xref: /llvm-project/llvm/lib/CodeGen/WinEHPrepare.cpp (revision 8baa0d9d545f9daf0d82596cb90f35456efb1153)
1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers LLVM IR exception handling into something closer to what the
10 // backend wants for functions using a personality function from a runtime
11 // provided by MSVC. Functions with other personality functions are left alone
12 // and may be prepared by other passes. In particular, all supported MSVC
13 // personality functions require cleanup code to be outlined, and the C++
14 // personality requires catch handler code to be outlined.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/CodeGen/WinEHPrepare.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/WinEHFuncInfo.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/EHPersonalities.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Verifier.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/TargetParser/Triple.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/SSAUpdater.h"
40 
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "win-eh-prepare"
44 
45 static cl::opt<bool> DisableDemotion(
46     "disable-demotion", cl::Hidden,
47     cl::desc(
48         "Clone multicolor basic blocks but do not demote cross scopes"),
49     cl::init(false));
50 
51 static cl::opt<bool> DisableCleanups(
52     "disable-cleanups", cl::Hidden,
53     cl::desc("Do not remove implausible terminators or other similar cleanups"),
54     cl::init(false));
55 
56 // TODO: Remove this option when we fully migrate to new pass manager
57 static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
58     "demote-catchswitch-only", cl::Hidden,
59     cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
60 
61 namespace {
62 
63 class WinEHPrepareImpl {
64 public:
65   WinEHPrepareImpl(bool DemoteCatchSwitchPHIOnly)
66       : DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
67 
68   bool runOnFunction(Function &Fn);
69 
70 private:
71   void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
72   void
73   insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
74                  SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
75   AllocaInst *insertPHILoads(PHINode *PN, Function &F);
76   void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
77                           DenseMap<BasicBlock *, Value *> &Loads, Function &F);
78   bool prepareExplicitEH(Function &F);
79   void colorFunclets(Function &F);
80 
81   void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
82   void cloneCommonBlocks(Function &F);
83   void removeImplausibleInstructions(Function &F);
84   void cleanupPreparedFunclets(Function &F);
85   void verifyPreparedFunclets(Function &F);
86 
87   bool DemoteCatchSwitchPHIOnly;
88 
89   // All fields are reset by runOnFunction.
90   EHPersonality Personality = EHPersonality::Unknown;
91 
92   const DataLayout *DL = nullptr;
93   DenseMap<BasicBlock *, ColorVector> BlockColors;
94   MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
95 };
96 
97 class WinEHPrepare : public FunctionPass {
98   bool DemoteCatchSwitchPHIOnly;
99 
100 public:
101   static char ID; // Pass identification, replacement for typeid.
102 
103   WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
104       : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
105 
106   StringRef getPassName() const override {
107     return "Windows exception handling preparation";
108   }
109 
110   bool runOnFunction(Function &Fn) override {
111     return WinEHPrepareImpl(DemoteCatchSwitchPHIOnly).runOnFunction(Fn);
112   }
113 };
114 
115 } // end anonymous namespace
116 
117 PreservedAnalyses WinEHPreparePass::run(Function &F,
118                                         FunctionAnalysisManager &) {
119   bool Changed = WinEHPrepareImpl(DemoteCatchSwitchPHIOnly).runOnFunction(F);
120   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
121 }
122 
123 char WinEHPrepare::ID = 0;
124 INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions", false,
125                 false)
126 
127 FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
128   return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
129 }
130 
131 bool WinEHPrepareImpl::runOnFunction(Function &Fn) {
132   if (!Fn.hasPersonalityFn())
133     return false;
134 
135   // Classify the personality to see what kind of preparation we need.
136   Personality = classifyEHPersonality(Fn.getPersonalityFn());
137 
138   // Do nothing if this is not a scope-based personality.
139   if (!isScopedEHPersonality(Personality))
140     return false;
141 
142   DL = &Fn.getDataLayout();
143   return prepareExplicitEH(Fn);
144 }
145 
146 static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
147                              const BasicBlock *BB) {
148   CxxUnwindMapEntry UME;
149   UME.ToState = ToState;
150   UME.Cleanup = BB;
151   FuncInfo.CxxUnwindMap.push_back(UME);
152   return FuncInfo.getLastStateNumber();
153 }
154 
155 static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
156                                 int TryHigh, int CatchHigh,
157                                 ArrayRef<const CatchPadInst *> Handlers) {
158   WinEHTryBlockMapEntry TBME;
159   TBME.TryLow = TryLow;
160   TBME.TryHigh = TryHigh;
161   TBME.CatchHigh = CatchHigh;
162   assert(TBME.TryLow <= TBME.TryHigh);
163   for (const CatchPadInst *CPI : Handlers) {
164     WinEHHandlerType HT;
165     Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
166     if (TypeInfo->isNullValue())
167       HT.TypeDescriptor = nullptr;
168     else
169       HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
170     HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
171     HT.Handler = CPI->getParent();
172     if (auto *AI =
173             dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
174       HT.CatchObj.Alloca = AI;
175     else
176       HT.CatchObj.Alloca = nullptr;
177     TBME.HandlerArray.push_back(HT);
178   }
179   FuncInfo.TryBlockMap.push_back(TBME);
180 }
181 
182 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
183   for (const User *U : CleanupPad->users())
184     if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
185       return CRI->getUnwindDest();
186   return nullptr;
187 }
188 
189 static void calculateStateNumbersForInvokes(const Function *Fn,
190                                             WinEHFuncInfo &FuncInfo) {
191   auto *F = const_cast<Function *>(Fn);
192   DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
193   for (BasicBlock &BB : *F) {
194     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
195     if (!II)
196       continue;
197 
198     auto &BBColors = BlockColors[&BB];
199     assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
200     BasicBlock *FuncletEntryBB = BBColors.front();
201 
202     BasicBlock *FuncletUnwindDest;
203     auto *FuncletPad =
204         dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHIIt());
205     assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
206     if (!FuncletPad)
207       FuncletUnwindDest = nullptr;
208     else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
209       FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
210     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
211       FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
212     else
213       llvm_unreachable("unexpected funclet pad!");
214 
215     BasicBlock *InvokeUnwindDest = II->getUnwindDest();
216     int BaseState = -1;
217     if (FuncletUnwindDest == InvokeUnwindDest) {
218       auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
219       if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
220         BaseState = BaseStateI->second;
221     }
222 
223     if (BaseState != -1) {
224       FuncInfo.InvokeStateMap[II] = BaseState;
225     } else {
226       Instruction *PadInst = &*InvokeUnwindDest->getFirstNonPHIIt();
227       assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
228       FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
229     }
230   }
231 }
232 
233 // See comments below for calculateSEHStateForAsynchEH().
234 // State - incoming State of normal paths
235 struct WorkItem {
236   const BasicBlock *Block;
237   int State;
238   WorkItem(const BasicBlock *BB, int St) {
239     Block = BB;
240     State = St;
241   }
242 };
243 void llvm::calculateCXXStateForAsynchEH(const BasicBlock *BB, int State,
244                                         WinEHFuncInfo &EHInfo) {
245   SmallVector<struct WorkItem *, 8> WorkList;
246   struct WorkItem *WI = new WorkItem(BB, State);
247   WorkList.push_back(WI);
248 
249   while (!WorkList.empty()) {
250     WI = WorkList.pop_back_val();
251     const BasicBlock *BB = WI->Block;
252     int State = WI->State;
253     delete WI;
254     if (auto It = EHInfo.BlockToStateMap.find(BB);
255         It != EHInfo.BlockToStateMap.end() && It->second <= State)
256       continue; // skip blocks already visited by lower State
257 
258     BasicBlock::const_iterator It = BB->getFirstNonPHIIt();
259     const llvm::Instruction *TI = BB->getTerminator();
260     if (It->isEHPad())
261       State = EHInfo.EHPadStateMap[&*It];
262     EHInfo.BlockToStateMap[BB] = State; // Record state, also flag visiting
263 
264     if ((isa<CleanupReturnInst>(TI) || isa<CatchReturnInst>(TI)) && State > 0) {
265       // Retrive the new State
266       State = EHInfo.CxxUnwindMap[State].ToState; // Retrive next State
267     } else if (isa<InvokeInst>(TI)) {
268       auto *Call = cast<CallBase>(TI);
269       const Function *Fn = Call->getCalledFunction();
270       if (Fn && Fn->isIntrinsic() &&
271           (Fn->getIntrinsicID() == Intrinsic::seh_scope_begin ||
272            Fn->getIntrinsicID() == Intrinsic::seh_try_begin))
273         // Retrive the new State from seh_scope_begin
274         State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
275       else if (Fn && Fn->isIntrinsic() &&
276                (Fn->getIntrinsicID() == Intrinsic::seh_scope_end ||
277                 Fn->getIntrinsicID() == Intrinsic::seh_try_end)) {
278         // In case of conditional ctor, let's retrieve State from Invoke
279         State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
280         // end of current state, retrive new state from UnwindMap
281         State = EHInfo.CxxUnwindMap[State].ToState;
282       }
283     }
284     // Continue push successors into worklist
285     for (auto *SuccBB : successors(BB)) {
286       WI = new WorkItem(SuccBB, State);
287       WorkList.push_back(WI);
288     }
289   }
290 }
291 
292 // The central theory of this routine is based on the following:
293 //   A _try scope is always a SEME (Single Entry Multiple Exits) region
294 //     as jumping into a _try is not allowed
295 //   The single entry must start with a seh_try_begin() invoke with a
296 //     correct State number that is the initial state of the SEME.
297 //   Through control-flow, state number is propagated into all blocks.
298 //   Side exits marked by seh_try_end() will unwind to parent state via
299 //     existing SEHUnwindMap[].
300 //   Side exits can ONLY jump into parent scopes (lower state number).
301 //   Thus, when a block succeeds various states from its predecessors,
302 //     the lowest State trumphs others.
303 //   If some exits flow to unreachable, propagation on those paths terminate,
304 //     not affecting remaining blocks.
305 void llvm::calculateSEHStateForAsynchEH(const BasicBlock *BB, int State,
306                                         WinEHFuncInfo &EHInfo) {
307   SmallVector<struct WorkItem *, 8> WorkList;
308   struct WorkItem *WI = new WorkItem(BB, State);
309   WorkList.push_back(WI);
310 
311   while (!WorkList.empty()) {
312     WI = WorkList.pop_back_val();
313     const BasicBlock *BB = WI->Block;
314     int State = WI->State;
315     delete WI;
316     if (auto It = EHInfo.BlockToStateMap.find(BB);
317         It != EHInfo.BlockToStateMap.end() && It->second <= State)
318       continue; // skip blocks already visited by lower State
319 
320     BasicBlock::const_iterator It = BB->getFirstNonPHIIt();
321     const llvm::Instruction *TI = BB->getTerminator();
322     if (It->isEHPad())
323       State = EHInfo.EHPadStateMap[&*It];
324     EHInfo.BlockToStateMap[BB] = State; // Record state
325 
326     if (isa<CatchPadInst>(It) && isa<CatchReturnInst>(TI)) {
327       const Constant *FilterOrNull = cast<Constant>(
328           cast<CatchPadInst>(It)->getArgOperand(0)->stripPointerCasts());
329       const Function *Filter = dyn_cast<Function>(FilterOrNull);
330       if (!Filter || !Filter->getName().starts_with("__IsLocalUnwind"))
331         State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State
332     } else if ((isa<CleanupReturnInst>(TI) || isa<CatchReturnInst>(TI)) &&
333                State > 0) {
334       // Retrive the new State.
335       State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State
336     } else if (isa<InvokeInst>(TI)) {
337       auto *Call = cast<CallBase>(TI);
338       const Function *Fn = Call->getCalledFunction();
339       if (Fn && Fn->isIntrinsic() &&
340           Fn->getIntrinsicID() == Intrinsic::seh_try_begin)
341         // Retrive the new State from seh_try_begin
342         State = EHInfo.InvokeStateMap[cast<InvokeInst>(TI)];
343       else if (Fn && Fn->isIntrinsic() &&
344                Fn->getIntrinsicID() == Intrinsic::seh_try_end)
345         // end of current state, retrive new state from UnwindMap
346         State = EHInfo.SEHUnwindMap[State].ToState;
347     }
348     // Continue push successors into worklist
349     for (auto *SuccBB : successors(BB)) {
350       WI = new WorkItem(SuccBB, State);
351       WorkList.push_back(WI);
352     }
353   }
354 }
355 
356 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
357 // to. If the unwind edge came from an invoke, return null.
358 static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
359                                                  Value *ParentPad) {
360   const Instruction *TI = BB->getTerminator();
361   if (isa<InvokeInst>(TI))
362     return nullptr;
363   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
364     if (CatchSwitch->getParentPad() != ParentPad)
365       return nullptr;
366     return BB;
367   }
368   assert(!TI->isEHPad() && "unexpected EHPad!");
369   auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
370   if (CleanupPad->getParentPad() != ParentPad)
371     return nullptr;
372   return CleanupPad->getParent();
373 }
374 
375 // Starting from a EHPad, Backward walk through control-flow graph
376 // to produce two primary outputs:
377 //      FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[]
378 static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
379                                      const Instruction *FirstNonPHI,
380                                      int ParentState) {
381   const BasicBlock *BB = FirstNonPHI->getParent();
382   assert(BB->isEHPad() && "not a funclet!");
383 
384   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
385     assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
386            "shouldn't revist catch funclets!");
387 
388     SmallVector<const CatchPadInst *, 2> Handlers;
389     for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
390       auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHIIt());
391       Handlers.push_back(CatchPad);
392     }
393     int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
394     FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
395     for (const BasicBlock *PredBlock : predecessors(BB))
396       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
397                                                CatchSwitch->getParentPad())))
398         calculateCXXStateNumbers(FuncInfo, &*PredBlock->getFirstNonPHIIt(),
399                                  TryLow);
400     int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
401 
402     // catchpads are separate funclets in C++ EH due to the way rethrow works.
403     int TryHigh = CatchLow - 1;
404 
405     // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$
406     //  stored in pre-order (outer first, inner next), not post-order
407     //  Add to map here.  Fix the CatchHigh after children are processed
408     const Module *Mod = BB->getParent()->getParent();
409     bool IsPreOrder = Triple(Mod->getTargetTriple()).isArch64Bit();
410     if (IsPreOrder)
411       addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchLow, Handlers);
412     unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1;
413 
414     for (const auto *CatchPad : Handlers) {
415       FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
416       FuncInfo.EHPadStateMap[CatchPad] = CatchLow;
417       for (const User *U : CatchPad->users()) {
418         const auto *UserI = cast<Instruction>(U);
419         if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
420           BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
421           if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
422             calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
423         }
424         if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
425           BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
426           // If a nested cleanup pad reports a null unwind destination and the
427           // enclosing catch pad doesn't it must be post-dominated by an
428           // unreachable instruction.
429           if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
430             calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
431         }
432       }
433     }
434     int CatchHigh = FuncInfo.getLastStateNumber();
435     // Now child Catches are processed, update CatchHigh
436     if (IsPreOrder)
437       FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh;
438     else // PostOrder
439       addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
440 
441     LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
442     LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh
443                       << '\n');
444     LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
445                       << '\n');
446   } else {
447     auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
448 
449     // It's possible for a cleanup to be visited twice: it might have multiple
450     // cleanupret instructions.
451     if (FuncInfo.EHPadStateMap.count(CleanupPad))
452       return;
453 
454     int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
455     FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
456     LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
457                       << BB->getName() << '\n');
458     for (const BasicBlock *PredBlock : predecessors(BB)) {
459       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
460                                                CleanupPad->getParentPad()))) {
461         calculateCXXStateNumbers(FuncInfo, &*PredBlock->getFirstNonPHIIt(),
462                                  CleanupState);
463       }
464     }
465     for (const User *U : CleanupPad->users()) {
466       const auto *UserI = cast<Instruction>(U);
467       if (UserI->isEHPad())
468         report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
469                            "contain exceptional actions");
470     }
471   }
472 }
473 
474 static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
475                         const Function *Filter, const BasicBlock *Handler) {
476   SEHUnwindMapEntry Entry;
477   Entry.ToState = ParentState;
478   Entry.IsFinally = false;
479   Entry.Filter = Filter;
480   Entry.Handler = Handler;
481   FuncInfo.SEHUnwindMap.push_back(Entry);
482   return FuncInfo.SEHUnwindMap.size() - 1;
483 }
484 
485 static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
486                          const BasicBlock *Handler) {
487   SEHUnwindMapEntry Entry;
488   Entry.ToState = ParentState;
489   Entry.IsFinally = true;
490   Entry.Filter = nullptr;
491   Entry.Handler = Handler;
492   FuncInfo.SEHUnwindMap.push_back(Entry);
493   return FuncInfo.SEHUnwindMap.size() - 1;
494 }
495 
496 // Starting from a EHPad, Backward walk through control-flow graph
497 // to produce two primary outputs:
498 //      FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[]
499 static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
500                                      const Instruction *FirstNonPHI,
501                                      int ParentState) {
502   const BasicBlock *BB = FirstNonPHI->getParent();
503   assert(BB->isEHPad() && "no a funclet!");
504 
505   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
506     assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
507            "shouldn't revist catch funclets!");
508 
509     // Extract the filter function and the __except basic block and create a
510     // state for them.
511     assert(CatchSwitch->getNumHandlers() == 1 &&
512            "SEH doesn't have multiple handlers per __try");
513     const auto *CatchPad =
514         cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHIIt());
515     const BasicBlock *CatchPadBB = CatchPad->getParent();
516     const Constant *FilterOrNull =
517         cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
518     const Function *Filter = dyn_cast<Function>(FilterOrNull);
519     assert((Filter || FilterOrNull->isNullValue()) &&
520            "unexpected filter value");
521     int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
522 
523     // Everything in the __try block uses TryState as its parent state.
524     FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
525     FuncInfo.EHPadStateMap[CatchPad] = TryState;
526     LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
527                       << CatchPadBB->getName() << '\n');
528     for (const BasicBlock *PredBlock : predecessors(BB))
529       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
530                                                CatchSwitch->getParentPad())))
531         calculateSEHStateNumbers(FuncInfo, &*PredBlock->getFirstNonPHIIt(),
532                                  TryState);
533 
534     // Everything in the __except block unwinds to ParentState, just like code
535     // outside the __try.
536     for (const User *U : CatchPad->users()) {
537       const auto *UserI = cast<Instruction>(U);
538       if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
539         BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
540         if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
541           calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
542       }
543       if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
544         BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
545         // If a nested cleanup pad reports a null unwind destination and the
546         // enclosing catch pad doesn't it must be post-dominated by an
547         // unreachable instruction.
548         if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
549           calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
550       }
551     }
552   } else {
553     auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
554 
555     // It's possible for a cleanup to be visited twice: it might have multiple
556     // cleanupret instructions.
557     if (FuncInfo.EHPadStateMap.count(CleanupPad))
558       return;
559 
560     int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
561     FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
562     LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
563                       << BB->getName() << '\n');
564     for (const BasicBlock *PredBlock : predecessors(BB))
565       if ((PredBlock =
566                getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
567         calculateSEHStateNumbers(FuncInfo, &*PredBlock->getFirstNonPHIIt(),
568                                  CleanupState);
569     for (const User *U : CleanupPad->users()) {
570       const auto *UserI = cast<Instruction>(U);
571       if (UserI->isEHPad())
572         report_fatal_error("Cleanup funclets for the SEH personality cannot "
573                            "contain exceptional actions");
574     }
575   }
576 }
577 
578 static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
579   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
580     return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
581            CatchSwitch->unwindsToCaller();
582   if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
583     return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
584            getCleanupRetUnwindDest(CleanupPad) == nullptr;
585   if (isa<CatchPadInst>(EHPad))
586     return false;
587   llvm_unreachable("unexpected EHPad!");
588 }
589 
590 void llvm::calculateSEHStateNumbers(const Function *Fn,
591                                     WinEHFuncInfo &FuncInfo) {
592   // Don't compute state numbers twice.
593   if (!FuncInfo.SEHUnwindMap.empty())
594     return;
595 
596   for (const BasicBlock &BB : *Fn) {
597     if (!BB.isEHPad())
598       continue;
599     const Instruction *FirstNonPHI = &*BB.getFirstNonPHIIt();
600     if (!isTopLevelPadForMSVC(FirstNonPHI))
601       continue;
602     ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
603   }
604 
605   calculateStateNumbersForInvokes(Fn, FuncInfo);
606 
607   bool IsEHa = Fn->getParent()->getModuleFlag("eh-asynch");
608   if (IsEHa) {
609     const BasicBlock *EntryBB = &(Fn->getEntryBlock());
610     calculateSEHStateForAsynchEH(EntryBB, -1, FuncInfo);
611   }
612 }
613 
614 void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
615                                          WinEHFuncInfo &FuncInfo) {
616   // Return if it's already been done.
617   if (!FuncInfo.EHPadStateMap.empty())
618     return;
619 
620   for (const BasicBlock &BB : *Fn) {
621     if (!BB.isEHPad())
622       continue;
623     const Instruction *FirstNonPHI = &*BB.getFirstNonPHIIt();
624     if (!isTopLevelPadForMSVC(FirstNonPHI))
625       continue;
626     calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
627   }
628 
629   calculateStateNumbersForInvokes(Fn, FuncInfo);
630 
631   bool IsEHa = Fn->getParent()->getModuleFlag("eh-asynch");
632   if (IsEHa) {
633     const BasicBlock *EntryBB = &(Fn->getEntryBlock());
634     calculateCXXStateForAsynchEH(EntryBB, -1, FuncInfo);
635   }
636 }
637 
638 static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
639                            int TryParentState, ClrHandlerType HandlerType,
640                            uint32_t TypeToken, const BasicBlock *Handler) {
641   ClrEHUnwindMapEntry Entry;
642   Entry.HandlerParentState = HandlerParentState;
643   Entry.TryParentState = TryParentState;
644   Entry.Handler = Handler;
645   Entry.HandlerType = HandlerType;
646   Entry.TypeToken = TypeToken;
647   FuncInfo.ClrEHUnwindMap.push_back(Entry);
648   return FuncInfo.ClrEHUnwindMap.size() - 1;
649 }
650 
651 void llvm::calculateClrEHStateNumbers(const Function *Fn,
652                                       WinEHFuncInfo &FuncInfo) {
653   // Return if it's already been done.
654   if (!FuncInfo.EHPadStateMap.empty())
655     return;
656 
657   // This numbering assigns one state number to each catchpad and cleanuppad.
658   // It also computes two tree-like relations over states:
659   // 1) Each state has a "HandlerParentState", which is the state of the next
660   //    outer handler enclosing this state's handler (same as nearest ancestor
661   //    per the ParentPad linkage on EH pads, but skipping over catchswitches).
662   // 2) Each state has a "TryParentState", which:
663   //    a) for a catchpad that's not the last handler on its catchswitch, is
664   //       the state of the next catchpad on that catchswitch
665   //    b) for all other pads, is the state of the pad whose try region is the
666   //       next outer try region enclosing this state's try region.  The "try
667   //       regions are not present as such in the IR, but will be inferred
668   //       based on the placement of invokes and pads which reach each other
669   //       by exceptional exits
670   // Catchswitches do not get their own states, but each gets mapped to the
671   // state of its first catchpad.
672 
673   // Step one: walk down from outermost to innermost funclets, assigning each
674   // catchpad and cleanuppad a state number.  Add an entry to the
675   // ClrEHUnwindMap for each state, recording its HandlerParentState and
676   // handler attributes.  Record the TryParentState as well for each catchpad
677   // that's not the last on its catchswitch, but initialize all other entries'
678   // TryParentStates to a sentinel -1 value that the next pass will update.
679 
680   // Seed a worklist with pads that have no parent.
681   SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
682   for (const BasicBlock &BB : *Fn) {
683     const Instruction *FirstNonPHI = &*BB.getFirstNonPHIIt();
684     const Value *ParentPad;
685     if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
686       ParentPad = CPI->getParentPad();
687     else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
688       ParentPad = CSI->getParentPad();
689     else
690       continue;
691     if (isa<ConstantTokenNone>(ParentPad))
692       Worklist.emplace_back(FirstNonPHI, -1);
693   }
694 
695   // Use the worklist to visit all pads, from outer to inner.  Record
696   // HandlerParentState for all pads.  Record TryParentState only for catchpads
697   // that aren't the last on their catchswitch (setting all other entries'
698   // TryParentStates to an initial value of -1).  This loop is also responsible
699   // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
700   // catchswitches.
701   while (!Worklist.empty()) {
702     const Instruction *Pad;
703     int HandlerParentState;
704     std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
705 
706     if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
707       // Create the entry for this cleanup with the appropriate handler
708       // properties.  Finally and fault handlers are distinguished by arity.
709       ClrHandlerType HandlerType =
710           (Cleanup->arg_size() ? ClrHandlerType::Fault
711                                : ClrHandlerType::Finally);
712       int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
713                                          HandlerType, 0, Pad->getParent());
714       // Queue any child EH pads on the worklist.
715       for (const User *U : Cleanup->users())
716         if (const auto *I = dyn_cast<Instruction>(U))
717           if (I->isEHPad())
718             Worklist.emplace_back(I, CleanupState);
719       // Remember this pad's state.
720       FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
721     } else {
722       // Walk the handlers of this catchswitch in reverse order since all but
723       // the last need to set the following one as its TryParentState.
724       const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
725       int CatchState = -1, FollowerState = -1;
726       SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
727       for (const BasicBlock *CatchBlock : llvm::reverse(CatchBlocks)) {
728         // Create the entry for this catch with the appropriate handler
729         // properties.
730         const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHIIt());
731         uint32_t TypeToken = static_cast<uint32_t>(
732             cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
733         CatchState =
734             addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
735                             ClrHandlerType::Catch, TypeToken, CatchBlock);
736         // Queue any child EH pads on the worklist.
737         for (const User *U : Catch->users())
738           if (const auto *I = dyn_cast<Instruction>(U))
739             if (I->isEHPad())
740               Worklist.emplace_back(I, CatchState);
741         // Remember this catch's state.
742         FuncInfo.EHPadStateMap[Catch] = CatchState;
743         FollowerState = CatchState;
744       }
745       // Associate the catchswitch with the state of its first catch.
746       assert(CatchSwitch->getNumHandlers());
747       FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
748     }
749   }
750 
751   // Step two: record the TryParentState of each state.  For cleanuppads that
752   // don't have cleanuprets, we may need to infer this from their child pads,
753   // so visit pads in descendant-most to ancestor-most order.
754   for (ClrEHUnwindMapEntry &Entry : llvm::reverse(FuncInfo.ClrEHUnwindMap)) {
755     const Instruction *Pad =
756         &*cast<const BasicBlock *>(Entry.Handler)->getFirstNonPHIIt();
757     // For most pads, the TryParentState is the state associated with the
758     // unwind dest of exceptional exits from it.
759     const BasicBlock *UnwindDest;
760     if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
761       // If a catch is not the last in its catchswitch, its TryParentState is
762       // the state associated with the next catch in the switch, even though
763       // that's not the unwind dest of exceptions escaping the catch.  Those
764       // cases were already assigned a TryParentState in the first pass, so
765       // skip them.
766       if (Entry.TryParentState != -1)
767         continue;
768       // Otherwise, get the unwind dest from the catchswitch.
769       UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
770     } else {
771       const auto *Cleanup = cast<CleanupPadInst>(Pad);
772       UnwindDest = nullptr;
773       for (const User *U : Cleanup->users()) {
774         if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
775           // Common and unambiguous case -- cleanupret indicates cleanup's
776           // unwind dest.
777           UnwindDest = CleanupRet->getUnwindDest();
778           break;
779         }
780 
781         // Get an unwind dest for the user
782         const BasicBlock *UserUnwindDest = nullptr;
783         if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
784           UserUnwindDest = Invoke->getUnwindDest();
785         } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
786           UserUnwindDest = CatchSwitch->getUnwindDest();
787         } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
788           int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
789           int UserUnwindState =
790               FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
791           if (UserUnwindState != -1)
792             UserUnwindDest = cast<const BasicBlock *>(
793                 FuncInfo.ClrEHUnwindMap[UserUnwindState].Handler);
794         }
795 
796         // Not having an unwind dest for this user might indicate that it
797         // doesn't unwind, so can't be taken as proof that the cleanup itself
798         // may unwind to caller (see e.g. SimplifyUnreachable and
799         // RemoveUnwindEdge).
800         if (!UserUnwindDest)
801           continue;
802 
803         // Now we have an unwind dest for the user, but we need to see if it
804         // unwinds all the way out of the cleanup or if it stays within it.
805         const Instruction *UserUnwindPad = &*UserUnwindDest->getFirstNonPHIIt();
806         const Value *UserUnwindParent;
807         if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
808           UserUnwindParent = CSI->getParentPad();
809         else
810           UserUnwindParent =
811               cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
812 
813         // The unwind stays within the cleanup iff it targets a child of the
814         // cleanup.
815         if (UserUnwindParent == Cleanup)
816           continue;
817 
818         // This unwind exits the cleanup, so its dest is the cleanup's dest.
819         UnwindDest = UserUnwindDest;
820         break;
821       }
822     }
823 
824     // Record the state of the unwind dest as the TryParentState.
825     int UnwindDestState;
826 
827     // If UnwindDest is null at this point, either the pad in question can
828     // be exited by unwind to caller, or it cannot be exited by unwind.  In
829     // either case, reporting such cases as unwinding to caller is correct.
830     // This can lead to EH tables that "look strange" -- if this pad's is in
831     // a parent funclet which has other children that do unwind to an enclosing
832     // pad, the try region for this pad will be missing the "duplicate" EH
833     // clause entries that you'd expect to see covering the whole parent.  That
834     // should be benign, since the unwind never actually happens.  If it were
835     // an issue, we could add a subsequent pass that pushes unwind dests down
836     // from parents that have them to children that appear to unwind to caller.
837     if (!UnwindDest) {
838       UnwindDestState = -1;
839     } else {
840       UnwindDestState =
841           FuncInfo.EHPadStateMap[&*UnwindDest->getFirstNonPHIIt()];
842     }
843 
844     Entry.TryParentState = UnwindDestState;
845   }
846 
847   // Step three: transfer information from pads to invokes.
848   calculateStateNumbersForInvokes(Fn, FuncInfo);
849 }
850 
851 void WinEHPrepareImpl::colorFunclets(Function &F) {
852   BlockColors = colorEHFunclets(F);
853 
854   // Invert the map from BB to colors to color to BBs.
855   for (BasicBlock &BB : F) {
856     ColorVector &Colors = BlockColors[&BB];
857     for (BasicBlock *Color : Colors)
858       FuncletBlocks[Color].push_back(&BB);
859   }
860 }
861 
862 void WinEHPrepareImpl::demotePHIsOnFunclets(Function &F,
863                                             bool DemoteCatchSwitchPHIOnly) {
864   // Strip PHI nodes off of EH pads.
865   SmallVector<PHINode *, 16> PHINodes;
866   for (BasicBlock &BB : make_early_inc_range(F)) {
867     if (!BB.isEHPad())
868       continue;
869     if (DemoteCatchSwitchPHIOnly &&
870         !isa<CatchSwitchInst>(BB.getFirstNonPHIIt()))
871       continue;
872 
873     for (Instruction &I : make_early_inc_range(BB)) {
874       auto *PN = dyn_cast<PHINode>(&I);
875       // Stop at the first non-PHI.
876       if (!PN)
877         break;
878 
879       AllocaInst *SpillSlot = insertPHILoads(PN, F);
880       if (SpillSlot)
881         insertPHIStores(PN, SpillSlot);
882 
883       PHINodes.push_back(PN);
884     }
885   }
886 
887   for (auto *PN : PHINodes) {
888     // There may be lingering uses on other EH PHIs being removed
889     PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
890     PN->eraseFromParent();
891   }
892 }
893 
894 void WinEHPrepareImpl::cloneCommonBlocks(Function &F) {
895   // We need to clone all blocks which belong to multiple funclets.  Values are
896   // remapped throughout the funclet to propagate both the new instructions
897   // *and* the new basic blocks themselves.
898   for (auto &Funclets : FuncletBlocks) {
899     BasicBlock *FuncletPadBB = Funclets.first;
900     std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
901     Value *FuncletToken;
902     if (FuncletPadBB == &F.getEntryBlock())
903       FuncletToken = ConstantTokenNone::get(F.getContext());
904     else
905       FuncletToken = &*FuncletPadBB->getFirstNonPHIIt();
906 
907     std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
908     ValueToValueMapTy VMap;
909     for (BasicBlock *BB : BlocksInFunclet) {
910       ColorVector &ColorsForBB = BlockColors[BB];
911       // We don't need to do anything if the block is monochromatic.
912       size_t NumColorsForBB = ColorsForBB.size();
913       if (NumColorsForBB == 1)
914         continue;
915 
916       DEBUG_WITH_TYPE("win-eh-prepare-coloring",
917                       dbgs() << "  Cloning block \'" << BB->getName()
918                              << "\' for funclet \'" << FuncletPadBB->getName()
919                              << "\'.\n");
920 
921       // Create a new basic block and copy instructions into it!
922       BasicBlock *CBB =
923           CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
924       // Insert the clone immediately after the original to ensure determinism
925       // and to keep the same relative ordering of any funclet's blocks.
926       CBB->insertInto(&F, BB->getNextNode());
927 
928       // Add basic block mapping.
929       VMap[BB] = CBB;
930 
931       // Record delta operations that we need to perform to our color mappings.
932       Orig2Clone.emplace_back(BB, CBB);
933     }
934 
935     // If nothing was cloned, we're done cloning in this funclet.
936     if (Orig2Clone.empty())
937       continue;
938 
939     // Update our color mappings to reflect that one block has lost a color and
940     // another has gained a color.
941     for (auto &BBMapping : Orig2Clone) {
942       BasicBlock *OldBlock = BBMapping.first;
943       BasicBlock *NewBlock = BBMapping.second;
944 
945       BlocksInFunclet.push_back(NewBlock);
946       ColorVector &NewColors = BlockColors[NewBlock];
947       assert(NewColors.empty() && "A new block should only have one color!");
948       NewColors.push_back(FuncletPadBB);
949 
950       DEBUG_WITH_TYPE("win-eh-prepare-coloring",
951                       dbgs() << "  Assigned color \'" << FuncletPadBB->getName()
952                              << "\' to block \'" << NewBlock->getName()
953                              << "\'.\n");
954 
955       llvm::erase(BlocksInFunclet, OldBlock);
956       ColorVector &OldColors = BlockColors[OldBlock];
957       llvm::erase(OldColors, FuncletPadBB);
958 
959       DEBUG_WITH_TYPE("win-eh-prepare-coloring",
960                       dbgs() << "  Removed color \'" << FuncletPadBB->getName()
961                              << "\' from block \'" << OldBlock->getName()
962                              << "\'.\n");
963     }
964 
965     // Loop over all of the instructions in this funclet, fixing up operand
966     // references as we go.  This uses VMap to do all the hard work.
967     for (BasicBlock *BB : BlocksInFunclet)
968       // Loop over all instructions, fixing each one as we find it...
969       for (Instruction &I : *BB)
970         RemapInstruction(&I, VMap,
971                          RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
972 
973     // Catchrets targeting cloned blocks need to be updated separately from
974     // the loop above because they are not in the current funclet.
975     SmallVector<CatchReturnInst *, 2> FixupCatchrets;
976     for (auto &BBMapping : Orig2Clone) {
977       BasicBlock *OldBlock = BBMapping.first;
978       BasicBlock *NewBlock = BBMapping.second;
979 
980       FixupCatchrets.clear();
981       for (BasicBlock *Pred : predecessors(OldBlock))
982         if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
983           if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
984             FixupCatchrets.push_back(CatchRet);
985 
986       for (CatchReturnInst *CatchRet : FixupCatchrets)
987         CatchRet->setSuccessor(NewBlock);
988     }
989 
990     auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
991       unsigned NumPreds = PN->getNumIncomingValues();
992       for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
993            ++PredIdx) {
994         BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
995         bool EdgeTargetsFunclet;
996         if (auto *CRI =
997                 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
998           EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
999         } else {
1000           ColorVector &IncomingColors = BlockColors[IncomingBlock];
1001           assert(!IncomingColors.empty() && "Block not colored!");
1002           assert((IncomingColors.size() == 1 ||
1003                   !llvm::is_contained(IncomingColors, FuncletPadBB)) &&
1004                  "Cloning should leave this funclet's blocks monochromatic");
1005           EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
1006         }
1007         if (IsForOldBlock != EdgeTargetsFunclet)
1008           continue;
1009         PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
1010         // Revisit the next entry.
1011         --PredIdx;
1012         --PredEnd;
1013       }
1014     };
1015 
1016     for (auto &BBMapping : Orig2Clone) {
1017       BasicBlock *OldBlock = BBMapping.first;
1018       BasicBlock *NewBlock = BBMapping.second;
1019       for (PHINode &OldPN : OldBlock->phis()) {
1020         UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
1021       }
1022       for (PHINode &NewPN : NewBlock->phis()) {
1023         UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
1024       }
1025     }
1026 
1027     // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
1028     // the PHI nodes for NewBB now.
1029     for (auto &BBMapping : Orig2Clone) {
1030       BasicBlock *OldBlock = BBMapping.first;
1031       BasicBlock *NewBlock = BBMapping.second;
1032       for (BasicBlock *SuccBB : successors(NewBlock)) {
1033         for (PHINode &SuccPN : SuccBB->phis()) {
1034           // Ok, we have a PHI node.  Figure out what the incoming value was for
1035           // the OldBlock.
1036           int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
1037           if (OldBlockIdx == -1)
1038             break;
1039           Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
1040 
1041           // Remap the value if necessary.
1042           if (auto *Inst = dyn_cast<Instruction>(IV)) {
1043             ValueToValueMapTy::iterator I = VMap.find(Inst);
1044             if (I != VMap.end())
1045               IV = I->second;
1046           }
1047 
1048           SuccPN.addIncoming(IV, NewBlock);
1049         }
1050       }
1051     }
1052 
1053     for (ValueToValueMapTy::value_type VT : VMap) {
1054       // If there were values defined in BB that are used outside the funclet,
1055       // then we now have to update all uses of the value to use either the
1056       // original value, the cloned value, or some PHI derived value.  This can
1057       // require arbitrary PHI insertion, of which we are prepared to do, clean
1058       // these up now.
1059       SmallVector<Use *, 16> UsesToRename;
1060 
1061       auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
1062       if (!OldI)
1063         continue;
1064       auto *NewI = cast<Instruction>(VT.second);
1065       // Scan all uses of this instruction to see if it is used outside of its
1066       // funclet, and if so, record them in UsesToRename.
1067       for (Use &U : OldI->uses()) {
1068         Instruction *UserI = cast<Instruction>(U.getUser());
1069         BasicBlock *UserBB = UserI->getParent();
1070         ColorVector &ColorsForUserBB = BlockColors[UserBB];
1071         assert(!ColorsForUserBB.empty());
1072         if (ColorsForUserBB.size() > 1 ||
1073             *ColorsForUserBB.begin() != FuncletPadBB)
1074           UsesToRename.push_back(&U);
1075       }
1076 
1077       // If there are no uses outside the block, we're done with this
1078       // instruction.
1079       if (UsesToRename.empty())
1080         continue;
1081 
1082       // We found a use of OldI outside of the funclet.  Rename all uses of OldI
1083       // that are outside its funclet to be uses of the appropriate PHI node
1084       // etc.
1085       SSAUpdater SSAUpdate;
1086       SSAUpdate.Initialize(OldI->getType(), OldI->getName());
1087       SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
1088       SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
1089 
1090       while (!UsesToRename.empty())
1091         SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
1092     }
1093   }
1094 }
1095 
1096 void WinEHPrepareImpl::removeImplausibleInstructions(Function &F) {
1097   // Remove implausible terminators and replace them with UnreachableInst.
1098   for (auto &Funclet : FuncletBlocks) {
1099     BasicBlock *FuncletPadBB = Funclet.first;
1100     std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
1101     Instruction *FirstNonPHI = &*FuncletPadBB->getFirstNonPHIIt();
1102     auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
1103     auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
1104     auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
1105 
1106     for (BasicBlock *BB : BlocksInFunclet) {
1107       for (Instruction &I : *BB) {
1108         auto *CB = dyn_cast<CallBase>(&I);
1109         if (!CB)
1110           continue;
1111 
1112         Value *FuncletBundleOperand = nullptr;
1113         if (auto BU = CB->getOperandBundle(LLVMContext::OB_funclet))
1114           FuncletBundleOperand = BU->Inputs.front();
1115 
1116         if (FuncletBundleOperand == FuncletPad)
1117           continue;
1118 
1119         // Skip call sites which are nounwind intrinsics or inline asm.
1120         auto *CalledFn =
1121             dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
1122         if (CalledFn && ((CalledFn->isIntrinsic() && CB->doesNotThrow()) ||
1123                          CB->isInlineAsm()))
1124           continue;
1125 
1126         // This call site was not part of this funclet, remove it.
1127         if (isa<InvokeInst>(CB)) {
1128           // Remove the unwind edge if it was an invoke.
1129           removeUnwindEdge(BB);
1130           // Get a pointer to the new call.
1131           BasicBlock::iterator CallI =
1132               std::prev(BB->getTerminator()->getIterator());
1133           auto *CI = cast<CallInst>(&*CallI);
1134           changeToUnreachable(CI);
1135         } else {
1136           changeToUnreachable(&I);
1137         }
1138 
1139         // There are no more instructions in the block (except for unreachable),
1140         // we are done.
1141         break;
1142       }
1143 
1144       Instruction *TI = BB->getTerminator();
1145       // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
1146       bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
1147       // The token consumed by a CatchReturnInst must match the funclet token.
1148       bool IsUnreachableCatchret = false;
1149       if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
1150         IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
1151       // The token consumed by a CleanupReturnInst must match the funclet token.
1152       bool IsUnreachableCleanupret = false;
1153       if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
1154         IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
1155       if (IsUnreachableRet || IsUnreachableCatchret ||
1156           IsUnreachableCleanupret) {
1157         changeToUnreachable(TI);
1158       } else if (isa<InvokeInst>(TI)) {
1159         if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
1160           // Invokes within a cleanuppad for the MSVC++ personality never
1161           // transfer control to their unwind edge: the personality will
1162           // terminate the program.
1163           removeUnwindEdge(BB);
1164         }
1165       }
1166     }
1167   }
1168 }
1169 
1170 void WinEHPrepareImpl::cleanupPreparedFunclets(Function &F) {
1171   // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1172   // branches, etc.
1173   for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
1174     SimplifyInstructionsInBlock(&BB);
1175     ConstantFoldTerminator(&BB, /*DeleteDeadConditions=*/true);
1176     MergeBlockIntoPredecessor(&BB);
1177   }
1178 
1179   // We might have some unreachable blocks after cleaning up some impossible
1180   // control flow.
1181   removeUnreachableBlocks(F);
1182 }
1183 
1184 #ifndef NDEBUG
1185 void WinEHPrepareImpl::verifyPreparedFunclets(Function &F) {
1186   for (BasicBlock &BB : F) {
1187     size_t NumColors = BlockColors[&BB].size();
1188     assert(NumColors == 1 && "Expected monochromatic BB!");
1189     if (NumColors == 0)
1190       report_fatal_error("Uncolored BB!");
1191     if (NumColors > 1)
1192       report_fatal_error("Multicolor BB!");
1193     assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
1194            "EH Pad still has a PHI!");
1195   }
1196 }
1197 #endif
1198 
1199 bool WinEHPrepareImpl::prepareExplicitEH(Function &F) {
1200   // Remove unreachable blocks.  It is not valuable to assign them a color and
1201   // their existence can trick us into thinking values are alive when they are
1202   // not.
1203   removeUnreachableBlocks(F);
1204 
1205   // Determine which blocks are reachable from which funclet entries.
1206   colorFunclets(F);
1207 
1208   cloneCommonBlocks(F);
1209 
1210   if (!DisableDemotion)
1211     demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1212                                 DemoteCatchSwitchPHIOnlyOpt);
1213 
1214   if (!DisableCleanups) {
1215     assert(!verifyFunction(F, &dbgs()));
1216     removeImplausibleInstructions(F);
1217 
1218     assert(!verifyFunction(F, &dbgs()));
1219     cleanupPreparedFunclets(F);
1220   }
1221 
1222   LLVM_DEBUG(verifyPreparedFunclets(F));
1223   // Recolor the CFG to verify that all is well.
1224   LLVM_DEBUG(colorFunclets(F));
1225   LLVM_DEBUG(verifyPreparedFunclets(F));
1226 
1227   return true;
1228 }
1229 
1230 // TODO: Share loads when one use dominates another, or when a catchpad exit
1231 // dominates uses (needs dominators).
1232 AllocaInst *WinEHPrepareImpl::insertPHILoads(PHINode *PN, Function &F) {
1233   BasicBlock *PHIBlock = PN->getParent();
1234   AllocaInst *SpillSlot = nullptr;
1235   Instruction *EHPad = &*PHIBlock->getFirstNonPHIIt();
1236 
1237   if (!EHPad->isTerminator()) {
1238     // If the EHPad isn't a terminator, then we can insert a load in this block
1239     // that will dominate all uses.
1240     SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1241                                Twine(PN->getName(), ".wineh.spillslot"),
1242                                F.getEntryBlock().begin());
1243     Value *V = new LoadInst(PN->getType(), SpillSlot,
1244                             Twine(PN->getName(), ".wineh.reload"),
1245                             PHIBlock->getFirstInsertionPt());
1246     PN->replaceAllUsesWith(V);
1247     return SpillSlot;
1248   }
1249 
1250   // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1251   // loads of the slot before every use.
1252   DenseMap<BasicBlock *, Value *> Loads;
1253   for (Use &U : llvm::make_early_inc_range(PN->uses())) {
1254     auto *UsingInst = cast<Instruction>(U.getUser());
1255     if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1256       // Use is on an EH pad phi.  Leave it alone; we'll insert loads and
1257       // stores for it separately.
1258       continue;
1259     }
1260     replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1261   }
1262   return SpillSlot;
1263 }
1264 
1265 // TODO: improve store placement.  Inserting at def is probably good, but need
1266 // to be careful not to introduce interfering stores (needs liveness analysis).
1267 // TODO: identify related phi nodes that can share spill slots, and share them
1268 // (also needs liveness).
1269 void WinEHPrepareImpl::insertPHIStores(PHINode *OriginalPHI,
1270                                        AllocaInst *SpillSlot) {
1271   // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1272   // stored to the spill slot by the end of the given Block.
1273   SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
1274 
1275   Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1276 
1277   while (!Worklist.empty()) {
1278     BasicBlock *EHBlock;
1279     Value *InVal;
1280     std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1281 
1282     PHINode *PN = dyn_cast<PHINode>(InVal);
1283     if (PN && PN->getParent() == EHBlock) {
1284       // The value is defined by another PHI we need to remove, with no room to
1285       // insert a store after the PHI, so each predecessor needs to store its
1286       // incoming value.
1287       for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1288         Value *PredVal = PN->getIncomingValue(i);
1289 
1290         // Undef can safely be skipped.
1291         if (isa<UndefValue>(PredVal))
1292           continue;
1293 
1294         insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1295       }
1296     } else {
1297       // We need to store InVal, which dominates EHBlock, but can't put a store
1298       // in EHBlock, so need to put stores in each predecessor.
1299       for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1300         insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1301       }
1302     }
1303   }
1304 }
1305 
1306 void WinEHPrepareImpl::insertPHIStore(
1307     BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1308     SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1309 
1310   if (PredBlock->isEHPad() && PredBlock->getFirstNonPHIIt()->isTerminator()) {
1311     // Pred is unsplittable, so we need to queue it on the worklist.
1312     Worklist.push_back({PredBlock, PredVal});
1313     return;
1314   }
1315 
1316   // Otherwise, insert the store at the end of the basic block.
1317   new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator()->getIterator());
1318 }
1319 
1320 void WinEHPrepareImpl::replaceUseWithLoad(
1321     Value *V, Use &U, AllocaInst *&SpillSlot,
1322     DenseMap<BasicBlock *, Value *> &Loads, Function &F) {
1323   // Lazilly create the spill slot.
1324   if (!SpillSlot)
1325     SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1326                                Twine(V->getName(), ".wineh.spillslot"),
1327                                F.getEntryBlock().begin());
1328 
1329   auto *UsingInst = cast<Instruction>(U.getUser());
1330   if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1331     // If this is a PHI node, we can't insert a load of the value before
1332     // the use.  Instead insert the load in the predecessor block
1333     // corresponding to the incoming value.
1334     //
1335     // Note that if there are multiple edges from a basic block to this
1336     // PHI node that we cannot have multiple loads.  The problem is that
1337     // the resulting PHI node will have multiple values (from each load)
1338     // coming in from the same block, which is illegal SSA form.
1339     // For this reason, we keep track of and reuse loads we insert.
1340     BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1341     if (auto *CatchRet =
1342             dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1343       // Putting a load above a catchret and use on the phi would still leave
1344       // a cross-funclet def/use.  We need to split the edge, change the
1345       // catchret to target the new block, and put the load there.
1346       BasicBlock *PHIBlock = UsingInst->getParent();
1347       BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1348       // SplitEdge gives us:
1349       //   IncomingBlock:
1350       //     ...
1351       //     br label %NewBlock
1352       //   NewBlock:
1353       //     catchret label %PHIBlock
1354       // But we need:
1355       //   IncomingBlock:
1356       //     ...
1357       //     catchret label %NewBlock
1358       //   NewBlock:
1359       //     br label %PHIBlock
1360       // So move the terminators to each others' blocks and swap their
1361       // successors.
1362       BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1363       Goto->removeFromParent();
1364       CatchRet->removeFromParent();
1365       CatchRet->insertInto(IncomingBlock, IncomingBlock->end());
1366       Goto->insertInto(NewBlock, NewBlock->end());
1367       Goto->setSuccessor(0, PHIBlock);
1368       CatchRet->setSuccessor(NewBlock);
1369       // Update the color mapping for the newly split edge.
1370       // Grab a reference to the ColorVector to be inserted before getting the
1371       // reference to the vector we are copying because inserting the new
1372       // element in BlockColors might cause the map to be reallocated.
1373       ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1374       ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1375       ColorsForNewBlock = ColorsForPHIBlock;
1376       for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1377         FuncletBlocks[FuncletPad].push_back(NewBlock);
1378       // Treat the new block as incoming for load insertion.
1379       IncomingBlock = NewBlock;
1380     }
1381     Value *&Load = Loads[IncomingBlock];
1382     // Insert the load into the predecessor block
1383     if (!Load)
1384       Load = new LoadInst(
1385           V->getType(), SpillSlot, Twine(V->getName(), ".wineh.reload"),
1386           /*isVolatile=*/false, IncomingBlock->getTerminator()->getIterator());
1387 
1388     U.set(Load);
1389   } else {
1390     // Reload right before the old use.
1391     auto *Load = new LoadInst(V->getType(), SpillSlot,
1392                               Twine(V->getName(), ".wineh.reload"),
1393                               /*isVolatile=*/false, UsingInst->getIterator());
1394     U.set(Load);
1395   }
1396 }
1397 
1398 void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1399                                       MCSymbol *InvokeBegin,
1400                                       MCSymbol *InvokeEnd) {
1401   assert(InvokeStateMap.count(II) &&
1402          "should get invoke with precomputed state");
1403   LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1404 }
1405 
1406 void WinEHFuncInfo::addIPToStateRange(int State, MCSymbol* InvokeBegin,
1407     MCSymbol* InvokeEnd) {
1408     LabelToStateMap[InvokeBegin] = std::make_pair(State, InvokeEnd);
1409 }
1410 
1411 WinEHFuncInfo::WinEHFuncInfo() = default;
1412