xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeVectorOps.cpp (revision d9f165ddea3223217a959c3cea3d2c613b132935)
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
10 //
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types.  For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
20 //
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/CodeGenTypes/MachineValueType.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "legalizevectorops"
52 
53 namespace {
54 
55 class VectorLegalizer {
56   SelectionDAG& DAG;
57   const TargetLowering &TLI;
58   bool Changed = false; // Keep track of whether anything changed
59 
60   /// For nodes that are of legal width, and that have more than one use, this
61   /// map indicates what regularized operand to use.  This allows us to avoid
62   /// legalizing the same thing more than once.
63   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
64 
65   /// Adds a node to the translation cache.
66   void AddLegalizedOperand(SDValue From, SDValue To) {
67     LegalizedNodes.insert(std::make_pair(From, To));
68     // If someone requests legalization of the new node, return itself.
69     if (From != To)
70       LegalizedNodes.insert(std::make_pair(To, To));
71   }
72 
73   /// Legalizes the given node.
74   SDValue LegalizeOp(SDValue Op);
75 
76   /// Assuming the node is legal, "legalize" the results.
77   SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
78 
79   /// Make sure Results are legal and update the translation cache.
80   SDValue RecursivelyLegalizeResults(SDValue Op,
81                                      MutableArrayRef<SDValue> Results);
82 
83   /// Wrapper to interface LowerOperation with a vector of Results.
84   /// Returns false if the target wants to use default expansion. Otherwise
85   /// returns true. If return is true and the Results are empty, then the
86   /// target wants to keep the input node as is.
87   bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
88 
89   /// Implements unrolling a VSETCC.
90   SDValue UnrollVSETCC(SDNode *Node);
91 
92   /// Implement expand-based legalization of vector operations.
93   ///
94   /// This is just a high-level routine to dispatch to specific code paths for
95   /// operations to legalize them.
96   void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
97 
98   /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
99   /// FP_TO_SINT isn't legal.
100   void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
101 
102   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
103   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
104   void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
105 
106   /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
107   SDValue ExpandSEXTINREG(SDNode *Node);
108 
109   /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
110   ///
111   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
112   /// type. The contents of the bits in the extended part of each element are
113   /// undef.
114   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
115 
116   /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
117   ///
118   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
119   /// type, then shifts left and arithmetic shifts right to introduce a sign
120   /// extension.
121   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
122 
123   /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
124   ///
125   /// Shuffles the low lanes of the operand into place and blends zeros into
126   /// the remaining lanes, finally bitcasting to the proper type.
127   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
128 
129   /// Expand bswap of vectors into a shuffle if legal.
130   SDValue ExpandBSWAP(SDNode *Node);
131 
132   /// Implement vselect in terms of XOR, AND, OR when blend is not
133   /// supported by the target.
134   SDValue ExpandVSELECT(SDNode *Node);
135   SDValue ExpandVP_SELECT(SDNode *Node);
136   SDValue ExpandVP_MERGE(SDNode *Node);
137   SDValue ExpandVP_REM(SDNode *Node);
138   SDValue ExpandVP_FNEG(SDNode *Node);
139   SDValue ExpandVP_FABS(SDNode *Node);
140   SDValue ExpandVP_FCOPYSIGN(SDNode *Node);
141   SDValue ExpandSELECT(SDNode *Node);
142   std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
143   SDValue ExpandStore(SDNode *N);
144   SDValue ExpandFNEG(SDNode *Node);
145   SDValue ExpandFABS(SDNode *Node);
146   SDValue ExpandFCOPYSIGN(SDNode *Node);
147   void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
148   void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
149   SDValue ExpandBITREVERSE(SDNode *Node);
150   void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
151   void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
152   void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
153   void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
154   void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
155   void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
156 
157   bool tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall LC,
158                             SmallVectorImpl<SDValue> &Results);
159   bool tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall Call_F32,
160                             RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
161                             RTLIB::Libcall Call_F128,
162                             RTLIB::Libcall Call_PPCF128,
163                             SmallVectorImpl<SDValue> &Results);
164 
165   void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
166 
167   /// Implements vector promotion.
168   ///
169   /// This is essentially just bitcasting the operands to a different type and
170   /// bitcasting the result back to the original type.
171   void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
172 
173   /// Implements [SU]INT_TO_FP vector promotion.
174   ///
175   /// This is a [zs]ext of the input operand to a larger integer type.
176   void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
177 
178   /// Implements FP_TO_[SU]INT vector promotion of the result type.
179   ///
180   /// It is promoted to a larger integer type.  The result is then
181   /// truncated back to the original type.
182   void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
183 
184   /// Implements vector setcc operation promotion.
185   ///
186   /// All vector operands are promoted to a vector type with larger element
187   /// type.
188   void PromoteSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
189 
190   void PromoteSTRICT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
191 
192 public:
193   VectorLegalizer(SelectionDAG& dag) :
194       DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
195 
196   /// Begin legalizer the vector operations in the DAG.
197   bool Run();
198 };
199 
200 } // end anonymous namespace
201 
202 bool VectorLegalizer::Run() {
203   // Before we start legalizing vector nodes, check if there are any vectors.
204   bool HasVectors = false;
205   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
206        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
207     // Check if the values of the nodes contain vectors. We don't need to check
208     // the operands because we are going to check their values at some point.
209     HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
210 
211     // If we found a vector node we can start the legalization.
212     if (HasVectors)
213       break;
214   }
215 
216   // If this basic block has no vectors then no need to legalize vectors.
217   if (!HasVectors)
218     return false;
219 
220   // The legalize process is inherently a bottom-up recursive process (users
221   // legalize their uses before themselves).  Given infinite stack space, we
222   // could just start legalizing on the root and traverse the whole graph.  In
223   // practice however, this causes us to run out of stack space on large basic
224   // blocks.  To avoid this problem, compute an ordering of the nodes where each
225   // node is only legalized after all of its operands are legalized.
226   DAG.AssignTopologicalOrder();
227   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
228        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
229     LegalizeOp(SDValue(&*I, 0));
230 
231   // Finally, it's possible the root changed.  Get the new root.
232   SDValue OldRoot = DAG.getRoot();
233   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
234   DAG.setRoot(LegalizedNodes[OldRoot]);
235 
236   LegalizedNodes.clear();
237 
238   // Remove dead nodes now.
239   DAG.RemoveDeadNodes();
240 
241   return Changed;
242 }
243 
244 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
245   assert(Op->getNumValues() == Result->getNumValues() &&
246          "Unexpected number of results");
247   // Generic legalization: just pass the operand through.
248   for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
249     AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
250   return SDValue(Result, Op.getResNo());
251 }
252 
253 SDValue
254 VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
255                                             MutableArrayRef<SDValue> Results) {
256   assert(Results.size() == Op->getNumValues() &&
257          "Unexpected number of results");
258   // Make sure that the generated code is itself legal.
259   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
260     Results[i] = LegalizeOp(Results[i]);
261     AddLegalizedOperand(Op.getValue(i), Results[i]);
262   }
263 
264   return Results[Op.getResNo()];
265 }
266 
267 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
268   // Note that LegalizeOp may be reentered even from single-use nodes, which
269   // means that we always must cache transformed nodes.
270   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
271   if (I != LegalizedNodes.end()) return I->second;
272 
273   // Legalize the operands
274   SmallVector<SDValue, 8> Ops;
275   for (const SDValue &Oper : Op->op_values())
276     Ops.push_back(LegalizeOp(Oper));
277 
278   SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
279 
280   bool HasVectorValueOrOp =
281       llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
282       llvm::any_of(Node->op_values(),
283                    [](SDValue O) { return O.getValueType().isVector(); });
284   if (!HasVectorValueOrOp)
285     return TranslateLegalizeResults(Op, Node);
286 
287   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
288   EVT ValVT;
289   switch (Op.getOpcode()) {
290   default:
291     return TranslateLegalizeResults(Op, Node);
292   case ISD::LOAD: {
293     LoadSDNode *LD = cast<LoadSDNode>(Node);
294     ISD::LoadExtType ExtType = LD->getExtensionType();
295     EVT LoadedVT = LD->getMemoryVT();
296     if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
297       Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
298     break;
299   }
300   case ISD::STORE: {
301     StoreSDNode *ST = cast<StoreSDNode>(Node);
302     EVT StVT = ST->getMemoryVT();
303     MVT ValVT = ST->getValue().getSimpleValueType();
304     if (StVT.isVector() && ST->isTruncatingStore())
305       Action = TLI.getTruncStoreAction(ValVT, StVT);
306     break;
307   }
308   case ISD::MERGE_VALUES:
309     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
310     // This operation lies about being legal: when it claims to be legal,
311     // it should actually be expanded.
312     if (Action == TargetLowering::Legal)
313       Action = TargetLowering::Expand;
314     break;
315 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
316   case ISD::STRICT_##DAGN:
317 #include "llvm/IR/ConstrainedOps.def"
318     ValVT = Node->getValueType(0);
319     if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
320         Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
321       ValVT = Node->getOperand(1).getValueType();
322     if (Op.getOpcode() == ISD::STRICT_FSETCC ||
323         Op.getOpcode() == ISD::STRICT_FSETCCS) {
324       MVT OpVT = Node->getOperand(1).getSimpleValueType();
325       ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(3))->get();
326       Action = TLI.getCondCodeAction(CCCode, OpVT);
327       if (Action == TargetLowering::Legal)
328         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
329     } else {
330       Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
331     }
332     // If we're asked to expand a strict vector floating-point operation,
333     // by default we're going to simply unroll it.  That is usually the
334     // best approach, except in the case where the resulting strict (scalar)
335     // operations would themselves use the fallback mutation to non-strict.
336     // In that specific case, just do the fallback on the vector op.
337     if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
338         TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
339             TargetLowering::Legal) {
340       EVT EltVT = ValVT.getVectorElementType();
341       if (TLI.getOperationAction(Node->getOpcode(), EltVT)
342           == TargetLowering::Expand &&
343           TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
344           == TargetLowering::Legal)
345         Action = TargetLowering::Legal;
346     }
347     break;
348   case ISD::ADD:
349   case ISD::SUB:
350   case ISD::MUL:
351   case ISD::MULHS:
352   case ISD::MULHU:
353   case ISD::SDIV:
354   case ISD::UDIV:
355   case ISD::SREM:
356   case ISD::UREM:
357   case ISD::SDIVREM:
358   case ISD::UDIVREM:
359   case ISD::FADD:
360   case ISD::FSUB:
361   case ISD::FMUL:
362   case ISD::FDIV:
363   case ISD::FREM:
364   case ISD::AND:
365   case ISD::OR:
366   case ISD::XOR:
367   case ISD::SHL:
368   case ISD::SRA:
369   case ISD::SRL:
370   case ISD::FSHL:
371   case ISD::FSHR:
372   case ISD::ROTL:
373   case ISD::ROTR:
374   case ISD::ABS:
375   case ISD::ABDS:
376   case ISD::ABDU:
377   case ISD::AVGCEILS:
378   case ISD::AVGCEILU:
379   case ISD::AVGFLOORS:
380   case ISD::AVGFLOORU:
381   case ISD::BSWAP:
382   case ISD::BITREVERSE:
383   case ISD::CTLZ:
384   case ISD::CTTZ:
385   case ISD::CTLZ_ZERO_UNDEF:
386   case ISD::CTTZ_ZERO_UNDEF:
387   case ISD::CTPOP:
388   case ISD::SELECT:
389   case ISD::VSELECT:
390   case ISD::SELECT_CC:
391   case ISD::ZERO_EXTEND:
392   case ISD::ANY_EXTEND:
393   case ISD::TRUNCATE:
394   case ISD::SIGN_EXTEND:
395   case ISD::FP_TO_SINT:
396   case ISD::FP_TO_UINT:
397   case ISD::FNEG:
398   case ISD::FABS:
399   case ISD::FMINNUM:
400   case ISD::FMAXNUM:
401   case ISD::FMINNUM_IEEE:
402   case ISD::FMAXNUM_IEEE:
403   case ISD::FMINIMUM:
404   case ISD::FMAXIMUM:
405   case ISD::FMINIMUMNUM:
406   case ISD::FMAXIMUMNUM:
407   case ISD::FCOPYSIGN:
408   case ISD::FSQRT:
409   case ISD::FSIN:
410   case ISD::FCOS:
411   case ISD::FTAN:
412   case ISD::FASIN:
413   case ISD::FACOS:
414   case ISD::FATAN:
415   case ISD::FATAN2:
416   case ISD::FSINH:
417   case ISD::FCOSH:
418   case ISD::FTANH:
419   case ISD::FLDEXP:
420   case ISD::FPOWI:
421   case ISD::FPOW:
422   case ISD::FLOG:
423   case ISD::FLOG2:
424   case ISD::FLOG10:
425   case ISD::FEXP:
426   case ISD::FEXP2:
427   case ISD::FEXP10:
428   case ISD::FCEIL:
429   case ISD::FTRUNC:
430   case ISD::FRINT:
431   case ISD::FNEARBYINT:
432   case ISD::FROUND:
433   case ISD::FROUNDEVEN:
434   case ISD::FFLOOR:
435   case ISD::FP_ROUND:
436   case ISD::FP_EXTEND:
437   case ISD::FPTRUNC_ROUND:
438   case ISD::FMA:
439   case ISD::SIGN_EXTEND_INREG:
440   case ISD::ANY_EXTEND_VECTOR_INREG:
441   case ISD::SIGN_EXTEND_VECTOR_INREG:
442   case ISD::ZERO_EXTEND_VECTOR_INREG:
443   case ISD::SMIN:
444   case ISD::SMAX:
445   case ISD::UMIN:
446   case ISD::UMAX:
447   case ISD::SMUL_LOHI:
448   case ISD::UMUL_LOHI:
449   case ISD::SADDO:
450   case ISD::UADDO:
451   case ISD::SSUBO:
452   case ISD::USUBO:
453   case ISD::SMULO:
454   case ISD::UMULO:
455   case ISD::FCANONICALIZE:
456   case ISD::FFREXP:
457   case ISD::FSINCOS:
458   case ISD::SADDSAT:
459   case ISD::UADDSAT:
460   case ISD::SSUBSAT:
461   case ISD::USUBSAT:
462   case ISD::SSHLSAT:
463   case ISD::USHLSAT:
464   case ISD::FP_TO_SINT_SAT:
465   case ISD::FP_TO_UINT_SAT:
466   case ISD::MGATHER:
467   case ISD::VECTOR_COMPRESS:
468   case ISD::SCMP:
469   case ISD::UCMP:
470     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
471     break;
472   case ISD::SMULFIX:
473   case ISD::SMULFIXSAT:
474   case ISD::UMULFIX:
475   case ISD::UMULFIXSAT:
476   case ISD::SDIVFIX:
477   case ISD::SDIVFIXSAT:
478   case ISD::UDIVFIX:
479   case ISD::UDIVFIXSAT: {
480     unsigned Scale = Node->getConstantOperandVal(2);
481     Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
482                                               Node->getValueType(0), Scale);
483     break;
484   }
485   case ISD::LROUND:
486   case ISD::LLROUND:
487   case ISD::LRINT:
488   case ISD::LLRINT:
489   case ISD::SINT_TO_FP:
490   case ISD::UINT_TO_FP:
491   case ISD::VECREDUCE_ADD:
492   case ISD::VECREDUCE_MUL:
493   case ISD::VECREDUCE_AND:
494   case ISD::VECREDUCE_OR:
495   case ISD::VECREDUCE_XOR:
496   case ISD::VECREDUCE_SMAX:
497   case ISD::VECREDUCE_SMIN:
498   case ISD::VECREDUCE_UMAX:
499   case ISD::VECREDUCE_UMIN:
500   case ISD::VECREDUCE_FADD:
501   case ISD::VECREDUCE_FMUL:
502   case ISD::VECREDUCE_FMAX:
503   case ISD::VECREDUCE_FMIN:
504   case ISD::VECREDUCE_FMAXIMUM:
505   case ISD::VECREDUCE_FMINIMUM:
506   case ISD::VECTOR_FIND_LAST_ACTIVE:
507     Action = TLI.getOperationAction(Node->getOpcode(),
508                                     Node->getOperand(0).getValueType());
509     break;
510   case ISD::VECREDUCE_SEQ_FADD:
511   case ISD::VECREDUCE_SEQ_FMUL:
512     Action = TLI.getOperationAction(Node->getOpcode(),
513                                     Node->getOperand(1).getValueType());
514     break;
515   case ISD::SETCC: {
516     MVT OpVT = Node->getOperand(0).getSimpleValueType();
517     ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
518     Action = TLI.getCondCodeAction(CCCode, OpVT);
519     if (Action == TargetLowering::Legal)
520       Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
521     break;
522   }
523 
524 #define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...)                          \
525   case ISD::VPID: {                                                            \
526     EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS))        \
527                                   : Node->getOperand(LEGALPOS).getValueType(); \
528     if (ISD::VPID == ISD::VP_SETCC) {                                          \
529       ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get(); \
530       Action = TLI.getCondCodeAction(CCCode, LegalizeVT.getSimpleVT());        \
531       if (Action != TargetLowering::Legal)                                     \
532         break;                                                                 \
533     }                                                                          \
534     /* Defer non-vector results to LegalizeDAG. */                             \
535     if (!Node->getValueType(0).isVector() &&                                   \
536         Node->getValueType(0) != MVT::Other) {                                 \
537       Action = TargetLowering::Legal;                                          \
538       break;                                                                   \
539     }                                                                          \
540     Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT);            \
541   } break;
542 #include "llvm/IR/VPIntrinsics.def"
543   }
544 
545   LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
546 
547   SmallVector<SDValue, 8> ResultVals;
548   switch (Action) {
549   default: llvm_unreachable("This action is not supported yet!");
550   case TargetLowering::Promote:
551     assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
552            "This action is not supported yet!");
553     LLVM_DEBUG(dbgs() << "Promoting\n");
554     Promote(Node, ResultVals);
555     assert(!ResultVals.empty() && "No results for promotion?");
556     break;
557   case TargetLowering::Legal:
558     LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
559     break;
560   case TargetLowering::Custom:
561     LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
562     if (LowerOperationWrapper(Node, ResultVals))
563       break;
564     LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
565     [[fallthrough]];
566   case TargetLowering::Expand:
567     LLVM_DEBUG(dbgs() << "Expanding\n");
568     Expand(Node, ResultVals);
569     break;
570   }
571 
572   if (ResultVals.empty())
573     return TranslateLegalizeResults(Op, Node);
574 
575   Changed = true;
576   return RecursivelyLegalizeResults(Op, ResultVals);
577 }
578 
579 // FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
580 // merge them somehow?
581 bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
582                                             SmallVectorImpl<SDValue> &Results) {
583   SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
584 
585   if (!Res.getNode())
586     return false;
587 
588   if (Res == SDValue(Node, 0))
589     return true;
590 
591   // If the original node has one result, take the return value from
592   // LowerOperation as is. It might not be result number 0.
593   if (Node->getNumValues() == 1) {
594     Results.push_back(Res);
595     return true;
596   }
597 
598   // If the original node has multiple results, then the return node should
599   // have the same number of results.
600   assert((Node->getNumValues() == Res->getNumValues()) &&
601          "Lowering returned the wrong number of results!");
602 
603   // Places new result values base on N result number.
604   for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
605     Results.push_back(Res.getValue(I));
606 
607   return true;
608 }
609 
610 void VectorLegalizer::PromoteSETCC(SDNode *Node,
611                                    SmallVectorImpl<SDValue> &Results) {
612   MVT VecVT = Node->getOperand(0).getSimpleValueType();
613   MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT);
614 
615   unsigned ExtOp = VecVT.isFloatingPoint() ? ISD::FP_EXTEND : ISD::ANY_EXTEND;
616 
617   SDLoc DL(Node);
618   SmallVector<SDValue, 5> Operands(Node->getNumOperands());
619 
620   Operands[0] = DAG.getNode(ExtOp, DL, NewVecVT, Node->getOperand(0));
621   Operands[1] = DAG.getNode(ExtOp, DL, NewVecVT, Node->getOperand(1));
622   Operands[2] = Node->getOperand(2);
623 
624   if (Node->getOpcode() == ISD::VP_SETCC) {
625     Operands[3] = Node->getOperand(3); // mask
626     Operands[4] = Node->getOperand(4); // evl
627   }
628 
629   SDValue Res = DAG.getNode(Node->getOpcode(), DL, Node->getSimpleValueType(0),
630                             Operands, Node->getFlags());
631 
632   Results.push_back(Res);
633 }
634 
635 void VectorLegalizer::PromoteSTRICT(SDNode *Node,
636                                     SmallVectorImpl<SDValue> &Results) {
637   MVT VecVT = Node->getOperand(1).getSimpleValueType();
638   MVT NewVecVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VecVT);
639 
640   assert(VecVT.isFloatingPoint());
641 
642   SDLoc DL(Node);
643   SmallVector<SDValue, 5> Operands(Node->getNumOperands());
644   SmallVector<SDValue, 2> Chains;
645 
646   for (unsigned j = 1; j != Node->getNumOperands(); ++j)
647     if (Node->getOperand(j).getValueType().isVector() &&
648         !(ISD::isVPOpcode(Node->getOpcode()) &&
649           ISD::getVPMaskIdx(Node->getOpcode()) == j)) // Skip mask operand.
650     {
651       // promote the vector operand.
652       SDValue Ext =
653           DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {NewVecVT, MVT::Other},
654                       {Node->getOperand(0), Node->getOperand(j)});
655       Operands[j] = Ext.getValue(0);
656       Chains.push_back(Ext.getValue(1));
657     } else
658       Operands[j] = Node->getOperand(j); // Skip no vector operand.
659 
660   SDVTList VTs = DAG.getVTList(NewVecVT, Node->getValueType(1));
661 
662   Operands[0] = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
663 
664   SDValue Res =
665       DAG.getNode(Node->getOpcode(), DL, VTs, Operands, Node->getFlags());
666 
667   SDValue Round =
668       DAG.getNode(ISD::STRICT_FP_ROUND, DL, {VecVT, MVT::Other},
669                   {Res.getValue(1), Res.getValue(0),
670                    DAG.getIntPtrConstant(0, DL, /*isTarget=*/true)});
671 
672   Results.push_back(Round.getValue(0));
673   Results.push_back(Round.getValue(1));
674 }
675 
676 void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
677   // For a few operations there is a specific concept for promotion based on
678   // the operand's type.
679   switch (Node->getOpcode()) {
680   case ISD::SINT_TO_FP:
681   case ISD::UINT_TO_FP:
682   case ISD::STRICT_SINT_TO_FP:
683   case ISD::STRICT_UINT_TO_FP:
684     // "Promote" the operation by extending the operand.
685     PromoteINT_TO_FP(Node, Results);
686     return;
687   case ISD::FP_TO_UINT:
688   case ISD::FP_TO_SINT:
689   case ISD::STRICT_FP_TO_UINT:
690   case ISD::STRICT_FP_TO_SINT:
691     // Promote the operation by extending the operand.
692     PromoteFP_TO_INT(Node, Results);
693     return;
694   case ISD::VP_SETCC:
695   case ISD::SETCC:
696     // Promote the operation by extending the operand.
697     PromoteSETCC(Node, Results);
698     return;
699   case ISD::STRICT_FADD:
700   case ISD::STRICT_FSUB:
701   case ISD::STRICT_FMUL:
702   case ISD::STRICT_FDIV:
703   case ISD::STRICT_FSQRT:
704   case ISD::STRICT_FMA:
705     PromoteSTRICT(Node, Results);
706     return;
707   case ISD::FP_ROUND:
708   case ISD::FP_EXTEND:
709     // These operations are used to do promotion so they can't be promoted
710     // themselves.
711     llvm_unreachable("Don't know how to promote this operation!");
712   case ISD::VP_FABS:
713   case ISD::VP_FCOPYSIGN:
714   case ISD::VP_FNEG:
715     // Promoting fabs, fneg, and fcopysign changes their semantics.
716     llvm_unreachable("These operations should not be promoted");
717   }
718 
719   // There are currently two cases of vector promotion:
720   // 1) Bitcasting a vector of integers to a different type to a vector of the
721   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
722   // 2) Extending a vector of floats to a vector of the same number of larger
723   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
724   assert(Node->getNumValues() == 1 &&
725          "Can't promote a vector with multiple results!");
726   MVT VT = Node->getSimpleValueType(0);
727   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
728   SDLoc dl(Node);
729   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
730 
731   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
732     // Do not promote the mask operand of a VP OP.
733     bool SkipPromote = ISD::isVPOpcode(Node->getOpcode()) &&
734                        ISD::getVPMaskIdx(Node->getOpcode()) == j;
735     if (Node->getOperand(j).getValueType().isVector() && !SkipPromote)
736       if (Node->getOperand(j)
737               .getValueType()
738               .getVectorElementType()
739               .isFloatingPoint() &&
740           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
741         if (ISD::isVPOpcode(Node->getOpcode())) {
742           unsigned EVLIdx =
743               *ISD::getVPExplicitVectorLengthIdx(Node->getOpcode());
744           unsigned MaskIdx = *ISD::getVPMaskIdx(Node->getOpcode());
745           Operands[j] =
746               DAG.getNode(ISD::VP_FP_EXTEND, dl, NVT, Node->getOperand(j),
747                           Node->getOperand(MaskIdx), Node->getOperand(EVLIdx));
748         } else {
749           Operands[j] =
750               DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
751         }
752       else
753         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
754     else
755       Operands[j] = Node->getOperand(j);
756   }
757 
758   SDValue Res =
759       DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
760 
761   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
762       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
763        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
764     if (ISD::isVPOpcode(Node->getOpcode())) {
765       unsigned EVLIdx = *ISD::getVPExplicitVectorLengthIdx(Node->getOpcode());
766       unsigned MaskIdx = *ISD::getVPMaskIdx(Node->getOpcode());
767       Res = DAG.getNode(ISD::VP_FP_ROUND, dl, VT, Res,
768                         Node->getOperand(MaskIdx), Node->getOperand(EVLIdx));
769     } else {
770       Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res,
771                         DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
772     }
773   else
774     Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
775 
776   Results.push_back(Res);
777 }
778 
779 void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
780                                        SmallVectorImpl<SDValue> &Results) {
781   // INT_TO_FP operations may require the input operand be promoted even
782   // when the type is otherwise legal.
783   bool IsStrict = Node->isStrictFPOpcode();
784   MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
785   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
786   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
787          "Vectors have different number of elements!");
788 
789   SDLoc dl(Node);
790   SmallVector<SDValue, 4> Operands(Node->getNumOperands());
791 
792   unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
793                   Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
794                      ? ISD::ZERO_EXTEND
795                      : ISD::SIGN_EXTEND;
796   for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
797     if (Node->getOperand(j).getValueType().isVector())
798       Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
799     else
800       Operands[j] = Node->getOperand(j);
801   }
802 
803   if (IsStrict) {
804     SDValue Res = DAG.getNode(Node->getOpcode(), dl,
805                               {Node->getValueType(0), MVT::Other}, Operands);
806     Results.push_back(Res);
807     Results.push_back(Res.getValue(1));
808     return;
809   }
810 
811   SDValue Res =
812       DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
813   Results.push_back(Res);
814 }
815 
816 // For FP_TO_INT we promote the result type to a vector type with wider
817 // elements and then truncate the result.  This is different from the default
818 // PromoteVector which uses bitcast to promote thus assumning that the
819 // promoted vector type has the same overall size.
820 void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
821                                        SmallVectorImpl<SDValue> &Results) {
822   MVT VT = Node->getSimpleValueType(0);
823   MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
824   bool IsStrict = Node->isStrictFPOpcode();
825   assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
826          "Vectors have different number of elements!");
827 
828   unsigned NewOpc = Node->getOpcode();
829   // Change FP_TO_UINT to FP_TO_SINT if possible.
830   // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
831   if (NewOpc == ISD::FP_TO_UINT &&
832       TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
833     NewOpc = ISD::FP_TO_SINT;
834 
835   if (NewOpc == ISD::STRICT_FP_TO_UINT &&
836       TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
837     NewOpc = ISD::STRICT_FP_TO_SINT;
838 
839   SDLoc dl(Node);
840   SDValue Promoted, Chain;
841   if (IsStrict) {
842     Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
843                            {Node->getOperand(0), Node->getOperand(1)});
844     Chain = Promoted.getValue(1);
845   } else
846     Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
847 
848   // Assert that the converted value fits in the original type.  If it doesn't
849   // (eg: because the value being converted is too big), then the result of the
850   // original operation was undefined anyway, so the assert is still correct.
851   if (Node->getOpcode() == ISD::FP_TO_UINT ||
852       Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
853     NewOpc = ISD::AssertZext;
854   else
855     NewOpc = ISD::AssertSext;
856 
857   Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
858                          DAG.getValueType(VT.getScalarType()));
859   Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
860   Results.push_back(Promoted);
861   if (IsStrict)
862     Results.push_back(Chain);
863 }
864 
865 std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
866   LoadSDNode *LD = cast<LoadSDNode>(N);
867   return TLI.scalarizeVectorLoad(LD, DAG);
868 }
869 
870 SDValue VectorLegalizer::ExpandStore(SDNode *N) {
871   StoreSDNode *ST = cast<StoreSDNode>(N);
872   SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
873   return TF;
874 }
875 
876 void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
877   switch (Node->getOpcode()) {
878   case ISD::LOAD: {
879     std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
880     Results.push_back(Tmp.first);
881     Results.push_back(Tmp.second);
882     return;
883   }
884   case ISD::STORE:
885     Results.push_back(ExpandStore(Node));
886     return;
887   case ISD::MERGE_VALUES:
888     for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
889       Results.push_back(Node->getOperand(i));
890     return;
891   case ISD::SIGN_EXTEND_INREG:
892     if (SDValue Expanded = ExpandSEXTINREG(Node)) {
893       Results.push_back(Expanded);
894       return;
895     }
896     break;
897   case ISD::ANY_EXTEND_VECTOR_INREG:
898     Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
899     return;
900   case ISD::SIGN_EXTEND_VECTOR_INREG:
901     Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
902     return;
903   case ISD::ZERO_EXTEND_VECTOR_INREG:
904     Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
905     return;
906   case ISD::BSWAP:
907     if (SDValue Expanded = ExpandBSWAP(Node)) {
908       Results.push_back(Expanded);
909       return;
910     }
911     break;
912   case ISD::VP_BSWAP:
913     Results.push_back(TLI.expandVPBSWAP(Node, DAG));
914     return;
915   case ISD::VSELECT:
916     if (SDValue Expanded = ExpandVSELECT(Node)) {
917       Results.push_back(Expanded);
918       return;
919     }
920     break;
921   case ISD::VP_SELECT:
922     if (SDValue Expanded = ExpandVP_SELECT(Node)) {
923       Results.push_back(Expanded);
924       return;
925     }
926     break;
927   case ISD::VP_SREM:
928   case ISD::VP_UREM:
929     if (SDValue Expanded = ExpandVP_REM(Node)) {
930       Results.push_back(Expanded);
931       return;
932     }
933     break;
934   case ISD::VP_FNEG:
935     if (SDValue Expanded = ExpandVP_FNEG(Node)) {
936       Results.push_back(Expanded);
937       return;
938     }
939     break;
940   case ISD::VP_FABS:
941     if (SDValue Expanded = ExpandVP_FABS(Node)) {
942       Results.push_back(Expanded);
943       return;
944     }
945     break;
946   case ISD::VP_FCOPYSIGN:
947     if (SDValue Expanded = ExpandVP_FCOPYSIGN(Node)) {
948       Results.push_back(Expanded);
949       return;
950     }
951     break;
952   case ISD::SELECT:
953     if (SDValue Expanded = ExpandSELECT(Node)) {
954       Results.push_back(Expanded);
955       return;
956     }
957     break;
958   case ISD::SELECT_CC: {
959     if (Node->getValueType(0).isScalableVector()) {
960       EVT CondVT = TLI.getSetCCResultType(
961           DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
962       SDValue SetCC =
963           DAG.getNode(ISD::SETCC, SDLoc(Node), CondVT, Node->getOperand(0),
964                       Node->getOperand(1), Node->getOperand(4));
965       Results.push_back(DAG.getSelect(SDLoc(Node), Node->getValueType(0), SetCC,
966                                       Node->getOperand(2),
967                                       Node->getOperand(3)));
968       return;
969     }
970     break;
971   }
972   case ISD::FP_TO_UINT:
973     ExpandFP_TO_UINT(Node, Results);
974     return;
975   case ISD::UINT_TO_FP:
976     ExpandUINT_TO_FLOAT(Node, Results);
977     return;
978   case ISD::FNEG:
979     if (SDValue Expanded = ExpandFNEG(Node)) {
980       Results.push_back(Expanded);
981       return;
982     }
983     break;
984   case ISD::FABS:
985     if (SDValue Expanded = ExpandFABS(Node)) {
986       Results.push_back(Expanded);
987       return;
988     }
989     break;
990   case ISD::FCOPYSIGN:
991     if (SDValue Expanded = ExpandFCOPYSIGN(Node)) {
992       Results.push_back(Expanded);
993       return;
994     }
995     break;
996   case ISD::FSUB:
997     ExpandFSUB(Node, Results);
998     return;
999   case ISD::SETCC:
1000   case ISD::VP_SETCC:
1001     ExpandSETCC(Node, Results);
1002     return;
1003   case ISD::ABS:
1004     if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
1005       Results.push_back(Expanded);
1006       return;
1007     }
1008     break;
1009   case ISD::ABDS:
1010   case ISD::ABDU:
1011     if (SDValue Expanded = TLI.expandABD(Node, DAG)) {
1012       Results.push_back(Expanded);
1013       return;
1014     }
1015     break;
1016   case ISD::AVGCEILS:
1017   case ISD::AVGCEILU:
1018   case ISD::AVGFLOORS:
1019   case ISD::AVGFLOORU:
1020     if (SDValue Expanded = TLI.expandAVG(Node, DAG)) {
1021       Results.push_back(Expanded);
1022       return;
1023     }
1024     break;
1025   case ISD::BITREVERSE:
1026     if (SDValue Expanded = ExpandBITREVERSE(Node)) {
1027       Results.push_back(Expanded);
1028       return;
1029     }
1030     break;
1031   case ISD::VP_BITREVERSE:
1032     if (SDValue Expanded = TLI.expandVPBITREVERSE(Node, DAG)) {
1033       Results.push_back(Expanded);
1034       return;
1035     }
1036     break;
1037   case ISD::CTPOP:
1038     if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
1039       Results.push_back(Expanded);
1040       return;
1041     }
1042     break;
1043   case ISD::VP_CTPOP:
1044     if (SDValue Expanded = TLI.expandVPCTPOP(Node, DAG)) {
1045       Results.push_back(Expanded);
1046       return;
1047     }
1048     break;
1049   case ISD::CTLZ:
1050   case ISD::CTLZ_ZERO_UNDEF:
1051     if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
1052       Results.push_back(Expanded);
1053       return;
1054     }
1055     break;
1056   case ISD::VP_CTLZ:
1057   case ISD::VP_CTLZ_ZERO_UNDEF:
1058     if (SDValue Expanded = TLI.expandVPCTLZ(Node, DAG)) {
1059       Results.push_back(Expanded);
1060       return;
1061     }
1062     break;
1063   case ISD::CTTZ:
1064   case ISD::CTTZ_ZERO_UNDEF:
1065     if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
1066       Results.push_back(Expanded);
1067       return;
1068     }
1069     break;
1070   case ISD::VP_CTTZ:
1071   case ISD::VP_CTTZ_ZERO_UNDEF:
1072     if (SDValue Expanded = TLI.expandVPCTTZ(Node, DAG)) {
1073       Results.push_back(Expanded);
1074       return;
1075     }
1076     break;
1077   case ISD::FSHL:
1078   case ISD::VP_FSHL:
1079   case ISD::FSHR:
1080   case ISD::VP_FSHR:
1081     if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
1082       Results.push_back(Expanded);
1083       return;
1084     }
1085     break;
1086   case ISD::ROTL:
1087   case ISD::ROTR:
1088     if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
1089       Results.push_back(Expanded);
1090       return;
1091     }
1092     break;
1093   case ISD::FMINNUM:
1094   case ISD::FMAXNUM:
1095     if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
1096       Results.push_back(Expanded);
1097       return;
1098     }
1099     break;
1100   case ISD::FMINIMUM:
1101   case ISD::FMAXIMUM:
1102     Results.push_back(TLI.expandFMINIMUM_FMAXIMUM(Node, DAG));
1103     return;
1104   case ISD::FMINIMUMNUM:
1105   case ISD::FMAXIMUMNUM:
1106     Results.push_back(TLI.expandFMINIMUMNUM_FMAXIMUMNUM(Node, DAG));
1107     return;
1108   case ISD::SMIN:
1109   case ISD::SMAX:
1110   case ISD::UMIN:
1111   case ISD::UMAX:
1112     if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
1113       Results.push_back(Expanded);
1114       return;
1115     }
1116     break;
1117   case ISD::UADDO:
1118   case ISD::USUBO:
1119     ExpandUADDSUBO(Node, Results);
1120     return;
1121   case ISD::SADDO:
1122   case ISD::SSUBO:
1123     ExpandSADDSUBO(Node, Results);
1124     return;
1125   case ISD::UMULO:
1126   case ISD::SMULO:
1127     ExpandMULO(Node, Results);
1128     return;
1129   case ISD::USUBSAT:
1130   case ISD::SSUBSAT:
1131   case ISD::UADDSAT:
1132   case ISD::SADDSAT:
1133     if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
1134       Results.push_back(Expanded);
1135       return;
1136     }
1137     break;
1138   case ISD::USHLSAT:
1139   case ISD::SSHLSAT:
1140     if (SDValue Expanded = TLI.expandShlSat(Node, DAG)) {
1141       Results.push_back(Expanded);
1142       return;
1143     }
1144     break;
1145   case ISD::FP_TO_SINT_SAT:
1146   case ISD::FP_TO_UINT_SAT:
1147     // Expand the fpsosisat if it is scalable to prevent it from unrolling below.
1148     if (Node->getValueType(0).isScalableVector()) {
1149       if (SDValue Expanded = TLI.expandFP_TO_INT_SAT(Node, DAG)) {
1150         Results.push_back(Expanded);
1151         return;
1152       }
1153     }
1154     break;
1155   case ISD::SMULFIX:
1156   case ISD::UMULFIX:
1157     if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
1158       Results.push_back(Expanded);
1159       return;
1160     }
1161     break;
1162   case ISD::SMULFIXSAT:
1163   case ISD::UMULFIXSAT:
1164     // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
1165     // why. Maybe it results in worse codegen compared to the unroll for some
1166     // targets? This should probably be investigated. And if we still prefer to
1167     // unroll an explanation could be helpful.
1168     break;
1169   case ISD::SDIVFIX:
1170   case ISD::UDIVFIX:
1171     ExpandFixedPointDiv(Node, Results);
1172     return;
1173   case ISD::SDIVFIXSAT:
1174   case ISD::UDIVFIXSAT:
1175     break;
1176 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
1177   case ISD::STRICT_##DAGN:
1178 #include "llvm/IR/ConstrainedOps.def"
1179     ExpandStrictFPOp(Node, Results);
1180     return;
1181   case ISD::VECREDUCE_ADD:
1182   case ISD::VECREDUCE_MUL:
1183   case ISD::VECREDUCE_AND:
1184   case ISD::VECREDUCE_OR:
1185   case ISD::VECREDUCE_XOR:
1186   case ISD::VECREDUCE_SMAX:
1187   case ISD::VECREDUCE_SMIN:
1188   case ISD::VECREDUCE_UMAX:
1189   case ISD::VECREDUCE_UMIN:
1190   case ISD::VECREDUCE_FADD:
1191   case ISD::VECREDUCE_FMUL:
1192   case ISD::VECREDUCE_FMAX:
1193   case ISD::VECREDUCE_FMIN:
1194   case ISD::VECREDUCE_FMAXIMUM:
1195   case ISD::VECREDUCE_FMINIMUM:
1196     Results.push_back(TLI.expandVecReduce(Node, DAG));
1197     return;
1198   case ISD::VECREDUCE_SEQ_FADD:
1199   case ISD::VECREDUCE_SEQ_FMUL:
1200     Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
1201     return;
1202   case ISD::SREM:
1203   case ISD::UREM:
1204     ExpandREM(Node, Results);
1205     return;
1206   case ISD::VP_MERGE:
1207     if (SDValue Expanded = ExpandVP_MERGE(Node)) {
1208       Results.push_back(Expanded);
1209       return;
1210     }
1211     break;
1212   case ISD::FREM:
1213     if (tryExpandVecMathCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
1214                              RTLIB::REM_F80, RTLIB::REM_F128,
1215                              RTLIB::REM_PPCF128, Results))
1216       return;
1217 
1218     break;
1219   case ISD::FSINCOS: {
1220     RTLIB::Libcall LC =
1221         RTLIB::getFSINCOS(Node->getValueType(0).getVectorElementType());
1222     if (DAG.expandMultipleResultFPLibCall(LC, Node, Results))
1223       return;
1224     break;
1225   }
1226   case ISD::VECTOR_COMPRESS:
1227     Results.push_back(TLI.expandVECTOR_COMPRESS(Node, DAG));
1228     return;
1229   case ISD::VECTOR_FIND_LAST_ACTIVE:
1230     Results.push_back(TLI.expandVectorFindLastActive(Node, DAG));
1231     return;
1232   case ISD::SCMP:
1233   case ISD::UCMP:
1234     Results.push_back(TLI.expandCMP(Node, DAG));
1235     return;
1236 
1237   case ISD::FADD:
1238   case ISD::FMUL:
1239   case ISD::FMA:
1240   case ISD::FDIV:
1241   case ISD::FCEIL:
1242   case ISD::FFLOOR:
1243   case ISD::FNEARBYINT:
1244   case ISD::FRINT:
1245   case ISD::FROUND:
1246   case ISD::FROUNDEVEN:
1247   case ISD::FTRUNC:
1248   case ISD::FSQRT:
1249     if (SDValue Expanded = TLI.expandVectorNaryOpBySplitting(Node, DAG)) {
1250       Results.push_back(Expanded);
1251       return;
1252     }
1253     break;
1254   }
1255 
1256   SDValue Unrolled = DAG.UnrollVectorOp(Node);
1257   if (Node->getNumValues() == 1) {
1258     Results.push_back(Unrolled);
1259   } else {
1260     assert(Node->getNumValues() == Unrolled->getNumValues() &&
1261       "VectorLegalizer Expand returned wrong number of results!");
1262     for (unsigned I = 0, E = Unrolled->getNumValues(); I != E; ++I)
1263       Results.push_back(Unrolled.getValue(I));
1264   }
1265 }
1266 
1267 SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
1268   // Lower a select instruction where the condition is a scalar and the
1269   // operands are vectors. Lower this select to VSELECT and implement it
1270   // using XOR AND OR. The selector bit is broadcasted.
1271   EVT VT = Node->getValueType(0);
1272   SDLoc DL(Node);
1273 
1274   SDValue Mask = Node->getOperand(0);
1275   SDValue Op1 = Node->getOperand(1);
1276   SDValue Op2 = Node->getOperand(2);
1277 
1278   assert(VT.isVector() && !Mask.getValueType().isVector()
1279          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
1280 
1281   // If we can't even use the basic vector operations of
1282   // AND,OR,XOR, we will have to scalarize the op.
1283   // Notice that the operation may be 'promoted' which means that it is
1284   // 'bitcasted' to another type which is handled.
1285   // Also, we need to be able to construct a splat vector using either
1286   // BUILD_VECTOR or SPLAT_VECTOR.
1287   // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
1288   // BUILD_VECTOR?
1289   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1290       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1291       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1292       TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
1293                                                       : ISD::SPLAT_VECTOR,
1294                              VT) == TargetLowering::Expand)
1295     return SDValue();
1296 
1297   // Generate a mask operand.
1298   EVT MaskTy = VT.changeVectorElementTypeToInteger();
1299 
1300   // What is the size of each element in the vector mask.
1301   EVT BitTy = MaskTy.getScalarType();
1302 
1303   Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
1304                        DAG.getConstant(0, DL, BitTy));
1305 
1306   // Broadcast the mask so that the entire vector is all one or all zero.
1307   Mask = DAG.getSplat(MaskTy, DL, Mask);
1308 
1309   // Bitcast the operands to be the same type as the mask.
1310   // This is needed when we select between FP types because
1311   // the mask is a vector of integers.
1312   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
1313   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
1314 
1315   SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
1316 
1317   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
1318   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
1319   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
1320   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1321 }
1322 
1323 SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
1324   EVT VT = Node->getValueType(0);
1325 
1326   // Make sure that the SRA and SHL instructions are available.
1327   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
1328       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
1329     return SDValue();
1330 
1331   SDLoc DL(Node);
1332   EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
1333 
1334   unsigned BW = VT.getScalarSizeInBits();
1335   unsigned OrigBW = OrigTy.getScalarSizeInBits();
1336   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
1337 
1338   SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
1339   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
1340 }
1341 
1342 // Generically expand a vector anyext in register to a shuffle of the relevant
1343 // lanes into the appropriate locations, with other lanes left undef.
1344 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
1345   SDLoc DL(Node);
1346   EVT VT = Node->getValueType(0);
1347   int NumElements = VT.getVectorNumElements();
1348   SDValue Src = Node->getOperand(0);
1349   EVT SrcVT = Src.getValueType();
1350   int NumSrcElements = SrcVT.getVectorNumElements();
1351 
1352   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1353   // into a larger vector type.
1354   if (SrcVT.bitsLE(VT)) {
1355     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1356            "ANY_EXTEND_VECTOR_INREG vector size mismatch");
1357     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1358     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1359                              NumSrcElements);
1360     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1361                       Src, DAG.getVectorIdxConstant(0, DL));
1362   }
1363 
1364   // Build a base mask of undef shuffles.
1365   SmallVector<int, 16> ShuffleMask;
1366   ShuffleMask.resize(NumSrcElements, -1);
1367 
1368   // Place the extended lanes into the correct locations.
1369   int ExtLaneScale = NumSrcElements / NumElements;
1370   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1371   for (int i = 0; i < NumElements; ++i)
1372     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
1373 
1374   return DAG.getNode(
1375       ISD::BITCAST, DL, VT,
1376       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
1377 }
1378 
1379 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
1380   SDLoc DL(Node);
1381   EVT VT = Node->getValueType(0);
1382   SDValue Src = Node->getOperand(0);
1383   EVT SrcVT = Src.getValueType();
1384 
1385   // First build an any-extend node which can be legalized above when we
1386   // recurse through it.
1387   SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
1388 
1389   // Now we need sign extend. Do this by shifting the elements. Even if these
1390   // aren't legal operations, they have a better chance of being legalized
1391   // without full scalarization than the sign extension does.
1392   unsigned EltWidth = VT.getScalarSizeInBits();
1393   unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
1394   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
1395   return DAG.getNode(ISD::SRA, DL, VT,
1396                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
1397                      ShiftAmount);
1398 }
1399 
1400 // Generically expand a vector zext in register to a shuffle of the relevant
1401 // lanes into the appropriate locations, a blend of zero into the high bits,
1402 // and a bitcast to the wider element type.
1403 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
1404   SDLoc DL(Node);
1405   EVT VT = Node->getValueType(0);
1406   int NumElements = VT.getVectorNumElements();
1407   SDValue Src = Node->getOperand(0);
1408   EVT SrcVT = Src.getValueType();
1409   int NumSrcElements = SrcVT.getVectorNumElements();
1410 
1411   // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1412   // into a larger vector type.
1413   if (SrcVT.bitsLE(VT)) {
1414     assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1415            "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1416     NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1417     SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1418                              NumSrcElements);
1419     Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
1420                       Src, DAG.getVectorIdxConstant(0, DL));
1421   }
1422 
1423   // Build up a zero vector to blend into this one.
1424   SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1425 
1426   // Shuffle the incoming lanes into the correct position, and pull all other
1427   // lanes from the zero vector.
1428   auto ShuffleMask = llvm::to_vector<16>(llvm::seq<int>(0, NumSrcElements));
1429 
1430   int ExtLaneScale = NumSrcElements / NumElements;
1431   int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1432   for (int i = 0; i < NumElements; ++i)
1433     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1434 
1435   return DAG.getNode(ISD::BITCAST, DL, VT,
1436                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1437 }
1438 
1439 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1440   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1441   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1442     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1443       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1444 }
1445 
1446 SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
1447   EVT VT = Node->getValueType(0);
1448 
1449   // Scalable vectors can't use shuffle expansion.
1450   if (VT.isScalableVector())
1451     return TLI.expandBSWAP(Node, DAG);
1452 
1453   // Generate a byte wise shuffle mask for the BSWAP.
1454   SmallVector<int, 16> ShuffleMask;
1455   createBSWAPShuffleMask(VT, ShuffleMask);
1456   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1457 
1458   // Only emit a shuffle if the mask is legal.
1459   if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
1460     SDLoc DL(Node);
1461     SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1462     Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1463     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1464   }
1465 
1466   // If we have the appropriate vector bit operations, it is better to use them
1467   // than unrolling and expanding each component.
1468   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1469       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1470       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1471       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1472     return TLI.expandBSWAP(Node, DAG);
1473 
1474   // Otherwise let the caller unroll.
1475   return SDValue();
1476 }
1477 
1478 SDValue VectorLegalizer::ExpandBITREVERSE(SDNode *Node) {
1479   EVT VT = Node->getValueType(0);
1480 
1481   // We can't unroll or use shuffles for scalable vectors.
1482   if (VT.isScalableVector())
1483     return TLI.expandBITREVERSE(Node, DAG);
1484 
1485   // If we have the scalar operation, it's probably cheaper to unroll it.
1486   if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
1487     return SDValue();
1488 
1489   // If the vector element width is a whole number of bytes, test if its legal
1490   // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1491   // vector. This greatly reduces the number of bit shifts necessary.
1492   unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1493   if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1494     SmallVector<int, 16> BSWAPMask;
1495     createBSWAPShuffleMask(VT, BSWAPMask);
1496 
1497     EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1498     if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1499         (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1500          (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1501           TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1502           TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1503           TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1504       SDLoc DL(Node);
1505       SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
1506       Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1507                                 BSWAPMask);
1508       Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1509       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
1510       return Op;
1511     }
1512   }
1513 
1514   // If we have the appropriate vector bit operations, it is better to use them
1515   // than unrolling and expanding each component.
1516   if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
1517       TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
1518       TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
1519       TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1520     return TLI.expandBITREVERSE(Node, DAG);
1521 
1522   // Otherwise unroll.
1523   return SDValue();
1524 }
1525 
1526 SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
1527   // Implement VSELECT in terms of XOR, AND, OR
1528   // on platforms which do not support blend natively.
1529   SDLoc DL(Node);
1530 
1531   SDValue Mask = Node->getOperand(0);
1532   SDValue Op1 = Node->getOperand(1);
1533   SDValue Op2 = Node->getOperand(2);
1534 
1535   EVT VT = Mask.getValueType();
1536 
1537   // If we can't even use the basic vector operations of
1538   // AND,OR,XOR, we will have to scalarize the op.
1539   // Notice that the operation may be 'promoted' which means that it is
1540   // 'bitcasted' to another type which is handled.
1541   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1542       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1543       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
1544     return SDValue();
1545 
1546   // This operation also isn't safe with AND, OR, XOR when the boolean type is
1547   // 0/1 and the select operands aren't also booleans, as we need an all-ones
1548   // vector constant to mask with.
1549   // FIXME: Sign extend 1 to all ones if that's legal on the target.
1550   auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
1551   if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
1552       !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
1553         Op1.getValueType().getVectorElementType() == MVT::i1))
1554     return SDValue();
1555 
1556   // If the mask and the type are different sizes, unroll the vector op. This
1557   // can occur when getSetCCResultType returns something that is different in
1558   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1559   if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1560     return SDValue();
1561 
1562   // Bitcast the operands to be the same type as the mask.
1563   // This is needed when we select between FP types because
1564   // the mask is a vector of integers.
1565   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1566   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1567 
1568   SDValue NotMask = DAG.getNOT(DL, Mask, VT);
1569 
1570   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1571   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1572   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1573   return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
1574 }
1575 
1576 SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
1577   // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
1578   // do not support it natively.
1579   SDLoc DL(Node);
1580 
1581   SDValue Mask = Node->getOperand(0);
1582   SDValue Op1 = Node->getOperand(1);
1583   SDValue Op2 = Node->getOperand(2);
1584   SDValue EVL = Node->getOperand(3);
1585 
1586   EVT VT = Mask.getValueType();
1587 
1588   // If we can't even use the basic vector operations of
1589   // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
1590   if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
1591       TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
1592       TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
1593     return SDValue();
1594 
1595   // This operation also isn't safe when the operands aren't also booleans.
1596   if (Op1.getValueType().getVectorElementType() != MVT::i1)
1597     return SDValue();
1598 
1599   SDValue Ones = DAG.getAllOnesConstant(DL, VT);
1600   SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Ones, EVL);
1601 
1602   Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Ones, EVL);
1603   Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Ones, EVL);
1604   return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Ones, EVL);
1605 }
1606 
1607 SDValue VectorLegalizer::ExpandVP_MERGE(SDNode *Node) {
1608   // Implement VP_MERGE in terms of VSELECT. Construct a mask where vector
1609   // indices less than the EVL/pivot are true. Combine that with the original
1610   // mask for a full-length mask. Use a full-length VSELECT to select between
1611   // the true and false values.
1612   SDLoc DL(Node);
1613 
1614   SDValue Mask = Node->getOperand(0);
1615   SDValue Op1 = Node->getOperand(1);
1616   SDValue Op2 = Node->getOperand(2);
1617   SDValue EVL = Node->getOperand(3);
1618 
1619   EVT MaskVT = Mask.getValueType();
1620   bool IsFixedLen = MaskVT.isFixedLengthVector();
1621 
1622   EVT EVLVecVT = EVT::getVectorVT(*DAG.getContext(), EVL.getValueType(),
1623                                   MaskVT.getVectorElementCount());
1624 
1625   // If we can't construct the EVL mask efficiently, it's better to unroll.
1626   if ((IsFixedLen &&
1627        !TLI.isOperationLegalOrCustom(ISD::BUILD_VECTOR, EVLVecVT)) ||
1628       (!IsFixedLen &&
1629        (!TLI.isOperationLegalOrCustom(ISD::STEP_VECTOR, EVLVecVT) ||
1630         !TLI.isOperationLegalOrCustom(ISD::SPLAT_VECTOR, EVLVecVT))))
1631     return SDValue();
1632 
1633   // If using a SETCC would result in a different type than the mask type,
1634   // unroll.
1635   if (TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1636                              EVLVecVT) != MaskVT)
1637     return SDValue();
1638 
1639   SDValue StepVec = DAG.getStepVector(DL, EVLVecVT);
1640   SDValue SplatEVL = DAG.getSplat(EVLVecVT, DL, EVL);
1641   SDValue EVLMask =
1642       DAG.getSetCC(DL, MaskVT, StepVec, SplatEVL, ISD::CondCode::SETULT);
1643 
1644   SDValue FullMask = DAG.getNode(ISD::AND, DL, MaskVT, Mask, EVLMask);
1645   return DAG.getSelect(DL, Node->getValueType(0), FullMask, Op1, Op2);
1646 }
1647 
1648 SDValue VectorLegalizer::ExpandVP_REM(SDNode *Node) {
1649   // Implement VP_SREM/UREM in terms of VP_SDIV/VP_UDIV, VP_MUL, VP_SUB.
1650   EVT VT = Node->getValueType(0);
1651 
1652   unsigned DivOpc = Node->getOpcode() == ISD::VP_SREM ? ISD::VP_SDIV : ISD::VP_UDIV;
1653 
1654   if (!TLI.isOperationLegalOrCustom(DivOpc, VT) ||
1655       !TLI.isOperationLegalOrCustom(ISD::VP_MUL, VT) ||
1656       !TLI.isOperationLegalOrCustom(ISD::VP_SUB, VT))
1657     return SDValue();
1658 
1659   SDLoc DL(Node);
1660 
1661   SDValue Dividend = Node->getOperand(0);
1662   SDValue Divisor = Node->getOperand(1);
1663   SDValue Mask = Node->getOperand(2);
1664   SDValue EVL = Node->getOperand(3);
1665 
1666   // X % Y -> X-X/Y*Y
1667   SDValue Div = DAG.getNode(DivOpc, DL, VT, Dividend, Divisor, Mask, EVL);
1668   SDValue Mul = DAG.getNode(ISD::VP_MUL, DL, VT, Divisor, Div, Mask, EVL);
1669   return DAG.getNode(ISD::VP_SUB, DL, VT, Dividend, Mul, Mask, EVL);
1670 }
1671 
1672 SDValue VectorLegalizer::ExpandVP_FNEG(SDNode *Node) {
1673   EVT VT = Node->getValueType(0);
1674   EVT IntVT = VT.changeVectorElementTypeToInteger();
1675 
1676   if (!TLI.isOperationLegalOrCustom(ISD::VP_XOR, IntVT))
1677     return SDValue();
1678 
1679   SDValue Mask = Node->getOperand(1);
1680   SDValue EVL = Node->getOperand(2);
1681 
1682   SDLoc DL(Node);
1683   SDValue Cast = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(0));
1684   SDValue SignMask = DAG.getConstant(
1685       APInt::getSignMask(IntVT.getScalarSizeInBits()), DL, IntVT);
1686   SDValue Xor = DAG.getNode(ISD::VP_XOR, DL, IntVT, Cast, SignMask, Mask, EVL);
1687   return DAG.getNode(ISD::BITCAST, DL, VT, Xor);
1688 }
1689 
1690 SDValue VectorLegalizer::ExpandVP_FABS(SDNode *Node) {
1691   EVT VT = Node->getValueType(0);
1692   EVT IntVT = VT.changeVectorElementTypeToInteger();
1693 
1694   if (!TLI.isOperationLegalOrCustom(ISD::VP_AND, IntVT))
1695     return SDValue();
1696 
1697   SDValue Mask = Node->getOperand(1);
1698   SDValue EVL = Node->getOperand(2);
1699 
1700   SDLoc DL(Node);
1701   SDValue Cast = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(0));
1702   SDValue ClearSignMask = DAG.getConstant(
1703       APInt::getSignedMaxValue(IntVT.getScalarSizeInBits()), DL, IntVT);
1704   SDValue ClearSign =
1705       DAG.getNode(ISD::VP_AND, DL, IntVT, Cast, ClearSignMask, Mask, EVL);
1706   return DAG.getNode(ISD::BITCAST, DL, VT, ClearSign);
1707 }
1708 
1709 SDValue VectorLegalizer::ExpandVP_FCOPYSIGN(SDNode *Node) {
1710   EVT VT = Node->getValueType(0);
1711 
1712   if (VT != Node->getOperand(1).getValueType())
1713     return SDValue();
1714 
1715   EVT IntVT = VT.changeVectorElementTypeToInteger();
1716   if (!TLI.isOperationLegalOrCustom(ISD::VP_AND, IntVT) ||
1717       !TLI.isOperationLegalOrCustom(ISD::VP_XOR, IntVT))
1718     return SDValue();
1719 
1720   SDValue Mask = Node->getOperand(2);
1721   SDValue EVL = Node->getOperand(3);
1722 
1723   SDLoc DL(Node);
1724   SDValue Mag = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(0));
1725   SDValue Sign = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(1));
1726 
1727   SDValue SignMask = DAG.getConstant(
1728       APInt::getSignMask(IntVT.getScalarSizeInBits()), DL, IntVT);
1729   SDValue SignBit =
1730       DAG.getNode(ISD::VP_AND, DL, IntVT, Sign, SignMask, Mask, EVL);
1731 
1732   SDValue ClearSignMask = DAG.getConstant(
1733       APInt::getSignedMaxValue(IntVT.getScalarSizeInBits()), DL, IntVT);
1734   SDValue ClearedSign =
1735       DAG.getNode(ISD::VP_AND, DL, IntVT, Mag, ClearSignMask, Mask, EVL);
1736 
1737   SDValue CopiedSign = DAG.getNode(ISD::VP_OR, DL, IntVT, ClearedSign, SignBit,
1738                                    Mask, EVL, SDNodeFlags::Disjoint);
1739 
1740   return DAG.getNode(ISD::BITCAST, DL, VT, CopiedSign);
1741 }
1742 
1743 void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
1744                                        SmallVectorImpl<SDValue> &Results) {
1745   // Attempt to expand using TargetLowering.
1746   SDValue Result, Chain;
1747   if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
1748     Results.push_back(Result);
1749     if (Node->isStrictFPOpcode())
1750       Results.push_back(Chain);
1751     return;
1752   }
1753 
1754   // Otherwise go ahead and unroll.
1755   if (Node->isStrictFPOpcode()) {
1756     UnrollStrictFPOp(Node, Results);
1757     return;
1758   }
1759 
1760   Results.push_back(DAG.UnrollVectorOp(Node));
1761 }
1762 
1763 void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
1764                                           SmallVectorImpl<SDValue> &Results) {
1765   bool IsStrict = Node->isStrictFPOpcode();
1766   unsigned OpNo = IsStrict ? 1 : 0;
1767   SDValue Src = Node->getOperand(OpNo);
1768   EVT SrcVT = Src.getValueType();
1769   EVT DstVT = Node->getValueType(0);
1770   SDLoc DL(Node);
1771 
1772   // Attempt to expand using TargetLowering.
1773   SDValue Result;
1774   SDValue Chain;
1775   if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
1776     Results.push_back(Result);
1777     if (IsStrict)
1778       Results.push_back(Chain);
1779     return;
1780   }
1781 
1782   // Make sure that the SINT_TO_FP and SRL instructions are available.
1783   if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) ==
1784                          TargetLowering::Expand) ||
1785        (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, SrcVT) ==
1786                         TargetLowering::Expand)) ||
1787       TLI.getOperationAction(ISD::SRL, SrcVT) == TargetLowering::Expand) {
1788     if (IsStrict) {
1789       UnrollStrictFPOp(Node, Results);
1790       return;
1791     }
1792 
1793     Results.push_back(DAG.UnrollVectorOp(Node));
1794     return;
1795   }
1796 
1797   unsigned BW = SrcVT.getScalarSizeInBits();
1798   assert((BW == 64 || BW == 32) &&
1799          "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1800 
1801   // If STRICT_/FMUL is not supported by the target (in case of f16) replace the
1802   // UINT_TO_FP with a larger float and round to the smaller type
1803   if ((!IsStrict && !TLI.isOperationLegalOrCustom(ISD::FMUL, DstVT)) ||
1804       (IsStrict && !TLI.isOperationLegalOrCustom(ISD::STRICT_FMUL, DstVT))) {
1805     EVT FPVT = BW == 32 ? MVT::f32 : MVT::f64;
1806     SDValue UIToFP;
1807     SDValue Result;
1808     SDValue TargetZero = DAG.getIntPtrConstant(0, DL, /*isTarget=*/true);
1809     EVT FloatVecVT = SrcVT.changeVectorElementType(FPVT);
1810     if (IsStrict) {
1811       UIToFP = DAG.getNode(ISD::STRICT_UINT_TO_FP, DL, {FloatVecVT, MVT::Other},
1812                            {Node->getOperand(0), Src});
1813       Result = DAG.getNode(ISD::STRICT_FP_ROUND, DL, {DstVT, MVT::Other},
1814                            {Node->getOperand(0), UIToFP, TargetZero});
1815       Results.push_back(Result);
1816       Results.push_back(Result.getValue(1));
1817     } else {
1818       UIToFP = DAG.getNode(ISD::UINT_TO_FP, DL, FloatVecVT, Src);
1819       Result = DAG.getNode(ISD::FP_ROUND, DL, DstVT, UIToFP, TargetZero);
1820       Results.push_back(Result);
1821     }
1822 
1823     return;
1824   }
1825 
1826   SDValue HalfWord = DAG.getConstant(BW / 2, DL, SrcVT);
1827 
1828   // Constants to clear the upper part of the word.
1829   // Notice that we can also use SHL+SHR, but using a constant is slightly
1830   // faster on x86.
1831   uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1832   SDValue HalfWordMask = DAG.getConstant(HWMask, DL, SrcVT);
1833 
1834   // Two to the power of half-word-size.
1835   SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, DstVT);
1836 
1837   // Clear upper part of LO, lower HI
1838   SDValue HI = DAG.getNode(ISD::SRL, DL, SrcVT, Src, HalfWord);
1839   SDValue LO = DAG.getNode(ISD::AND, DL, SrcVT, Src, HalfWordMask);
1840 
1841   if (IsStrict) {
1842     // Convert hi and lo to floats
1843     // Convert the hi part back to the upper values
1844     // TODO: Can any fast-math-flags be set on these nodes?
1845     SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, {DstVT, MVT::Other},
1846                               {Node->getOperand(0), HI});
1847     fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {DstVT, MVT::Other},
1848                       {fHI.getValue(1), fHI, TWOHW});
1849     SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, {DstVT, MVT::Other},
1850                               {Node->getOperand(0), LO});
1851 
1852     SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
1853                              fLO.getValue(1));
1854 
1855     // Add the two halves
1856     SDValue Result =
1857         DAG.getNode(ISD::STRICT_FADD, DL, {DstVT, MVT::Other}, {TF, fHI, fLO});
1858 
1859     Results.push_back(Result);
1860     Results.push_back(Result.getValue(1));
1861     return;
1862   }
1863 
1864   // Convert hi and lo to floats
1865   // Convert the hi part back to the upper values
1866   // TODO: Can any fast-math-flags be set on these nodes?
1867   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, DstVT, HI);
1868   fHI = DAG.getNode(ISD::FMUL, DL, DstVT, fHI, TWOHW);
1869   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, DstVT, LO);
1870 
1871   // Add the two halves
1872   Results.push_back(DAG.getNode(ISD::FADD, DL, DstVT, fHI, fLO));
1873 }
1874 
1875 SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
1876   EVT VT = Node->getValueType(0);
1877   EVT IntVT = VT.changeVectorElementTypeToInteger();
1878 
1879   if (!TLI.isOperationLegalOrCustom(ISD::XOR, IntVT))
1880     return SDValue();
1881 
1882   // FIXME: The FSUB check is here to force unrolling v1f64 vectors on AArch64.
1883   if (!TLI.isOperationLegalOrCustomOrPromote(ISD::FSUB, VT) &&
1884       !VT.isScalableVector())
1885     return SDValue();
1886 
1887   SDLoc DL(Node);
1888   SDValue Cast = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(0));
1889   SDValue SignMask = DAG.getConstant(
1890       APInt::getSignMask(IntVT.getScalarSizeInBits()), DL, IntVT);
1891   SDValue Xor = DAG.getNode(ISD::XOR, DL, IntVT, Cast, SignMask);
1892   return DAG.getNode(ISD::BITCAST, DL, VT, Xor);
1893 }
1894 
1895 SDValue VectorLegalizer::ExpandFABS(SDNode *Node) {
1896   EVT VT = Node->getValueType(0);
1897   EVT IntVT = VT.changeVectorElementTypeToInteger();
1898 
1899   if (!TLI.isOperationLegalOrCustom(ISD::AND, IntVT))
1900     return SDValue();
1901 
1902   // FIXME: The FSUB check is here to force unrolling v1f64 vectors on AArch64.
1903   if (!TLI.isOperationLegalOrCustomOrPromote(ISD::FSUB, VT) &&
1904       !VT.isScalableVector())
1905     return SDValue();
1906 
1907   SDLoc DL(Node);
1908   SDValue Cast = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(0));
1909   SDValue ClearSignMask = DAG.getConstant(
1910       APInt::getSignedMaxValue(IntVT.getScalarSizeInBits()), DL, IntVT);
1911   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, Cast, ClearSignMask);
1912   return DAG.getNode(ISD::BITCAST, DL, VT, ClearedSign);
1913 }
1914 
1915 SDValue VectorLegalizer::ExpandFCOPYSIGN(SDNode *Node) {
1916   EVT VT = Node->getValueType(0);
1917   EVT IntVT = VT.changeVectorElementTypeToInteger();
1918 
1919   if (VT != Node->getOperand(1).getValueType() ||
1920       !TLI.isOperationLegalOrCustom(ISD::AND, IntVT) ||
1921       !TLI.isOperationLegalOrCustom(ISD::OR, IntVT))
1922     return SDValue();
1923 
1924   // FIXME: The FSUB check is here to force unrolling v1f64 vectors on AArch64.
1925   if (!TLI.isOperationLegalOrCustomOrPromote(ISD::FSUB, VT) &&
1926       !VT.isScalableVector())
1927     return SDValue();
1928 
1929   SDLoc DL(Node);
1930   SDValue Mag = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(0));
1931   SDValue Sign = DAG.getNode(ISD::BITCAST, DL, IntVT, Node->getOperand(1));
1932 
1933   SDValue SignMask = DAG.getConstant(
1934       APInt::getSignMask(IntVT.getScalarSizeInBits()), DL, IntVT);
1935   SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, Sign, SignMask);
1936 
1937   SDValue ClearSignMask = DAG.getConstant(
1938       APInt::getSignedMaxValue(IntVT.getScalarSizeInBits()), DL, IntVT);
1939   SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, Mag, ClearSignMask);
1940 
1941   SDValue CopiedSign = DAG.getNode(ISD::OR, DL, IntVT, ClearedSign, SignBit,
1942                                    SDNodeFlags::Disjoint);
1943 
1944   return DAG.getNode(ISD::BITCAST, DL, VT, CopiedSign);
1945 }
1946 
1947 void VectorLegalizer::ExpandFSUB(SDNode *Node,
1948                                  SmallVectorImpl<SDValue> &Results) {
1949   // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1950   // we can defer this to operation legalization where it will be lowered as
1951   // a+(-b).
1952   EVT VT = Node->getValueType(0);
1953   if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1954       TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1955     return; // Defer to LegalizeDAG
1956 
1957   if (SDValue Expanded = TLI.expandVectorNaryOpBySplitting(Node, DAG)) {
1958     Results.push_back(Expanded);
1959     return;
1960   }
1961 
1962   SDValue Tmp = DAG.UnrollVectorOp(Node);
1963   Results.push_back(Tmp);
1964 }
1965 
1966 void VectorLegalizer::ExpandSETCC(SDNode *Node,
1967                                   SmallVectorImpl<SDValue> &Results) {
1968   bool NeedInvert = false;
1969   bool IsVP = Node->getOpcode() == ISD::VP_SETCC;
1970   bool IsStrict = Node->getOpcode() == ISD::STRICT_FSETCC ||
1971                   Node->getOpcode() == ISD::STRICT_FSETCCS;
1972   bool IsSignaling = Node->getOpcode() == ISD::STRICT_FSETCCS;
1973   unsigned Offset = IsStrict ? 1 : 0;
1974 
1975   SDValue Chain = IsStrict ? Node->getOperand(0) : SDValue();
1976   SDValue LHS = Node->getOperand(0 + Offset);
1977   SDValue RHS = Node->getOperand(1 + Offset);
1978   SDValue CC = Node->getOperand(2 + Offset);
1979 
1980   MVT OpVT = LHS.getSimpleValueType();
1981   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1982 
1983   if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
1984     if (IsStrict) {
1985       UnrollStrictFPOp(Node, Results);
1986       return;
1987     }
1988     Results.push_back(UnrollVSETCC(Node));
1989     return;
1990   }
1991 
1992   SDValue Mask, EVL;
1993   if (IsVP) {
1994     Mask = Node->getOperand(3 + Offset);
1995     EVL = Node->getOperand(4 + Offset);
1996   }
1997 
1998   SDLoc dl(Node);
1999   bool Legalized =
2000       TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS, RHS, CC, Mask,
2001                                 EVL, NeedInvert, dl, Chain, IsSignaling);
2002 
2003   if (Legalized) {
2004     // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
2005     // condition code, create a new SETCC node.
2006     if (CC.getNode()) {
2007       if (IsStrict) {
2008         LHS = DAG.getNode(Node->getOpcode(), dl, Node->getVTList(),
2009                           {Chain, LHS, RHS, CC}, Node->getFlags());
2010         Chain = LHS.getValue(1);
2011       } else if (IsVP) {
2012         LHS = DAG.getNode(ISD::VP_SETCC, dl, Node->getValueType(0),
2013                           {LHS, RHS, CC, Mask, EVL}, Node->getFlags());
2014       } else {
2015         LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
2016                           Node->getFlags());
2017       }
2018     }
2019 
2020     // If we expanded the SETCC by inverting the condition code, then wrap
2021     // the existing SETCC in a NOT to restore the intended condition.
2022     if (NeedInvert) {
2023       if (!IsVP)
2024         LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
2025       else
2026         LHS = DAG.getVPLogicalNOT(dl, LHS, Mask, EVL, LHS->getValueType(0));
2027     }
2028   } else {
2029     assert(!IsStrict && "Don't know how to expand for strict nodes.");
2030 
2031     // Otherwise, SETCC for the given comparison type must be completely
2032     // illegal; expand it into a SELECT_CC.
2033     EVT VT = Node->getValueType(0);
2034     LHS =
2035         DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
2036                     DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
2037                     DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
2038     LHS->setFlags(Node->getFlags());
2039   }
2040 
2041   Results.push_back(LHS);
2042   if (IsStrict)
2043     Results.push_back(Chain);
2044 }
2045 
2046 void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
2047                                      SmallVectorImpl<SDValue> &Results) {
2048   SDValue Result, Overflow;
2049   TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
2050   Results.push_back(Result);
2051   Results.push_back(Overflow);
2052 }
2053 
2054 void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
2055                                      SmallVectorImpl<SDValue> &Results) {
2056   SDValue Result, Overflow;
2057   TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
2058   Results.push_back(Result);
2059   Results.push_back(Overflow);
2060 }
2061 
2062 void VectorLegalizer::ExpandMULO(SDNode *Node,
2063                                  SmallVectorImpl<SDValue> &Results) {
2064   SDValue Result, Overflow;
2065   if (!TLI.expandMULO(Node, Result, Overflow, DAG))
2066     std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
2067 
2068   Results.push_back(Result);
2069   Results.push_back(Overflow);
2070 }
2071 
2072 void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
2073                                           SmallVectorImpl<SDValue> &Results) {
2074   SDNode *N = Node;
2075   if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
2076           N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
2077     Results.push_back(Expanded);
2078 }
2079 
2080 void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
2081                                        SmallVectorImpl<SDValue> &Results) {
2082   if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
2083     ExpandUINT_TO_FLOAT(Node, Results);
2084     return;
2085   }
2086   if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
2087     ExpandFP_TO_UINT(Node, Results);
2088     return;
2089   }
2090 
2091   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
2092       Node->getOpcode() == ISD::STRICT_FSETCCS) {
2093     ExpandSETCC(Node, Results);
2094     return;
2095   }
2096 
2097   UnrollStrictFPOp(Node, Results);
2098 }
2099 
2100 void VectorLegalizer::ExpandREM(SDNode *Node,
2101                                 SmallVectorImpl<SDValue> &Results) {
2102   assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
2103          "Expected REM node");
2104 
2105   SDValue Result;
2106   if (!TLI.expandREM(Node, Result, DAG))
2107     Result = DAG.UnrollVectorOp(Node);
2108   Results.push_back(Result);
2109 }
2110 
2111 // Try to expand libm nodes into vector math routine calls. Callers provide the
2112 // LibFunc equivalent of the passed in Node, which is used to lookup mappings
2113 // within TargetLibraryInfo. The only mappings considered are those where the
2114 // result and all operands are the same vector type. While predicated nodes are
2115 // not supported, we will emit calls to masked routines by passing in an all
2116 // true mask.
2117 bool VectorLegalizer::tryExpandVecMathCall(SDNode *Node, RTLIB::Libcall LC,
2118                                            SmallVectorImpl<SDValue> &Results) {
2119   // Chain must be propagated but currently strict fp operations are down
2120   // converted to their none strict counterpart.
2121   assert(!Node->isStrictFPOpcode() && "Unexpected strict fp operation!");
2122 
2123   const char *LCName = TLI.getLibcallName(LC);
2124   if (!LCName)
2125     return false;
2126   LLVM_DEBUG(dbgs() << "Looking for vector variant of " << LCName << "\n");
2127 
2128   EVT VT = Node->getValueType(0);
2129   ElementCount VL = VT.getVectorElementCount();
2130 
2131   // Lookup a vector function equivalent to the specified libcall. Prefer
2132   // unmasked variants but we will generate a mask if need be.
2133   const TargetLibraryInfo &TLibInfo = DAG.getLibInfo();
2134   const VecDesc *VD = TLibInfo.getVectorMappingInfo(LCName, VL, false);
2135   if (!VD)
2136     VD = TLibInfo.getVectorMappingInfo(LCName, VL, /*Masked=*/true);
2137   if (!VD)
2138     return false;
2139 
2140   LLVMContext *Ctx = DAG.getContext();
2141   Type *Ty = VT.getTypeForEVT(*Ctx);
2142   Type *ScalarTy = Ty->getScalarType();
2143 
2144   // Construct a scalar function type based on Node's operands.
2145   SmallVector<Type *, 8> ArgTys;
2146   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
2147     assert(Node->getOperand(i).getValueType() == VT &&
2148            "Expected matching vector types!");
2149     ArgTys.push_back(ScalarTy);
2150   }
2151   FunctionType *ScalarFTy = FunctionType::get(ScalarTy, ArgTys, false);
2152 
2153   // Generate call information for the vector function.
2154   const std::string MangledName = VD->getVectorFunctionABIVariantString();
2155   auto OptVFInfo = VFABI::tryDemangleForVFABI(MangledName, ScalarFTy);
2156   if (!OptVFInfo)
2157     return false;
2158 
2159   LLVM_DEBUG(dbgs() << "Found vector variant " << VD->getVectorFnName()
2160                     << "\n");
2161 
2162   // Sanity check just in case OptVFInfo has unexpected parameters.
2163   if (OptVFInfo->Shape.Parameters.size() !=
2164       Node->getNumOperands() + VD->isMasked())
2165     return false;
2166 
2167   // Collect vector call operands.
2168 
2169   SDLoc DL(Node);
2170   TargetLowering::ArgListTy Args;
2171   TargetLowering::ArgListEntry Entry;
2172   Entry.IsSExt = false;
2173   Entry.IsZExt = false;
2174 
2175   unsigned OpNum = 0;
2176   for (auto &VFParam : OptVFInfo->Shape.Parameters) {
2177     if (VFParam.ParamKind == VFParamKind::GlobalPredicate) {
2178       EVT MaskVT = TLI.getSetCCResultType(DAG.getDataLayout(), *Ctx, VT);
2179       Entry.Node = DAG.getBoolConstant(true, DL, MaskVT, VT);
2180       Entry.Ty = MaskVT.getTypeForEVT(*Ctx);
2181       Args.push_back(Entry);
2182       continue;
2183     }
2184 
2185     // Only vector operands are supported.
2186     if (VFParam.ParamKind != VFParamKind::Vector)
2187       return false;
2188 
2189     Entry.Node = Node->getOperand(OpNum++);
2190     Entry.Ty = Ty;
2191     Args.push_back(Entry);
2192   }
2193 
2194   // Emit a call to the vector function.
2195   SDValue Callee = DAG.getExternalSymbol(VD->getVectorFnName().data(),
2196                                          TLI.getPointerTy(DAG.getDataLayout()));
2197   TargetLowering::CallLoweringInfo CLI(DAG);
2198   CLI.setDebugLoc(DL)
2199       .setChain(DAG.getEntryNode())
2200       .setLibCallee(CallingConv::C, Ty, Callee, std::move(Args));
2201 
2202   std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2203   Results.push_back(CallResult.first);
2204   return true;
2205 }
2206 
2207 /// Try to expand the node to a vector libcall based on the result type.
2208 bool VectorLegalizer::tryExpandVecMathCall(
2209     SDNode *Node, RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
2210     RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
2211     RTLIB::Libcall Call_PPCF128, SmallVectorImpl<SDValue> &Results) {
2212   RTLIB::Libcall LC = RTLIB::getFPLibCall(
2213       Node->getValueType(0).getVectorElementType(), Call_F32, Call_F64,
2214       Call_F80, Call_F128, Call_PPCF128);
2215 
2216   if (LC == RTLIB::UNKNOWN_LIBCALL)
2217     return false;
2218 
2219   return tryExpandVecMathCall(Node, LC, Results);
2220 }
2221 
2222 void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
2223                                        SmallVectorImpl<SDValue> &Results) {
2224   EVT VT = Node->getValueType(0);
2225   EVT EltVT = VT.getVectorElementType();
2226   unsigned NumElems = VT.getVectorNumElements();
2227   unsigned NumOpers = Node->getNumOperands();
2228   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2229 
2230   EVT TmpEltVT = EltVT;
2231   if (Node->getOpcode() == ISD::STRICT_FSETCC ||
2232       Node->getOpcode() == ISD::STRICT_FSETCCS)
2233     TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
2234                                       *DAG.getContext(), TmpEltVT);
2235 
2236   EVT ValueVTs[] = {TmpEltVT, MVT::Other};
2237   SDValue Chain = Node->getOperand(0);
2238   SDLoc dl(Node);
2239 
2240   SmallVector<SDValue, 32> OpValues;
2241   SmallVector<SDValue, 32> OpChains;
2242   for (unsigned i = 0; i < NumElems; ++i) {
2243     SmallVector<SDValue, 4> Opers;
2244     SDValue Idx = DAG.getVectorIdxConstant(i, dl);
2245 
2246     // The Chain is the first operand.
2247     Opers.push_back(Chain);
2248 
2249     // Now process the remaining operands.
2250     for (unsigned j = 1; j < NumOpers; ++j) {
2251       SDValue Oper = Node->getOperand(j);
2252       EVT OperVT = Oper.getValueType();
2253 
2254       if (OperVT.isVector())
2255         Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2256                            OperVT.getVectorElementType(), Oper, Idx);
2257 
2258       Opers.push_back(Oper);
2259     }
2260 
2261     SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
2262     SDValue ScalarResult = ScalarOp.getValue(0);
2263     SDValue ScalarChain = ScalarOp.getValue(1);
2264 
2265     if (Node->getOpcode() == ISD::STRICT_FSETCC ||
2266         Node->getOpcode() == ISD::STRICT_FSETCCS)
2267       ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
2268                                    DAG.getAllOnesConstant(dl, EltVT),
2269                                    DAG.getConstant(0, dl, EltVT));
2270 
2271     OpValues.push_back(ScalarResult);
2272     OpChains.push_back(ScalarChain);
2273   }
2274 
2275   SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
2276   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
2277 
2278   Results.push_back(Result);
2279   Results.push_back(NewChain);
2280 }
2281 
2282 SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
2283   EVT VT = Node->getValueType(0);
2284   unsigned NumElems = VT.getVectorNumElements();
2285   EVT EltVT = VT.getVectorElementType();
2286   SDValue LHS = Node->getOperand(0);
2287   SDValue RHS = Node->getOperand(1);
2288   SDValue CC = Node->getOperand(2);
2289   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
2290   SDLoc dl(Node);
2291   SmallVector<SDValue, 8> Ops(NumElems);
2292   for (unsigned i = 0; i < NumElems; ++i) {
2293     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
2294                                   DAG.getVectorIdxConstant(i, dl));
2295     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
2296                                   DAG.getVectorIdxConstant(i, dl));
2297     // FIXME: We should use i1 setcc + boolext here, but it causes regressions.
2298     Ops[i] = DAG.getNode(ISD::SETCC, dl,
2299                          TLI.getSetCCResultType(DAG.getDataLayout(),
2300                                                 *DAG.getContext(), TmpEltVT),
2301                          LHSElem, RHSElem, CC);
2302     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
2303                            DAG.getBoolConstant(true, dl, EltVT, VT),
2304                            DAG.getConstant(0, dl, EltVT));
2305   }
2306   return DAG.getBuildVector(VT, dl, Ops);
2307 }
2308 
2309 bool SelectionDAG::LegalizeVectors() {
2310   return VectorLegalizer(*this).Run();
2311 }
2312