xref: /llvm-project/llvm/lib/CodeGen/StackColoring.cpp (revision 8e702735090388a3231a863e343f880d0f96fecb)
1 //===- StackColoring.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the stack-coloring optimization that looks for
10 // lifetime markers machine instructions (LIFETIME_START and LIFETIME_END),
11 // which represent the possible lifetime of stack slots. It attempts to
12 // merge disjoint stack slots and reduce the used stack space.
13 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
14 //
15 // TODO: In the future we plan to improve stack coloring in the following ways:
16 // 1. Allow merging multiple small slots into a single larger slot at different
17 //    offsets.
18 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
19 //    spill slots.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/CodeGen/StackColoring.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/CodeGen/LiveInterval.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/CodeGen/PseudoSourceValueManager.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetOpcodes.h"
43 #include "llvm/CodeGen/WinEHFuncInfo.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <limits>
61 #include <memory>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "stack-coloring"
67 
68 static cl::opt<bool>
69 DisableColoring("no-stack-coloring",
70         cl::init(false), cl::Hidden,
71         cl::desc("Disable stack coloring"));
72 
73 /// The user may write code that uses allocas outside of the declared lifetime
74 /// zone. This can happen when the user returns a reference to a local
75 /// data-structure. We can detect these cases and decide not to optimize the
76 /// code. If this flag is enabled, we try to save the user. This option
77 /// is treated as overriding LifetimeStartOnFirstUse below.
78 static cl::opt<bool>
79 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
80                           cl::init(false), cl::Hidden,
81                           cl::desc("Do not optimize lifetime zones that "
82                                    "are broken"));
83 
84 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
85 /// use of stack slot as start of slot lifetime, as opposed to looking
86 /// for LIFETIME_START marker). See "Implementation notes" below for
87 /// more info.
88 static cl::opt<bool>
89 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
90         cl::init(true), cl::Hidden,
91         cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
92 
93 
94 STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
95 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
96 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
97 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
98 
99 //===----------------------------------------------------------------------===//
100 //                           StackColoring Pass
101 //===----------------------------------------------------------------------===//
102 //
103 // Stack Coloring reduces stack usage by merging stack slots when they
104 // can't be used together. For example, consider the following C program:
105 //
106 //     void bar(char *, int);
107 //     void foo(bool var) {
108 //         A: {
109 //             char z[4096];
110 //             bar(z, 0);
111 //         }
112 //
113 //         char *p;
114 //         char x[4096];
115 //         char y[4096];
116 //         if (var) {
117 //             p = x;
118 //         } else {
119 //             bar(y, 1);
120 //             p = y + 1024;
121 //         }
122 //     B:
123 //         bar(p, 2);
124 //     }
125 //
126 // Naively-compiled, this program would use 12k of stack space. However, the
127 // stack slot corresponding to `z` is always destroyed before either of the
128 // stack slots for `x` or `y` are used, and then `x` is only used if `var`
129 // is true, while `y` is only used if `var` is false. So in no time are 2
130 // of the stack slots used together, and therefore we can merge them,
131 // compiling the function using only a single 4k alloca:
132 //
133 //     void foo(bool var) { // equivalent
134 //         char x[4096];
135 //         char *p;
136 //         bar(x, 0);
137 //         if (var) {
138 //             p = x;
139 //         } else {
140 //             bar(x, 1);
141 //             p = x + 1024;
142 //         }
143 //         bar(p, 2);
144 //     }
145 //
146 // This is an important optimization if we want stack space to be under
147 // control in large functions, both open-coded ones and ones created by
148 // inlining.
149 //
150 // Implementation Notes:
151 // ---------------------
152 //
153 // An important part of the above reasoning is that `z` can't be accessed
154 // while the latter 2 calls to `bar` are running. This is justified because
155 // `z`'s lifetime is over after we exit from block `A:`, so any further
156 // accesses to it would be UB. The way we represent this information
157 // in LLVM is by having frontends delimit blocks with `lifetime.start`
158 // and `lifetime.end` intrinsics.
159 //
160 // The effect of these intrinsics seems to be as follows (maybe I should
161 // specify this in the reference?):
162 //
163 //   L1) at start, each stack-slot is marked as *out-of-scope*, unless no
164 //   lifetime intrinsic refers to that stack slot, in which case
165 //   it is marked as *in-scope*.
166 //   L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
167 //   the stack slot is overwritten with `undef`.
168 //   L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
169 //   L4) on function exit, all stack slots are marked as *out-of-scope*.
170 //   L5) `lifetime.end` is a no-op when called on a slot that is already
171 //   *out-of-scope*.
172 //   L6) memory accesses to *out-of-scope* stack slots are UB.
173 //   L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
174 //   are invalidated, unless the slot is "degenerate". This is used to
175 //   justify not marking slots as in-use until the pointer to them is
176 //   used, but feels a bit hacky in the presence of things like LICM. See
177 //   the "Degenerate Slots" section for more details.
178 //
179 // Now, let's ground stack coloring on these rules. We'll define a slot
180 // as *in-use* at a (dynamic) point in execution if it either can be
181 // written to at that point, or if it has a live and non-undef content
182 // at that point.
183 //
184 // Obviously, slots that are never *in-use* together can be merged, and
185 // in our example `foo`, the slots for `x`, `y` and `z` are never
186 // in-use together (of course, sometimes slots that *are* in-use together
187 // might still be mergable, but we don't care about that here).
188 //
189 // In this implementation, we successively merge pairs of slots that are
190 // not *in-use* together. We could be smarter - for example, we could merge
191 // a single large slot with 2 small slots, or we could construct the
192 // interference graph and run a "smart" graph coloring algorithm, but with
193 // that aside, how do we find out whether a pair of slots might be *in-use*
194 // together?
195 //
196 // From our rules, we see that *out-of-scope* slots are never *in-use*,
197 // and from (L7) we see that "non-degenerate" slots remain non-*in-use*
198 // until their address is taken. Therefore, we can approximate slot activity
199 // using dataflow.
200 //
201 // A subtle point: naively, we might try to figure out which pairs of
202 // stack-slots interfere by propagating `S in-use` through the CFG for every
203 // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
204 // which they are both *in-use*.
205 //
206 // That is sound, but overly conservative in some cases: in our (artificial)
207 // example `foo`, either `x` or `y` might be in use at the label `B:`, but
208 // as `x` is only in use if we came in from the `var` edge and `y` only
209 // if we came from the `!var` edge, they still can't be in use together.
210 // See PR32488 for an important real-life case.
211 //
212 // If we wanted to find all points of interference precisely, we could
213 // propagate `S in-use` and `S&T in-use` predicates through the CFG. That
214 // would be precise, but requires propagating `O(n^2)` dataflow facts.
215 //
216 // However, we aren't interested in the *set* of points of interference
217 // between 2 stack slots, only *whether* there *is* such a point. So we
218 // can rely on a little trick: for `S` and `T` to be in-use together,
219 // one of them needs to become in-use while the other is in-use (or
220 // they might both become in use simultaneously). We can check this
221 // by also keeping track of the points at which a stack slot might *start*
222 // being in-use.
223 //
224 // Exact first use:
225 // ----------------
226 //
227 // Consider the following motivating example:
228 //
229 //     int foo() {
230 //       char b1[1024], b2[1024];
231 //       if (...) {
232 //         char b3[1024];
233 //         <uses of b1, b3>;
234 //         return x;
235 //       } else {
236 //         char b4[1024], b5[1024];
237 //         <uses of b2, b4, b5>;
238 //         return y;
239 //       }
240 //     }
241 //
242 // In the code above, "b3" and "b4" are declared in distinct lexical
243 // scopes, meaning that it is easy to prove that they can share the
244 // same stack slot. Variables "b1" and "b2" are declared in the same
245 // scope, meaning that from a lexical point of view, their lifetimes
246 // overlap. From a control flow pointer of view, however, the two
247 // variables are accessed in disjoint regions of the CFG, thus it
248 // should be possible for them to share the same stack slot. An ideal
249 // stack allocation for the function above would look like:
250 //
251 //     slot 0: b1, b2
252 //     slot 1: b3, b4
253 //     slot 2: b5
254 //
255 // Achieving this allocation is tricky, however, due to the way
256 // lifetime markers are inserted. Here is a simplified view of the
257 // control flow graph for the code above:
258 //
259 //                +------  block 0 -------+
260 //               0| LIFETIME_START b1, b2 |
261 //               1| <test 'if' condition> |
262 //                +-----------------------+
263 //                   ./              \.
264 //   +------  block 1 -------+   +------  block 2 -------+
265 //  2| LIFETIME_START b3     |  5| LIFETIME_START b4, b5 |
266 //  3| <uses of b1, b3>      |  6| <uses of b2, b4, b5>  |
267 //  4| LIFETIME_END b3       |  7| LIFETIME_END b4, b5   |
268 //   +-----------------------+   +-----------------------+
269 //                   \.              /.
270 //                +------  block 3 -------+
271 //               8| <cleanupcode>         |
272 //               9| LIFETIME_END b1, b2   |
273 //              10| return                |
274 //                +-----------------------+
275 //
276 // If we create live intervals for the variables above strictly based
277 // on the lifetime markers, we'll get the set of intervals on the
278 // left. If we ignore the lifetime start markers and instead treat a
279 // variable's lifetime as beginning with the first reference to the
280 // var, then we get the intervals on the right.
281 //
282 //            LIFETIME_START      First Use
283 //     b1:    [0,9]               [3,4] [8,9]
284 //     b2:    [0,9]               [6,9]
285 //     b3:    [2,4]               [3,4]
286 //     b4:    [5,7]               [6,7]
287 //     b5:    [5,7]               [6,7]
288 //
289 // For the intervals on the left, the best we can do is overlap two
290 // variables (b3 and b4, for example); this gives us a stack size of
291 // 4*1024 bytes, not ideal. When treating first-use as the start of a
292 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
293 // byte stack (better).
294 //
295 // Degenerate Slots:
296 // -----------------
297 //
298 // Relying entirely on first-use of stack slots is problematic,
299 // however, due to the fact that optimizations can sometimes migrate
300 // uses of a variable outside of its lifetime start/end region. Here
301 // is an example:
302 //
303 //     int bar() {
304 //       char b1[1024], b2[1024];
305 //       if (...) {
306 //         <uses of b2>
307 //         return y;
308 //       } else {
309 //         <uses of b1>
310 //         while (...) {
311 //           char b3[1024];
312 //           <uses of b3>
313 //         }
314 //       }
315 //     }
316 //
317 // Before optimization, the control flow graph for the code above
318 // might look like the following:
319 //
320 //                +------  block 0 -------+
321 //               0| LIFETIME_START b1, b2 |
322 //               1| <test 'if' condition> |
323 //                +-----------------------+
324 //                   ./              \.
325 //   +------  block 1 -------+    +------- block 2 -------+
326 //  2| <uses of b2>          |   3| <uses of b1>          |
327 //   +-----------------------+    +-----------------------+
328 //              |                            |
329 //              |                 +------- block 3 -------+ <-\.
330 //              |                4| <while condition>     |    |
331 //              |                 +-----------------------+    |
332 //              |               /          |                   |
333 //              |              /  +------- block 4 -------+
334 //              \             /  5| LIFETIME_START b3     |    |
335 //               \           /   6| <uses of b3>          |    |
336 //                \         /    7| LIFETIME_END b3       |    |
337 //                 \        |    +------------------------+    |
338 //                  \       |                 \                /
339 //                +------  block 5 -----+      \---------------
340 //               8| <cleanupcode>       |
341 //               9| LIFETIME_END b1, b2 |
342 //              10| return              |
343 //                +---------------------+
344 //
345 // During optimization, however, it can happen that an instruction
346 // computing an address in "b3" (for example, a loop-invariant GEP) is
347 // hoisted up out of the loop from block 4 to block 2.  [Note that
348 // this is not an actual load from the stack, only an instruction that
349 // computes the address to be loaded]. If this happens, there is now a
350 // path leading from the first use of b3 to the return instruction
351 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
352 // now larger than if we were computing live intervals strictly based
353 // on lifetime markers. In the example above, this lengthened lifetime
354 // would mean that it would appear illegal to overlap b3 with b2.
355 //
356 // To deal with this such cases, the code in ::collectMarkers() below
357 // tries to identify "degenerate" slots -- those slots where on a single
358 // forward pass through the CFG we encounter a first reference to slot
359 // K before we hit the slot K lifetime start marker. For such slots,
360 // we fall back on using the lifetime start marker as the beginning of
361 // the variable's lifetime.  NB: with this implementation, slots can
362 // appear degenerate in cases where there is unstructured control flow:
363 //
364 //    if (q) goto mid;
365 //    if (x > 9) {
366 //         int b[100];
367 //         memcpy(&b[0], ...);
368 //    mid: b[k] = ...;
369 //         abc(&b);
370 //    }
371 //
372 // If in RPO ordering chosen to walk the CFG  we happen to visit the b[k]
373 // before visiting the memcpy block (which will contain the lifetime start
374 // for "b" then it will appear that 'b' has a degenerate lifetime.
375 
376 namespace {
377 
378 /// StackColoring - A machine pass for merging disjoint stack allocations,
379 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
380 class StackColoring {
381   MachineFrameInfo *MFI = nullptr;
382   MachineFunction *MF = nullptr;
383 
384   /// A class representing liveness information for a single basic block.
385   /// Each bit in the BitVector represents the liveness property
386   /// for a different stack slot.
387   struct BlockLifetimeInfo {
388     /// Which slots BEGINs in each basic block.
389     BitVector Begin;
390 
391     /// Which slots ENDs in each basic block.
392     BitVector End;
393 
394     /// Which slots are marked as LIVE_IN, coming into each basic block.
395     BitVector LiveIn;
396 
397     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
398     BitVector LiveOut;
399   };
400 
401   /// Maps active slots (per bit) for each basic block.
402   using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
403   LivenessMap BlockLiveness;
404 
405   /// Maps serial numbers to basic blocks.
406   DenseMap<const MachineBasicBlock *, int> BasicBlocks;
407 
408   /// Maps basic blocks to a serial number.
409   SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
410 
411   /// Maps slots to their use interval. Outside of this interval, slots
412   /// values are either dead or `undef` and they will not be written to.
413   SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
414 
415   /// Maps slots to the points where they can become in-use.
416   SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
417 
418   /// VNInfo is used for the construction of LiveIntervals.
419   VNInfo::Allocator VNInfoAllocator;
420 
421   /// SlotIndex analysis object.
422   SlotIndexes *Indexes = nullptr;
423 
424   /// The list of lifetime markers found. These markers are to be removed
425   /// once the coloring is done.
426   SmallVector<MachineInstr*, 8> Markers;
427 
428   /// Record the FI slots for which we have seen some sort of
429   /// lifetime marker (either start or end).
430   BitVector InterestingSlots;
431 
432   /// FI slots that need to be handled conservatively (for these
433   /// slots lifetime-start-on-first-use is disabled).
434   BitVector ConservativeSlots;
435 
436   /// Number of iterations taken during data flow analysis.
437   unsigned NumIterations;
438 
439 public:
440   StackColoring(SlotIndexes *Indexes) : Indexes(Indexes) {}
441   bool run(MachineFunction &Func);
442 
443 private:
444   /// Used in collectMarkers
445   using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
446 
447   /// Debug.
448   void dump() const;
449   void dumpIntervals() const;
450   void dumpBB(MachineBasicBlock *MBB) const;
451   void dumpBV(const char *tag, const BitVector &BV) const;
452 
453   /// Removes all of the lifetime marker instructions from the function.
454   /// \returns true if any markers were removed.
455   bool removeAllMarkers();
456 
457   /// Scan the machine function and find all of the lifetime markers.
458   /// Record the findings in the BEGIN and END vectors.
459   /// \returns the number of markers found.
460   unsigned collectMarkers(unsigned NumSlot);
461 
462   /// Perform the dataflow calculation and calculate the lifetime for each of
463   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
464   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
465   /// in and out blocks.
466   void calculateLocalLiveness();
467 
468   /// Returns TRUE if we're using the first-use-begins-lifetime method for
469   /// this slot (if FALSE, then the start marker is treated as start of lifetime).
470   bool applyFirstUse(int Slot) {
471     if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
472       return false;
473     if (ConservativeSlots.test(Slot))
474       return false;
475     return true;
476   }
477 
478   /// Examines the specified instruction and returns TRUE if the instruction
479   /// represents the start or end of an interesting lifetime. The slot or slots
480   /// starting or ending are added to the vector "slots" and "isStart" is set
481   /// accordingly.
482   /// \returns True if inst contains a lifetime start or end
483   bool isLifetimeStartOrEnd(const MachineInstr &MI,
484                             SmallVector<int, 4> &slots,
485                             bool &isStart);
486 
487   /// Construct the LiveIntervals for the slots.
488   void calculateLiveIntervals(unsigned NumSlots);
489 
490   /// Go over the machine function and change instructions which use stack
491   /// slots to use the joint slots.
492   void remapInstructions(DenseMap<int, int> &SlotRemap);
493 
494   /// The input program may contain instructions which are not inside lifetime
495   /// markers. This can happen due to a bug in the compiler or due to a bug in
496   /// user code (for example, returning a reference to a local variable).
497   /// This procedure checks all of the instructions in the function and
498   /// invalidates lifetime ranges which do not contain all of the instructions
499   /// which access that frame slot.
500   void removeInvalidSlotRanges();
501 
502   /// Map entries which point to other entries to their destination.
503   ///   A->B->C becomes A->C.
504   void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
505 };
506 
507 class StackColoringLegacy : public MachineFunctionPass {
508 public:
509   static char ID;
510 
511   StackColoringLegacy() : MachineFunctionPass(ID) {}
512 
513   void getAnalysisUsage(AnalysisUsage &AU) const override;
514   bool runOnMachineFunction(MachineFunction &Func) override;
515 };
516 
517 } // end anonymous namespace
518 
519 char StackColoringLegacy::ID = 0;
520 
521 char &llvm::StackColoringLegacyID = StackColoringLegacy::ID;
522 
523 INITIALIZE_PASS_BEGIN(StackColoringLegacy, DEBUG_TYPE,
524                       "Merge disjoint stack slots", false, false)
525 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
526 INITIALIZE_PASS_END(StackColoringLegacy, DEBUG_TYPE,
527                     "Merge disjoint stack slots", false, false)
528 
529 void StackColoringLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
530   AU.addRequired<SlotIndexesWrapperPass>();
531   MachineFunctionPass::getAnalysisUsage(AU);
532 }
533 
534 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
535 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
536                                             const BitVector &BV) const {
537   dbgs() << tag << " : { ";
538   for (unsigned I = 0, E = BV.size(); I != E; ++I)
539     dbgs() << BV.test(I) << " ";
540   dbgs() << "}\n";
541 }
542 
543 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
544   LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
545   assert(BI != BlockLiveness.end() && "Block not found");
546   const BlockLifetimeInfo &BlockInfo = BI->second;
547 
548   dumpBV("BEGIN", BlockInfo.Begin);
549   dumpBV("END", BlockInfo.End);
550   dumpBV("LIVE_IN", BlockInfo.LiveIn);
551   dumpBV("LIVE_OUT", BlockInfo.LiveOut);
552 }
553 
554 LLVM_DUMP_METHOD void StackColoring::dump() const {
555   for (MachineBasicBlock *MBB : depth_first(MF)) {
556     dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
557            << MBB->getName() << "]\n";
558     dumpBB(MBB);
559   }
560 }
561 
562 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
563   for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
564     dbgs() << "Interval[" << I << "]:\n";
565     Intervals[I]->dump();
566   }
567 }
568 #endif
569 
570 static inline int getStartOrEndSlot(const MachineInstr &MI)
571 {
572   assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
573           MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
574          "Expected LIFETIME_START or LIFETIME_END op");
575   const MachineOperand &MO = MI.getOperand(0);
576   int Slot = MO.getIndex();
577   if (Slot >= 0)
578     return Slot;
579   return -1;
580 }
581 
582 // At the moment the only way to end a variable lifetime is with
583 // a VARIABLE_LIFETIME op (which can't contain a start). If things
584 // change and the IR allows for a single inst that both begins
585 // and ends lifetime(s), this interface will need to be reworked.
586 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
587                                          SmallVector<int, 4> &slots,
588                                          bool &isStart) {
589   if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
590       MI.getOpcode() == TargetOpcode::LIFETIME_END) {
591     int Slot = getStartOrEndSlot(MI);
592     if (Slot < 0)
593       return false;
594     if (!InterestingSlots.test(Slot))
595       return false;
596     slots.push_back(Slot);
597     if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
598       isStart = false;
599       return true;
600     }
601     if (!applyFirstUse(Slot)) {
602       isStart = true;
603       return true;
604     }
605   } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
606     if (!MI.isDebugInstr()) {
607       bool found = false;
608       for (const MachineOperand &MO : MI.operands()) {
609         if (!MO.isFI())
610           continue;
611         int Slot = MO.getIndex();
612         if (Slot<0)
613           continue;
614         if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
615           slots.push_back(Slot);
616           found = true;
617         }
618       }
619       if (found) {
620         isStart = true;
621         return true;
622       }
623     }
624   }
625   return false;
626 }
627 
628 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
629   unsigned MarkersFound = 0;
630   BlockBitVecMap SeenStartMap;
631   InterestingSlots.clear();
632   InterestingSlots.resize(NumSlot);
633   ConservativeSlots.clear();
634   ConservativeSlots.resize(NumSlot);
635 
636   // number of start and end lifetime ops for each slot
637   SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
638   SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
639 
640   // Step 1: collect markers and populate the "InterestingSlots"
641   // and "ConservativeSlots" sets.
642   for (MachineBasicBlock *MBB : depth_first(MF)) {
643     // Compute the set of slots for which we've seen a START marker but have
644     // not yet seen an END marker at this point in the walk (e.g. on entry
645     // to this bb).
646     BitVector BetweenStartEnd;
647     BetweenStartEnd.resize(NumSlot);
648     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
649       BlockBitVecMap::const_iterator I = SeenStartMap.find(Pred);
650       if (I != SeenStartMap.end()) {
651         BetweenStartEnd |= I->second;
652       }
653     }
654 
655     // Walk the instructions in the block to look for start/end ops.
656     for (MachineInstr &MI : *MBB) {
657       if (MI.isDebugInstr())
658         continue;
659       if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
660           MI.getOpcode() == TargetOpcode::LIFETIME_END) {
661         int Slot = getStartOrEndSlot(MI);
662         if (Slot < 0)
663           continue;
664         InterestingSlots.set(Slot);
665         if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
666           BetweenStartEnd.set(Slot);
667           NumStartLifetimes[Slot] += 1;
668         } else {
669           BetweenStartEnd.reset(Slot);
670           NumEndLifetimes[Slot] += 1;
671         }
672         const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
673         if (Allocation) {
674           LLVM_DEBUG(dbgs() << "Found a lifetime ");
675           LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
676                                     ? "start"
677                                     : "end"));
678           LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
679           LLVM_DEBUG(dbgs()
680                      << " with allocation: " << Allocation->getName() << "\n");
681         }
682         Markers.push_back(&MI);
683         MarkersFound += 1;
684       } else {
685         for (const MachineOperand &MO : MI.operands()) {
686           if (!MO.isFI())
687             continue;
688           int Slot = MO.getIndex();
689           if (Slot < 0)
690             continue;
691           if (! BetweenStartEnd.test(Slot)) {
692             ConservativeSlots.set(Slot);
693           }
694         }
695       }
696     }
697     BitVector &SeenStart = SeenStartMap[MBB];
698     SeenStart |= BetweenStartEnd;
699   }
700   if (!MarkersFound) {
701     return 0;
702   }
703 
704   // PR27903: slots with multiple start or end lifetime ops are not
705   // safe to enable for "lifetime-start-on-first-use".
706   for (unsigned slot = 0; slot < NumSlot; ++slot) {
707     if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
708       ConservativeSlots.set(slot);
709   }
710 
711   // The write to the catch object by the personality function is not propely
712   // modeled in IR: It happens before any cleanuppads are executed, even if the
713   // first mention of the catch object is in a catchpad. As such, mark catch
714   // object slots as conservative, so they are excluded from first-use analysis.
715   if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
716     for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
717       for (WinEHHandlerType &H : TBME.HandlerArray)
718         if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
719             H.CatchObj.FrameIndex >= 0)
720           ConservativeSlots.set(H.CatchObj.FrameIndex);
721 
722   LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
723 
724   // Step 2: compute begin/end sets for each block
725 
726   // NOTE: We use a depth-first iteration to ensure that we obtain a
727   // deterministic numbering.
728   for (MachineBasicBlock *MBB : depth_first(MF)) {
729     // Assign a serial number to this basic block.
730     BasicBlocks[MBB] = BasicBlockNumbering.size();
731     BasicBlockNumbering.push_back(MBB);
732 
733     // Keep a reference to avoid repeated lookups.
734     BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
735 
736     BlockInfo.Begin.resize(NumSlot);
737     BlockInfo.End.resize(NumSlot);
738 
739     SmallVector<int, 4> slots;
740     for (MachineInstr &MI : *MBB) {
741       bool isStart = false;
742       slots.clear();
743       if (isLifetimeStartOrEnd(MI, slots, isStart)) {
744         if (!isStart) {
745           assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
746           int Slot = slots[0];
747           if (BlockInfo.Begin.test(Slot)) {
748             BlockInfo.Begin.reset(Slot);
749           }
750           BlockInfo.End.set(Slot);
751         } else {
752           for (auto Slot : slots) {
753             LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
754             LLVM_DEBUG(dbgs()
755                        << " at " << printMBBReference(*MBB) << " index ");
756             LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
757             const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
758             if (Allocation) {
759               LLVM_DEBUG(dbgs()
760                          << " with allocation: " << Allocation->getName());
761             }
762             LLVM_DEBUG(dbgs() << "\n");
763             if (BlockInfo.End.test(Slot)) {
764               BlockInfo.End.reset(Slot);
765             }
766             BlockInfo.Begin.set(Slot);
767           }
768         }
769       }
770     }
771   }
772 
773   // Update statistics.
774   NumMarkerSeen += MarkersFound;
775   return MarkersFound;
776 }
777 
778 void StackColoring::calculateLocalLiveness() {
779   unsigned NumIters = 0;
780   bool changed = true;
781   // Create BitVector outside the loop and reuse them to avoid repeated heap
782   // allocations.
783   BitVector LocalLiveIn;
784   BitVector LocalLiveOut;
785   while (changed) {
786     changed = false;
787     ++NumIters;
788 
789     for (const MachineBasicBlock *BB : BasicBlockNumbering) {
790       // Use an iterator to avoid repeated lookups.
791       LivenessMap::iterator BI = BlockLiveness.find(BB);
792       assert(BI != BlockLiveness.end() && "Block not found");
793       BlockLifetimeInfo &BlockInfo = BI->second;
794 
795       // Compute LiveIn by unioning together the LiveOut sets of all preds.
796       LocalLiveIn.clear();
797       for (MachineBasicBlock *Pred : BB->predecessors()) {
798         LivenessMap::const_iterator I = BlockLiveness.find(Pred);
799         // PR37130: transformations prior to stack coloring can
800         // sometimes leave behind statically unreachable blocks; these
801         // can be safely skipped here.
802         if (I != BlockLiveness.end())
803           LocalLiveIn |= I->second.LiveOut;
804       }
805 
806       // Compute LiveOut by subtracting out lifetimes that end in this
807       // block, then adding in lifetimes that begin in this block.  If
808       // we have both BEGIN and END markers in the same basic block
809       // then we know that the BEGIN marker comes after the END,
810       // because we already handle the case where the BEGIN comes
811       // before the END when collecting the markers (and building the
812       // BEGIN/END vectors).
813       LocalLiveOut = LocalLiveIn;
814       LocalLiveOut.reset(BlockInfo.End);
815       LocalLiveOut |= BlockInfo.Begin;
816 
817       // Update block LiveIn set, noting whether it has changed.
818       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
819         changed = true;
820         BlockInfo.LiveIn |= LocalLiveIn;
821       }
822 
823       // Update block LiveOut set, noting whether it has changed.
824       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
825         changed = true;
826         BlockInfo.LiveOut |= LocalLiveOut;
827       }
828     }
829   } // while changed.
830 
831   NumIterations = NumIters;
832 }
833 
834 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
835   SmallVector<SlotIndex, 16> Starts;
836   SmallVector<bool, 16> DefinitelyInUse;
837 
838   // For each block, find which slots are active within this block
839   // and update the live intervals.
840   for (const MachineBasicBlock &MBB : *MF) {
841     Starts.clear();
842     Starts.resize(NumSlots);
843     DefinitelyInUse.clear();
844     DefinitelyInUse.resize(NumSlots);
845 
846     // Start the interval of the slots that we previously found to be 'in-use'.
847     BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
848     for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
849          pos = MBBLiveness.LiveIn.find_next(pos)) {
850       Starts[pos] = Indexes->getMBBStartIdx(&MBB);
851     }
852 
853     // Create the interval for the basic blocks containing lifetime begin/end.
854     for (const MachineInstr &MI : MBB) {
855       SmallVector<int, 4> slots;
856       bool IsStart = false;
857       if (!isLifetimeStartOrEnd(MI, slots, IsStart))
858         continue;
859       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
860       for (auto Slot : slots) {
861         if (IsStart) {
862           // If a slot is already definitely in use, we don't have to emit
863           // a new start marker because there is already a pre-existing
864           // one.
865           if (!DefinitelyInUse[Slot]) {
866             LiveStarts[Slot].push_back(ThisIndex);
867             DefinitelyInUse[Slot] = true;
868           }
869           if (!Starts[Slot].isValid())
870             Starts[Slot] = ThisIndex;
871         } else {
872           if (Starts[Slot].isValid()) {
873             VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
874             Intervals[Slot]->addSegment(
875                 LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
876             Starts[Slot] = SlotIndex(); // Invalidate the start index
877             DefinitelyInUse[Slot] = false;
878           }
879         }
880       }
881     }
882 
883     // Finish up started segments
884     for (unsigned i = 0; i < NumSlots; ++i) {
885       if (!Starts[i].isValid())
886         continue;
887 
888       SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
889       VNInfo *VNI = Intervals[i]->getValNumInfo(0);
890       Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
891     }
892   }
893 }
894 
895 bool StackColoring::removeAllMarkers() {
896   unsigned Count = 0;
897   for (MachineInstr *MI : Markers) {
898     MI->eraseFromParent();
899     Count++;
900   }
901   Markers.clear();
902 
903   LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
904   return Count;
905 }
906 
907 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
908   unsigned FixedInstr = 0;
909   unsigned FixedMemOp = 0;
910   unsigned FixedDbg = 0;
911 
912   // Remap debug information that refers to stack slots.
913   for (auto &VI : MF->getVariableDbgInfo()) {
914     if (!VI.Var || !VI.inStackSlot())
915       continue;
916     int Slot = VI.getStackSlot();
917     if (SlotRemap.count(Slot)) {
918       LLVM_DEBUG(dbgs() << "Remapping debug info for ["
919                         << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
920       VI.updateStackSlot(SlotRemap[Slot]);
921       FixedDbg++;
922     }
923   }
924 
925   // Keep a list of *allocas* which need to be remapped.
926   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
927 
928   // Keep a list of allocas which has been affected by the remap.
929   SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
930 
931   for (const std::pair<int, int> &SI : SlotRemap) {
932     const AllocaInst *From = MFI->getObjectAllocation(SI.first);
933     const AllocaInst *To = MFI->getObjectAllocation(SI.second);
934     assert(To && From && "Invalid allocation object");
935     Allocas[From] = To;
936 
937     // If From is before wo, its possible that there is a use of From between
938     // them.
939     if (From->comesBefore(To))
940       const_cast<AllocaInst *>(To)->moveBefore(
941           const_cast<AllocaInst *>(From)->getIterator());
942 
943     // AA might be used later for instruction scheduling, and we need it to be
944     // able to deduce the correct aliasing releationships between pointers
945     // derived from the alloca being remapped and the target of that remapping.
946     // The only safe way, without directly informing AA about the remapping
947     // somehow, is to directly update the IR to reflect the change being made
948     // here.
949     Instruction *Inst = const_cast<AllocaInst *>(To);
950     if (From->getType() != To->getType()) {
951       BitCastInst *Cast = new BitCastInst(Inst, From->getType());
952       Cast->insertAfter(Inst->getIterator());
953       Inst = Cast;
954     }
955 
956     // We keep both slots to maintain AliasAnalysis metadata later.
957     MergedAllocas.insert(From);
958     MergedAllocas.insert(To);
959 
960     // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
961     // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
962     // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
963     MachineFrameInfo::SSPLayoutKind FromKind
964         = MFI->getObjectSSPLayout(SI.first);
965     MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
966     if (FromKind != MachineFrameInfo::SSPLK_None &&
967         (ToKind == MachineFrameInfo::SSPLK_None ||
968          (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
969           FromKind != MachineFrameInfo::SSPLK_AddrOf)))
970       MFI->setObjectSSPLayout(SI.second, FromKind);
971 
972     // The new alloca might not be valid in a llvm.dbg.declare for this
973     // variable, so poison out the use to make the verifier happy.
974     AllocaInst *FromAI = const_cast<AllocaInst *>(From);
975     if (FromAI->isUsedByMetadata())
976       ValueAsMetadata::handleRAUW(FromAI, PoisonValue::get(FromAI->getType()));
977     for (auto &Use : FromAI->uses()) {
978       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
979         if (BCI->isUsedByMetadata())
980           ValueAsMetadata::handleRAUW(BCI, PoisonValue::get(BCI->getType()));
981     }
982 
983     // Note that this will not replace uses in MMOs (which we'll update below),
984     // or anywhere else (which is why we won't delete the original
985     // instruction).
986     FromAI->replaceAllUsesWith(Inst);
987   }
988 
989   // Remap all instructions to the new stack slots.
990   std::vector<std::vector<MachineMemOperand *>> SSRefs(
991       MFI->getObjectIndexEnd());
992   for (MachineBasicBlock &BB : *MF)
993     for (MachineInstr &I : BB) {
994       // Skip lifetime markers. We'll remove them soon.
995       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
996           I.getOpcode() == TargetOpcode::LIFETIME_END)
997         continue;
998 
999       // Update the MachineMemOperand to use the new alloca.
1000       for (MachineMemOperand *MMO : I.memoperands()) {
1001         // We've replaced IR-level uses of the remapped allocas, so we only
1002         // need to replace direct uses here.
1003         const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
1004         if (!AI)
1005           continue;
1006 
1007         if (!Allocas.count(AI))
1008           continue;
1009 
1010         MMO->setValue(Allocas[AI]);
1011         FixedMemOp++;
1012       }
1013 
1014       // Update all of the machine instruction operands.
1015       for (MachineOperand &MO : I.operands()) {
1016         if (!MO.isFI())
1017           continue;
1018         int FromSlot = MO.getIndex();
1019 
1020         // Don't touch arguments.
1021         if (FromSlot<0)
1022           continue;
1023 
1024         // Only look at mapped slots.
1025         if (!SlotRemap.count(FromSlot))
1026           continue;
1027 
1028         // In a debug build, check that the instruction that we are modifying is
1029         // inside the expected live range. If the instruction is not inside
1030         // the calculated range then it means that the alloca usage moved
1031         // outside of the lifetime markers, or that the user has a bug.
1032         // NOTE: Alloca address calculations which happen outside the lifetime
1033         // zone are okay, despite the fact that we don't have a good way
1034         // for validating all of the usages of the calculation.
1035 #ifndef NDEBUG
1036         bool TouchesMemory = I.mayLoadOrStore();
1037         // If we *don't* protect the user from escaped allocas, don't bother
1038         // validating the instructions.
1039         if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
1040           SlotIndex Index = Indexes->getInstructionIndex(I);
1041           const LiveInterval *Interval = &*Intervals[FromSlot];
1042           assert(Interval->find(Index) != Interval->end() &&
1043                  "Found instruction usage outside of live range.");
1044         }
1045 #endif
1046 
1047         // Fix the machine instructions.
1048         int ToSlot = SlotRemap[FromSlot];
1049         MO.setIndex(ToSlot);
1050         FixedInstr++;
1051       }
1052 
1053       // We adjust AliasAnalysis information for merged stack slots.
1054       SmallVector<MachineMemOperand *, 2> NewMMOs;
1055       bool ReplaceMemOps = false;
1056       for (MachineMemOperand *MMO : I.memoperands()) {
1057         // Collect MachineMemOperands which reference
1058         // FixedStackPseudoSourceValues with old frame indices.
1059         if (const auto *FSV = dyn_cast_or_null<FixedStackPseudoSourceValue>(
1060                 MMO->getPseudoValue())) {
1061           int FI = FSV->getFrameIndex();
1062           auto To = SlotRemap.find(FI);
1063           if (To != SlotRemap.end())
1064             SSRefs[FI].push_back(MMO);
1065         }
1066 
1067         // If this memory location can be a slot remapped here,
1068         // we remove AA information.
1069         bool MayHaveConflictingAAMD = false;
1070         if (MMO->getAAInfo()) {
1071           if (const Value *MMOV = MMO->getValue()) {
1072             SmallVector<Value *, 4> Objs;
1073             getUnderlyingObjectsForCodeGen(MMOV, Objs);
1074 
1075             if (Objs.empty())
1076               MayHaveConflictingAAMD = true;
1077             else
1078               for (Value *V : Objs) {
1079                 // If this memory location comes from a known stack slot
1080                 // that is not remapped, we continue checking.
1081                 // Otherwise, we need to invalidate AA infomation.
1082                 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
1083                 if (AI && MergedAllocas.count(AI)) {
1084                   MayHaveConflictingAAMD = true;
1085                   break;
1086                 }
1087               }
1088           }
1089         }
1090         if (MayHaveConflictingAAMD) {
1091           NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
1092           ReplaceMemOps = true;
1093         } else {
1094           NewMMOs.push_back(MMO);
1095         }
1096       }
1097 
1098       // If any memory operand is updated, set memory references of
1099       // this instruction.
1100       if (ReplaceMemOps)
1101         I.setMemRefs(*MF, NewMMOs);
1102     }
1103 
1104   // Rewrite MachineMemOperands that reference old frame indices.
1105   for (auto E : enumerate(SSRefs))
1106     if (!E.value().empty()) {
1107       const PseudoSourceValue *NewSV =
1108           MF->getPSVManager().getFixedStack(SlotRemap.find(E.index())->second);
1109       for (MachineMemOperand *Ref : E.value())
1110         Ref->setValue(NewSV);
1111     }
1112 
1113   // Update the location of C++ catch objects for the MSVC personality routine.
1114   if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
1115     for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
1116       for (WinEHHandlerType &H : TBME.HandlerArray)
1117         if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
1118             SlotRemap.count(H.CatchObj.FrameIndex))
1119           H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
1120 
1121   LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
1122   LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
1123   LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
1124   (void) FixedMemOp;
1125   (void) FixedDbg;
1126   (void) FixedInstr;
1127 }
1128 
1129 void StackColoring::removeInvalidSlotRanges() {
1130   for (MachineBasicBlock &BB : *MF)
1131     for (MachineInstr &I : BB) {
1132       if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
1133           I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
1134         continue;
1135 
1136       // Some intervals are suspicious! In some cases we find address
1137       // calculations outside of the lifetime zone, but not actual memory
1138       // read or write. Memory accesses outside of the lifetime zone are a clear
1139       // violation, but address calculations are okay. This can happen when
1140       // GEPs are hoisted outside of the lifetime zone.
1141       // So, in here we only check instructions which can read or write memory.
1142       if (!I.mayLoad() && !I.mayStore())
1143         continue;
1144 
1145       // Check all of the machine operands.
1146       for (const MachineOperand &MO : I.operands()) {
1147         if (!MO.isFI())
1148           continue;
1149 
1150         int Slot = MO.getIndex();
1151 
1152         if (Slot<0)
1153           continue;
1154 
1155         if (Intervals[Slot]->empty())
1156           continue;
1157 
1158         // Check that the used slot is inside the calculated lifetime range.
1159         // If it is not, warn about it and invalidate the range.
1160         LiveInterval *Interval = &*Intervals[Slot];
1161         SlotIndex Index = Indexes->getInstructionIndex(I);
1162         if (Interval->find(Index) == Interval->end()) {
1163           Interval->clear();
1164           LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
1165           EscapedAllocas++;
1166         }
1167       }
1168     }
1169 }
1170 
1171 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
1172                                    unsigned NumSlots) {
1173   // Expunge slot remap map.
1174   for (unsigned i=0; i < NumSlots; ++i) {
1175     // If we are remapping i
1176     if (SlotRemap.count(i)) {
1177       int Target = SlotRemap[i];
1178       // As long as our target is mapped to something else, follow it.
1179       while (SlotRemap.count(Target)) {
1180         Target = SlotRemap[Target];
1181         SlotRemap[i] = Target;
1182       }
1183     }
1184   }
1185 }
1186 
1187 bool StackColoringLegacy::runOnMachineFunction(MachineFunction &MF) {
1188   if (skipFunction(MF.getFunction()))
1189     return false;
1190 
1191   StackColoring SC(&getAnalysis<SlotIndexesWrapperPass>().getSI());
1192   return SC.run(MF);
1193 }
1194 
1195 PreservedAnalyses StackColoringPass::run(MachineFunction &MF,
1196                                          MachineFunctionAnalysisManager &MFAM) {
1197   StackColoring SC(&MFAM.getResult<SlotIndexesAnalysis>(MF));
1198   if (SC.run(MF))
1199     return PreservedAnalyses::none();
1200   return PreservedAnalyses::all();
1201 }
1202 
1203 bool StackColoring::run(MachineFunction &Func) {
1204   LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
1205                     << "********** Function: " << Func.getName() << '\n');
1206   MF = &Func;
1207   MFI = &MF->getFrameInfo();
1208   BlockLiveness.clear();
1209   BasicBlocks.clear();
1210   BasicBlockNumbering.clear();
1211   Markers.clear();
1212   Intervals.clear();
1213   LiveStarts.clear();
1214   VNInfoAllocator.Reset();
1215 
1216   unsigned NumSlots = MFI->getObjectIndexEnd();
1217 
1218   // If there are no stack slots then there are no markers to remove.
1219   if (!NumSlots)
1220     return false;
1221 
1222   SmallVector<int, 8> SortedSlots;
1223   SortedSlots.reserve(NumSlots);
1224   Intervals.reserve(NumSlots);
1225   LiveStarts.resize(NumSlots);
1226 
1227   unsigned NumMarkers = collectMarkers(NumSlots);
1228 
1229   unsigned TotalSize = 0;
1230   LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
1231                     << " slots\n");
1232   LLVM_DEBUG(dbgs() << "Slot structure:\n");
1233 
1234   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
1235     LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
1236                       << " bytes.\n");
1237     TotalSize += MFI->getObjectSize(i);
1238   }
1239 
1240   LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
1241 
1242   // Don't continue because there are not enough lifetime markers, or the
1243   // stack is too small, or we are told not to optimize the slots.
1244   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
1245     LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
1246     return removeAllMarkers();
1247   }
1248 
1249   for (unsigned i=0; i < NumSlots; ++i) {
1250     std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
1251     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
1252     Intervals.push_back(std::move(LI));
1253     SortedSlots.push_back(i);
1254   }
1255 
1256   // Calculate the liveness of each block.
1257   calculateLocalLiveness();
1258   LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
1259   LLVM_DEBUG(dump());
1260 
1261   // Propagate the liveness information.
1262   calculateLiveIntervals(NumSlots);
1263   LLVM_DEBUG(dumpIntervals());
1264 
1265   // Search for allocas which are used outside of the declared lifetime
1266   // markers.
1267   if (ProtectFromEscapedAllocas)
1268     removeInvalidSlotRanges();
1269 
1270   // Maps old slots to new slots.
1271   DenseMap<int, int> SlotRemap;
1272   unsigned RemovedSlots = 0;
1273   unsigned ReducedSize = 0;
1274 
1275   // Do not bother looking at empty intervals.
1276   for (unsigned I = 0; I < NumSlots; ++I) {
1277     if (Intervals[SortedSlots[I]]->empty())
1278       SortedSlots[I] = -1;
1279   }
1280 
1281   // This is a simple greedy algorithm for merging allocas. First, sort the
1282   // slots, placing the largest slots first. Next, perform an n^2 scan and look
1283   // for disjoint slots. When you find disjoint slots, merge the smaller one
1284   // into the bigger one and update the live interval. Remove the small alloca
1285   // and continue.
1286 
1287   // Sort the slots according to their size. Place unused slots at the end.
1288   // Use stable sort to guarantee deterministic code generation.
1289   llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
1290     // We use -1 to denote a uninteresting slot. Place these slots at the end.
1291     if (LHS == -1)
1292       return false;
1293     if (RHS == -1)
1294       return true;
1295     // Sort according to size.
1296     return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
1297   });
1298 
1299   for (auto &s : LiveStarts)
1300     llvm::sort(s);
1301 
1302   bool Changed = true;
1303   while (Changed) {
1304     Changed = false;
1305     for (unsigned I = 0; I < NumSlots; ++I) {
1306       if (SortedSlots[I] == -1)
1307         continue;
1308 
1309       for (unsigned J=I+1; J < NumSlots; ++J) {
1310         if (SortedSlots[J] == -1)
1311           continue;
1312 
1313         int FirstSlot = SortedSlots[I];
1314         int SecondSlot = SortedSlots[J];
1315 
1316         // Objects with different stack IDs cannot be merged.
1317         if (MFI->getStackID(FirstSlot) != MFI->getStackID(SecondSlot))
1318           continue;
1319 
1320         LiveInterval *First = &*Intervals[FirstSlot];
1321         LiveInterval *Second = &*Intervals[SecondSlot];
1322         auto &FirstS = LiveStarts[FirstSlot];
1323         auto &SecondS = LiveStarts[SecondSlot];
1324         assert(!First->empty() && !Second->empty() && "Found an empty range");
1325 
1326         // Merge disjoint slots. This is a little bit tricky - see the
1327         // Implementation Notes section for an explanation.
1328         if (!First->isLiveAtIndexes(SecondS) &&
1329             !Second->isLiveAtIndexes(FirstS)) {
1330           Changed = true;
1331           First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
1332 
1333           int OldSize = FirstS.size();
1334           FirstS.append(SecondS.begin(), SecondS.end());
1335           auto Mid = FirstS.begin() + OldSize;
1336           std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
1337 
1338           SlotRemap[SecondSlot] = FirstSlot;
1339           SortedSlots[J] = -1;
1340           LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
1341                             << SecondSlot << " together.\n");
1342           Align MaxAlignment = std::max(MFI->getObjectAlign(FirstSlot),
1343                                         MFI->getObjectAlign(SecondSlot));
1344 
1345           assert(MFI->getObjectSize(FirstSlot) >=
1346                  MFI->getObjectSize(SecondSlot) &&
1347                  "Merging a small object into a larger one");
1348 
1349           RemovedSlots+=1;
1350           ReducedSize += MFI->getObjectSize(SecondSlot);
1351           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
1352           MFI->RemoveStackObject(SecondSlot);
1353         }
1354       }
1355     }
1356   }// While changed.
1357 
1358   // Record statistics.
1359   StackSpaceSaved += ReducedSize;
1360   StackSlotMerged += RemovedSlots;
1361   LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
1362                     << ReducedSize << " bytes\n");
1363 
1364   // Scan the entire function and update all machine operands that use frame
1365   // indices to use the remapped frame index.
1366   if (!SlotRemap.empty()) {
1367     expungeSlotMap(SlotRemap, NumSlots);
1368     remapInstructions(SlotRemap);
1369   }
1370 
1371   return removeAllMarkers();
1372 }
1373