xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h (revision d9f165ddea3223217a959c3cea3d2c613b132935)
1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the DAGTypeLegalizer class.  This is a private interface
10 // shared between the code that implements the SelectionDAG::LegalizeTypes
11 // method.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
16 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
17 
18 #include "MatchContext.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/Support/Compiler.h"
23 
24 namespace llvm {
25 
26 //===----------------------------------------------------------------------===//
27 /// This takes an arbitrary SelectionDAG as input and hacks on it until only
28 /// value types the target machine can handle are left. This involves promoting
29 /// small sizes to large sizes or splitting up large values into small values.
30 ///
31 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
32   const TargetLowering &TLI;
33   SelectionDAG &DAG;
34 public:
35   /// This pass uses the NodeId on the SDNodes to hold information about the
36   /// state of the node. The enum has all the values.
37   enum NodeIdFlags {
38     /// All operands have been processed, so this node is ready to be handled.
39     ReadyToProcess = 0,
40 
41     /// This is a new node, not before seen, that was created in the process of
42     /// legalizing some other node.
43     NewNode = -1,
44 
45     /// This node's ID needs to be set to the number of its unprocessed
46     /// operands.
47     Unanalyzed = -2,
48 
49     /// This is a node that has already been processed.
50     Processed = -3
51 
52     // 1+ - This is a node which has this many unprocessed operands.
53   };
54 private:
55 
56   /// This is a bitvector that contains two bits for each simple value type,
57   /// where the two bits correspond to the LegalizeAction enum from
58   /// TargetLowering. This can be queried with "getTypeAction(VT)".
59   TargetLowering::ValueTypeActionImpl ValueTypeActions;
60 
61   /// Return how we should legalize values of this type.
62   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
63     return TLI.getTypeAction(*DAG.getContext(), VT);
64   }
65 
66   /// Return true if this type is legal on this target.
67   bool isTypeLegal(EVT VT) const {
68     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
69   }
70 
71   /// Return true if this is a simple legal type.
72   bool isSimpleLegalType(EVT VT) const {
73     return VT.isSimple() && TLI.isTypeLegal(VT);
74   }
75 
76   EVT getSetCCResultType(EVT VT) const {
77     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
78   }
79 
80   /// Pretend all of this node's results are legal.
81   bool IgnoreNodeResults(SDNode *N) const {
82     return N->getOpcode() == ISD::TargetConstant ||
83            N->getOpcode() == ISD::Register;
84   }
85 
86   // Bijection from SDValue to unique id. As each created node gets a
87   // new id we do not need to worry about reuse expunging.  Should we
88   // run out of ids, we can do a one time expensive compactifcation.
89   typedef unsigned TableId;
90 
91   TableId NextValueId = 1;
92 
93   SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
94   SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
95 
96   /// For integer nodes that are below legal width, this map indicates what
97   /// promoted value to use.
98   SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
99 
100   /// For integer nodes that need to be expanded this map indicates which
101   /// operands are the expanded version of the input.
102   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers;
103 
104   /// For floating-point nodes converted to integers of the same size, this map
105   /// indicates the converted value to use.
106   SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
107 
108   /// For floating-point nodes that have a smaller precision than the smallest
109   /// supported precision, this map indicates what promoted value to use.
110   SmallDenseMap<TableId, TableId, 8> PromotedFloats;
111 
112   /// For floating-point nodes that have a smaller precision than the smallest
113   /// supported precision, this map indicates the converted value to use.
114   SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs;
115 
116   /// For float nodes that need to be expanded this map indicates which operands
117   /// are the expanded version of the input.
118   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats;
119 
120   /// For nodes that are <1 x ty>, this map indicates the scalar value of type
121   /// 'ty' to use.
122   SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
123 
124   /// For nodes that need to be split this map indicates which operands are the
125   /// expanded version of the input.
126   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors;
127 
128   /// For vector nodes that need to be widened, indicates the widened value to
129   /// use.
130   SmallDenseMap<TableId, TableId, 8> WidenedVectors;
131 
132   /// For values that have been replaced with another, indicates the replacement
133   /// value to use.
134   SmallDenseMap<TableId, TableId, 8> ReplacedValues;
135 
136   /// This defines a worklist of nodes to process. In order to be pushed onto
137   /// this worklist, all operands of a node must have already been processed.
138   SmallVector<SDNode*, 128> Worklist;
139 
140   TableId getTableId(SDValue V) {
141     assert(V.getNode() && "Getting TableId on SDValue()");
142 
143     auto I = ValueToIdMap.find(V);
144     if (I != ValueToIdMap.end()) {
145       // replace if there's been a shift.
146       RemapId(I->second);
147       assert(I->second && "All Ids should be nonzero");
148       return I->second;
149     }
150     // Add if it's not there.
151     ValueToIdMap.insert(std::make_pair(V, NextValueId));
152     IdToValueMap.insert(std::make_pair(NextValueId, V));
153     ++NextValueId;
154     assert(NextValueId != 0 &&
155            "Ran out of Ids. Increase id type size or add compactification");
156     return NextValueId - 1;
157   }
158 
159   const SDValue &getSDValue(TableId &Id) {
160     RemapId(Id);
161     assert(Id && "TableId should be non-zero");
162     auto I = IdToValueMap.find(Id);
163     assert(I != IdToValueMap.end() && "cannot find Id in map");
164     return I->second;
165   }
166 
167 public:
168   explicit DAGTypeLegalizer(SelectionDAG &dag)
169     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
170     ValueTypeActions(TLI.getValueTypeActions()) {
171   }
172 
173   /// This is the main entry point for the type legalizer.  This does a
174   /// top-down traversal of the dag, legalizing types as it goes.  Returns
175   /// "true" if it made any changes.
176   bool run();
177 
178   void NoteDeletion(SDNode *Old, SDNode *New) {
179     assert(Old != New && "node replaced with self");
180     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
181       TableId NewId = getTableId(SDValue(New, i));
182       TableId OldId = getTableId(SDValue(Old, i));
183 
184       if (OldId != NewId) {
185         ReplacedValues[OldId] = NewId;
186 
187         // Delete Node from tables.  We cannot do this when OldId == NewId,
188         // because NewId can still have table references to it in
189         // ReplacedValues.
190         IdToValueMap.erase(OldId);
191         PromotedIntegers.erase(OldId);
192         ExpandedIntegers.erase(OldId);
193         SoftenedFloats.erase(OldId);
194         PromotedFloats.erase(OldId);
195         SoftPromotedHalfs.erase(OldId);
196         ExpandedFloats.erase(OldId);
197         ScalarizedVectors.erase(OldId);
198         SplitVectors.erase(OldId);
199         WidenedVectors.erase(OldId);
200       }
201 
202       ValueToIdMap.erase(SDValue(Old, i));
203     }
204   }
205 
206   SelectionDAG &getDAG() const { return DAG; }
207 
208 private:
209   SDNode *AnalyzeNewNode(SDNode *N);
210   void AnalyzeNewValue(SDValue &Val);
211   void PerformExpensiveChecks();
212   void RemapId(TableId &Id);
213   void RemapValue(SDValue &V);
214 
215   // Common routines.
216   SDValue BitConvertToInteger(SDValue Op);
217   SDValue BitConvertVectorToIntegerVector(SDValue Op);
218   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
219   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
220   bool CustomWidenLowerNode(SDNode *N, EVT VT);
221 
222   /// Replace each result of the given MERGE_VALUES node with the corresponding
223   /// input operand, except for the result 'ResNo', for which the corresponding
224   /// input operand is returned.
225   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
226 
227   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
228 
229   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
230 
231   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
232 
233   void ReplaceValueWith(SDValue From, SDValue To);
234   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
235   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
236                     SDValue &Lo, SDValue &Hi);
237 
238   //===--------------------------------------------------------------------===//
239   // Integer Promotion Support: LegalizeIntegerTypes.cpp
240   //===--------------------------------------------------------------------===//
241 
242   /// Given a processed operand Op which was promoted to a larger integer type,
243   /// this returns the promoted value. The low bits of the promoted value
244   /// corresponding to the original type are exactly equal to Op.
245   /// The extra bits contain rubbish, so the promoted value may need to be zero-
246   /// or sign-extended from the original type before it is usable (the helpers
247   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
248   /// For example, if Op is an i16 and was promoted to an i32, then this method
249   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
250   /// 16 bits of which contain rubbish.
251   SDValue GetPromotedInteger(SDValue Op) {
252     TableId &PromotedId = PromotedIntegers[getTableId(Op)];
253     SDValue PromotedOp = getSDValue(PromotedId);
254     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
255     return PromotedOp;
256   }
257   void SetPromotedInteger(SDValue Op, SDValue Result);
258 
259   /// Get a promoted operand and sign extend it to the final size.
260   SDValue SExtPromotedInteger(SDValue Op) {
261     EVT OldVT = Op.getValueType();
262     SDLoc dl(Op);
263     Op = GetPromotedInteger(Op);
264     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
265                        DAG.getValueType(OldVT));
266   }
267 
268   /// Get a promoted operand and zero extend it to the final size.
269   SDValue ZExtPromotedInteger(SDValue Op) {
270     EVT OldVT = Op.getValueType();
271     SDLoc dl(Op);
272     Op = GetPromotedInteger(Op);
273     return DAG.getZeroExtendInReg(Op, dl, OldVT);
274   }
275 
276   /// Get a promoted operand and zero extend it to the final size.
277   SDValue VPSExtPromotedInteger(SDValue Op, SDValue Mask, SDValue EVL) {
278     EVT OldVT = Op.getValueType();
279     SDLoc dl(Op);
280     Op = GetPromotedInteger(Op);
281     // FIXME: Add VP_SIGN_EXTEND_INREG.
282     EVT VT = Op.getValueType();
283     unsigned BitsDiff = VT.getScalarSizeInBits() - OldVT.getScalarSizeInBits();
284     SDValue ShiftCst = DAG.getShiftAmountConstant(BitsDiff, VT, dl);
285     SDValue Shl = DAG.getNode(ISD::VP_SHL, dl, VT, Op, ShiftCst, Mask, EVL);
286     return DAG.getNode(ISD::VP_SRA, dl, VT, Shl, ShiftCst, Mask, EVL);
287   }
288 
289   /// Get a promoted operand and zero extend it to the final size.
290   SDValue VPZExtPromotedInteger(SDValue Op, SDValue Mask, SDValue EVL) {
291     EVT OldVT = Op.getValueType();
292     SDLoc dl(Op);
293     Op = GetPromotedInteger(Op);
294     return DAG.getVPZeroExtendInReg(Op, Mask, EVL, dl, OldVT);
295   }
296 
297   // Promote the given operand V (vector or scalar) according to N's specific
298   // reduction kind. N must be an integer VECREDUCE_* or VP_REDUCE_*. Returns
299   // the nominal extension opcode (ISD::(ANY|ZERO|SIGN)_EXTEND) and the
300   // promoted value.
301   SDValue PromoteIntOpVectorReduction(SDNode *N, SDValue V);
302 
303   // Integer Result Promotion.
304   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
305   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
306   SDValue PromoteIntRes_AssertSext(SDNode *N);
307   SDValue PromoteIntRes_AssertZext(SDNode *N);
308   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
309   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
310   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
311   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
312   SDValue PromoteIntRes_INSERT_SUBVECTOR(SDNode *N);
313   SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N);
314   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
315   SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N);
316   SDValue PromoteIntRes_VECTOR_INTERLEAVE_DEINTERLEAVE(SDNode *N);
317   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
318   SDValue PromoteIntRes_ScalarOp(SDNode *N);
319   SDValue PromoteIntRes_STEP_VECTOR(SDNode *N);
320   SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
321   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
322   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
323   SDValue PromoteIntRes_BITCAST(SDNode *N);
324   SDValue PromoteIntRes_BSWAP(SDNode *N);
325   SDValue PromoteIntRes_BITREVERSE(SDNode *N);
326   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
327   SDValue PromoteIntRes_Constant(SDNode *N);
328   SDValue PromoteIntRes_CTLZ(SDNode *N);
329   SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N);
330   SDValue PromoteIntRes_CTTZ(SDNode *N);
331   SDValue PromoteIntRes_VP_CttzElements(SDNode *N);
332   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
333   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
334   SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N);
335   SDValue PromoteIntRes_FP_TO_FP16_BF16(SDNode *N);
336   SDValue PromoteIntRes_STRICT_FP_TO_FP16_BF16(SDNode *N);
337   SDValue PromoteIntRes_XRINT(SDNode *N);
338   SDValue PromoteIntRes_FREEZE(SDNode *N);
339   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
340   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
341   SDValue PromoteIntRes_VP_LOAD(VPLoadSDNode *N);
342   SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
343   SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
344   SDValue PromoteIntRes_VECTOR_COMPRESS(SDNode *N);
345   SDValue PromoteIntRes_Overflow(SDNode *N);
346   SDValue PromoteIntRes_FFREXP(SDNode *N);
347   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
348   SDValue PromoteIntRes_CMP(SDNode *N);
349   SDValue PromoteIntRes_Select(SDNode *N);
350   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
351   SDValue PromoteIntRes_SETCC(SDNode *N);
352   SDValue PromoteIntRes_SHL(SDNode *N);
353   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
354   SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
355   SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
356   SDValue PromoteIntRes_UMINUMAX(SDNode *N);
357   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
358   SDValue PromoteIntRes_SRA(SDNode *N);
359   SDValue PromoteIntRes_SRL(SDNode *N);
360   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
361   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
362   SDValue PromoteIntRes_UADDSUBO_CARRY(SDNode *N, unsigned ResNo);
363   SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo);
364   SDValue PromoteIntRes_UNDEF(SDNode *N);
365   SDValue PromoteIntRes_VAARG(SDNode *N);
366   SDValue PromoteIntRes_VSCALE(SDNode *N);
367   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
368   template <class MatchContextClass>
369   SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N);
370   SDValue PromoteIntRes_MULFIX(SDNode *N);
371   SDValue PromoteIntRes_DIVFIX(SDNode *N);
372   SDValue PromoteIntRes_GET_ROUNDING(SDNode *N);
373   SDValue PromoteIntRes_VECREDUCE(SDNode *N);
374   SDValue PromoteIntRes_VP_REDUCE(SDNode *N);
375   SDValue PromoteIntRes_ABS(SDNode *N);
376   SDValue PromoteIntRes_Rotate(SDNode *N);
377   SDValue PromoteIntRes_FunnelShift(SDNode *N);
378   SDValue PromoteIntRes_VPFunnelShift(SDNode *N);
379   SDValue PromoteIntRes_IS_FPCLASS(SDNode *N);
380   SDValue PromoteIntRes_PATCHPOINT(SDNode *N);
381   SDValue PromoteIntRes_VECTOR_FIND_LAST_ACTIVE(SDNode *N);
382 
383   // Integer Operand Promotion.
384   bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
385   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
386   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
387   SDValue PromoteIntOp_BITCAST(SDNode *N);
388   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
389   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
390   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
391   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
392   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
393   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
394   SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
395   SDValue PromoteIntOp_INSERT_SUBVECTOR(SDNode *N);
396   SDValue PromoteIntOp_FAKE_USE(SDNode *N);
397   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
398   SDValue PromoteIntOp_ScalarOp(SDNode *N);
399   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
400   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
401   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
402   SDValue PromoteIntOp_Shift(SDNode *N);
403   SDValue PromoteIntOp_CMP(SDNode *N);
404   SDValue PromoteIntOp_FunnelShift(SDNode *N);
405   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
406   SDValue PromoteIntOp_VP_SIGN_EXTEND(SDNode *N);
407   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
408   SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N);
409   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
410   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
411   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
412   SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N);
413   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
414   SDValue PromoteIntOp_VP_ZERO_EXTEND(SDNode *N);
415   SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
416   SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
417   SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
418   SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
419   SDValue PromoteIntOp_VECTOR_COMPRESS(SDNode *N, unsigned OpNo);
420   SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
421   SDValue PromoteIntOp_FIX(SDNode *N);
422   SDValue PromoteIntOp_ExpOp(SDNode *N);
423   SDValue PromoteIntOp_VECREDUCE(SDNode *N);
424   SDValue PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo);
425   SDValue PromoteIntOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo);
426   SDValue PromoteIntOp_SET_ROUNDING(SDNode *N);
427   SDValue PromoteIntOp_STACKMAP(SDNode *N, unsigned OpNo);
428   SDValue PromoteIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
429   SDValue PromoteIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
430   SDValue PromoteIntOp_VP_SPLICE(SDNode *N, unsigned OpNo);
431   SDValue PromoteIntOp_VECTOR_HISTOGRAM(SDNode *N, unsigned OpNo);
432   SDValue PromoteIntOp_VECTOR_FIND_LAST_ACTIVE(SDNode *N, unsigned OpNo);
433 
434   void SExtOrZExtPromotedOperands(SDValue &LHS, SDValue &RHS);
435   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
436 
437   //===--------------------------------------------------------------------===//
438   // Integer Expansion Support: LegalizeIntegerTypes.cpp
439   //===--------------------------------------------------------------------===//
440 
441   /// Given a processed operand Op which was expanded into two integers of half
442   /// the size, this returns the two halves. The low bits of Op are exactly
443   /// equal to the bits of Lo; the high bits exactly equal Hi.
444   /// For example, if Op is an i64 which was expanded into two i32's, then this
445   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
446   /// Op, and Hi being equal to the upper 32 bits.
447   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
448   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
449 
450   // Integer Result Expansion.
451   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
452   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
453   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
454   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
455   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
456   void ExpandIntRes_ABS               (SDNode *N, SDValue &Lo, SDValue &Hi);
457   void ExpandIntRes_ABD               (SDNode *N, SDValue &Lo, SDValue &Hi);
458   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
459   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
460   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
461   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
462   void ExpandIntRes_READCOUNTER       (SDNode *N, SDValue &Lo, SDValue &Hi);
463   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
464   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
465   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
466   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
467   void ExpandIntRes_GET_ROUNDING      (SDNode *N, SDValue &Lo, SDValue &Hi);
468   void ExpandIntRes_FP_TO_XINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
469   void ExpandIntRes_FP_TO_XINT_SAT    (SDNode *N, SDValue &Lo, SDValue &Hi);
470   void ExpandIntRes_XROUND_XRINT      (SDNode *N, SDValue &Lo, SDValue &Hi);
471 
472   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
473   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
474   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
475   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
476   void ExpandIntRes_UADDSUBO_CARRY    (SDNode *N, SDValue &Lo, SDValue &Hi);
477   void ExpandIntRes_SADDSUBO_CARRY    (SDNode *N, SDValue &Lo, SDValue &Hi);
478   void ExpandIntRes_BITREVERSE        (SDNode *N, SDValue &Lo, SDValue &Hi);
479   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
480   void ExpandIntRes_PARITY            (SDNode *N, SDValue &Lo, SDValue &Hi);
481   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
482   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
483   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
484   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
485   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
486   void ExpandIntRes_ShiftThroughStack (SDNode *N, SDValue &Lo, SDValue &Hi);
487   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
488 
489   void ExpandIntRes_MINMAX            (SDNode *N, SDValue &Lo, SDValue &Hi);
490 
491   void ExpandIntRes_CMP               (SDNode *N, SDValue &Lo, SDValue &Hi);
492   void ExpandIntRes_SETCC             (SDNode *N, SDValue &Lo, SDValue &Hi);
493 
494   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
495   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
496   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
497   void ExpandIntRes_AVG               (SDNode *N, SDValue &Lo, SDValue &Hi);
498   void ExpandIntRes_ADDSUBSAT         (SDNode *N, SDValue &Lo, SDValue &Hi);
499   void ExpandIntRes_SHLSAT            (SDNode *N, SDValue &Lo, SDValue &Hi);
500   void ExpandIntRes_MULFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
501   void ExpandIntRes_DIVFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
502 
503   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
504   void ExpandIntRes_VECREDUCE         (SDNode *N, SDValue &Lo, SDValue &Hi);
505 
506   void ExpandIntRes_Rotate            (SDNode *N, SDValue &Lo, SDValue &Hi);
507   void ExpandIntRes_FunnelShift       (SDNode *N, SDValue &Lo, SDValue &Hi);
508 
509   void ExpandIntRes_VSCALE            (SDNode *N, SDValue &Lo, SDValue &Hi);
510 
511   void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
512                              SDValue &Lo, SDValue &Hi);
513   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
514   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
515 
516   // Integer Operand Expansion.
517   bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
518   SDValue ExpandIntOp_BR_CC(SDNode *N);
519   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
520   SDValue ExpandIntOp_SETCC(SDNode *N);
521   SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
522   SDValue ExpandIntOp_Shift(SDNode *N);
523   SDValue ExpandIntOp_CMP(SDNode *N);
524   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
525   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
526   SDValue ExpandIntOp_XINT_TO_FP(SDNode *N);
527   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
528   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
529   SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N);
530   SDValue ExpandIntOp_STACKMAP(SDNode *N, unsigned OpNo);
531   SDValue ExpandIntOp_PATCHPOINT(SDNode *N, unsigned OpNo);
532   SDValue ExpandIntOp_VP_STRIDED(SDNode *N, unsigned OpNo);
533 
534   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
535                                   ISD::CondCode &CCCode, const SDLoc &dl);
536 
537   //===--------------------------------------------------------------------===//
538   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
539   //===--------------------------------------------------------------------===//
540 
541   /// GetSoftenedFloat - Given a processed operand Op which was converted to an
542   /// integer of the same size, this returns the integer.  The integer contains
543   /// exactly the same bits as Op - only the type changed.  For example, if Op
544   /// is an f32 which was softened to an i32, then this method returns an i32,
545   /// the bits of which coincide with those of Op
546   SDValue GetSoftenedFloat(SDValue Op) {
547     TableId Id = getTableId(Op);
548     auto Iter = SoftenedFloats.find(Id);
549     if (Iter == SoftenedFloats.end()) {
550       assert(isSimpleLegalType(Op.getValueType()) &&
551              "Operand wasn't converted to integer?");
552       return Op;
553     }
554     SDValue SoftenedOp = getSDValue(Iter->second);
555     assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
556     return SoftenedOp;
557   }
558   void SetSoftenedFloat(SDValue Op, SDValue Result);
559 
560   // Convert Float Results to Integer.
561   void SoftenFloatResult(SDNode *N, unsigned ResNo);
562   SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC);
563   SDValue SoftenFloatRes_UnaryWithTwoFPResults(SDNode *N, RTLIB::Libcall LC);
564   SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC);
565   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
566   SDValue SoftenFloatRes_ARITH_FENCE(SDNode *N);
567   SDValue SoftenFloatRes_BITCAST(SDNode *N);
568   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
569   SDValue SoftenFloatRes_ConstantFP(SDNode *N);
570   SDValue SoftenFloatRes_EXTRACT_ELEMENT(SDNode *N);
571   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
572   SDValue SoftenFloatRes_FABS(SDNode *N);
573   SDValue SoftenFloatRes_FACOS(SDNode *N);
574   SDValue SoftenFloatRes_FASIN(SDNode *N);
575   SDValue SoftenFloatRes_FATAN(SDNode *N);
576   SDValue SoftenFloatRes_FATAN2(SDNode *N);
577   SDValue SoftenFloatRes_FMINNUM(SDNode *N);
578   SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
579   SDValue SoftenFloatRes_FMINIMUMNUM(SDNode *N);
580   SDValue SoftenFloatRes_FMAXIMUMNUM(SDNode *N);
581   SDValue SoftenFloatRes_FMINIMUM(SDNode *N);
582   SDValue SoftenFloatRes_FMAXIMUM(SDNode *N);
583   SDValue SoftenFloatRes_FADD(SDNode *N);
584   SDValue SoftenFloatRes_FCBRT(SDNode *N);
585   SDValue SoftenFloatRes_FCEIL(SDNode *N);
586   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
587   SDValue SoftenFloatRes_FCOS(SDNode *N);
588   SDValue SoftenFloatRes_FCOSH(SDNode *N);
589   SDValue SoftenFloatRes_FDIV(SDNode *N);
590   SDValue SoftenFloatRes_FEXP(SDNode *N);
591   SDValue SoftenFloatRes_FEXP2(SDNode *N);
592   SDValue SoftenFloatRes_FEXP10(SDNode *N);
593   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
594   SDValue SoftenFloatRes_FLOG(SDNode *N);
595   SDValue SoftenFloatRes_FLOG2(SDNode *N);
596   SDValue SoftenFloatRes_FLOG10(SDNode *N);
597   SDValue SoftenFloatRes_FMA(SDNode *N);
598   SDValue SoftenFloatRes_FMUL(SDNode *N);
599   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
600   SDValue SoftenFloatRes_FNEG(SDNode *N);
601   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
602   SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
603   SDValue SoftenFloatRes_BF16_TO_FP(SDNode *N);
604   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
605   SDValue SoftenFloatRes_FPOW(SDNode *N);
606   SDValue SoftenFloatRes_ExpOp(SDNode *N);
607   SDValue SoftenFloatRes_FFREXP(SDNode *N);
608   SDValue SoftenFloatRes_FSINCOS(SDNode *N);
609   SDValue SoftenFloatRes_FREEZE(SDNode *N);
610   SDValue SoftenFloatRes_FREM(SDNode *N);
611   SDValue SoftenFloatRes_FRINT(SDNode *N);
612   SDValue SoftenFloatRes_FROUND(SDNode *N);
613   SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N);
614   SDValue SoftenFloatRes_FSIN(SDNode *N);
615   SDValue SoftenFloatRes_FSINH(SDNode *N);
616   SDValue SoftenFloatRes_FSQRT(SDNode *N);
617   SDValue SoftenFloatRes_FSUB(SDNode *N);
618   SDValue SoftenFloatRes_FTAN(SDNode *N);
619   SDValue SoftenFloatRes_FTANH(SDNode *N);
620   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
621   SDValue SoftenFloatRes_LOAD(SDNode *N);
622   SDValue SoftenFloatRes_ATOMIC_LOAD(SDNode *N);
623   SDValue SoftenFloatRes_SELECT(SDNode *N);
624   SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
625   SDValue SoftenFloatRes_UNDEF(SDNode *N);
626   SDValue SoftenFloatRes_VAARG(SDNode *N);
627   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
628   SDValue SoftenFloatRes_VECREDUCE(SDNode *N);
629   SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N);
630 
631   // Convert Float Operand to Integer.
632   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
633   SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC);
634   SDValue SoftenFloatOp_BITCAST(SDNode *N);
635   SDValue SoftenFloatOp_BR_CC(SDNode *N);
636   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
637   SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
638   SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N);
639   SDValue SoftenFloatOp_LROUND(SDNode *N);
640   SDValue SoftenFloatOp_LLROUND(SDNode *N);
641   SDValue SoftenFloatOp_LRINT(SDNode *N);
642   SDValue SoftenFloatOp_LLRINT(SDNode *N);
643   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
644   SDValue SoftenFloatOp_SETCC(SDNode *N);
645   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
646   SDValue SoftenFloatOp_ATOMIC_STORE(SDNode *N, unsigned OpNo);
647   SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
648 
649   //===--------------------------------------------------------------------===//
650   // Float Expansion Support: LegalizeFloatTypes.cpp
651   //===--------------------------------------------------------------------===//
652 
653   /// Given a processed operand Op which was expanded into two floating-point
654   /// values of half the size, this returns the two halves.
655   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
656   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
657   /// into two f64's, then this method returns the two f64's, with Lo being
658   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
659   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
660   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
661 
662   // Float Result Expansion.
663   void ExpandFloatResult(SDNode *N, unsigned ResNo);
664   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
665   void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC,
666                             SDValue &Lo, SDValue &Hi);
667   void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC,
668                              SDValue &Lo, SDValue &Hi);
669   // clang-format off
670   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
671   void ExpandFloatRes_FACOS     (SDNode *N, SDValue &Lo, SDValue &Hi);
672   void ExpandFloatRes_FASIN     (SDNode *N, SDValue &Lo, SDValue &Hi);
673   void ExpandFloatRes_FATAN     (SDNode *N, SDValue &Lo, SDValue &Hi);
674   void ExpandFloatRes_FATAN2    (SDNode *N, SDValue &Lo, SDValue &Hi);
675   void ExpandFloatRes_FMINNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
676   void ExpandFloatRes_FMAXNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
677   void ExpandFloatRes_FMINIMUMNUM(SDNode *N, SDValue &Lo, SDValue &Hi);
678   void ExpandFloatRes_FMAXIMUMNUM(SDNode *N, SDValue &Lo, SDValue &Hi);
679   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
680   void ExpandFloatRes_FCBRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
681   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
682   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
683   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
684   void ExpandFloatRes_FCOSH     (SDNode *N, SDValue &Lo, SDValue &Hi);
685   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
686   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
687   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
688   void ExpandFloatRes_FEXP10    (SDNode *N, SDValue &Lo, SDValue &Hi);
689   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
690   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
691   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
692   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
693   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
694   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
695   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
696   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
697   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
698   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
699   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
700   void ExpandFloatRes_FLDEXP    (SDNode *N, SDValue &Lo, SDValue &Hi);
701   void ExpandFloatRes_FREEZE    (SDNode *N, SDValue &Lo, SDValue &Hi);
702   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
703   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
704   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
705   void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi);
706   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
707   void ExpandFloatRes_FSINH      (SDNode *N, SDValue &Lo, SDValue &Hi);
708   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
709   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
710   void ExpandFloatRes_FTAN      (SDNode *N, SDValue &Lo, SDValue &Hi);
711   void ExpandFloatRes_FTANH     (SDNode *N, SDValue &Lo, SDValue &Hi);
712   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
713   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
714   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
715   // clang-format on
716 
717   // Float Operand Expansion.
718   bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
719   SDValue ExpandFloatOp_BR_CC(SDNode *N);
720   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
721   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
722   SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N);
723   SDValue ExpandFloatOp_LROUND(SDNode *N);
724   SDValue ExpandFloatOp_LLROUND(SDNode *N);
725   SDValue ExpandFloatOp_LRINT(SDNode *N);
726   SDValue ExpandFloatOp_LLRINT(SDNode *N);
727   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
728   SDValue ExpandFloatOp_SETCC(SDNode *N);
729   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
730 
731   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
732                                 ISD::CondCode &CCCode, const SDLoc &dl,
733                                 SDValue &Chain, bool IsSignaling = false);
734 
735   //===--------------------------------------------------------------------===//
736   // Float promotion support: LegalizeFloatTypes.cpp
737   //===--------------------------------------------------------------------===//
738 
739   SDValue GetPromotedFloat(SDValue Op) {
740     TableId &PromotedId = PromotedFloats[getTableId(Op)];
741     SDValue PromotedOp = getSDValue(PromotedId);
742     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
743     return PromotedOp;
744   }
745   void SetPromotedFloat(SDValue Op, SDValue Result);
746 
747   void PromoteFloatResult(SDNode *N, unsigned ResNo);
748   SDValue PromoteFloatRes_BITCAST(SDNode *N);
749   SDValue PromoteFloatRes_BinOp(SDNode *N);
750   SDValue PromoteFloatRes_UnaryWithTwoFPResults(SDNode *N);
751   SDValue PromoteFloatRes_ConstantFP(SDNode *N);
752   SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
753   SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
754   SDValue PromoteFloatRes_FMAD(SDNode *N);
755   SDValue PromoteFloatRes_ExpOp(SDNode *N);
756   SDValue PromoteFloatRes_FFREXP(SDNode *N);
757   SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
758   SDValue PromoteFloatRes_STRICT_FP_ROUND(SDNode *N);
759   SDValue PromoteFloatRes_LOAD(SDNode *N);
760   SDValue PromoteFloatRes_ATOMIC_LOAD(SDNode *N);
761   SDValue PromoteFloatRes_SELECT(SDNode *N);
762   SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
763   SDValue PromoteFloatRes_UnaryOp(SDNode *N);
764   SDValue PromoteFloatRes_UNDEF(SDNode *N);
765   SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N);
766   SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
767   SDValue PromoteFloatRes_VECREDUCE(SDNode *N);
768   SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N);
769 
770   bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
771   SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
772   SDValue PromoteFloatOp_FAKE_USE(SDNode *N, unsigned OpNo);
773   SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
774   SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
775   SDValue PromoteFloatOp_STRICT_FP_EXTEND(SDNode *N, unsigned OpNo);
776   SDValue PromoteFloatOp_UnaryOp(SDNode *N, unsigned OpNo);
777   SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo);
778   SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
779   SDValue PromoteFloatOp_ATOMIC_STORE(SDNode *N, unsigned OpNo);
780   SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
781   SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
782 
783   //===--------------------------------------------------------------------===//
784   // Half soft promotion support: LegalizeFloatTypes.cpp
785   //===--------------------------------------------------------------------===//
786 
787   SDValue GetSoftPromotedHalf(SDValue Op) {
788     TableId &PromotedId = SoftPromotedHalfs[getTableId(Op)];
789     SDValue PromotedOp = getSDValue(PromotedId);
790     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
791     return PromotedOp;
792   }
793   void SetSoftPromotedHalf(SDValue Op, SDValue Result);
794 
795   void SoftPromoteHalfResult(SDNode *N, unsigned ResNo);
796   SDValue SoftPromoteHalfRes_ARITH_FENCE(SDNode *N);
797   SDValue SoftPromoteHalfRes_BinOp(SDNode *N);
798   SDValue SoftPromoteHalfRes_UnaryWithTwoFPResults(SDNode *N);
799   SDValue SoftPromoteHalfRes_BITCAST(SDNode *N);
800   SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N);
801   SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N);
802   SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N);
803   SDValue SoftPromoteHalfRes_FMAD(SDNode *N);
804   SDValue SoftPromoteHalfRes_ExpOp(SDNode *N);
805   SDValue SoftPromoteHalfRes_FFREXP(SDNode *N);
806   SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N);
807   SDValue SoftPromoteHalfRes_LOAD(SDNode *N);
808   SDValue SoftPromoteHalfRes_ATOMIC_LOAD(SDNode *N);
809   SDValue SoftPromoteHalfRes_SELECT(SDNode *N);
810   SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N);
811   SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N);
812   SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N);
813   SDValue SoftPromoteHalfRes_UNDEF(SDNode *N);
814   SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N);
815   SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N);
816 
817   bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo);
818   SDValue SoftPromoteHalfOp_BITCAST(SDNode *N);
819   SDValue SoftPromoteHalfOp_FAKE_USE(SDNode *N, unsigned OpNo);
820   SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
821   SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N);
822   SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N);
823   SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N);
824   SDValue SoftPromoteHalfOp_SETCC(SDNode *N);
825   SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo);
826   SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo);
827   SDValue SoftPromoteHalfOp_ATOMIC_STORE(SDNode *N, unsigned OpNo);
828   SDValue SoftPromoteHalfOp_STACKMAP(SDNode *N, unsigned OpNo);
829   SDValue SoftPromoteHalfOp_PATCHPOINT(SDNode *N, unsigned OpNo);
830 
831   //===--------------------------------------------------------------------===//
832   // Scalarization Support: LegalizeVectorTypes.cpp
833   //===--------------------------------------------------------------------===//
834 
835   /// Given a processed one-element vector Op which was scalarized to its
836   /// element type, this returns the element. For example, if Op is a v1i32,
837   /// Op = < i32 val >, this method returns val, an i32.
838   SDValue GetScalarizedVector(SDValue Op) {
839     TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
840     SDValue ScalarizedOp = getSDValue(ScalarizedId);
841     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
842     return ScalarizedOp;
843   }
844   void SetScalarizedVector(SDValue Op, SDValue Result);
845 
846   // Vector Result Scalarization: <1 x ty> -> ty.
847   void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
848   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
849   SDValue ScalarizeVecRes_BinOp(SDNode *N);
850   SDValue ScalarizeVecRes_CMP(SDNode *N);
851   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
852   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
853   SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
854   SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo);
855   SDValue ScalarizeVecRes_InregOp(SDNode *N);
856   SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
857 
858   SDValue ScalarizeVecRes_ADDRSPACECAST(SDNode *N);
859   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
860   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
861   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
862   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
863   SDValue ScalarizeVecRes_UnaryOpWithExtraInput(SDNode *N);
864   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
865   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
866   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
867   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
868   SDValue ScalarizeVecRes_SELECT(SDNode *N);
869   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
870   SDValue ScalarizeVecRes_SETCC(SDNode *N);
871   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
872   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
873   SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N);
874   SDValue ScalarizeVecRes_IS_FPCLASS(SDNode *N);
875 
876   SDValue ScalarizeVecRes_FIX(SDNode *N);
877   SDValue ScalarizeVecRes_UnaryOpWithTwoResults(SDNode *N, unsigned ResNo);
878 
879   // Vector Operand Scalarization: <1 x ty> -> ty.
880   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
881   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
882   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
883   SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N);
884   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
885   SDValue ScalarizeVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo);
886   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
887   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
888   SDValue ScalarizeVecOp_VSETCC(SDNode *N);
889   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
890   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
891   SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo);
892   SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N);
893   SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N);
894   SDValue ScalarizeVecOp_VECREDUCE(SDNode *N);
895   SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N);
896   SDValue ScalarizeVecOp_CMP(SDNode *N);
897   SDValue ScalarizeVecOp_FAKE_USE(SDNode *N);
898 
899   //===--------------------------------------------------------------------===//
900   // Vector Splitting Support: LegalizeVectorTypes.cpp
901   //===--------------------------------------------------------------------===//
902 
903   /// Given a processed vector Op which was split into vectors of half the size,
904   /// this method returns the halves. The first elements of Op coincide with the
905   /// elements of Lo; the remaining elements of Op coincide with the elements of
906   /// Hi: Op is what you would get by concatenating Lo and Hi.
907   /// For example, if Op is a v8i32 that was split into two v4i32's, then this
908   /// method returns the two v4i32's, with Lo corresponding to the first 4
909   /// elements of Op, and Hi to the last 4 elements.
910   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
911   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
912 
913   /// Split mask operator of a VP intrinsic.
914   std::pair<SDValue, SDValue> SplitMask(SDValue Mask);
915 
916   /// Split mask operator of a VP intrinsic in a given location.
917   std::pair<SDValue, SDValue> SplitMask(SDValue Mask, const SDLoc &DL);
918 
919   // Helper function for incrementing the pointer when splitting
920   // memory operations
921   void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI,
922                         SDValue &Ptr, uint64_t *ScaledOffset = nullptr);
923 
924   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
925   void SplitVectorResult(SDNode *N, unsigned ResNo);
926   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
927   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
928   void SplitVecRes_CMP(SDNode *N, SDValue &Lo, SDValue &Hi);
929   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
930   void SplitVecRes_ADDRSPACECAST(SDNode *N, SDValue &Lo, SDValue &Hi);
931   void SplitVecRes_UnaryOpWithTwoResults(SDNode *N, unsigned ResNo, SDValue &Lo,
932                                          SDValue &Hi);
933   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
934   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
935   void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
936   void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
937   void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
938                               SDValue &Lo, SDValue &Hi);
939 
940   void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi);
941 
942   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
943   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
944   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
945   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
946   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
947   void SplitVecRes_FPOp_MultiType(SDNode *N, SDValue &Lo, SDValue &Hi);
948   void SplitVecRes_IS_FPCLASS(SDNode *N, SDValue &Lo, SDValue &Hi);
949   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
950   void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
951   void SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo, SDValue &Hi);
952   void SplitVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *SLD, SDValue &Lo,
953                                    SDValue &Hi);
954   void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
955   void SplitVecRes_Gather(MemSDNode *VPGT, SDValue &Lo, SDValue &Hi,
956                           bool SplitSETCC = false);
957   void SplitVecRes_VECTOR_COMPRESS(SDNode *N, SDValue &Lo, SDValue &Hi);
958   void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi);
959   void SplitVecRes_VP_SPLAT(SDNode *N, SDValue &Lo, SDValue &Hi);
960   void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
961   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
962   void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
963   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
964                                   SDValue &Hi);
965   void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi);
966   void SplitVecRes_VECTOR_DEINTERLEAVE(SDNode *N);
967   void SplitVecRes_VECTOR_INTERLEAVE(SDNode *N);
968   void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi);
969   void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi);
970   void SplitVecRes_VP_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
971 
972   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
973   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
974   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
975   SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
976   SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N);
977   SDValue SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo);
978   SDValue SplitVecOp_UnaryOp(SDNode *N);
979   SDValue SplitVecOp_TruncateHelper(SDNode *N);
980   SDValue SplitVecOp_VECTOR_COMPRESS(SDNode *N, unsigned OpNo);
981 
982   SDValue SplitVecOp_BITCAST(SDNode *N);
983   SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo);
984   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
985   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
986   SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
987   SDValue SplitVecOp_FAKE_USE(SDNode *N);
988   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
989   SDValue SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo);
990   SDValue SplitVecOp_VP_STRIDED_STORE(VPStridedStoreSDNode *N, unsigned OpNo);
991   SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
992   SDValue SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo);
993   SDValue SplitVecOp_Gather(MemSDNode *MGT, unsigned OpNo);
994   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
995   SDValue SplitVecOp_VSETCC(SDNode *N);
996   SDValue SplitVecOp_FP_ROUND(SDNode *N);
997   SDValue SplitVecOp_FPOpDifferentTypes(SDNode *N);
998   SDValue SplitVecOp_CMP(SDNode *N);
999   SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N);
1000   SDValue SplitVecOp_VP_CttzElements(SDNode *N);
1001   SDValue SplitVecOp_VECTOR_HISTOGRAM(SDNode *N);
1002 
1003   //===--------------------------------------------------------------------===//
1004   // Vector Widening Support: LegalizeVectorTypes.cpp
1005   //===--------------------------------------------------------------------===//
1006 
1007   /// Given a processed vector Op which was widened into a larger vector, this
1008   /// method returns the larger vector. The elements of the returned vector
1009   /// consist of the elements of Op followed by elements containing rubbish.
1010   /// For example, if Op is a v2i32 that was widened to a v4i32, then this
1011   /// method returns a v4i32 for which the first two elements are the same as
1012   /// those of Op, while the last two elements contain rubbish.
1013   SDValue GetWidenedVector(SDValue Op) {
1014     TableId &WidenedId = WidenedVectors[getTableId(Op)];
1015     SDValue WidenedOp = getSDValue(WidenedId);
1016     assert(WidenedOp.getNode() && "Operand wasn't widened?");
1017     return WidenedOp;
1018   }
1019   void SetWidenedVector(SDValue Op, SDValue Result);
1020 
1021   /// Given a mask Mask, returns the larger vector into which Mask was widened.
1022   SDValue GetWidenedMask(SDValue Mask, ElementCount EC) {
1023     // For VP operations, we must also widen the mask. Note that the mask type
1024     // may not actually need widening, leading it be split along with the VP
1025     // operation.
1026     // FIXME: This could lead to an infinite split/widen loop. We only handle
1027     // the case where the mask needs widening to an identically-sized type as
1028     // the vector inputs.
1029     assert(getTypeAction(Mask.getValueType()) ==
1030                TargetLowering::TypeWidenVector &&
1031            "Unable to widen binary VP op");
1032     Mask = GetWidenedVector(Mask);
1033     assert(Mask.getValueType().getVectorElementCount() == EC &&
1034            "Unable to widen binary VP op");
1035     return Mask;
1036   }
1037 
1038   // Widen Vector Result Promotion.
1039   void WidenVectorResult(SDNode *N, unsigned ResNo);
1040   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
1041   SDValue WidenVecRes_ADDRSPACECAST(SDNode *N);
1042   SDValue WidenVecRes_AssertZext(SDNode* N);
1043   SDValue WidenVecRes_BITCAST(SDNode* N);
1044   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
1045   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
1046   SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
1047   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
1048   SDValue WidenVecRes_INSERT_SUBVECTOR(SDNode *N);
1049   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
1050   SDValue WidenVecRes_LOAD(SDNode* N);
1051   SDValue WidenVecRes_VP_LOAD(VPLoadSDNode *N);
1052   SDValue WidenVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *N);
1053   SDValue WidenVecRes_VECTOR_COMPRESS(SDNode *N);
1054   SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
1055   SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
1056   SDValue WidenVecRes_VP_GATHER(VPGatherSDNode* N);
1057   SDValue WidenVecRes_ScalarOp(SDNode* N);
1058   SDValue WidenVecRes_Select(SDNode *N);
1059   SDValue WidenVSELECTMask(SDNode *N);
1060   SDValue WidenVecRes_SELECT_CC(SDNode* N);
1061   SDValue WidenVecRes_SETCC(SDNode* N);
1062   SDValue WidenVecRes_STRICT_FSETCC(SDNode* N);
1063   SDValue WidenVecRes_UNDEF(SDNode *N);
1064   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
1065   SDValue WidenVecRes_VECTOR_REVERSE(SDNode *N);
1066 
1067   SDValue WidenVecRes_Ternary(SDNode *N);
1068   SDValue WidenVecRes_Binary(SDNode *N);
1069   SDValue WidenVecRes_CMP(SDNode *N);
1070   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
1071   SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N);
1072   SDValue WidenVecRes_StrictFP(SDNode *N);
1073   SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo);
1074   SDValue WidenVecRes_Convert(SDNode *N);
1075   SDValue WidenVecRes_Convert_StrictFP(SDNode *N);
1076   SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N);
1077   SDValue WidenVecRes_XROUND(SDNode *N);
1078   SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
1079   SDValue WidenVecRes_UnarySameEltsWithScalarArg(SDNode *N);
1080   SDValue WidenVecRes_ExpOp(SDNode *N);
1081   SDValue WidenVecRes_Unary(SDNode *N);
1082   SDValue WidenVecRes_InregOp(SDNode *N);
1083   SDValue WidenVecRes_UnaryOpWithTwoResults(SDNode *N, unsigned ResNo);
1084   void ReplaceOtherWidenResults(SDNode *N, SDNode *WidenNode,
1085                                 unsigned WidenResNo);
1086 
1087   // Widen Vector Operand.
1088   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
1089   SDValue WidenVecOp_BITCAST(SDNode *N);
1090   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
1091   SDValue WidenVecOp_EXTEND(SDNode *N);
1092   SDValue WidenVecOp_CMP(SDNode *N);
1093   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
1094   SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N);
1095   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
1096   SDValue WidenVecOp_EXTEND_VECTOR_INREG(SDNode *N);
1097   SDValue WidenVecOp_FAKE_USE(SDNode *N);
1098   SDValue WidenVecOp_STORE(SDNode* N);
1099   SDValue WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo);
1100   SDValue WidenVecOp_VP_STRIDED_STORE(SDNode *N, unsigned OpNo);
1101   SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
1102   SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
1103   SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
1104   SDValue WidenVecOp_VP_SCATTER(SDNode* N, unsigned OpNo);
1105   SDValue WidenVecOp_VP_SPLAT(SDNode *N, unsigned OpNo);
1106   SDValue WidenVecOp_SETCC(SDNode* N);
1107   SDValue WidenVecOp_STRICT_FSETCC(SDNode* N);
1108   SDValue WidenVecOp_VSELECT(SDNode *N);
1109 
1110   SDValue WidenVecOp_Convert(SDNode *N);
1111   SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N);
1112   SDValue WidenVecOp_UnrollVectorOp(SDNode *N);
1113   SDValue WidenVecOp_IS_FPCLASS(SDNode *N);
1114   SDValue WidenVecOp_VECREDUCE(SDNode *N);
1115   SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N);
1116   SDValue WidenVecOp_VP_REDUCE(SDNode *N);
1117   SDValue WidenVecOp_ExpOp(SDNode *N);
1118   SDValue WidenVecOp_VP_CttzElements(SDNode *N);
1119 
1120   /// Helper function to generate a set of operations to perform
1121   /// a vector operation for a wider type.
1122   ///
1123   SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE);
1124 
1125   //===--------------------------------------------------------------------===//
1126   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
1127   //===--------------------------------------------------------------------===//
1128 
1129   /// Helper function to generate a set of loads to load a vector with a
1130   /// resulting wider type. It takes:
1131   ///   LdChain: list of chains for the load to be generated.
1132   ///   Ld:      load to widen
1133   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
1134                               LoadSDNode *LD);
1135 
1136   /// Helper function to generate a set of extension loads to load a vector with
1137   /// a resulting wider type. It takes:
1138   ///   LdChain: list of chains for the load to be generated.
1139   ///   Ld:      load to widen
1140   ///   ExtType: extension element type
1141   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
1142                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
1143 
1144   /// Helper function to generate a set of stores to store a widen vector into
1145   /// non-widen memory. Returns true if successful, false otherwise.
1146   ///   StChain: list of chains for the stores we have generated
1147   ///   ST:      store of a widen value
1148   bool GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
1149 
1150   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
1151   /// input vector must have the same element type as NVT.
1152   /// When FillWithZeroes is "on" the vector will be widened with zeroes.
1153   /// By default, the vector will be widened with undefined values.
1154   SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
1155 
1156   /// Return a mask of vector type MaskVT to replace InMask. Also adjust
1157   /// MaskVT to ToMaskVT if needed with vector extension or truncation.
1158   SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
1159 
1160   //===--------------------------------------------------------------------===//
1161   // Generic Splitting: LegalizeTypesGeneric.cpp
1162   //===--------------------------------------------------------------------===//
1163 
1164   // Legalization methods which only use that the illegal type is split into two
1165   // not necessarily identical types.  As such they can be used for splitting
1166   // vectors and expanding integers and floats.
1167 
1168   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1169     if (Op.getValueType().isVector())
1170       GetSplitVector(Op, Lo, Hi);
1171     else if (Op.getValueType().isInteger())
1172       GetExpandedInteger(Op, Lo, Hi);
1173     else
1174       GetExpandedFloat(Op, Lo, Hi);
1175   }
1176 
1177   /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
1178   /// given value.
1179   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
1180 
1181   // Generic Result Splitting.
1182   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1183                              SDValue &Lo, SDValue &Hi);
1184   void SplitVecRes_AssertZext  (SDNode *N, SDValue &Lo, SDValue &Hi);
1185   void SplitRes_ARITH_FENCE (SDNode *N, SDValue &Lo, SDValue &Hi);
1186   void SplitRes_Select      (SDNode *N, SDValue &Lo, SDValue &Hi);
1187   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
1188   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
1189   void SplitRes_FREEZE      (SDNode *N, SDValue &Lo, SDValue &Hi);
1190 
1191   //===--------------------------------------------------------------------===//
1192   // Generic Expansion: LegalizeTypesGeneric.cpp
1193   //===--------------------------------------------------------------------===//
1194 
1195   // Legalization methods which only use that the illegal type is split into two
1196   // identical types of half the size, and that the Lo/Hi part is stored first
1197   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
1198   // such they can be used for expanding integers and floats.
1199 
1200   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1201     if (Op.getValueType().isInteger())
1202       GetExpandedInteger(Op, Lo, Hi);
1203     else
1204       GetExpandedFloat(Op, Lo, Hi);
1205   }
1206 
1207 
1208   /// This function will split the integer \p Op into \p NumElements
1209   /// operations of type \p EltVT and store them in \p Ops.
1210   void IntegerToVector(SDValue Op, unsigned NumElements,
1211                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
1212 
1213   // Generic Result Expansion.
1214   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
1215                                     SDValue &Lo, SDValue &Hi);
1216   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
1217   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
1218   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
1219   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
1220   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
1221   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
1222 
1223   // Generic Operand Expansion.
1224   SDValue ExpandOp_BITCAST          (SDNode *N);
1225   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
1226   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
1227   SDValue ExpandOp_FAKE_USE(SDNode *N);
1228   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
1229   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
1230   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
1231 };
1232 
1233 } // end namespace llvm.
1234 
1235 #endif
1236