1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SplitAnalysis class as well as mutator functions for 10 // live range splitting. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/CodeGen/LiveRangeEdit.h" 18 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineInstr.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineOperand.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/TargetInstrInfo.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/CodeGen/TargetRegisterInfo.h" 28 #include "llvm/CodeGen/TargetSubtargetInfo.h" 29 #include "llvm/CodeGen/VirtRegMap.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/DebugLoc.h" 32 #include "llvm/Support/Allocator.h" 33 #include "llvm/Support/BlockFrequency.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <iterator> 40 #include <limits> 41 #include <tuple> 42 43 using namespace llvm; 44 45 #define DEBUG_TYPE "regalloc" 46 47 static cl::opt<bool> 48 EnableLoopIVHeuristic("enable-split-loopiv-heuristic", 49 cl::desc("Enable loop iv regalloc heuristic"), 50 cl::init(true)); 51 52 STATISTIC(NumFinished, "Number of splits finished"); 53 STATISTIC(NumSimple, "Number of splits that were simple"); 54 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 55 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 56 57 //===----------------------------------------------------------------------===// 58 // Last Insert Point Analysis 59 //===----------------------------------------------------------------------===// 60 61 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 62 unsigned BBNum) 63 : LIS(lis), LastInsertPoint(BBNum) {} 64 65 SlotIndex 66 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 67 const MachineBasicBlock &MBB) { 68 unsigned Num = MBB.getNumber(); 69 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 70 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 71 72 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors; 73 bool EHPadSuccessor = false; 74 for (const MachineBasicBlock *SMBB : MBB.successors()) { 75 if (SMBB->isEHPad()) { 76 ExceptionalSuccessors.push_back(SMBB); 77 EHPadSuccessor = true; 78 } else if (SMBB->isInlineAsmBrIndirectTarget()) 79 ExceptionalSuccessors.push_back(SMBB); 80 } 81 82 // Compute insert points on the first call. The pair is independent of the 83 // current live interval. 84 if (!LIP.first.isValid()) { 85 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 86 if (FirstTerm == MBB.end()) 87 LIP.first = MBBEnd; 88 else 89 LIP.first = LIS.getInstructionIndex(*FirstTerm); 90 91 // If there is a landing pad or inlineasm_br successor, also find the 92 // instruction. If there is no such instruction, we don't need to do 93 // anything special. We assume there cannot be multiple instructions that 94 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we 95 // assume that if there are any, they will be after any other call 96 // instructions in the block. 97 if (ExceptionalSuccessors.empty()) 98 return LIP.first; 99 for (const MachineInstr &MI : llvm::reverse(MBB)) { 100 if ((EHPadSuccessor && MI.isCall()) || 101 MI.getOpcode() == TargetOpcode::INLINEASM_BR) { 102 LIP.second = LIS.getInstructionIndex(MI); 103 break; 104 } 105 } 106 } 107 108 // If CurLI is live into a landing pad successor, move the last insert point 109 // back to the call that may throw. 110 if (!LIP.second) 111 return LIP.first; 112 113 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) { 114 return LIS.isLiveInToMBB(CurLI, EHPad); 115 })) 116 return LIP.first; 117 118 // Find the value leaving MBB. 119 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 120 if (!VNI) 121 return LIP.first; 122 123 // The def of statepoint instruction is a gc relocation and it should be alive 124 // in landing pad. So we cannot split interval after statepoint instruction. 125 if (SlotIndex::isSameInstr(VNI->def, LIP.second)) 126 if (auto *I = LIS.getInstructionFromIndex(LIP.second)) 127 if (I->getOpcode() == TargetOpcode::STATEPOINT) 128 return LIP.second; 129 130 // If the value leaving MBB was defined after the call in MBB, it can't 131 // really be live-in to the landing pad. This can happen if the landing pad 132 // has a PHI, and this register is undef on the exceptional edge. 133 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 134 return LIP.first; 135 136 // Value is properly live-in to the landing pad. 137 // Only allow inserts before the call. 138 return LIP.second; 139 } 140 141 MachineBasicBlock::iterator 142 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 143 MachineBasicBlock &MBB) { 144 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 145 if (LIP == LIS.getMBBEndIdx(&MBB)) 146 return MBB.end(); 147 return LIS.getInstructionFromIndex(LIP); 148 } 149 150 //===----------------------------------------------------------------------===// 151 // Split Analysis 152 //===----------------------------------------------------------------------===// 153 154 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 155 const MachineLoopInfo &mli) 156 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 157 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} 158 159 void SplitAnalysis::clear() { 160 UseSlots.clear(); 161 UseBlocks.clear(); 162 ThroughBlocks.clear(); 163 CurLI = nullptr; 164 } 165 166 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 167 void SplitAnalysis::analyzeUses() { 168 assert(UseSlots.empty() && "Call clear first"); 169 170 // First get all the defs from the interval values. This provides the correct 171 // slots for early clobbers. 172 for (const VNInfo *VNI : CurLI->valnos) 173 if (!VNI->isPHIDef() && !VNI->isUnused()) 174 UseSlots.push_back(VNI->def); 175 176 // Get use slots form the use-def chain. 177 const MachineRegisterInfo &MRI = MF.getRegInfo(); 178 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg())) 179 if (!MO.isUndef()) 180 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 181 182 array_pod_sort(UseSlots.begin(), UseSlots.end()); 183 184 // Remove duplicates, keeping the smaller slot for each instruction. 185 // That is what we want for early clobbers. 186 UseSlots.erase(llvm::unique(UseSlots, SlotIndex::isSameInstr), 187 UseSlots.end()); 188 189 // Compute per-live block info. 190 calcLiveBlockInfo(); 191 192 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in " 193 << UseBlocks.size() << " blocks, through " 194 << NumThroughBlocks << " blocks.\n"); 195 } 196 197 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 198 /// where CurLI is live. 199 void SplitAnalysis::calcLiveBlockInfo() { 200 ThroughBlocks.resize(MF.getNumBlockIDs()); 201 NumThroughBlocks = NumGapBlocks = 0; 202 if (CurLI->empty()) 203 return; 204 205 LiveInterval::const_iterator LVI = CurLI->begin(); 206 LiveInterval::const_iterator LVE = CurLI->end(); 207 208 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 209 UseI = UseSlots.begin(); 210 UseE = UseSlots.end(); 211 212 // Loop over basic blocks where CurLI is live. 213 MachineFunction::iterator MFI = 214 LIS.getMBBFromIndex(LVI->start)->getIterator(); 215 while (true) { 216 BlockInfo BI; 217 BI.MBB = &*MFI; 218 SlotIndex Start, Stop; 219 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 220 221 // If the block contains no uses, the range must be live through. At one 222 // point, RegisterCoalescer could create dangling ranges that ended 223 // mid-block. 224 if (UseI == UseE || *UseI >= Stop) { 225 ++NumThroughBlocks; 226 ThroughBlocks.set(BI.MBB->getNumber()); 227 // The range shouldn't end mid-block if there are no uses. This shouldn't 228 // happen. 229 assert(LVI->end >= Stop && "range ends mid block with no uses"); 230 } else { 231 // This block has uses. Find the first and last uses in the block. 232 BI.FirstInstr = *UseI; 233 assert(BI.FirstInstr >= Start); 234 do ++UseI; 235 while (UseI != UseE && *UseI < Stop); 236 BI.LastInstr = UseI[-1]; 237 assert(BI.LastInstr < Stop); 238 239 // LVI is the first live segment overlapping MBB. 240 BI.LiveIn = LVI->start <= Start; 241 242 // When not live in, the first use should be a def. 243 if (!BI.LiveIn) { 244 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 245 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 246 BI.FirstDef = BI.FirstInstr; 247 } 248 249 // Look for gaps in the live range. 250 BI.LiveOut = true; 251 while (LVI->end < Stop) { 252 SlotIndex LastStop = LVI->end; 253 if (++LVI == LVE || LVI->start >= Stop) { 254 BI.LiveOut = false; 255 BI.LastInstr = LastStop; 256 break; 257 } 258 259 if (LastStop < LVI->start) { 260 // There is a gap in the live range. Create duplicate entries for the 261 // live-in snippet and the live-out snippet. 262 ++NumGapBlocks; 263 264 // Push the Live-in part. 265 BI.LiveOut = false; 266 UseBlocks.push_back(BI); 267 UseBlocks.back().LastInstr = LastStop; 268 269 // Set up BI for the live-out part. 270 BI.LiveIn = false; 271 BI.LiveOut = true; 272 BI.FirstInstr = BI.FirstDef = LVI->start; 273 } 274 275 // A Segment that starts in the middle of the block must be a def. 276 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 277 if (!BI.FirstDef) 278 BI.FirstDef = LVI->start; 279 } 280 281 UseBlocks.push_back(BI); 282 283 // LVI is now at LVE or LVI->end >= Stop. 284 if (LVI == LVE) 285 break; 286 } 287 288 // Live segment ends exactly at Stop. Move to the next segment. 289 if (LVI->end == Stop && ++LVI == LVE) 290 break; 291 292 // Pick the next basic block. 293 if (LVI->start < Stop) 294 ++MFI; 295 else 296 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 297 } 298 299 LooksLikeLoopIV = EnableLoopIVHeuristic && UseBlocks.size() == 2 && 300 any_of(UseBlocks, [this](BlockInfo &BI) { 301 MachineLoop *L = Loops.getLoopFor(BI.MBB); 302 return BI.LiveIn && BI.LiveOut && BI.FirstDef && L && 303 L->isLoopLatch(BI.MBB); 304 }); 305 306 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 307 } 308 309 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 310 if (cli->empty()) 311 return 0; 312 LiveInterval *li = const_cast<LiveInterval*>(cli); 313 LiveInterval::iterator LVI = li->begin(); 314 LiveInterval::iterator LVE = li->end(); 315 unsigned Count = 0; 316 317 // Loop over basic blocks where li is live. 318 MachineFunction::const_iterator MFI = 319 LIS.getMBBFromIndex(LVI->start)->getIterator(); 320 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 321 while (true) { 322 ++Count; 323 LVI = li->advanceTo(LVI, Stop); 324 if (LVI == LVE) 325 return Count; 326 do { 327 ++MFI; 328 Stop = LIS.getMBBEndIdx(&*MFI); 329 } while (Stop <= LVI->start); 330 } 331 } 332 333 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 334 Register OrigReg = VRM.getOriginal(CurLI->reg()); 335 const LiveInterval &Orig = LIS.getInterval(OrigReg); 336 assert(!Orig.empty() && "Splitting empty interval?"); 337 LiveInterval::const_iterator I = Orig.find(Idx); 338 339 // Range containing Idx should begin at Idx. 340 if (I != Orig.end() && I->start <= Idx) 341 return I->start == Idx; 342 343 // Range does not contain Idx, previous must end at Idx. 344 return I != Orig.begin() && (--I)->end == Idx; 345 } 346 347 void SplitAnalysis::analyze(const LiveInterval *li) { 348 clear(); 349 CurLI = li; 350 analyzeUses(); 351 } 352 353 //===----------------------------------------------------------------------===// 354 // Split Editor 355 //===----------------------------------------------------------------------===// 356 357 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 358 SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM, 359 MachineDominatorTree &MDT, 360 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI) 361 : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()), 362 MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()), 363 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()), 364 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {} 365 366 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 367 Edit = &LRE; 368 SpillMode = SM; 369 OpenIdx = 0; 370 RegAssign.clear(); 371 Values.clear(); 372 373 // Reset the LiveIntervalCalc instances needed for this spill mode. 374 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 375 &LIS.getVNInfoAllocator()); 376 if (SpillMode) 377 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 378 &LIS.getVNInfoAllocator()); 379 380 Edit->anyRematerializable(); 381 } 382 383 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 384 LLVM_DUMP_METHOD void SplitEditor::dump() const { 385 if (RegAssign.empty()) { 386 dbgs() << " empty\n"; 387 return; 388 } 389 390 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 391 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 392 dbgs() << '\n'; 393 } 394 #endif 395 396 /// Find a subrange corresponding to the exact lane mask @p LM in the live 397 /// interval @p LI. The interval @p LI is assumed to contain such a subrange. 398 /// This function is used to find corresponding subranges between the 399 /// original interval and the new intervals. 400 template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) { 401 for (auto &S : LI.subranges()) 402 if (S.LaneMask == LM) 403 return S; 404 llvm_unreachable("SubRange for this mask not found"); 405 } 406 407 LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM, 408 LiveInterval &LI) { 409 return getSubrangeImpl(LM, LI); 410 } 411 412 const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM, 413 const LiveInterval &LI) { 414 return getSubrangeImpl(LM, LI); 415 } 416 417 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it, 418 /// in the live interval @p LI. The interval @p LI is assumed to contain such 419 /// a subrange. This function is used to find corresponding subranges between 420 /// the original interval and the new intervals. 421 const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM, 422 const LiveInterval &LI) { 423 for (const LiveInterval::SubRange &S : LI.subranges()) 424 if ((S.LaneMask & LM) == LM) 425 return S; 426 llvm_unreachable("SubRange for this mask not found"); 427 } 428 429 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 430 if (!LI.hasSubRanges()) { 431 LI.createDeadDef(VNI); 432 return; 433 } 434 435 SlotIndex Def = VNI->def; 436 if (Original) { 437 // If we are transferring a def from the original interval, make sure 438 // to only update the subranges for which the original subranges had 439 // a def at this location. 440 for (LiveInterval::SubRange &S : LI.subranges()) { 441 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 442 VNInfo *PV = PS.getVNInfoAt(Def); 443 if (PV != nullptr && PV->def == Def) 444 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 445 } 446 } else { 447 // This is a new def: either from rematerialization, or from an inserted 448 // copy. Since rematerialization can regenerate a definition of a sub- 449 // register, we need to check which subranges need to be updated. 450 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 451 assert(DefMI != nullptr); 452 LaneBitmask LM; 453 for (const MachineOperand &DefOp : DefMI->defs()) { 454 Register R = DefOp.getReg(); 455 if (R != LI.reg()) 456 continue; 457 if (unsigned SR = DefOp.getSubReg()) 458 LM |= TRI.getSubRegIndexLaneMask(SR); 459 else { 460 LM = MRI.getMaxLaneMaskForVReg(R); 461 break; 462 } 463 } 464 for (LiveInterval::SubRange &S : LI.subranges()) 465 if ((S.LaneMask & LM).any()) 466 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 467 } 468 } 469 470 VNInfo *SplitEditor::defValue(unsigned RegIdx, 471 const VNInfo *ParentVNI, 472 SlotIndex Idx, 473 bool Original) { 474 assert(ParentVNI && "Mapping NULL value"); 475 assert(Idx.isValid() && "Invalid SlotIndex"); 476 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 477 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 478 479 // Create a new value. 480 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 481 482 bool Force = LI->hasSubRanges(); 483 ValueForcePair FP(Force ? nullptr : VNI, Force); 484 // Use insert for lookup, so we can add missing values with a second lookup. 485 std::pair<ValueMap::iterator, bool> InsP = 486 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 487 488 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 489 // forced. Keep it as a simple def without any liveness. 490 if (!Force && InsP.second) 491 return VNI; 492 493 // If the previous value was a simple mapping, add liveness for it now. 494 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 495 addDeadDef(*LI, OldVNI, Original); 496 497 // No longer a simple mapping. Switch to a complex mapping. If the 498 // interval has subranges, make it a forced mapping. 499 InsP.first->second = ValueForcePair(nullptr, Force); 500 } 501 502 // This is a complex mapping, add liveness for VNI 503 addDeadDef(*LI, VNI, Original); 504 return VNI; 505 } 506 507 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { 508 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)]; 509 VNInfo *VNI = VFP.getPointer(); 510 511 // ParentVNI was either unmapped or already complex mapped. Either way, just 512 // set the force bit. 513 if (!VNI) { 514 VFP.setInt(true); 515 return; 516 } 517 518 // This was previously a single mapping. Make sure the old def is represented 519 // by a trivial live range. 520 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 521 522 // Mark as complex mapped, forced. 523 VFP = ValueForcePair(nullptr, true); 524 } 525 526 SlotIndex SplitEditor::buildSingleSubRegCopy( 527 Register FromReg, Register ToReg, MachineBasicBlock &MBB, 528 MachineBasicBlock::iterator InsertBefore, unsigned SubIdx, 529 LiveInterval &DestLI, bool Late, SlotIndex Def, const MCInstrDesc &Desc) { 530 bool FirstCopy = !Def.isValid(); 531 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 532 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 533 | getInternalReadRegState(!FirstCopy), SubIdx) 534 .addReg(FromReg, 0, SubIdx); 535 536 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 537 if (FirstCopy) { 538 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 539 } else { 540 CopyMI->bundleWithPred(); 541 } 542 return Def; 543 } 544 545 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg, 546 LaneBitmask LaneMask, MachineBasicBlock &MBB, 547 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 548 const MCInstrDesc &Desc = 549 TII.get(TII.getLiveRangeSplitOpcode(FromReg, *MBB.getParent())); 550 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 551 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 552 // The full vreg is copied. 553 MachineInstr *CopyMI = 554 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 555 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 556 } 557 558 // Only a subset of lanes needs to be copied. The following is a simple 559 // heuristic to construct a sequence of COPYs. We could add a target 560 // specific callback if this turns out to be suboptimal. 561 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 562 563 // First pass: Try to find a perfectly matching subregister index. If none 564 // exists find the one covering the most lanemask bits. 565 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 566 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 567 568 SmallVector<unsigned, 8> SubIndexes; 569 570 // Abort if we cannot possibly implement the COPY with the given indexes. 571 if (!TRI.getCoveringSubRegIndexes(RC, LaneMask, SubIndexes)) 572 report_fatal_error("Impossible to implement partial COPY"); 573 574 SlotIndex Def; 575 for (unsigned BestIdx : SubIndexes) { 576 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 577 DestLI, Late, Def, Desc); 578 } 579 580 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 581 DestLI.refineSubRanges( 582 Allocator, LaneMask, 583 [Def, &Allocator](LiveInterval::SubRange &SR) { 584 SR.createDeadDef(Def, Allocator); 585 }, 586 Indexes, TRI); 587 588 return Def; 589 } 590 591 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI, 592 SlotIndex UseIdx, MachineBasicBlock &MBB, 593 MachineBasicBlock::iterator I) { 594 SlotIndex Def; 595 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 596 597 // We may be trying to avoid interference that ends at a deleted instruction, 598 // so always begin RegIdx 0 early and all others late. 599 bool Late = RegIdx != 0; 600 601 // Attempt cheap-as-a-copy rematerialization. 602 Register Original = VRM.getOriginal(Edit->get(RegIdx)); 603 LiveInterval &OrigLI = LIS.getInterval(Original); 604 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 605 606 Register Reg = LI->reg(); 607 bool DidRemat = false; 608 if (OrigVNI) { 609 LiveRangeEdit::Remat RM(ParentVNI); 610 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 611 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 612 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 613 ++NumRemats; 614 DidRemat = true; 615 } 616 } 617 if (!DidRemat) { 618 LaneBitmask LaneMask; 619 if (OrigLI.hasSubRanges()) { 620 LaneMask = LaneBitmask::getNone(); 621 for (LiveInterval::SubRange &S : OrigLI.subranges()) { 622 if (S.liveAt(UseIdx)) 623 LaneMask |= S.LaneMask; 624 } 625 } else { 626 LaneMask = LaneBitmask::getAll(); 627 } 628 629 if (LaneMask.none()) { 630 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF); 631 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg); 632 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 633 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot(); 634 } else { 635 ++NumCopies; 636 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 637 } 638 } 639 640 // Define the value in Reg. 641 return defValue(RegIdx, ParentVNI, Def, false); 642 } 643 644 /// Create a new virtual register and live interval. 645 unsigned SplitEditor::openIntv() { 646 // Create the complement as index 0. 647 if (Edit->empty()) 648 Edit->createEmptyInterval(); 649 650 // Create the open interval. 651 OpenIdx = Edit->size(); 652 Edit->createEmptyInterval(); 653 return OpenIdx; 654 } 655 656 void SplitEditor::selectIntv(unsigned Idx) { 657 assert(Idx != 0 && "Cannot select the complement interval"); 658 assert(Idx < Edit->size() && "Can only select previously opened interval"); 659 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 660 OpenIdx = Idx; 661 } 662 663 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 664 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 665 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx); 666 Idx = Idx.getBaseIndex(); 667 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 668 if (!ParentVNI) { 669 LLVM_DEBUG(dbgs() << ": not live\n"); 670 return Idx; 671 } 672 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 673 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 674 assert(MI && "enterIntvBefore called with invalid index"); 675 676 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 677 return VNI->def; 678 } 679 680 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 681 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 682 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx); 683 Idx = Idx.getBoundaryIndex(); 684 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 685 if (!ParentVNI) { 686 LLVM_DEBUG(dbgs() << ": not live\n"); 687 return Idx; 688 } 689 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 690 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 691 assert(MI && "enterIntvAfter called with invalid index"); 692 693 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 694 std::next(MachineBasicBlock::iterator(MI))); 695 return VNI->def; 696 } 697 698 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 699 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 700 SlotIndex End = LIS.getMBBEndIdx(&MBB); 701 SlotIndex Last = End.getPrevSlot(); 702 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " 703 << Last); 704 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 705 if (!ParentVNI) { 706 LLVM_DEBUG(dbgs() << ": not live\n"); 707 return End; 708 } 709 SlotIndex LSP = SA.getLastSplitPoint(&MBB); 710 if (LSP < Last) { 711 // It could be that the use after LSP is a def, and thus the ParentVNI 712 // just selected starts at that def. For this case to exist, the def 713 // must be part of a tied def/use pair (as otherwise we'd have split 714 // distinct live ranges into individual live intervals), and thus we 715 // can insert the def into the VNI of the use and the tied def/use 716 // pair can live in the resulting interval. 717 Last = LSP; 718 ParentVNI = Edit->getParent().getVNInfoAt(Last); 719 if (!ParentVNI) { 720 // undef use --> undef tied def 721 LLVM_DEBUG(dbgs() << ": tied use not live\n"); 722 return End; 723 } 724 } 725 726 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id); 727 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 728 SA.getLastSplitPointIter(&MBB)); 729 RegAssign.insert(VNI->def, End, OpenIdx); 730 LLVM_DEBUG(dump()); 731 return VNI->def; 732 } 733 734 /// useIntv - indicate that all instructions in MBB should use OpenLI. 735 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 736 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 737 } 738 739 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 740 assert(OpenIdx && "openIntv not called before useIntv"); 741 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 742 RegAssign.insert(Start, End, OpenIdx); 743 LLVM_DEBUG(dump()); 744 } 745 746 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 747 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 748 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx); 749 750 // The interval must be live beyond the instruction at Idx. 751 SlotIndex Boundary = Idx.getBoundaryIndex(); 752 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 753 if (!ParentVNI) { 754 LLVM_DEBUG(dbgs() << ": not live\n"); 755 return Boundary.getNextSlot(); 756 } 757 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 758 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 759 assert(MI && "No instruction at index"); 760 761 // In spill mode, make live ranges as short as possible by inserting the copy 762 // before MI. This is only possible if that instruction doesn't redefine the 763 // value. The inserted COPY is not a kill, and we don't need to recompute 764 // the source live range. The spiller also won't try to hoist this copy. 765 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 766 MI->readsVirtualRegister(Edit->getReg())) { 767 forceRecompute(0, *ParentVNI); 768 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 769 return Idx; 770 } 771 772 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 773 std::next(MachineBasicBlock::iterator(MI))); 774 return VNI->def; 775 } 776 777 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 778 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 779 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx); 780 781 // The interval must be live into the instruction at Idx. 782 Idx = Idx.getBaseIndex(); 783 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 784 if (!ParentVNI) { 785 LLVM_DEBUG(dbgs() << ": not live\n"); 786 return Idx.getNextSlot(); 787 } 788 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 789 790 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 791 assert(MI && "No instruction at index"); 792 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 793 return VNI->def; 794 } 795 796 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 797 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 798 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 799 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " 800 << Start); 801 802 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 803 if (!ParentVNI) { 804 LLVM_DEBUG(dbgs() << ": not live\n"); 805 return Start; 806 } 807 808 unsigned RegIdx = 0; 809 Register Reg = LIS.getInterval(Edit->get(RegIdx)).reg(); 810 VNInfo *VNI = defFromParent(RegIdx, ParentVNI, Start, MBB, 811 MBB.SkipPHIsLabelsAndDebug(MBB.begin(), Reg)); 812 RegAssign.insert(Start, VNI->def, OpenIdx); 813 LLVM_DEBUG(dump()); 814 return VNI->def; 815 } 816 817 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) { 818 return any_of(MI.defs(), [Reg](const MachineOperand &MO) { 819 return MO.isReg() && MO.isTied() && MO.getReg() == Reg; 820 }); 821 } 822 823 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 824 assert(OpenIdx && "openIntv not called before overlapIntv"); 825 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 826 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 827 "Parent changes value in extended range"); 828 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 829 "Range cannot span basic blocks"); 830 831 // The complement interval will be extended as needed by LICalc.extend(). 832 if (ParentVNI) 833 forceRecompute(0, *ParentVNI); 834 835 // If the last use is tied to a def, we can't mark it as live for the 836 // interval which includes only the use. That would cause the tied pair 837 // to end up in two different intervals. 838 if (auto *MI = LIS.getInstructionFromIndex(End)) 839 if (hasTiedUseOf(*MI, Edit->getReg())) { 840 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n"); 841 return; 842 } 843 844 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 845 RegAssign.insert(Start, End, OpenIdx); 846 LLVM_DEBUG(dump()); 847 } 848 849 //===----------------------------------------------------------------------===// 850 // Spill modes 851 //===----------------------------------------------------------------------===// 852 853 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 854 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 855 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 856 RegAssignMap::iterator AssignI; 857 AssignI.setMap(RegAssign); 858 859 for (const VNInfo *C : Copies) { 860 SlotIndex Def = C->def; 861 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 862 assert(MI && "No instruction for back-copy"); 863 864 MachineBasicBlock *MBB = MI->getParent(); 865 MachineBasicBlock::iterator MBBI(MI); 866 bool AtBegin; 867 do AtBegin = MBBI == MBB->begin(); 868 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr()); 869 870 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 871 LIS.removeVRegDefAt(*LI, Def); 872 LIS.RemoveMachineInstrFromMaps(*MI); 873 MI->eraseFromParent(); 874 875 // Adjust RegAssign if a register assignment is killed at Def. We want to 876 // avoid calculating the live range of the source register if possible. 877 AssignI.find(Def.getPrevSlot()); 878 if (!AssignI.valid() || AssignI.start() >= Def) 879 continue; 880 // If MI doesn't kill the assigned register, just leave it. 881 if (AssignI.stop() != Def) 882 continue; 883 unsigned RegIdx = AssignI.value(); 884 // We could hoist back-copy right after another back-copy. As a result 885 // MMBI points to copy instruction which is actually dead now. 886 // We cannot set its stop to MBBI which will be the same as start and 887 // interval does not support that. 888 SlotIndex Kill = 889 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot(); 890 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) || 891 Kill <= AssignI.start()) { 892 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx 893 << '\n'); 894 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def)); 895 } else { 896 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 897 AssignI.setStop(Kill); 898 } 899 } 900 } 901 902 MachineBasicBlock* 903 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 904 MachineBasicBlock *DefMBB) { 905 if (MBB == DefMBB) 906 return MBB; 907 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 908 909 const MachineLoopInfo &Loops = SA.Loops; 910 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 911 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 912 913 // Best candidate so far. 914 MachineBasicBlock *BestMBB = MBB; 915 unsigned BestDepth = std::numeric_limits<unsigned>::max(); 916 917 while (true) { 918 const MachineLoop *Loop = Loops.getLoopFor(MBB); 919 920 // MBB isn't in a loop, it doesn't get any better. All dominators have a 921 // higher frequency by definition. 922 if (!Loop) { 923 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 924 << " dominates " << printMBBReference(*MBB) 925 << " at depth 0\n"); 926 return MBB; 927 } 928 929 // We'll never be able to exit the DefLoop. 930 if (Loop == DefLoop) { 931 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 932 << " dominates " << printMBBReference(*MBB) 933 << " in the same loop\n"); 934 return MBB; 935 } 936 937 // Least busy dominator seen so far. 938 unsigned Depth = Loop->getLoopDepth(); 939 if (Depth < BestDepth) { 940 BestMBB = MBB; 941 BestDepth = Depth; 942 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 943 << " dominates " << printMBBReference(*MBB) 944 << " at depth " << Depth << '\n'); 945 } 946 947 // Leave loop by going to the immediate dominator of the loop header. 948 // This is a bigger stride than simply walking up the dominator tree. 949 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 950 951 // Too far up the dominator tree? 952 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 953 return BestMBB; 954 955 MBB = IDom->getBlock(); 956 } 957 } 958 959 void SplitEditor::computeRedundantBackCopies( 960 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 961 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 962 const LiveInterval *Parent = &Edit->getParent(); 963 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 964 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 965 966 // Aggregate VNIs having the same value as ParentVNI. 967 for (VNInfo *VNI : LI->valnos) { 968 if (VNI->isUnused()) 969 continue; 970 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 971 EqualVNs[ParentVNI->id].insert(VNI); 972 } 973 974 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 975 // redundant VNIs to BackCopies. 976 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 977 const VNInfo *ParentVNI = Parent->getValNumInfo(i); 978 if (!NotToHoistSet.count(ParentVNI->id)) 979 continue; 980 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 981 SmallPtrSetIterator<VNInfo *> It2 = It1; 982 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 983 It2 = It1; 984 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 985 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 986 continue; 987 988 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 989 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 990 if (MBB1 == MBB2) { 991 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 992 } else if (MDT.dominates(MBB1, MBB2)) { 993 DominatedVNIs.insert(*It2); 994 } else if (MDT.dominates(MBB2, MBB1)) { 995 DominatedVNIs.insert(*It1); 996 } 997 } 998 } 999 if (!DominatedVNIs.empty()) { 1000 forceRecompute(0, *ParentVNI); 1001 append_range(BackCopies, DominatedVNIs); 1002 DominatedVNIs.clear(); 1003 } 1004 } 1005 } 1006 1007 /// For SM_Size mode, find a common dominator for all the back-copies for 1008 /// the same ParentVNI and hoist the backcopies to the dominator BB. 1009 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 1010 /// to do the hoisting, simply remove the dominated backcopies for the same 1011 /// ParentVNI. 1012 void SplitEditor::hoistCopies() { 1013 // Get the complement interval, always RegIdx 0. 1014 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 1015 const LiveInterval *Parent = &Edit->getParent(); 1016 1017 // Track the nearest common dominator for all back-copies for each ParentVNI, 1018 // indexed by ParentVNI->id. 1019 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; 1020 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 1021 // The total cost of all the back-copies for each ParentVNI. 1022 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 1023 // The ParentVNI->id set for which hoisting back-copies are not beneficial 1024 // for Speed. 1025 DenseSet<unsigned> NotToHoistSet; 1026 1027 // Find the nearest common dominator for parent values with multiple 1028 // back-copies. If a single back-copy dominates, put it in DomPair.second. 1029 for (VNInfo *VNI : LI->valnos) { 1030 if (VNI->isUnused()) 1031 continue; 1032 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1033 assert(ParentVNI && "Parent not live at complement def"); 1034 1035 // Don't hoist remats. The complement is probably going to disappear 1036 // completely anyway. 1037 if (Edit->didRematerialize(ParentVNI)) 1038 continue; 1039 1040 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 1041 1042 DomPair &Dom = NearestDom[ParentVNI->id]; 1043 1044 // Keep directly defined parent values. This is either a PHI or an 1045 // instruction in the complement range. All other copies of ParentVNI 1046 // should be eliminated. 1047 if (VNI->def == ParentVNI->def) { 1048 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 1049 Dom = DomPair(ValMBB, VNI->def); 1050 continue; 1051 } 1052 // Skip the singly mapped values. There is nothing to gain from hoisting a 1053 // single back-copy. 1054 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1055 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1056 continue; 1057 } 1058 1059 if (!Dom.first) { 1060 // First time we see ParentVNI. VNI dominates itself. 1061 Dom = DomPair(ValMBB, VNI->def); 1062 } else if (Dom.first == ValMBB) { 1063 // Two defs in the same block. Pick the earlier def. 1064 if (!Dom.second.isValid() || VNI->def < Dom.second) 1065 Dom.second = VNI->def; 1066 } else { 1067 // Different basic blocks. Check if one dominates. 1068 MachineBasicBlock *Near = 1069 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1070 if (Near == ValMBB) 1071 // Def ValMBB dominates. 1072 Dom = DomPair(ValMBB, VNI->def); 1073 else if (Near != Dom.first) 1074 // None dominate. Hoist to common dominator, need new def. 1075 Dom = DomPair(Near, SlotIndex()); 1076 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1077 } 1078 1079 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' 1080 << VNI->def << " for parent " << ParentVNI->id << '@' 1081 << ParentVNI->def << " hoist to " 1082 << printMBBReference(*Dom.first) << ' ' << Dom.second 1083 << '\n'); 1084 } 1085 1086 // Insert the hoisted copies. 1087 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1088 DomPair &Dom = NearestDom[i]; 1089 if (!Dom.first || Dom.second.isValid()) 1090 continue; 1091 // This value needs a hoisted copy inserted at the end of Dom.first. 1092 const VNInfo *ParentVNI = Parent->getValNumInfo(i); 1093 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1094 // Get a less loopy dominator than Dom.first. 1095 Dom.first = findShallowDominator(Dom.first, DefMBB); 1096 if (SpillMode == SM_Speed && 1097 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1098 NotToHoistSet.insert(ParentVNI->id); 1099 continue; 1100 } 1101 SlotIndex LSP = SA.getLastSplitPoint(Dom.first); 1102 if (LSP <= ParentVNI->def) { 1103 NotToHoistSet.insert(ParentVNI->id); 1104 continue; 1105 } 1106 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first, 1107 SA.getLastSplitPointIter(Dom.first))->def; 1108 } 1109 1110 // Remove redundant back-copies that are now known to be dominated by another 1111 // def with the same value. 1112 SmallVector<VNInfo*, 8> BackCopies; 1113 for (VNInfo *VNI : LI->valnos) { 1114 if (VNI->isUnused()) 1115 continue; 1116 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1117 const DomPair &Dom = NearestDom[ParentVNI->id]; 1118 if (!Dom.first || Dom.second == VNI->def || 1119 NotToHoistSet.count(ParentVNI->id)) 1120 continue; 1121 BackCopies.push_back(VNI); 1122 forceRecompute(0, *ParentVNI); 1123 } 1124 1125 // If it is not beneficial to hoist all the BackCopies, simply remove 1126 // redundant BackCopies in speed mode. 1127 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1128 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1129 1130 removeBackCopies(BackCopies); 1131 } 1132 1133 /// transferValues - Transfer all possible values to the new live ranges. 1134 /// Values that were rematerialized are left alone, they need LICalc.extend(). 1135 bool SplitEditor::transferValues() { 1136 bool Skipped = false; 1137 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1138 for (const LiveRange::Segment &S : Edit->getParent()) { 1139 LLVM_DEBUG(dbgs() << " blit " << S << ':'); 1140 VNInfo *ParentVNI = S.valno; 1141 // RegAssign has holes where RegIdx 0 should be used. 1142 SlotIndex Start = S.start; 1143 AssignI.advanceTo(Start); 1144 do { 1145 unsigned RegIdx; 1146 SlotIndex End = S.end; 1147 if (!AssignI.valid()) { 1148 RegIdx = 0; 1149 } else if (AssignI.start() <= Start) { 1150 RegIdx = AssignI.value(); 1151 if (AssignI.stop() < End) { 1152 End = AssignI.stop(); 1153 ++AssignI; 1154 } 1155 } else { 1156 RegIdx = 0; 1157 End = std::min(End, AssignI.start()); 1158 } 1159 1160 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1161 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '(' 1162 << printReg(Edit->get(RegIdx)) << ')'); 1163 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1164 1165 // Check for a simply defined value that can be blitted directly. 1166 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1167 if (VNInfo *VNI = VFP.getPointer()) { 1168 LLVM_DEBUG(dbgs() << ':' << VNI->id); 1169 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1170 Start = End; 1171 continue; 1172 } 1173 1174 // Skip values with forced recomputation. 1175 if (VFP.getInt()) { 1176 LLVM_DEBUG(dbgs() << "(recalc)"); 1177 Skipped = true; 1178 Start = End; 1179 continue; 1180 } 1181 1182 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1183 1184 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1185 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1186 // LiveInBlocks. 1187 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1188 SlotIndex BlockStart, BlockEnd; 1189 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1190 1191 // The first block may be live-in, or it may have its own def. 1192 if (Start != BlockStart) { 1193 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1194 assert(VNI && "Missing def for complex mapped value"); 1195 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); 1196 // MBB has its own def. Is it also live-out? 1197 if (BlockEnd <= End) 1198 LIC.setLiveOutValue(&*MBB, VNI); 1199 1200 // Skip to the next block for live-in. 1201 ++MBB; 1202 BlockStart = BlockEnd; 1203 } 1204 1205 // Handle the live-in blocks covered by [Start;End). 1206 assert(Start <= BlockStart && "Expected live-in block"); 1207 while (BlockStart < End) { 1208 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB)); 1209 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1210 if (BlockStart == ParentVNI->def) { 1211 // This block has the def of a parent PHI, so it isn't live-in. 1212 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1213 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1214 assert(VNI && "Missing def for complex mapped parent PHI"); 1215 if (End >= BlockEnd) 1216 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1217 } else { 1218 // This block needs a live-in value. The last block covered may not 1219 // be live-out. 1220 if (End < BlockEnd) 1221 LIC.addLiveInBlock(LI, MDT[&*MBB], End); 1222 else { 1223 // Live-through, and we don't know the value. 1224 LIC.addLiveInBlock(LI, MDT[&*MBB]); 1225 LIC.setLiveOutValue(&*MBB, nullptr); 1226 } 1227 } 1228 BlockStart = BlockEnd; 1229 ++MBB; 1230 } 1231 Start = End; 1232 } while (Start != S.end); 1233 LLVM_DEBUG(dbgs() << '\n'); 1234 } 1235 1236 LICalc[0].calculateValues(); 1237 if (SpillMode) 1238 LICalc[1].calculateValues(); 1239 1240 return Skipped; 1241 } 1242 1243 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1244 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1245 if (Seg == nullptr) 1246 return true; 1247 if (Seg->end != Def.getDeadSlot()) 1248 return false; 1249 // This is a dead PHI. Remove it. 1250 LR.removeSegment(*Seg, true); 1251 return true; 1252 } 1253 1254 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC, 1255 LiveRange &LR, LaneBitmask LM, 1256 ArrayRef<SlotIndex> Undefs) { 1257 for (MachineBasicBlock *P : B.predecessors()) { 1258 SlotIndex End = LIS.getMBBEndIdx(P); 1259 SlotIndex LastUse = End.getPrevSlot(); 1260 // The predecessor may not have a live-out value. That is OK, like an 1261 // undef PHI operand. 1262 const LiveInterval &PLI = Edit->getParent(); 1263 // Need the cast because the inputs to ?: would otherwise be deemed 1264 // "incompatible": SubRange vs LiveInterval. 1265 const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI) 1266 : static_cast<const LiveRange &>(PLI); 1267 if (PSR.liveAt(LastUse)) 1268 LIC.extend(LR, End, /*PhysReg=*/0, Undefs); 1269 } 1270 } 1271 1272 void SplitEditor::extendPHIKillRanges() { 1273 // Extend live ranges to be live-out for successor PHI values. 1274 1275 // Visit each PHI def slot in the parent live interval. If the def is dead, 1276 // remove it. Otherwise, extend the live interval to reach the end indexes 1277 // of all predecessor blocks. 1278 1279 const LiveInterval &ParentLI = Edit->getParent(); 1280 for (const VNInfo *V : ParentLI.valnos) { 1281 if (V->isUnused() || !V->isPHIDef()) 1282 continue; 1283 1284 unsigned RegIdx = RegAssign.lookup(V->def); 1285 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1286 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1287 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1288 if (!removeDeadSegment(V->def, LI)) 1289 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1290 } 1291 1292 SmallVector<SlotIndex, 4> Undefs; 1293 LiveIntervalCalc SubLIC; 1294 1295 for (const LiveInterval::SubRange &PS : ParentLI.subranges()) { 1296 for (const VNInfo *V : PS.valnos) { 1297 if (V->isUnused() || !V->isPHIDef()) 1298 continue; 1299 unsigned RegIdx = RegAssign.lookup(V->def); 1300 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1301 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI); 1302 if (removeDeadSegment(V->def, S)) 1303 continue; 1304 1305 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1306 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1307 &LIS.getVNInfoAllocator()); 1308 Undefs.clear(); 1309 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1310 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs); 1311 } 1312 } 1313 } 1314 1315 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1316 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1317 struct ExtPoint { 1318 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1319 : MO(O), RegIdx(R), Next(N) {} 1320 1321 MachineOperand MO; 1322 unsigned RegIdx; 1323 SlotIndex Next; 1324 }; 1325 1326 SmallVector<ExtPoint,4> ExtPoints; 1327 1328 for (MachineOperand &MO : 1329 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) { 1330 MachineInstr *MI = MO.getParent(); 1331 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1332 if (MI->isDebugValue()) { 1333 LLVM_DEBUG(dbgs() << "Zapping " << *MI); 1334 MO.setReg(0); 1335 continue; 1336 } 1337 1338 // <undef> operands don't really read the register, so it doesn't matter 1339 // which register we choose. When the use operand is tied to a def, we must 1340 // use the same register as the def, so just do that always. 1341 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1342 if (MO.isDef() || MO.isUndef()) 1343 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1344 1345 // Rewrite to the mapped register at Idx. 1346 unsigned RegIdx = RegAssign.lookup(Idx); 1347 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1348 MO.setReg(LI.reg()); 1349 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) 1350 << '\t' << Idx << ':' << RegIdx << '\t' << *MI); 1351 1352 // Extend liveness to Idx if the instruction reads reg. 1353 if (!ExtendRanges || MO.isUndef()) 1354 continue; 1355 1356 // Skip instructions that don't read Reg. 1357 if (MO.isDef()) { 1358 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1359 continue; 1360 // We may want to extend a live range for a partial redef, or for a use 1361 // tied to an early clobber. 1362 if (!Edit->getParent().liveAt(Idx.getPrevSlot())) 1363 continue; 1364 } else { 1365 assert(MO.isUse()); 1366 bool IsEarlyClobber = false; 1367 if (MO.isTied()) { 1368 // We want to extend a live range into `e` slot rather than `r` slot if 1369 // tied-def is early clobber, because the `e` slot already contained 1370 // in the live range of early-clobber tied-def operand, give an example 1371 // here: 1372 // 0 %0 = ... 1373 // 16 early-clobber %0 = Op %0 (tied-def 0), ... 1374 // 32 ... = Op %0 1375 // Before extend: 1376 // %0 = [0r, 0d) [16e, 32d) 1377 // The point we want to extend is 0d to 16e not 16r in this case, but if 1378 // we use 16r here we will extend nothing because that already contained 1379 // in [16e, 32d). 1380 unsigned OpIdx = MO.getOperandNo(); 1381 unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx); 1382 const MachineOperand &DefOp = MI->getOperand(DefOpIdx); 1383 IsEarlyClobber = DefOp.isEarlyClobber(); 1384 } 1385 1386 Idx = Idx.getRegSlot(IsEarlyClobber); 1387 } 1388 1389 SlotIndex Next = Idx; 1390 if (LI.hasSubRanges()) { 1391 // We have to delay extending subranges until we have seen all operands 1392 // defining the register. This is because a <def,read-undef> operand 1393 // will create an "undef" point, and we cannot extend any subranges 1394 // until all of them have been accounted for. 1395 if (MO.isUse()) 1396 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1397 } else { 1398 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1399 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1400 } 1401 } 1402 1403 for (ExtPoint &EP : ExtPoints) { 1404 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1405 assert(LI.hasSubRanges()); 1406 1407 LiveIntervalCalc SubLIC; 1408 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1409 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1410 : MRI.getMaxLaneMaskForVReg(Reg); 1411 for (LiveInterval::SubRange &S : LI.subranges()) { 1412 if ((S.LaneMask & LM).none()) 1413 continue; 1414 // The problem here can be that the new register may have been created 1415 // for a partially defined original register. For example: 1416 // %0:subreg_hireg<def,read-undef> = ... 1417 // ... 1418 // %1 = COPY %0 1419 if (S.empty()) 1420 continue; 1421 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1422 &LIS.getVNInfoAllocator()); 1423 SmallVector<SlotIndex, 4> Undefs; 1424 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1425 SubLIC.extend(S, EP.Next, 0, Undefs); 1426 } 1427 } 1428 1429 for (Register R : *Edit) { 1430 LiveInterval &LI = LIS.getInterval(R); 1431 if (!LI.hasSubRanges()) 1432 continue; 1433 LI.clear(); 1434 LI.removeEmptySubRanges(); 1435 LIS.constructMainRangeFromSubranges(LI); 1436 } 1437 } 1438 1439 void SplitEditor::deleteRematVictims() { 1440 SmallVector<MachineInstr*, 8> Dead; 1441 for (const Register &R : *Edit) { 1442 LiveInterval *LI = &LIS.getInterval(R); 1443 for (const LiveRange::Segment &S : LI->segments) { 1444 // Dead defs end at the dead slot. 1445 if (S.end != S.valno->def.getDeadSlot()) 1446 continue; 1447 if (S.valno->isPHIDef()) 1448 continue; 1449 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1450 assert(MI && "Missing instruction for dead def"); 1451 MI->addRegisterDead(LI->reg(), &TRI); 1452 1453 if (!MI->allDefsAreDead()) 1454 continue; 1455 1456 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 1457 Dead.push_back(MI); 1458 } 1459 } 1460 1461 if (Dead.empty()) 1462 return; 1463 1464 Edit->eliminateDeadDefs(Dead, {}); 1465 } 1466 1467 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { 1468 // Fast-path for common case. 1469 if (!ParentVNI.isPHIDef()) { 1470 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1471 forceRecompute(I, ParentVNI); 1472 return; 1473 } 1474 1475 // Trace value through phis. 1476 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist. 1477 SmallVector<const VNInfo *, 4> WorkList; 1478 Visited.insert(&ParentVNI); 1479 WorkList.push_back(&ParentVNI); 1480 1481 const LiveInterval &ParentLI = Edit->getParent(); 1482 const SlotIndexes &Indexes = *LIS.getSlotIndexes(); 1483 do { 1484 const VNInfo &VNI = *WorkList.back(); 1485 WorkList.pop_back(); 1486 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1487 forceRecompute(I, VNI); 1488 if (!VNI.isPHIDef()) 1489 continue; 1490 1491 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def); 1492 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 1493 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1494 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd); 1495 assert(PredVNI && "Value available in PhiVNI predecessor"); 1496 if (Visited.insert(PredVNI).second) 1497 WorkList.push_back(PredVNI); 1498 } 1499 } while(!WorkList.empty()); 1500 } 1501 1502 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1503 ++NumFinished; 1504 1505 // At this point, the live intervals in Edit contain VNInfos corresponding to 1506 // the inserted copies. 1507 1508 // Add the original defs from the parent interval. 1509 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1510 if (ParentVNI->isUnused()) 1511 continue; 1512 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1513 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1514 1515 // Force rematted values to be recomputed everywhere. 1516 // The new live ranges may be truncated. 1517 if (Edit->didRematerialize(ParentVNI)) 1518 forceRecomputeVNI(*ParentVNI); 1519 } 1520 1521 // Hoist back-copies to the complement interval when in spill mode. 1522 switch (SpillMode) { 1523 case SM_Partition: 1524 // Leave all back-copies as is. 1525 break; 1526 case SM_Size: 1527 case SM_Speed: 1528 // hoistCopies will behave differently between size and speed. 1529 hoistCopies(); 1530 } 1531 1532 // Transfer the simply mapped values, check if any are skipped. 1533 bool Skipped = transferValues(); 1534 1535 // Rewrite virtual registers, possibly extending ranges. 1536 rewriteAssigned(Skipped); 1537 1538 if (Skipped) 1539 extendPHIKillRanges(); 1540 else 1541 ++NumSimple; 1542 1543 // Delete defs that were rematted everywhere. 1544 if (Skipped) 1545 deleteRematVictims(); 1546 1547 // Get rid of unused values and set phi-kill flags. 1548 for (Register Reg : *Edit) { 1549 LiveInterval &LI = LIS.getInterval(Reg); 1550 LI.removeEmptySubRanges(); 1551 LI.RenumberValues(); 1552 } 1553 1554 // Provide a reverse mapping from original indices to Edit ranges. 1555 if (LRMap) { 1556 auto Seq = llvm::seq<unsigned>(0, Edit->size()); 1557 LRMap->assign(Seq.begin(), Seq.end()); 1558 } 1559 1560 // Now check if any registers were separated into multiple components. 1561 ConnectedVNInfoEqClasses ConEQ(LIS); 1562 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1563 // Don't use iterators, they are invalidated by create() below. 1564 Register VReg = Edit->get(i); 1565 LiveInterval &LI = LIS.getInterval(VReg); 1566 SmallVector<LiveInterval*, 8> SplitLIs; 1567 LIS.splitSeparateComponents(LI, SplitLIs); 1568 Register Original = VRM.getOriginal(VReg); 1569 for (LiveInterval *SplitLI : SplitLIs) 1570 VRM.setIsSplitFromReg(SplitLI->reg(), Original); 1571 1572 // The new intervals all map back to i. 1573 if (LRMap) 1574 LRMap->resize(Edit->size(), i); 1575 } 1576 1577 // Calculate spill weight and allocation hints for new intervals. 1578 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI); 1579 1580 assert(!LRMap || LRMap->size() == Edit->size()); 1581 } 1582 1583 //===----------------------------------------------------------------------===// 1584 // Single Block Splitting 1585 //===----------------------------------------------------------------------===// 1586 1587 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1588 bool SingleInstrs) const { 1589 // Always split for multiple instructions. 1590 if (!BI.isOneInstr()) 1591 return true; 1592 // Don't split for single instructions unless explicitly requested. 1593 if (!SingleInstrs) 1594 return false; 1595 // Splitting a live-through range always makes progress. 1596 if (BI.LiveIn && BI.LiveOut) 1597 return true; 1598 // No point in isolating a copy. It has no register class constraints. 1599 MachineInstr *MI = LIS.getInstructionFromIndex(BI.FirstInstr); 1600 bool copyLike = TII.isCopyInstr(*MI) || MI->isSubregToReg(); 1601 if (copyLike) 1602 return false; 1603 // Finally, don't isolate an end point that was created by earlier splits. 1604 return isOriginalEndpoint(BI.FirstInstr); 1605 } 1606 1607 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1608 openIntv(); 1609 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB); 1610 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1611 LastSplitPoint)); 1612 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1613 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1614 } else { 1615 // The last use is after the last valid split point. 1616 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1617 useIntv(SegStart, SegStop); 1618 overlapIntv(SegStop, BI.LastInstr); 1619 } 1620 } 1621 1622 //===----------------------------------------------------------------------===// 1623 // Global Live Range Splitting Support 1624 //===----------------------------------------------------------------------===// 1625 1626 // These methods support a method of global live range splitting that uses a 1627 // global algorithm to decide intervals for CFG edges. They will insert split 1628 // points and color intervals in basic blocks while avoiding interference. 1629 // 1630 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1631 // are on the stack. 1632 1633 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1634 unsigned IntvIn, SlotIndex LeaveBefore, 1635 unsigned IntvOut, SlotIndex EnterAfter){ 1636 SlotIndex Start, Stop; 1637 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1638 1639 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop 1640 << ") intf " << LeaveBefore << '-' << EnterAfter 1641 << ", live-through " << IntvIn << " -> " << IntvOut); 1642 1643 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1644 1645 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1646 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1647 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1648 1649 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1650 1651 if (!IntvOut) { 1652 LLVM_DEBUG(dbgs() << ", spill on entry.\n"); 1653 // 1654 // <<<<<<<<< Possible LeaveBefore interference. 1655 // |-----------| Live through. 1656 // -____________ Spill on entry. 1657 // 1658 selectIntv(IntvIn); 1659 SlotIndex Idx = leaveIntvAtTop(*MBB); 1660 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1661 (void)Idx; 1662 return; 1663 } 1664 1665 if (!IntvIn) { 1666 LLVM_DEBUG(dbgs() << ", reload on exit.\n"); 1667 // 1668 // >>>>>>> Possible EnterAfter interference. 1669 // |-----------| Live through. 1670 // ___________-- Reload on exit. 1671 // 1672 selectIntv(IntvOut); 1673 SlotIndex Idx = enterIntvAtEnd(*MBB); 1674 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1675 (void)Idx; 1676 return; 1677 } 1678 1679 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1680 LLVM_DEBUG(dbgs() << ", straight through.\n"); 1681 // 1682 // |-----------| Live through. 1683 // ------------- Straight through, same intv, no interference. 1684 // 1685 selectIntv(IntvOut); 1686 useIntv(Start, Stop); 1687 return; 1688 } 1689 1690 // We cannot legally insert splits after LSP. 1691 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1692 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1693 1694 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1695 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1696 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n"); 1697 // 1698 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1699 // |-----------| Live through. 1700 // ------======= Switch intervals between interference. 1701 // 1702 selectIntv(IntvOut); 1703 SlotIndex Idx; 1704 if (LeaveBefore && LeaveBefore < LSP) { 1705 Idx = enterIntvBefore(LeaveBefore); 1706 useIntv(Idx, Stop); 1707 } else { 1708 Idx = enterIntvAtEnd(*MBB); 1709 } 1710 selectIntv(IntvIn); 1711 useIntv(Start, Idx); 1712 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1713 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1714 return; 1715 } 1716 1717 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n"); 1718 // 1719 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1720 // |-----------| Live through. 1721 // ==---------== Switch intervals before/after interference. 1722 // 1723 assert(LeaveBefore <= EnterAfter && "Missed case"); 1724 1725 selectIntv(IntvOut); 1726 SlotIndex Idx = enterIntvAfter(EnterAfter); 1727 useIntv(Idx, Stop); 1728 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1729 1730 selectIntv(IntvIn); 1731 Idx = leaveIntvBefore(LeaveBefore); 1732 useIntv(Start, Idx); 1733 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1734 } 1735 1736 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1737 unsigned IntvIn, SlotIndex LeaveBefore) { 1738 SlotIndex Start, Stop; 1739 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1740 1741 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1742 << Stop << "), uses " << BI.FirstInstr << '-' 1743 << BI.LastInstr << ", reg-in " << IntvIn 1744 << ", leave before " << LeaveBefore 1745 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1746 1747 assert(IntvIn && "Must have register in"); 1748 assert(BI.LiveIn && "Must be live-in"); 1749 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1750 1751 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1752 LLVM_DEBUG(dbgs() << " before interference.\n"); 1753 // 1754 // <<< Interference after kill. 1755 // |---o---x | Killed in block. 1756 // ========= Use IntvIn everywhere. 1757 // 1758 selectIntv(IntvIn); 1759 useIntv(Start, BI.LastInstr); 1760 return; 1761 } 1762 1763 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1764 1765 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1766 // 1767 // <<< Possible interference after last use. 1768 // |---o---o---| Live-out on stack. 1769 // =========____ Leave IntvIn after last use. 1770 // 1771 // < Interference after last use. 1772 // |---o---o--o| Live-out on stack, late last use. 1773 // ============ Copy to stack after LSP, overlap IntvIn. 1774 // \_____ Stack interval is live-out. 1775 // 1776 if (BI.LastInstr < LSP) { 1777 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n"); 1778 selectIntv(IntvIn); 1779 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1780 useIntv(Start, Idx); 1781 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1782 } else { 1783 LLVM_DEBUG(dbgs() << ", spill before last split point.\n"); 1784 selectIntv(IntvIn); 1785 SlotIndex Idx = leaveIntvBefore(LSP); 1786 overlapIntv(Idx, BI.LastInstr); 1787 useIntv(Start, Idx); 1788 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1789 } 1790 return; 1791 } 1792 1793 // The interference is overlapping somewhere we wanted to use IntvIn. That 1794 // means we need to create a local interval that can be allocated a 1795 // different register. 1796 unsigned LocalIntv = openIntv(); 1797 (void)LocalIntv; 1798 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1799 1800 if (!BI.LiveOut || BI.LastInstr < LSP) { 1801 // 1802 // <<<<<<< Interference overlapping uses. 1803 // |---o---o---| Live-out on stack. 1804 // =====----____ Leave IntvIn before interference, then spill. 1805 // 1806 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1807 SlotIndex From = enterIntvBefore(LeaveBefore); 1808 useIntv(From, To); 1809 selectIntv(IntvIn); 1810 useIntv(Start, From); 1811 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1812 return; 1813 } 1814 1815 // <<<<<<< Interference overlapping uses. 1816 // |---o---o--o| Live-out on stack, late last use. 1817 // =====------- Copy to stack before LSP, overlap LocalIntv. 1818 // \_____ Stack interval is live-out. 1819 // 1820 SlotIndex To = leaveIntvBefore(LSP); 1821 overlapIntv(To, BI.LastInstr); 1822 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1823 useIntv(From, To); 1824 selectIntv(IntvIn); 1825 useIntv(Start, From); 1826 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1827 } 1828 1829 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1830 unsigned IntvOut, SlotIndex EnterAfter) { 1831 SlotIndex Start, Stop; 1832 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1833 1834 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1835 << Stop << "), uses " << BI.FirstInstr << '-' 1836 << BI.LastInstr << ", reg-out " << IntvOut 1837 << ", enter after " << EnterAfter 1838 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1839 1840 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1841 1842 assert(IntvOut && "Must have register out"); 1843 assert(BI.LiveOut && "Must be live-out"); 1844 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1845 1846 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1847 LLVM_DEBUG(dbgs() << " after interference.\n"); 1848 // 1849 // >>>> Interference before def. 1850 // | o---o---| Defined in block. 1851 // ========= Use IntvOut everywhere. 1852 // 1853 selectIntv(IntvOut); 1854 useIntv(BI.FirstInstr, Stop); 1855 return; 1856 } 1857 1858 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1859 LLVM_DEBUG(dbgs() << ", reload after interference.\n"); 1860 // 1861 // >>>> Interference before def. 1862 // |---o---o---| Live-through, stack-in. 1863 // ____========= Enter IntvOut before first use. 1864 // 1865 selectIntv(IntvOut); 1866 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1867 useIntv(Idx, Stop); 1868 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1869 return; 1870 } 1871 1872 // The interference is overlapping somewhere we wanted to use IntvOut. That 1873 // means we need to create a local interval that can be allocated a 1874 // different register. 1875 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n"); 1876 // 1877 // >>>>>>> Interference overlapping uses. 1878 // |---o---o---| Live-through, stack-in. 1879 // ____---====== Create local interval for interference range. 1880 // 1881 selectIntv(IntvOut); 1882 SlotIndex Idx = enterIntvAfter(EnterAfter); 1883 useIntv(Idx, Stop); 1884 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1885 1886 openIntv(); 1887 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1888 useIntv(From, Idx); 1889 } 1890 1891 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const { 1892 OS << "{" << printMBBReference(*MBB) << ", " 1893 << "uses " << FirstInstr << " to " << LastInstr << ", " 1894 << "1st def " << FirstDef << ", " 1895 << (LiveIn ? "live in" : "dead in") << ", " 1896 << (LiveOut ? "live out" : "dead out") << "}"; 1897 } 1898 1899 void SplitAnalysis::BlockInfo::dump() const { 1900 print(dbgs()); 1901 dbgs() << "\n"; 1902 } 1903