1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SplitAnalysis class as well as mutator functions for 11 // live range splitting. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "SplitKit.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/CodeGen/CalcSpillWeights.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstrBuilder.h" 23 #include "llvm/CodeGen/MachineLoopInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetInstrInfo.h" 29 #include "llvm/Target/TargetMachine.h" 30 31 using namespace llvm; 32 33 static cl::opt<bool> 34 AllowSplit("spiller-splits-edges", 35 cl::desc("Allow critical edge splitting during spilling")); 36 37 //===----------------------------------------------------------------------===// 38 // Split Analysis 39 //===----------------------------------------------------------------------===// 40 41 SplitAnalysis::SplitAnalysis(const MachineFunction &mf, 42 const LiveIntervals &lis, 43 const MachineLoopInfo &mli) 44 : mf_(mf), 45 lis_(lis), 46 loops_(mli), 47 tii_(*mf.getTarget().getInstrInfo()), 48 curli_(0) {} 49 50 void SplitAnalysis::clear() { 51 usingInstrs_.clear(); 52 usingBlocks_.clear(); 53 usingLoops_.clear(); 54 curli_ = 0; 55 } 56 57 bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { 58 MachineBasicBlock *T, *F; 59 SmallVector<MachineOperand, 4> Cond; 60 return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); 61 } 62 63 /// analyzeUses - Count instructions, basic blocks, and loops using curli. 64 void SplitAnalysis::analyzeUses() { 65 const MachineRegisterInfo &MRI = mf_.getRegInfo(); 66 for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg); 67 MachineInstr *MI = I.skipInstruction();) { 68 if (MI->isDebugValue() || !usingInstrs_.insert(MI)) 69 continue; 70 MachineBasicBlock *MBB = MI->getParent(); 71 if (usingBlocks_[MBB]++) 72 continue; 73 for (MachineLoop *Loop = loops_.getLoopFor(MBB); Loop; 74 Loop = Loop->getParentLoop()) 75 usingLoops_[Loop]++; 76 } 77 DEBUG(dbgs() << " counted " 78 << usingInstrs_.size() << " instrs, " 79 << usingBlocks_.size() << " blocks, " 80 << usingLoops_.size() << " loops.\n"); 81 } 82 83 void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { 84 for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { 85 unsigned count = usingBlocks_.lookup(*I); 86 OS << " BB#" << (*I)->getNumber(); 87 if (count) 88 OS << '(' << count << ')'; 89 } 90 } 91 92 // Get three sets of basic blocks surrounding a loop: Blocks inside the loop, 93 // predecessor blocks, and exit blocks. 94 void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) { 95 Blocks.clear(); 96 97 // Blocks in the loop. 98 Blocks.Loop.insert(Loop->block_begin(), Loop->block_end()); 99 100 // Predecessor blocks. 101 const MachineBasicBlock *Header = Loop->getHeader(); 102 for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(), 103 E = Header->pred_end(); I != E; ++I) 104 if (!Blocks.Loop.count(*I)) 105 Blocks.Preds.insert(*I); 106 107 // Exit blocks. 108 for (MachineLoop::block_iterator I = Loop->block_begin(), 109 E = Loop->block_end(); I != E; ++I) { 110 const MachineBasicBlock *MBB = *I; 111 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 112 SE = MBB->succ_end(); SI != SE; ++SI) 113 if (!Blocks.Loop.count(*SI)) 114 Blocks.Exits.insert(*SI); 115 } 116 } 117 118 void SplitAnalysis::print(const LoopBlocks &B, raw_ostream &OS) const { 119 OS << "Loop:"; 120 print(B.Loop, OS); 121 OS << ", preds:"; 122 print(B.Preds, OS); 123 OS << ", exits:"; 124 print(B.Exits, OS); 125 } 126 127 /// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in 128 /// and around the Loop. 129 SplitAnalysis::LoopPeripheralUse SplitAnalysis:: 130 analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) { 131 LoopPeripheralUse use = ContainedInLoop; 132 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 133 I != E; ++I) { 134 const MachineBasicBlock *MBB = I->first; 135 // Is this a peripheral block? 136 if (use < MultiPeripheral && 137 (Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) { 138 if (I->second > 1) use = MultiPeripheral; 139 else use = SinglePeripheral; 140 continue; 141 } 142 // Is it a loop block? 143 if (Blocks.Loop.count(MBB)) 144 continue; 145 // It must be an unrelated block. 146 DEBUG(dbgs() << ", outside: BB#" << MBB->getNumber()); 147 return OutsideLoop; 148 } 149 return use; 150 } 151 152 /// getCriticalExits - It may be necessary to partially break critical edges 153 /// leaving the loop if an exit block has predecessors from outside the loop 154 /// periphery. 155 void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 156 BlockPtrSet &CriticalExits) { 157 CriticalExits.clear(); 158 159 // A critical exit block has curli live-in, and has a predecessor that is not 160 // in the loop nor a loop predecessor. For such an exit block, the edges 161 // carrying the new variable must be moved to a new pre-exit block. 162 for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end(); 163 I != E; ++I) { 164 const MachineBasicBlock *Exit = *I; 165 // A single-predecessor exit block is definitely not a critical edge. 166 if (Exit->pred_size() == 1) 167 continue; 168 // This exit may not have curli live in at all. No need to split. 169 if (!lis_.isLiveInToMBB(*curli_, Exit)) 170 continue; 171 // Does this exit block have a predecessor that is not a loop block or loop 172 // predecessor? 173 for (MachineBasicBlock::const_pred_iterator PI = Exit->pred_begin(), 174 PE = Exit->pred_end(); PI != PE; ++PI) { 175 const MachineBasicBlock *Pred = *PI; 176 if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred)) 177 continue; 178 // This is a critical exit block, and we need to split the exit edge. 179 CriticalExits.insert(Exit); 180 break; 181 } 182 } 183 } 184 185 void SplitAnalysis::getCriticalPreds(const SplitAnalysis::LoopBlocks &Blocks, 186 BlockPtrSet &CriticalPreds) { 187 CriticalPreds.clear(); 188 189 // A critical predecessor block has curli live-out, and has a successor that 190 // has curli live-in and is not in the loop nor a loop exit block. For such a 191 // predecessor block, we must carry the value in both the 'inside' and 192 // 'outside' registers. 193 for (BlockPtrSet::iterator I = Blocks.Preds.begin(), E = Blocks.Preds.end(); 194 I != E; ++I) { 195 const MachineBasicBlock *Pred = *I; 196 // Definitely not a critical edge. 197 if (Pred->succ_size() == 1) 198 continue; 199 // This block may not have curli live out at all if there is a PHI. 200 if (!lis_.isLiveOutOfMBB(*curli_, Pred)) 201 continue; 202 // Does this block have a successor outside the loop? 203 for (MachineBasicBlock::const_pred_iterator SI = Pred->succ_begin(), 204 SE = Pred->succ_end(); SI != SE; ++SI) { 205 const MachineBasicBlock *Succ = *SI; 206 if (Blocks.Loop.count(Succ) || Blocks.Exits.count(Succ)) 207 continue; 208 if (!lis_.isLiveInToMBB(*curli_, Succ)) 209 continue; 210 // This is a critical predecessor block. 211 CriticalPreds.insert(Pred); 212 break; 213 } 214 } 215 } 216 217 /// canSplitCriticalExits - Return true if it is possible to insert new exit 218 /// blocks before the blocks in CriticalExits. 219 bool 220 SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks, 221 BlockPtrSet &CriticalExits) { 222 // If we don't allow critical edge splitting, require no critical exits. 223 if (!AllowSplit) 224 return CriticalExits.empty(); 225 226 for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end(); 227 I != E; ++I) { 228 const MachineBasicBlock *Succ = *I; 229 // We want to insert a new pre-exit MBB before Succ, and change all the 230 // in-loop blocks to branch to the pre-exit instead of Succ. 231 // Check that all the in-loop predecessors can be changed. 232 for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(), 233 PE = Succ->pred_end(); PI != PE; ++PI) { 234 const MachineBasicBlock *Pred = *PI; 235 // The external predecessors won't be altered. 236 if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred)) 237 continue; 238 if (!canAnalyzeBranch(Pred)) 239 return false; 240 } 241 242 // If Succ's layout predecessor falls through, that too must be analyzable. 243 // We need to insert the pre-exit block in the gap. 244 MachineFunction::const_iterator MFI = Succ; 245 if (MFI == mf_.begin()) 246 continue; 247 if (!canAnalyzeBranch(--MFI)) 248 return false; 249 } 250 // No problems found. 251 return true; 252 } 253 254 void SplitAnalysis::analyze(const LiveInterval *li) { 255 clear(); 256 curli_ = li; 257 analyzeUses(); 258 } 259 260 void SplitAnalysis::getSplitLoops(LoopPtrSet &Loops) { 261 assert(curli_ && "Call analyze() before getSplitLoops"); 262 if (usingLoops_.empty()) 263 return; 264 265 LoopBlocks Blocks; 266 BlockPtrSet CriticalExits; 267 268 // We split around loops where curli is used outside the periphery. 269 for (LoopCountMap::const_iterator I = usingLoops_.begin(), 270 E = usingLoops_.end(); I != E; ++I) { 271 const MachineLoop *Loop = I->first; 272 getLoopBlocks(Loop, Blocks); 273 DEBUG({ dbgs() << " "; print(Blocks, dbgs()); }); 274 275 switch(analyzeLoopPeripheralUse(Blocks)) { 276 case OutsideLoop: 277 break; 278 case MultiPeripheral: 279 // FIXME: We could split a live range with multiple uses in a peripheral 280 // block and still make progress. However, it is possible that splitting 281 // another live range will insert copies into a peripheral block, and 282 // there is a small chance we can enter an infinite loop, inserting copies 283 // forever. 284 // For safety, stick to splitting live ranges with uses outside the 285 // periphery. 286 DEBUG(dbgs() << ": multiple peripheral uses"); 287 break; 288 case ContainedInLoop: 289 DEBUG(dbgs() << ": fully contained\n"); 290 continue; 291 case SinglePeripheral: 292 DEBUG(dbgs() << ": single peripheral use\n"); 293 continue; 294 } 295 // Will it be possible to split around this loop? 296 getCriticalExits(Blocks, CriticalExits); 297 DEBUG(dbgs() << ": " << CriticalExits.size() << " critical exits\n"); 298 if (!canSplitCriticalExits(Blocks, CriticalExits)) 299 continue; 300 // This is a possible split. 301 Loops.insert(Loop); 302 } 303 304 DEBUG(dbgs() << " getSplitLoops found " << Loops.size() 305 << " candidate loops.\n"); 306 } 307 308 const MachineLoop *SplitAnalysis::getBestSplitLoop() { 309 LoopPtrSet Loops; 310 getSplitLoops(Loops); 311 if (Loops.empty()) 312 return 0; 313 314 // Pick the earliest loop. 315 // FIXME: Are there other heuristics to consider? 316 const MachineLoop *Best = 0; 317 SlotIndex BestIdx; 318 for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E; 319 ++I) { 320 SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader()); 321 if (!Best || Idx < BestIdx) 322 Best = *I, BestIdx = Idx; 323 } 324 DEBUG(dbgs() << " getBestSplitLoop found " << *Best); 325 return Best; 326 } 327 328 /// isBypassLoop - Return true if curli is live through Loop and has no uses 329 /// inside the loop. Bypass loops are candidates for splitting because it can 330 /// prevent interference inside the loop. 331 bool SplitAnalysis::isBypassLoop(const MachineLoop *Loop) { 332 // If curli is live into the loop header and there are no uses in the loop, it 333 // must be live in the entire loop and live on at least one exiting edge. 334 return !usingLoops_.count(Loop) && 335 lis_.isLiveInToMBB(*curli_, Loop->getHeader()); 336 } 337 338 /// getBypassLoops - Get all the maximal bypass loops. These are the bypass 339 /// loops whose parent is not a bypass loop. 340 void SplitAnalysis::getBypassLoops(LoopPtrSet &BypassLoops) { 341 SmallVector<MachineLoop*, 8> Todo(loops_.begin(), loops_.end()); 342 while (!Todo.empty()) { 343 MachineLoop *Loop = Todo.pop_back_val(); 344 if (!usingLoops_.count(Loop)) { 345 // This is either a bypass loop or completely irrelevant. 346 if (lis_.isLiveInToMBB(*curli_, Loop->getHeader())) 347 BypassLoops.insert(Loop); 348 // Either way, skip the child loops. 349 continue; 350 } 351 352 // The child loops may be bypass loops. 353 Todo.append(Loop->begin(), Loop->end()); 354 } 355 } 356 357 358 //===----------------------------------------------------------------------===// 359 // LiveIntervalMap 360 //===----------------------------------------------------------------------===// 361 362 // Work around the fact that the std::pair constructors are broken for pointer 363 // pairs in some implementations. makeVV(x, 0) works. 364 static inline std::pair<const VNInfo*, VNInfo*> 365 makeVV(const VNInfo *a, VNInfo *b) { 366 return std::make_pair(a, b); 367 } 368 369 void LiveIntervalMap::reset(LiveInterval *li) { 370 li_ = li; 371 valueMap_.clear(); 372 liveOutCache_.clear(); 373 } 374 375 bool LiveIntervalMap::isComplexMapped(const VNInfo *ParentVNI) const { 376 ValueMap::const_iterator i = valueMap_.find(ParentVNI); 377 return i != valueMap_.end() && i->second == 0; 378 } 379 380 // defValue - Introduce a li_ def for ParentVNI that could be later than 381 // ParentVNI->def. 382 VNInfo *LiveIntervalMap::defValue(const VNInfo *ParentVNI, SlotIndex Idx) { 383 assert(li_ && "call reset first"); 384 assert(ParentVNI && "Mapping NULL value"); 385 assert(Idx.isValid() && "Invalid SlotIndex"); 386 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 387 388 // Create a new value. 389 VNInfo *VNI = li_->getNextValue(Idx, 0, lis_.getVNInfoAllocator()); 390 391 // Preserve the PHIDef bit. 392 if (ParentVNI->isPHIDef() && Idx == ParentVNI->def) 393 VNI->setIsPHIDef(true); 394 395 // Use insert for lookup, so we can add missing values with a second lookup. 396 std::pair<ValueMap::iterator,bool> InsP = 397 valueMap_.insert(makeVV(ParentVNI, Idx == ParentVNI->def ? VNI : 0)); 398 399 // This is now a complex def. Mark with a NULL in valueMap. 400 if (!InsP.second) 401 InsP.first->second = 0; 402 403 return VNI; 404 } 405 406 407 // mapValue - Find the mapped value for ParentVNI at Idx. 408 // Potentially create phi-def values. 409 VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx, 410 bool *simple) { 411 assert(li_ && "call reset first"); 412 assert(ParentVNI && "Mapping NULL value"); 413 assert(Idx.isValid() && "Invalid SlotIndex"); 414 assert(parentli_.getVNInfoAt(Idx) == ParentVNI && "Bad ParentVNI"); 415 416 // Use insert for lookup, so we can add missing values with a second lookup. 417 std::pair<ValueMap::iterator,bool> InsP = 418 valueMap_.insert(makeVV(ParentVNI, 0)); 419 420 // This was an unknown value. Create a simple mapping. 421 if (InsP.second) { 422 if (simple) *simple = true; 423 return InsP.first->second = li_->createValueCopy(ParentVNI, 424 lis_.getVNInfoAllocator()); 425 } 426 427 // This was a simple mapped value. 428 if (InsP.first->second) { 429 if (simple) *simple = true; 430 return InsP.first->second; 431 } 432 433 // This is a complex mapped value. There may be multiple defs, and we may need 434 // to create phi-defs. 435 if (simple) *simple = false; 436 MachineBasicBlock *IdxMBB = lis_.getMBBFromIndex(Idx); 437 assert(IdxMBB && "No MBB at Idx"); 438 439 // Is there a def in the same MBB we can extend? 440 if (VNInfo *VNI = extendTo(IdxMBB, Idx)) 441 return VNI; 442 443 // Now for the fun part. We know that ParentVNI potentially has multiple defs, 444 // and we may need to create even more phi-defs to preserve VNInfo SSA form. 445 // Perform a search for all predecessor blocks where we know the dominating 446 // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. 447 DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber() 448 << " at " << Idx << " in " << *li_ << '\n'); 449 450 // Blocks where li_ should be live-in. 451 SmallVector<MachineDomTreeNode*, 16> LiveIn; 452 LiveIn.push_back(mdt_[IdxMBB]); 453 454 // Using liveOutCache_ as a visited set, perform a BFS for all reaching defs. 455 for (unsigned i = 0; i != LiveIn.size(); ++i) { 456 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 457 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 458 PE = MBB->pred_end(); PI != PE; ++PI) { 459 MachineBasicBlock *Pred = *PI; 460 // Is this a known live-out block? 461 std::pair<LiveOutMap::iterator,bool> LOIP = 462 liveOutCache_.insert(std::make_pair(Pred, LiveOutPair())); 463 // Yes, we have been here before. 464 if (!LOIP.second) { 465 DEBUG(if (VNInfo *VNI = LOIP.first->second.first) 466 dbgs() << " known valno #" << VNI->id 467 << " at BB#" << Pred->getNumber() << '\n'); 468 continue; 469 } 470 471 // Does Pred provide a live-out value? 472 SlotIndex Last = lis_.getMBBEndIdx(Pred).getPrevSlot(); 473 if (VNInfo *VNI = extendTo(Pred, Last)) { 474 MachineBasicBlock *DefMBB = lis_.getMBBFromIndex(VNI->def); 475 DEBUG(dbgs() << " found valno #" << VNI->id 476 << " from BB#" << DefMBB->getNumber() 477 << " at BB#" << Pred->getNumber() << '\n'); 478 LiveOutPair &LOP = LOIP.first->second; 479 LOP.first = VNI; 480 LOP.second = mdt_[DefMBB]; 481 continue; 482 } 483 // No, we need a live-in value for Pred as well 484 if (Pred != IdxMBB) 485 LiveIn.push_back(mdt_[Pred]); 486 } 487 } 488 489 // We may need to add phi-def values to preserve the SSA form. 490 // This is essentially the same iterative algorithm that SSAUpdater uses, 491 // except we already have a dominator tree, so we don't have to recompute it. 492 VNInfo *IdxVNI = 0; 493 unsigned Changes; 494 do { 495 Changes = 0; 496 DEBUG(dbgs() << " Iterating over " << LiveIn.size() << " blocks.\n"); 497 // Propagate live-out values down the dominator tree, inserting phi-defs when 498 // necessary. Since LiveIn was created by a BFS, going backwards makes it more 499 // likely for us to visit immediate dominators before their children. 500 for (unsigned i = LiveIn.size(); i; --i) { 501 MachineDomTreeNode *Node = LiveIn[i-1]; 502 MachineBasicBlock *MBB = Node->getBlock(); 503 MachineDomTreeNode *IDom = Node->getIDom(); 504 LiveOutPair IDomValue; 505 // We need a live-in value to a block with no immediate dominator? 506 // This is probably an unreachable block that has survived somehow. 507 bool needPHI = !IDom; 508 509 // Get the IDom live-out value. 510 if (!needPHI) { 511 LiveOutMap::iterator I = liveOutCache_.find(IDom->getBlock()); 512 if (I != liveOutCache_.end()) 513 IDomValue = I->second; 514 else 515 // If IDom is outside our set of live-out blocks, there must be new 516 // defs, and we need a phi-def here. 517 needPHI = true; 518 } 519 520 // IDom dominates all of our predecessors, but it may not be the immediate 521 // dominator. Check if any of them have live-out values that are properly 522 // dominated by IDom. If so, we need a phi-def here. 523 if (!needPHI) { 524 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 525 PE = MBB->pred_end(); PI != PE; ++PI) { 526 LiveOutPair Value = liveOutCache_[*PI]; 527 if (!Value.first || Value.first == IDomValue.first) 528 continue; 529 // This predecessor is carrying something other than IDomValue. 530 // It could be because IDomValue hasn't propagated yet, or it could be 531 // because MBB is in the dominance frontier of that value. 532 if (mdt_.dominates(IDom, Value.second)) { 533 needPHI = true; 534 break; 535 } 536 } 537 } 538 539 // Create a phi-def if required. 540 if (needPHI) { 541 ++Changes; 542 SlotIndex Start = lis_.getMBBStartIdx(MBB); 543 VNInfo *VNI = li_->getNextValue(Start, 0, lis_.getVNInfoAllocator()); 544 VNI->setIsPHIDef(true); 545 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 546 << " phi-def #" << VNI->id << " at " << Start << '\n'); 547 // We no longer need li_ to be live-in. 548 LiveIn.erase(LiveIn.begin()+(i-1)); 549 // Blocks in LiveIn are either IdxMBB, or have a value live-through. 550 if (MBB == IdxMBB) 551 IdxVNI = VNI; 552 // Check if we need to update live-out info. 553 LiveOutMap::iterator I = liveOutCache_.find(MBB); 554 if (I == liveOutCache_.end() || I->second.second == Node) { 555 // We already have a live-out defined in MBB, so this must be IdxMBB. 556 assert(MBB == IdxMBB && "Adding phi-def to known live-out"); 557 li_->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); 558 } else { 559 // This phi-def is also live-out, so color the whole block. 560 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 561 I->second = LiveOutPair(VNI, Node); 562 } 563 } else if (IDomValue.first) { 564 // No phi-def here. Remember incoming value for IdxMBB. 565 if (MBB == IdxMBB) 566 IdxVNI = IDomValue.first; 567 // Propagate IDomValue if needed: 568 // MBB is live-out and doesn't define its own value. 569 LiveOutMap::iterator I = liveOutCache_.find(MBB); 570 if (I != liveOutCache_.end() && I->second.second != Node && 571 I->second.first != IDomValue.first) { 572 ++Changes; 573 I->second = IDomValue; 574 DEBUG(dbgs() << " - BB#" << MBB->getNumber() 575 << " idom valno #" << IDomValue.first->id 576 << " from BB#" << IDom->getBlock()->getNumber() << '\n'); 577 } 578 } 579 } 580 DEBUG(dbgs() << " - made " << Changes << " changes.\n"); 581 } while (Changes); 582 583 assert(IdxVNI && "Didn't find value for Idx"); 584 585 #ifndef NDEBUG 586 // Check the liveOutCache_ invariants. 587 for (LiveOutMap::iterator I = liveOutCache_.begin(), E = liveOutCache_.end(); 588 I != E; ++I) { 589 assert(I->first && "Null MBB entry in cache"); 590 assert(I->second.first && "Null VNInfo in cache"); 591 assert(I->second.second && "Null DomTreeNode in cache"); 592 if (I->second.second->getBlock() == I->first) 593 continue; 594 for (MachineBasicBlock::pred_iterator PI = I->first->pred_begin(), 595 PE = I->first->pred_end(); PI != PE; ++PI) 596 assert(liveOutCache_.lookup(*PI) == I->second && "Bad invariant"); 597 } 598 #endif 599 600 // Since we went through the trouble of a full BFS visiting all reaching defs, 601 // the values in LiveIn are now accurate. No more phi-defs are needed 602 // for these blocks, so we can color the live ranges. 603 // This makes the next mapValue call much faster. 604 for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { 605 MachineBasicBlock *MBB = LiveIn[i]->getBlock(); 606 SlotIndex Start = lis_.getMBBStartIdx(MBB); 607 if (MBB == IdxMBB) { 608 li_->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); 609 continue; 610 } 611 // Anything in LiveIn other than IdxMBB is live-through. 612 VNInfo *VNI = liveOutCache_.lookup(MBB).first; 613 assert(VNI && "Missing block value"); 614 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 615 } 616 617 return IdxVNI; 618 } 619 620 // extendTo - Find the last li_ value defined in MBB at or before Idx. The 621 // parentli_ is assumed to be live at Idx. Extend the live range to Idx. 622 // Return the found VNInfo, or NULL. 623 VNInfo *LiveIntervalMap::extendTo(const MachineBasicBlock *MBB, SlotIndex Idx) { 624 assert(li_ && "call reset first"); 625 LiveInterval::iterator I = std::upper_bound(li_->begin(), li_->end(), Idx); 626 if (I == li_->begin()) 627 return 0; 628 --I; 629 if (I->end <= lis_.getMBBStartIdx(MBB)) 630 return 0; 631 if (I->end <= Idx) 632 I->end = Idx.getNextSlot(); 633 return I->valno; 634 } 635 636 // addSimpleRange - Add a simple range from parentli_ to li_. 637 // ParentVNI must be live in the [Start;End) interval. 638 void LiveIntervalMap::addSimpleRange(SlotIndex Start, SlotIndex End, 639 const VNInfo *ParentVNI) { 640 assert(li_ && "call reset first"); 641 bool simple; 642 VNInfo *VNI = mapValue(ParentVNI, Start, &simple); 643 // A simple mapping is easy. 644 if (simple) { 645 li_->addRange(LiveRange(Start, End, VNI)); 646 return; 647 } 648 649 // ParentVNI is a complex value. We must map per MBB. 650 MachineFunction::iterator MBB = lis_.getMBBFromIndex(Start); 651 MachineFunction::iterator MBBE = lis_.getMBBFromIndex(End.getPrevSlot()); 652 653 if (MBB == MBBE) { 654 li_->addRange(LiveRange(Start, End, VNI)); 655 return; 656 } 657 658 // First block. 659 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), VNI)); 660 661 // Run sequence of full blocks. 662 for (++MBB; MBB != MBBE; ++MBB) { 663 Start = lis_.getMBBStartIdx(MBB); 664 li_->addRange(LiveRange(Start, lis_.getMBBEndIdx(MBB), 665 mapValue(ParentVNI, Start))); 666 } 667 668 // Final block. 669 Start = lis_.getMBBStartIdx(MBB); 670 if (Start != End) 671 li_->addRange(LiveRange(Start, End, mapValue(ParentVNI, Start))); 672 } 673 674 /// addRange - Add live ranges to li_ where [Start;End) intersects parentli_. 675 /// All needed values whose def is not inside [Start;End) must be defined 676 /// beforehand so mapValue will work. 677 void LiveIntervalMap::addRange(SlotIndex Start, SlotIndex End) { 678 assert(li_ && "call reset first"); 679 LiveInterval::const_iterator B = parentli_.begin(), E = parentli_.end(); 680 LiveInterval::const_iterator I = std::lower_bound(B, E, Start); 681 682 // Check if --I begins before Start and overlaps. 683 if (I != B) { 684 --I; 685 if (I->end > Start) 686 addSimpleRange(Start, std::min(End, I->end), I->valno); 687 ++I; 688 } 689 690 // The remaining ranges begin after Start. 691 for (;I != E && I->start < End; ++I) 692 addSimpleRange(I->start, std::min(End, I->end), I->valno); 693 } 694 695 696 //===----------------------------------------------------------------------===// 697 // Split Editor 698 //===----------------------------------------------------------------------===// 699 700 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 701 SplitEditor::SplitEditor(SplitAnalysis &sa, 702 LiveIntervals &lis, 703 VirtRegMap &vrm, 704 MachineDominatorTree &mdt, 705 LiveRangeEdit &edit) 706 : sa_(sa), lis_(lis), vrm_(vrm), 707 mri_(vrm.getMachineFunction().getRegInfo()), 708 tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()), 709 tri_(*vrm.getMachineFunction().getTarget().getRegisterInfo()), 710 edit_(edit), 711 dupli_(lis_, mdt, edit.getParent()), 712 openli_(lis_, mdt, edit.getParent()) 713 { 714 // We don't need an AliasAnalysis since we will only be performing 715 // cheap-as-a-copy remats anyway. 716 edit_.anyRematerializable(lis_, tii_, 0); 717 } 718 719 bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const { 720 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 721 if (*I != dupli_.getLI() && (*I)->liveAt(Idx)) 722 return true; 723 return false; 724 } 725 726 VNInfo *SplitEditor::defFromParent(LiveIntervalMap &Reg, 727 VNInfo *ParentVNI, 728 SlotIndex UseIdx, 729 MachineBasicBlock &MBB, 730 MachineBasicBlock::iterator I) { 731 VNInfo *VNI = 0; 732 MachineInstr *CopyMI = 0; 733 SlotIndex Def; 734 735 // Attempt cheap-as-a-copy rematerialization. 736 LiveRangeEdit::Remat RM(ParentVNI); 737 if (edit_.canRematerializeAt(RM, UseIdx, true, lis_)) { 738 Def = edit_.rematerializeAt(MBB, I, Reg.getLI()->reg, RM, 739 lis_, tii_, tri_); 740 } else { 741 // Can't remat, just insert a copy from parent. 742 CopyMI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY), 743 Reg.getLI()->reg).addReg(edit_.getReg()); 744 Def = lis_.InsertMachineInstrInMaps(CopyMI).getDefIndex(); 745 } 746 747 // Define the value in Reg. 748 VNI = Reg.defValue(ParentVNI, Def); 749 VNI->setCopy(CopyMI); 750 751 // Add minimal liveness for the new value. 752 if (UseIdx < Def) 753 UseIdx = Def; 754 Reg.getLI()->addRange(LiveRange(Def, UseIdx.getNextSlot(), VNI)); 755 return VNI; 756 } 757 758 /// Create a new virtual register and live interval. 759 void SplitEditor::openIntv() { 760 assert(!openli_.getLI() && "Previous LI not closed before openIntv"); 761 if (!dupli_.getLI()) 762 dupli_.reset(&edit_.create(mri_, lis_, vrm_)); 763 764 openli_.reset(&edit_.create(mri_, lis_, vrm_)); 765 } 766 767 /// enterIntvBefore - Enter openli before the instruction at Idx. If curli is 768 /// not live before Idx, a COPY is not inserted. 769 void SplitEditor::enterIntvBefore(SlotIndex Idx) { 770 assert(openli_.getLI() && "openIntv not called before enterIntvBefore"); 771 Idx = Idx.getUseIndex(); 772 DEBUG(dbgs() << " enterIntvBefore " << Idx); 773 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx); 774 if (!ParentVNI) { 775 DEBUG(dbgs() << ": not live\n"); 776 return; 777 } 778 DEBUG(dbgs() << ": valno " << ParentVNI->id); 779 truncatedValues.insert(ParentVNI); 780 MachineInstr *MI = lis_.getInstructionFromIndex(Idx); 781 assert(MI && "enterIntvBefore called with invalid index"); 782 783 defFromParent(openli_, ParentVNI, Idx, *MI->getParent(), MI); 784 785 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 786 } 787 788 /// enterIntvAtEnd - Enter openli at the end of MBB. 789 void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 790 assert(openli_.getLI() && "openIntv not called before enterIntvAtEnd"); 791 SlotIndex End = lis_.getMBBEndIdx(&MBB).getPrevSlot(); 792 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End); 793 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(End); 794 if (!ParentVNI) { 795 DEBUG(dbgs() << ": not live\n"); 796 return; 797 } 798 DEBUG(dbgs() << ": valno " << ParentVNI->id); 799 truncatedValues.insert(ParentVNI); 800 defFromParent(openli_, ParentVNI, End, MBB, MBB.getFirstTerminator()); 801 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 802 } 803 804 /// useIntv - indicate that all instructions in MBB should use openli. 805 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 806 useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB)); 807 } 808 809 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 810 assert(openli_.getLI() && "openIntv not called before useIntv"); 811 openli_.addRange(Start, End); 812 DEBUG(dbgs() << " use [" << Start << ';' << End << "): " 813 << *openli_.getLI() << '\n'); 814 } 815 816 /// leaveIntvAfter - Leave openli after the instruction at Idx. 817 void SplitEditor::leaveIntvAfter(SlotIndex Idx) { 818 assert(openli_.getLI() && "openIntv not called before leaveIntvAfter"); 819 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 820 821 // The interval must be live beyond the instruction at Idx. 822 Idx = Idx.getBoundaryIndex(); 823 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Idx); 824 if (!ParentVNI) { 825 DEBUG(dbgs() << ": not live\n"); 826 return; 827 } 828 DEBUG(dbgs() << ": valno " << ParentVNI->id); 829 830 MachineBasicBlock::iterator MII = lis_.getInstructionFromIndex(Idx); 831 VNInfo *VNI = defFromParent(dupli_, ParentVNI, Idx, 832 *MII->getParent(), llvm::next(MII)); 833 834 // Make sure that openli is properly extended from Idx to the new copy. 835 // FIXME: This shouldn't be necessary for remats. 836 openli_.addSimpleRange(Idx, VNI->def, ParentVNI); 837 838 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 839 } 840 841 /// leaveIntvAtTop - Leave the interval at the top of MBB. 842 /// Currently, only one value can leave the interval. 843 void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 844 assert(openli_.getLI() && "openIntv not called before leaveIntvAtTop"); 845 SlotIndex Start = lis_.getMBBStartIdx(&MBB); 846 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 847 848 VNInfo *ParentVNI = edit_.getParent().getVNInfoAt(Start); 849 if (!ParentVNI) { 850 DEBUG(dbgs() << ": not live\n"); 851 return; 852 } 853 854 VNInfo *VNI = defFromParent(dupli_, ParentVNI, Start, MBB, 855 MBB.SkipPHIsAndLabels(MBB.begin())); 856 857 // Finally we must make sure that openli is properly extended from Start to 858 // the new copy. 859 openli_.addSimpleRange(Start, VNI->def, ParentVNI); 860 DEBUG(dbgs() << ": " << *openli_.getLI() << '\n'); 861 } 862 863 /// closeIntv - Indicate that we are done editing the currently open 864 /// LiveInterval, and ranges can be trimmed. 865 void SplitEditor::closeIntv() { 866 assert(openli_.getLI() && "openIntv not called before closeIntv"); 867 868 DEBUG(dbgs() << " closeIntv cleaning up\n"); 869 DEBUG(dbgs() << " open " << *openli_.getLI() << '\n'); 870 openli_.reset(0); 871 } 872 873 /// rewrite - Rewrite all uses of reg to use the new registers. 874 void SplitEditor::rewrite(unsigned reg) { 875 for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(reg), 876 RE = mri_.reg_end(); RI != RE;) { 877 MachineOperand &MO = RI.getOperand(); 878 unsigned OpNum = RI.getOperandNo(); 879 MachineInstr *MI = MO.getParent(); 880 ++RI; 881 if (MI->isDebugValue()) { 882 DEBUG(dbgs() << "Zapping " << *MI); 883 // FIXME: We can do much better with debug values. 884 MO.setReg(0); 885 continue; 886 } 887 SlotIndex Idx = lis_.getInstructionIndex(MI); 888 Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex(); 889 LiveInterval *LI = 0; 890 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; 891 ++I) { 892 LiveInterval *testli = *I; 893 if (testli->liveAt(Idx)) { 894 LI = testli; 895 break; 896 } 897 } 898 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx); 899 assert(LI && "No register was live at use"); 900 MO.setReg(LI->reg); 901 if (MO.isUse() && !MI->isRegTiedToDefOperand(OpNum)) 902 MO.setIsKill(LI->killedAt(Idx.getDefIndex())); 903 DEBUG(dbgs() << '\t' << *MI); 904 } 905 } 906 907 void 908 SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) { 909 // Build vector of iterator pairs from the intervals. 910 typedef std::pair<LiveInterval::const_iterator, 911 LiveInterval::const_iterator> IIPair; 912 SmallVector<IIPair, 8> Iters; 913 for (LiveRangeEdit::iterator LI = edit_.begin(), LE = edit_.end(); LI != LE; 914 ++LI) { 915 if (*LI == dupli_.getLI()) 916 continue; 917 LiveInterval::const_iterator I = (*LI)->find(Start); 918 LiveInterval::const_iterator E = (*LI)->end(); 919 if (I != E) 920 Iters.push_back(std::make_pair(I, E)); 921 } 922 923 SlotIndex sidx = Start; 924 // Break [Start;End) into segments that don't overlap any intervals. 925 for (;;) { 926 SlotIndex next = sidx, eidx = End; 927 // Find overlapping intervals. 928 for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) { 929 LiveInterval::const_iterator I = Iters[i].first; 930 // Interval I is overlapping [sidx;eidx). Trim sidx. 931 if (I->start <= sidx) { 932 sidx = I->end; 933 // Move to the next run, remove iters when all are consumed. 934 I = ++Iters[i].first; 935 if (I == Iters[i].second) { 936 Iters.erase(Iters.begin() + i); 937 --i; 938 continue; 939 } 940 } 941 // Trim eidx too if needed. 942 if (I->start >= eidx) 943 continue; 944 eidx = I->start; 945 next = I->end; 946 } 947 // Now, [sidx;eidx) doesn't overlap anything in intervals_. 948 if (sidx < eidx) 949 dupli_.addSimpleRange(sidx, eidx, VNI); 950 // If the interval end was truncated, we can try again from next. 951 if (next <= sidx) 952 break; 953 sidx = next; 954 } 955 } 956 957 void SplitEditor::computeRemainder() { 958 // First we need to fill in the live ranges in dupli. 959 // If values were redefined, we need a full recoloring with SSA update. 960 // If values were truncated, we only need to truncate the ranges. 961 // If values were partially rematted, we should shrink to uses. 962 // If values were fully rematted, they should be omitted. 963 // FIXME: If a single value is redefined, just move the def and truncate. 964 LiveInterval &parent = edit_.getParent(); 965 966 // Values that are fully contained in the split intervals. 967 SmallPtrSet<const VNInfo*, 8> deadValues; 968 // Map all curli values that should have live defs in dupli. 969 for (LiveInterval::const_vni_iterator I = parent.vni_begin(), 970 E = parent.vni_end(); I != E; ++I) { 971 const VNInfo *VNI = *I; 972 // Don't transfer unused values to the new intervals. 973 if (VNI->isUnused()) 974 continue; 975 // Original def is contained in the split intervals. 976 if (intervalsLiveAt(VNI->def)) { 977 // Did this value escape? 978 if (dupli_.isMapped(VNI)) 979 truncatedValues.insert(VNI); 980 else 981 deadValues.insert(VNI); 982 continue; 983 } 984 // Add minimal live range at the definition. 985 VNInfo *DVNI = dupli_.defValue(VNI, VNI->def); 986 dupli_.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI)); 987 } 988 989 // Add all ranges to dupli. 990 for (LiveInterval::const_iterator I = parent.begin(), E = parent.end(); 991 I != E; ++I) { 992 const LiveRange &LR = *I; 993 if (truncatedValues.count(LR.valno)) { 994 // recolor after removing intervals_. 995 addTruncSimpleRange(LR.start, LR.end, LR.valno); 996 } else if (!deadValues.count(LR.valno)) { 997 // recolor without truncation. 998 dupli_.addSimpleRange(LR.start, LR.end, LR.valno); 999 } 1000 } 1001 1002 // Extend dupli_ to be live out of any critical loop predecessors. 1003 // This means we have multiple registers live out of those blocks. 1004 // The alternative would be to split the critical edges. 1005 if (criticalPreds_.empty()) 1006 return; 1007 for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(), 1008 E = criticalPreds_.end(); I != E; ++I) 1009 dupli_.extendTo(*I, lis_.getMBBEndIdx(*I).getPrevSlot()); 1010 criticalPreds_.clear(); 1011 } 1012 1013 void SplitEditor::finish() { 1014 assert(!openli_.getLI() && "Previous LI not closed before rewrite"); 1015 assert(dupli_.getLI() && "No dupli for rewrite. Noop spilt?"); 1016 1017 // Complete dupli liveness. 1018 computeRemainder(); 1019 1020 // Get rid of unused values and set phi-kill flags. 1021 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I) 1022 (*I)->RenumberValues(lis_); 1023 1024 // Rewrite instructions. 1025 rewrite(edit_.getReg()); 1026 1027 // Now check if any registers were separated into multiple components. 1028 ConnectedVNInfoEqClasses ConEQ(lis_); 1029 for (unsigned i = 0, e = edit_.size(); i != e; ++i) { 1030 // Don't use iterators, they are invalidated by create() below. 1031 LiveInterval *li = edit_.get(i); 1032 unsigned NumComp = ConEQ.Classify(li); 1033 if (NumComp <= 1) 1034 continue; 1035 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 1036 SmallVector<LiveInterval*, 8> dups; 1037 dups.push_back(li); 1038 for (unsigned i = 1; i != NumComp; ++i) 1039 dups.push_back(&edit_.create(mri_, lis_, vrm_)); 1040 ConEQ.Distribute(&dups[0]); 1041 // Rewrite uses to the new regs. 1042 rewrite(li->reg); 1043 } 1044 1045 // Calculate spill weight and allocation hints for new intervals. 1046 VirtRegAuxInfo vrai(vrm_.getMachineFunction(), lis_, sa_.loops_); 1047 for (LiveRangeEdit::iterator I = edit_.begin(), E = edit_.end(); I != E; ++I){ 1048 LiveInterval &li = **I; 1049 vrai.CalculateRegClass(li.reg); 1050 vrai.CalculateWeightAndHint(li); 1051 DEBUG(dbgs() << " new interval " << mri_.getRegClass(li.reg)->getName() 1052 << ":" << li << '\n'); 1053 } 1054 } 1055 1056 1057 //===----------------------------------------------------------------------===// 1058 // Loop Splitting 1059 //===----------------------------------------------------------------------===// 1060 1061 void SplitEditor::splitAroundLoop(const MachineLoop *Loop) { 1062 SplitAnalysis::LoopBlocks Blocks; 1063 sa_.getLoopBlocks(Loop, Blocks); 1064 1065 DEBUG({ 1066 dbgs() << " splitAround"; sa_.print(Blocks, dbgs()); dbgs() << '\n'; 1067 }); 1068 1069 // Break critical edges as needed. 1070 SplitAnalysis::BlockPtrSet CriticalExits; 1071 sa_.getCriticalExits(Blocks, CriticalExits); 1072 assert(CriticalExits.empty() && "Cannot break critical exits yet"); 1073 1074 // Get critical predecessors so computeRemainder can deal with them. 1075 sa_.getCriticalPreds(Blocks, criticalPreds_); 1076 1077 // Create new live interval for the loop. 1078 openIntv(); 1079 1080 // Insert copies in the predecessors if live-in to the header. 1081 if (lis_.isLiveInToMBB(edit_.getParent(), Loop->getHeader())) { 1082 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(), 1083 E = Blocks.Preds.end(); I != E; ++I) { 1084 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 1085 enterIntvAtEnd(MBB); 1086 } 1087 } 1088 1089 // Switch all loop blocks. 1090 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(), 1091 E = Blocks.Loop.end(); I != E; ++I) 1092 useIntv(**I); 1093 1094 // Insert back copies in the exit blocks. 1095 for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(), 1096 E = Blocks.Exits.end(); I != E; ++I) { 1097 MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I); 1098 leaveIntvAtTop(MBB); 1099 } 1100 1101 // Done. 1102 closeIntv(); 1103 finish(); 1104 } 1105 1106 1107 //===----------------------------------------------------------------------===// 1108 // Single Block Splitting 1109 //===----------------------------------------------------------------------===// 1110 1111 /// getMultiUseBlocks - if curli has more than one use in a basic block, it 1112 /// may be an advantage to split curli for the duration of the block. 1113 bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { 1114 // If curli is local to one block, there is no point to splitting it. 1115 if (usingBlocks_.size() <= 1) 1116 return false; 1117 // Add blocks with multiple uses. 1118 for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end(); 1119 I != E; ++I) 1120 switch (I->second) { 1121 case 0: 1122 case 1: 1123 continue; 1124 case 2: { 1125 // When there are only two uses and curli is both live in and live out, 1126 // we don't really win anything by isolating the block since we would be 1127 // inserting two copies. 1128 // The remaing register would still have two uses in the block. (Unless it 1129 // separates into disconnected components). 1130 if (lis_.isLiveInToMBB(*curli_, I->first) && 1131 lis_.isLiveOutOfMBB(*curli_, I->first)) 1132 continue; 1133 } // Fall through. 1134 default: 1135 Blocks.insert(I->first); 1136 } 1137 return !Blocks.empty(); 1138 } 1139 1140 /// splitSingleBlocks - Split curli into a separate live interval inside each 1141 /// basic block in Blocks. 1142 void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { 1143 DEBUG(dbgs() << " splitSingleBlocks for " << Blocks.size() << " blocks.\n"); 1144 // Determine the first and last instruction using curli in each block. 1145 typedef std::pair<SlotIndex,SlotIndex> IndexPair; 1146 typedef DenseMap<const MachineBasicBlock*,IndexPair> IndexPairMap; 1147 IndexPairMap MBBRange; 1148 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1149 E = sa_.usingInstrs_.end(); I != E; ++I) { 1150 const MachineBasicBlock *MBB = (*I)->getParent(); 1151 if (!Blocks.count(MBB)) 1152 continue; 1153 SlotIndex Idx = lis_.getInstructionIndex(*I); 1154 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '\t' << Idx << '\t' << **I); 1155 IndexPair &IP = MBBRange[MBB]; 1156 if (!IP.first.isValid() || Idx < IP.first) 1157 IP.first = Idx; 1158 if (!IP.second.isValid() || Idx > IP.second) 1159 IP.second = Idx; 1160 } 1161 1162 // Create a new interval for each block. 1163 for (SplitAnalysis::BlockPtrSet::const_iterator I = Blocks.begin(), 1164 E = Blocks.end(); I != E; ++I) { 1165 IndexPair &IP = MBBRange[*I]; 1166 DEBUG(dbgs() << " splitting for BB#" << (*I)->getNumber() << ": [" 1167 << IP.first << ';' << IP.second << ")\n"); 1168 assert(IP.first.isValid() && IP.second.isValid()); 1169 1170 openIntv(); 1171 enterIntvBefore(IP.first); 1172 useIntv(IP.first.getBaseIndex(), IP.second.getBoundaryIndex()); 1173 leaveIntvAfter(IP.second); 1174 closeIntv(); 1175 } 1176 finish(); 1177 } 1178 1179 1180 //===----------------------------------------------------------------------===// 1181 // Sub Block Splitting 1182 //===----------------------------------------------------------------------===// 1183 1184 /// getBlockForInsideSplit - If curli is contained inside a single basic block, 1185 /// and it wou pay to subdivide the interval inside that block, return it. 1186 /// Otherwise return NULL. The returned block can be passed to 1187 /// SplitEditor::splitInsideBlock. 1188 const MachineBasicBlock *SplitAnalysis::getBlockForInsideSplit() { 1189 // The interval must be exclusive to one block. 1190 if (usingBlocks_.size() != 1) 1191 return 0; 1192 // Don't to this for less than 4 instructions. We want to be sure that 1193 // splitting actually reduces the instruction count per interval. 1194 if (usingInstrs_.size() < 4) 1195 return 0; 1196 return usingBlocks_.begin()->first; 1197 } 1198 1199 /// splitInsideBlock - Split curli into multiple intervals inside MBB. 1200 void SplitEditor::splitInsideBlock(const MachineBasicBlock *MBB) { 1201 SmallVector<SlotIndex, 32> Uses; 1202 Uses.reserve(sa_.usingInstrs_.size()); 1203 for (SplitAnalysis::InstrPtrSet::const_iterator I = sa_.usingInstrs_.begin(), 1204 E = sa_.usingInstrs_.end(); I != E; ++I) 1205 if ((*I)->getParent() == MBB) 1206 Uses.push_back(lis_.getInstructionIndex(*I)); 1207 DEBUG(dbgs() << " splitInsideBlock BB#" << MBB->getNumber() << " for " 1208 << Uses.size() << " instructions.\n"); 1209 assert(Uses.size() >= 3 && "Need at least 3 instructions"); 1210 array_pod_sort(Uses.begin(), Uses.end()); 1211 1212 // Simple algorithm: Find the largest gap between uses as determined by slot 1213 // indices. Create new intervals for instructions before the gap and after the 1214 // gap. 1215 unsigned bestPos = 0; 1216 int bestGap = 0; 1217 DEBUG(dbgs() << " dist (" << Uses[0]); 1218 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 1219 int g = Uses[i-1].distance(Uses[i]); 1220 DEBUG(dbgs() << ") -" << g << "- (" << Uses[i]); 1221 if (g > bestGap) 1222 bestPos = i, bestGap = g; 1223 } 1224 DEBUG(dbgs() << "), best: -" << bestGap << "-\n"); 1225 1226 // bestPos points to the first use after the best gap. 1227 assert(bestPos > 0 && "Invalid gap"); 1228 1229 // FIXME: Don't create intervals for low densities. 1230 1231 // First interval before the gap. Don't create single-instr intervals. 1232 if (bestPos > 1) { 1233 openIntv(); 1234 enterIntvBefore(Uses.front()); 1235 useIntv(Uses.front().getBaseIndex(), Uses[bestPos-1].getBoundaryIndex()); 1236 leaveIntvAfter(Uses[bestPos-1]); 1237 closeIntv(); 1238 } 1239 1240 // Second interval after the gap. 1241 if (bestPos < Uses.size()-1) { 1242 openIntv(); 1243 enterIntvBefore(Uses[bestPos]); 1244 useIntv(Uses[bestPos].getBaseIndex(), Uses.back().getBoundaryIndex()); 1245 leaveIntvAfter(Uses.back()); 1246 closeIntv(); 1247 } 1248 1249 finish(); 1250 } 1251