); 794 } 795 796 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { 797 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 798 const APInt &C1V = CI1->getValue(); 799 const APInt &C2V = CI2->getValue(); 800 switch (Opcode) { 801 default: 802 break; 803 case Instruction::Add: 804 return ConstantInt::get(C1->getType(), C1V + C2V); 805 case Instruction::Sub: 806 return ConstantInt::get(C1->getType(), C1V - C2V); 807 case Instruction::Mul: 808 return ConstantInt::get(C1->getType(), C1V * C2V); 809 case Instruction::UDiv: 810 assert(!CI2->isZero() && "Div by zero handled above"); 811 return ConstantInt::get(CI1->getType(), C1V.udiv(C2V)); 812 case Instruction::SDiv: 813 assert(!CI2->isZero() && "Div by zero handled above"); 814 if (C2V.isAllOnes() && C1V.isMinSignedValue()) 815 return PoisonValue::get(CI1->getType()); // MIN_INT / -1 -> poison 816 return ConstantInt::get(CI1->getType(), C1V.sdiv(C2V)); 817 case Instruction::URem: 818 assert(!CI2->isZero() && "Div by zero handled above"); 819 return ConstantInt::get(C1->getType(), C1V.urem(C2V)); 820 case Instruction::SRem: 821 assert(!CI2->isZero() && "Div by zero handled above"); 822 if (C2V.isAllOnes() && C1V.isMinSignedValue()) 823 return PoisonValue::get(C1->getType()); // MIN_INT % -1 -> poison 824 return ConstantInt::get(C1->getType(), C1V.srem(C2V)); 825 case Instruction::And: 826 return ConstantInt::get(C1->getType(), C1V & C2V); 827 case Instruction::Or: 828 return ConstantInt::get(C1->getType(), C1V | C2V); 829 case Instruction::Xor: 830 return ConstantInt::get(C1->getType(), C1V ^ C2V); 831 case Instruction::Shl: 832 if (C2V.ult(C1V.getBitWidth())) 833 return ConstantInt::get(C1->getType(), C1V.shl(C2V)); 834 return PoisonValue::get(C1->getType()); // too big shift is poison 835 case Instruction::LShr: 836 if (C2V.ult(C1V.getBitWidth())) 837 return ConstantInt::get(C1->getType(), C1V.lshr(C2V)); 838 return PoisonValue::get(C1->getType()); // too big shift is poison 839 case Instruction::AShr: 840 if (C2V.ult(C1V.getBitWidth())) 841 return ConstantInt::get(C1->getType(), C1V.ashr(C2V)); 842 return PoisonValue::get(C1->getType()); // too big shift is poison 843 } 844 } 845 846 if (C1 == ConstantExpr::getBinOpAbsorber(Opcode, C1->getType(), 847 /*AllowLHSConstant*/ true)) 848 return C1; 849 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { 850 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { 851 const APFloat &C1V = CFP1->getValueAPF(); 852 const APFloat &C2V = CFP2->getValueAPF(); 853 APFloat C3V = C1V; // copy for modification 854 switch (Opcode) { 855 default: 856 break; 857 case Instruction::FAdd: 858 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); 859 return ConstantFP::get(C1->getType(), C3V); 860 case Instruction::FSub: 861 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); 862 return ConstantFP::get(C1->getType(), C3V); 863 case Instruction::FMul: 864 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); 865 return ConstantFP::get(C1->getType(), C3V); 866 case Instruction::FDiv: 867 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); 868 return ConstantFP::get(C1->getType(), C3V); 869 case Instruction::FRem: 870 (void)C3V.mod(C2V); 871 return ConstantFP::get(C1->getType(), C3V); 872 } 873 } 874 } 875 876 if (auto *VTy = dyn_cast<VectorType>(C1->getType())) { 877 // Fast path for splatted constants. 878 if (Constant *C2Splat = C2->getSplatValue()) { 879 if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue()) 880 return PoisonValue::get(VTy); 881 if (Constant *C1Splat = C1->getSplatValue()) { 882 Constant *Res = 883 ConstantExpr::isDesirableBinOp(Opcode) 884 ? ConstantExpr::get(Opcode, C1Splat, C2Splat) 885 : ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat); 886 if (!Res) 887 return nullptr; 888 return ConstantVector::getSplat(VTy->getElementCount(), Res); 889 } 890 } 891 892 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 893 // Fold each element and create a vector constant from those constants. 894 SmallVector<Constant*, 16> Result; 895 Type *Ty = IntegerType::get(FVTy->getContext(), 32); 896 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) { 897 Constant *ExtractIdx = ConstantInt::get(Ty, i); 898 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); 899 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); 900 Constant *Res = ConstantExpr::isDesirableBinOp(Opcode) 901 ? ConstantExpr::get(Opcode, LHS, RHS) 902 : ConstantFoldBinaryInstruction(Opcode, LHS, RHS); 903 if (!Res) 904 return nullptr; 905 Result.push_back(Res); 906 } 907 908 return ConstantVector::get(Result); 909 } 910 } 911 912 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 913 // There are many possible foldings we could do here. We should probably 914 // at least fold add of a pointer with an integer into the appropriate 915 // getelementptr. This will improve alias analysis a bit. 916 917 // Given ((a + b) + c), if (b + c) folds to something interesting, return 918 // (a + (b + c)). 919 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { 920 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); 921 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) 922 return ConstantExpr::get(Opcode, CE1->getOperand(0), T); 923 } 924 } else if (isa<ConstantExpr>(C2)) { 925 // If C2 is a constant expr and C1 isn't, flop them around and fold the 926 // other way if possible. 927 if (Instruction::isCommutative(Opcode)) 928 return ConstantFoldBinaryInstruction(Opcode, C2, C1); 929 } 930 931 // i1 can be simplified in many cases. 932 if (C1->getType()->isIntegerTy(1)) { 933 switch (Opcode) { 934 case Instruction::Add: 935 case Instruction::Sub: 936 return ConstantExpr::getXor(C1, C2); 937 case Instruction::Shl: 938 case Instruction::LShr: 939 case Instruction::AShr: 940 // We can assume that C2 == 0. If it were one the result would be 941 // undefined because the shift value is as large as the bitwidth. 942 return C1; 943 case Instruction::SDiv: 944 case Instruction::UDiv: 945 // We can assume that C2 == 1. If it were zero the result would be 946 // undefined through division by zero. 947 return C1; 948 case Instruction::URem: 949 case Instruction::SRem: 950 // We can assume that C2 == 1. If it were zero the result would be 951 // undefined through division by zero. 952 return ConstantInt::getFalse(C1->getContext()); 953 default: 954 break; 955 } 956 } 957 958 // We don't know how to fold this. 959 return nullptr; 960 } 961 962 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, 963 const GlobalValue *GV2) { 964 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { 965 if (GV->isInterposable() || GV->hasGlobalUnnamedAddr()) 966 return true; 967 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { 968 Type *Ty = GVar->getValueType(); 969 // A global with opaque type might end up being zero sized. 970 if (!Ty->isSized()) 971 return true; 972 // A global with an empty type might lie at the address of any other 973 // global. 974 if (Ty->isEmptyTy()) 975 return true; 976 } 977 return false; 978 }; 979 // Don't try to decide equality of aliases. 980 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) 981 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) 982 return ICmpInst::ICMP_NE; 983 return ICmpInst::BAD_ICMP_PREDICATE; 984 } 985 986 /// This function determines if there is anything we can decide about the two 987 /// constants provided. This doesn't need to handle simple things like integer 988 /// comparisons, but should instead handle ConstantExprs and GlobalValues. 989 /// If we can determine that the two constants have a particular relation to 990 /// each other, we should return the corresponding ICmp predicate, otherwise 991 /// return ICmpInst::BAD_ICMP_PREDICATE. 992 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2) { 993 assert(V1->getType() == V2->getType() && 994 "Cannot compare different types of values!"); 995 if (V1 == V2) return ICmpInst::ICMP_EQ; 996 997 // The following folds only apply to pointers. 998 if (!V1->getType()->isPointerTy()) 999 return ICmpInst::BAD_ICMP_PREDICATE; 1000 1001 // To simplify this code we canonicalize the relation so that the first 1002 // operand is always the most "complex" of the two. We consider simple 1003 // constants (like ConstantPointerNull) to be the simplest, followed by 1004 // BlockAddress, GlobalValues, and ConstantExpr's (the most complex). 1005 auto GetComplexity = [](Constant *V) { 1006 if (isa<ConstantExpr>(V)) 1007 return 3; 1008 if (isa<GlobalValue>(V)) 1009 return 2; 1010 if (isa<BlockAddress>(V)) 1011 return 1; 1012 return 0; 1013 }; 1014 if (GetComplexity(V1) < GetComplexity(V2)) { 1015 ICmpInst::Predicate SwappedRelation = evaluateICmpRelation(V2, V1); 1016 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1017 return ICmpInst::getSwappedPredicate(SwappedRelation); 1018 return ICmpInst::BAD_ICMP_PREDICATE; 1019 } 1020 1021 if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { 1022 // Now we know that the RHS is a BlockAddress or simple constant. 1023 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { 1024 // Block address in another function can't equal this one, but block 1025 // addresses in the current function might be the same if blocks are 1026 // empty. 1027 if (BA2->getFunction() != BA->getFunction()) 1028 return ICmpInst::ICMP_NE; 1029 } else if (isa<ConstantPointerNull>(V2)) { 1030 return ICmpInst::ICMP_NE; 1031 } 1032 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { 1033 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1034 // constant. 1035 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1036 return areGlobalsPotentiallyEqual(GV, GV2); 1037 } else if (isa<BlockAddress>(V2)) { 1038 return ICmpInst::ICMP_NE; // Globals never equal labels. 1039 } else if (isa<ConstantPointerNull>(V2)) { 1040 // GlobalVals can never be null unless they have external weak linkage. 1041 // We don't try to evaluate aliases here. 1042 // NOTE: We should not be doing this constant folding if null pointer 1043 // is considered valid for the function. But currently there is no way to 1044 // query it from the Constant type. 1045 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && 1046 !NullPointerIsDefined(nullptr /* F */, 1047 GV->getType()->getAddressSpace())) 1048 return ICmpInst::ICMP_UGT; 1049 } 1050 } else if (auto *CE1 = dyn_cast<ConstantExpr>(V1)) { 1051 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1052 // constantexpr, a global, block address, or a simple constant. 1053 Constant *CE1Op0 = CE1->getOperand(0); 1054 1055 switch (CE1->getOpcode()) { 1056 case Instruction::GetElementPtr: { 1057 GEPOperator *CE1GEP = cast<GEPOperator>(CE1); 1058 // Ok, since this is a getelementptr, we know that the constant has a 1059 // pointer type. Check the various cases. 1060 if (isa<ConstantPointerNull>(V2)) { 1061 // If we are comparing a GEP to a null pointer, check to see if the base 1062 // of the GEP equals the null pointer. 1063 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1064 // If its not weak linkage, the GVal must have a non-zero address 1065 // so the result is greater-than 1066 if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds()) 1067 return ICmpInst::ICMP_UGT; 1068 } 1069 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1070 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1071 if (GV != GV2) { 1072 if (CE1GEP->hasAllZeroIndices()) 1073 return areGlobalsPotentiallyEqual(GV, GV2); 1074 return ICmpInst::BAD_ICMP_PREDICATE; 1075 } 1076 } 1077 } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) { 1078 // By far the most common case to handle is when the base pointers are 1079 // obviously to the same global. 1080 const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand()); 1081 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { 1082 // Don't know relative ordering, but check for inequality. 1083 if (CE1Op0 != CE2Op0) { 1084 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) 1085 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), 1086 cast<GlobalValue>(CE2Op0)); 1087 return ICmpInst::BAD_ICMP_PREDICATE; 1088 } 1089 } 1090 } 1091 break; 1092 } 1093 default: 1094 break; 1095 } 1096 } 1097 1098 return ICmpInst::BAD_ICMP_PREDICATE; 1099 } 1100 1101 Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, 1102 Constant *C1, Constant *C2) { 1103 Type *ResultTy; 1104 if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) 1105 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), 1106 VT->getElementCount()); 1107 else 1108 ResultTy = Type::getInt1Ty(C1->getContext()); 1109 1110 // Fold FCMP_FALSE/FCMP_TRUE unconditionally. 1111 if (Predicate == FCmpInst::FCMP_FALSE) 1112 return Constant::getNullValue(ResultTy); 1113 1114 if (Predicate == FCmpInst::FCMP_TRUE) 1115 return Constant::getAllOnesValue(ResultTy); 1116 1117 // Handle some degenerate cases first 1118 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 1119 return PoisonValue::get(ResultTy); 1120 1121 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 1122 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); 1123 // For EQ and NE, we can always pick a value for the undef to make the 1124 // predicate pass or fail, so we can return undef. 1125 // Also, if both operands are undef, we can return undef for int comparison. 1126 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) 1127 return UndefValue::get(ResultTy); 1128 1129 // Otherwise, for integer compare, pick the same value as the non-undef 1130 // operand, and fold it to true or false. 1131 if (isIntegerPredicate) 1132 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); 1133 1134 // Choosing NaN for the undef will always make unordered comparison succeed 1135 // and ordered comparison fails. 1136 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); 1137 } 1138 1139 if (C2->isNullValue()) { 1140 // The caller is expected to commute the operands if the constant expression 1141 // is C2. 1142 // C1 >= 0 --> true 1143 if (Predicate == ICmpInst::ICMP_UGE) 1144 return Constant::getAllOnesValue(ResultTy); 1145 // C1 < 0 --> false 1146 if (Predicate == ICmpInst::ICMP_ULT) 1147 return Constant::getNullValue(ResultTy); 1148 } 1149 1150 // If the comparison is a comparison between two i1's, simplify it. 1151 if (C1->getType()->isIntegerTy(1)) { 1152 switch (Predicate) { 1153 case ICmpInst::ICMP_EQ: 1154 if (isa<ConstantInt>(C2)) 1155 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); 1156 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); 1157 case ICmpInst::ICMP_NE: 1158 return ConstantExpr::getXor(C1, C2); 1159 default: 1160 break; 1161 } 1162 } 1163 1164 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { 1165 const APInt &V1 = cast<ConstantInt>(C1)->getValue(); 1166 const APInt &V2 = cast<ConstantInt>(C2)->getValue(); 1167 return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate)); 1168 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { 1169 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); 1170 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); 1171 return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate)); 1172 } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) { 1173 1174 // Fast path for splatted constants. 1175 if (Constant *C1Splat = C1->getSplatValue()) 1176 if (Constant *C2Splat = C2->getSplatValue()) 1177 if (Constant *Elt = 1178 ConstantFoldCompareInstruction(Predicate, C1Splat, C2Splat)) 1179 return ConstantVector::getSplat(C1VTy->getElementCount(), Elt); 1180 1181 // Do not iterate on scalable vector. The number of elements is unknown at 1182 // compile-time. 1183 if (isa<ScalableVectorType>(C1VTy)) 1184 return nullptr; 1185 1186 // If we can constant fold the comparison of each element, constant fold 1187 // the whole vector comparison. 1188 SmallVector<Constant*, 4> ResElts; 1189 Type *Ty = IntegerType::get(C1->getContext(), 32); 1190 // Compare the elements, producing an i1 result or constant expr. 1191 for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue(); 1192 I != E; ++I) { 1193 Constant *C1E = 1194 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I)); 1195 Constant *C2E = 1196 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I)); 1197 Constant *Elt = ConstantFoldCompareInstruction(Predicate, C1E, C2E); 1198 if (!Elt) 1199 return nullptr; 1200 1201 ResElts.push_back(Elt); 1202 } 1203 1204 return ConstantVector::get(ResElts); 1205 } 1206 1207 if (C1->getType()->isFPOrFPVectorTy()) { 1208 if (C1 == C2) { 1209 // We know that C1 == C2 || isUnordered(C1, C2). 1210 if (Predicate == FCmpInst::FCMP_ONE) 1211 return ConstantInt::getFalse(ResultTy); 1212 else if (Predicate == FCmpInst::FCMP_UEQ) 1213 return ConstantInt::getTrue(ResultTy); 1214 } 1215 } else { 1216 // Evaluate the relation between the two constants, per the predicate. 1217 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 1218 switch (evaluateICmpRelation(C1, C2)) { 1219 default: llvm_unreachable("Unknown relational!"); 1220 case ICmpInst::BAD_ICMP_PREDICATE: 1221 break; // Couldn't determine anything about these constants. 1222 case ICmpInst::ICMP_EQ: // We know the constants are equal! 1223 // If we know the constants are equal, we can decide the result of this 1224 // computation precisely. 1225 Result = ICmpInst::isTrueWhenEqual(Predicate); 1226 break; 1227 case ICmpInst::ICMP_ULT: 1228 switch (Predicate) { 1229 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: 1230 Result = 1; break; 1231 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: 1232 Result = 0; break; 1233 default: 1234 break; 1235 } 1236 break; 1237 case ICmpInst::ICMP_SLT: 1238 switch (Predicate) { 1239 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: 1240 Result = 1; break; 1241 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: 1242 Result = 0; break; 1243 default: 1244 break; 1245 } 1246 break; 1247 case ICmpInst::ICMP_UGT: 1248 switch (Predicate) { 1249 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: 1250 Result = 1; break; 1251 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: 1252 Result = 0; break; 1253 default: 1254 break; 1255 } 1256 break; 1257 case ICmpInst::ICMP_SGT: 1258 switch (Predicate) { 1259 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: 1260 Result = 1; break; 1261 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: 1262 Result = 0; break; 1263 default: 1264 break; 1265 } 1266 break; 1267 case ICmpInst::ICMP_ULE: 1268 if (Predicate == ICmpInst::ICMP_UGT) 1269 Result = 0; 1270 if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE) 1271 Result = 1; 1272 break; 1273 case ICmpInst::ICMP_SLE: 1274 if (Predicate == ICmpInst::ICMP_SGT) 1275 Result = 0; 1276 if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE) 1277 Result = 1; 1278 break; 1279 case ICmpInst::ICMP_UGE: 1280 if (Predicate == ICmpInst::ICMP_ULT) 1281 Result = 0; 1282 if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE) 1283 Result = 1; 1284 break; 1285 case ICmpInst::ICMP_SGE: 1286 if (Predicate == ICmpInst::ICMP_SLT) 1287 Result = 0; 1288 if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE) 1289 Result = 1; 1290 break; 1291 case ICmpInst::ICMP_NE: 1292 if (Predicate == ICmpInst::ICMP_EQ) 1293 Result = 0; 1294 if (Predicate == ICmpInst::ICMP_NE) 1295 Result = 1; 1296 break; 1297 } 1298 1299 // If we evaluated the result, return it now. 1300 if (Result != -1) 1301 return ConstantInt::get(ResultTy, Result); 1302 1303 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || 1304 (C1->isNullValue() && !C2->isNullValue())) { 1305 // If C2 is a constant expr and C1 isn't, flip them around and fold the 1306 // other way if possible. 1307 // Also, if C1 is null and C2 isn't, flip them around. 1308 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1309 return ConstantFoldCompareInstruction(Predicate, C2, C1); 1310 } 1311 } 1312 return nullptr; 1313 } 1314 1315 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, 1316 std::optional<ConstantRange> InRange, 1317 ArrayRef<Value *> Idxs) { 1318 if (Idxs.empty()) return C; 1319 1320 Type *GEPTy = GetElementPtrInst::getGEPReturnType( 1321 C, ArrayRef((Value *const *)Idxs.data(), Idxs.size())); 1322 1323 if (isa<PoisonValue>(C)) 1324 return PoisonValue::get(GEPTy); 1325 1326 if (isa<UndefValue>(C)) 1327 return UndefValue::get(GEPTy); 1328 1329 auto IsNoOp = [&]() { 1330 // Avoid losing inrange information. 1331 if (InRange) 1332 return false; 1333 1334 return all_of(Idxs, [](Value *Idx) { 1335 Constant *IdxC = cast<Constant>(Idx); 1336 return IdxC->isNullValue() || isa<UndefValue>(IdxC); 1337 }); 1338 }; 1339 if (IsNoOp()) 1340 return GEPTy->isVectorTy() && !C->getType()->isVectorTy() 1341 ? ConstantVector::getSplat( 1342 cast<VectorType>(GEPTy)->getElementCount(), C) 1343 : C; 1344 1345 return nullptr; 1346 } 1347