1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the DAGTypeLegalizer class. This is a private interface 10 // shared between the code that implements the SelectionDAG::LegalizeTypes 11 // method. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H 16 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H 17 18 #include "MatchContext.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/Support/Compiler.h" 23 24 namespace llvm { 25 26 //===----------------------------------------------------------------------===// 27 /// This takes an arbitrary SelectionDAG as input and hacks on it until only 28 /// value types the target machine can handle are left. This involves promoting 29 /// small sizes to large sizes or splitting up large values into small values. 30 /// 31 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer { 32 const TargetLowering &TLI; 33 SelectionDAG &DAG; 34 public: 35 /// This pass uses the NodeId on the SDNodes to hold information about the 36 /// state of the node. The enum has all the values. 37 enum NodeIdFlags { 38 /// All operands have been processed, so this node is ready to be handled. 39 ReadyToProcess = 0, 40 41 /// This is a new node, not before seen, that was created in the process of 42 /// legalizing some other node. 43 NewNode = -1, 44 45 /// This node's ID needs to be set to the number of its unprocessed 46 /// operands. 47 Unanalyzed = -2, 48 49 /// This is a node that has already been processed. 50 Processed = -3 51 52 // 1+ - This is a node which has this many unprocessed operands. 53 }; 54 private: 55 56 /// This is a bitvector that contains two bits for each simple value type, 57 /// where the two bits correspond to the LegalizeAction enum from 58 /// TargetLowering. This can be queried with "getTypeAction(VT)". 59 TargetLowering::ValueTypeActionImpl ValueTypeActions; 60 61 /// Return how we should legalize values of this type. 62 TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const { 63 return TLI.getTypeAction(*DAG.getContext(), VT); 64 } 65 66 /// Return true if this type is legal on this target. 67 bool isTypeLegal(EVT VT) const { 68 return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal; 69 } 70 71 /// Return true if this is a simple legal type. 72 bool isSimpleLegalType(EVT VT) const { 73 return VT.isSimple() && TLI.isTypeLegal(VT); 74 } 75 76 EVT getSetCCResultType(EVT VT) const { 77 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 78 } 79 80 /// Pretend all of this node's results are legal. 81 bool IgnoreNodeResults(SDNode *N) const { 82 return N->getOpcode() == ISD::TargetConstant || 83 N->getOpcode() == ISD::Register; 84 } 85 86 // Bijection from SDValue to unique id. As each created node gets a 87 // new id we do not need to worry about reuse expunging. Should we 88 // run out of ids, we can do a one time expensive compactifcation. 89 typedef unsigned TableId; 90 91 TableId NextValueId = 1; 92 93 SmallDenseMap<SDValue, TableId, 8> ValueToIdMap; 94 SmallDenseMap<TableId, SDValue, 8> IdToValueMap; 95 96 /// For integer nodes that are below legal width, this map indicates what 97 /// promoted value to use. 98 SmallDenseMap<TableId, TableId, 8> PromotedIntegers; 99 100 /// For integer nodes that need to be expanded this map indicates which 101 /// operands are the expanded version of the input. 102 SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers; 103 104 /// For floating-point nodes converted to integers of the same size, this map 105 /// indicates the converted value to use. 106 SmallDenseMap<TableId, TableId, 8> SoftenedFloats; 107 108 /// For floating-point nodes that have a smaller precision than the smallest 109 /// supported precision, this map indicates what promoted value to use. 110 SmallDenseMap<TableId, TableId, 8> PromotedFloats; 111 112 /// For floating-point nodes that have a smaller precision than the smallest 113 /// supported precision, this map indicates the converted value to use. 114 SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs; 115 116 /// For float nodes that need to be expanded this map indicates which operands 117 /// are the expanded version of the input. 118 SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats; 119 120 /// For nodes that are <1 x ty>, this map indicates the scalar value of type 121 /// 'ty' to use. 122 SmallDenseMap<TableId, TableId, 8> ScalarizedVectors; 123 124 /// For nodes that need to be split this map indicates which operands are the 125 /// expanded version of the input. 126 SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors; 127 128 /// For vector nodes that need to be widened, indicates the widened value to 129 /// use. 130 SmallDenseMap<TableId, TableId, 8> WidenedVectors; 131 132 /// For values that have been replaced with another, indicates the replacement 133 /// value to use. 134 SmallDenseMap<TableId, TableId, 8> ReplacedValues; 135 136 /// This defines a worklist of nodes to process. In order to be pushed onto 137 /// this worklist, all operands of a node must have already been processed. 138 SmallVector<SDNode*, 128> Worklist; 139 140 TableId getTableId(SDValue V) { 141 assert(V.getNode() && "Getting TableId on SDValue()"); 142 143 auto I = ValueToIdMap.find(V); 144 if (I != ValueToIdMap.end()) { 145 // replace if there's been a shift. 146 RemapId(I->second); 147 assert(I->second && "All Ids should be nonzero"); 148 return I->second; 149 } 150 // Add if it's not there. 151 ValueToIdMap.insert(std::make_pair(V, NextValueId)); 152 IdToValueMap.insert(std::make_pair(NextValueId, V)); 153 ++NextValueId; 154 assert(NextValueId != 0 && 155 "Ran out of Ids. Increase id type size or add compactification"); 156 return NextValueId - 1; 157 } 158 159 const SDValue &getSDValue(TableId &Id) { 160 RemapId(Id); 161 assert(Id && "TableId should be non-zero"); 162 auto I = IdToValueMap.find(Id); 163 assert(I != IdToValueMap.end() && "cannot find Id in map"); 164 return I->second; 165 } 166 167 public: 168 explicit DAGTypeLegalizer(SelectionDAG &dag) 169 : TLI(dag.getTargetLoweringInfo()), DAG(dag), 170 ValueTypeActions(TLI.getValueTypeActions()) { 171 } 172 173 /// This is the main entry point for the type legalizer. This does a 174 /// top-down traversal of the dag, legalizing types as it goes. Returns 175 /// "true" if it made any changes. 176 bool run(); 177 178 void NoteDeletion(SDNode *Old, SDNode *New) { 179 assert(Old != New && "node replaced with self"); 180 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 181 TableId NewId = getTableId(SDValue(New, i)); 182 TableId OldId = getTableId(SDValue(Old, i)); 183 184 if (OldId != NewId) { 185 ReplacedValues[OldId] = NewId; 186 187 // Delete Node from tables. We cannot do this when OldId == NewId, 188 // because NewId can still have table references to it in 189 // ReplacedValues. 190 IdToValueMap.erase(OldId); 191 PromotedIntegers.erase(OldId); 192 ExpandedIntegers.erase(OldId); 193 SoftenedFloats.erase(OldId); 194 PromotedFloats.erase(OldId); 195 SoftPromotedHalfs.erase(OldId); 196 ExpandedFloats.erase(OldId); 197 ScalarizedVectors.erase(OldId); 198 SplitVectors.erase(OldId); 199 WidenedVectors.erase(OldId); 200 } 201 202 ValueToIdMap.erase(SDValue(Old, i)); 203 } 204 } 205 206 SelectionDAG &getDAG() const { return DAG; } 207 208 private: 209 SDNode *AnalyzeNewNode(SDNode *N); 210 void AnalyzeNewValue(SDValue &Val); 211 void PerformExpensiveChecks(); 212 void RemapId(TableId &Id); 213 void RemapValue(SDValue &V); 214 215 // Common routines. 216 SDValue BitConvertToInteger(SDValue Op); 217 SDValue BitConvertVectorToIntegerVector(SDValue Op); 218 SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT); 219 bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult); 220 bool CustomWidenLowerNode(SDNode *N, EVT VT); 221 222 /// Replace each result of the given MERGE_VALUES node with the corresponding 223 /// input operand, except for the result 'ResNo', for which the corresponding 224 /// input operand is returned. 225 SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo); 226 227 SDValue JoinIntegers(SDValue Lo, SDValue Hi); 228 229 std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); 230 231 SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT); 232 233 void ReplaceValueWith(SDValue From, SDValue To); 234 void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi); 235 void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT, 236 SDValue &Lo, SDValue &Hi); 237 238 //===--------------------------------------------------------------------===// 239 // Integer Promotion Support: LegalizeIntegerTypes.cpp 240 //===--------------------------------------------------------------------===// 241 242 /// Given a processed operand Op which was promoted to a larger integer type, 243 /// this returns the promoted value. The low bits of the promoted value 244 /// corresponding to the original type are exactly equal to Op. 245 /// The extra bits contain rubbish, so the promoted value may need to be zero- 246 /// or sign-extended from the original type before it is usable (the helpers 247 /// SExtPromotedInteger and ZExtPromotedInteger can do this for you). 248 /// For example, if Op is an i16 and was promoted to an i32, then this method 249 /// returns an i32, the lower 16 bits of which coincide with Op, and the upper 250 /// 16 bits of which contain rubbish. 251 SDValue GetPromotedInteger(SDValue Op) { 252 TableId &PromotedId = PromotedIntegers[getTableId(Op)]; 253 SDValue PromotedOp = getSDValue(PromotedId); 254 assert(PromotedOp.getNode() && "Operand wasn't promoted?"); 255 return PromotedOp; 256 } 257 void SetPromotedInteger(SDValue Op, SDValue Result); 258 259 /// Get a promoted operand and sign extend it to the final size. 260 SDValue SExtPromotedInteger(SDValue Op) { 261 EVT OldVT = Op.getValueType(); 262 SDLoc dl(Op); 263 Op = GetPromotedInteger(Op); 264 return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op, 265 DAG.getValueType(OldVT)); 266 } 267 268 /// Get a promoted operand and zero extend it to the final size. 269 SDValue ZExtPromotedInteger(SDValue Op) { 270 EVT OldVT = Op.getValueType(); 271 SDLoc dl(Op); 272 Op = GetPromotedInteger(Op); 273 return DAG.getZeroExtendInReg(Op, dl, OldVT); 274 } 275 276 /// Get a promoted operand and zero extend it to the final size. 277 SDValue VPSExtPromotedInteger(SDValue Op, SDValue Mask, SDValue EVL) { 278 EVT OldVT = Op.getValueType(); 279 SDLoc dl(Op); 280 Op = GetPromotedInteger(Op); 281 // FIXME: Add VP_SIGN_EXTEND_INREG. 282 EVT VT = Op.getValueType(); 283 unsigned BitsDiff = VT.getScalarSizeInBits() - OldVT.getScalarSizeInBits(); 284 SDValue ShiftCst = DAG.getShiftAmountConstant(BitsDiff, VT, dl); 285 SDValue Shl = DAG.getNode(ISD::VP_SHL, dl, VT, Op, ShiftCst, Mask, EVL); 286 return DAG.getNode(ISD::VP_SRA, dl, VT, Shl, ShiftCst, Mask, EVL); 287 } 288 289 /// Get a promoted operand and zero extend it to the final size. 290 SDValue VPZExtPromotedInteger(SDValue Op, SDValue Mask, SDValue EVL) { 291 EVT OldVT = Op.getValueType(); 292 SDLoc dl(Op); 293 Op = GetPromotedInteger(Op); 294 return DAG.getVPZeroExtendInReg(Op, Mask, EVL, dl, OldVT); 295 } 296 297 // Promote the given operand V (vector or scalar) according to N's specific 298 // reduction kind. N must be an integer VECREDUCE_* or VP_REDUCE_*. Returns 299 // the nominal extension opcode (ISD::(ANY|ZERO|SIGN)_EXTEND) and the 300 // promoted value. 301 SDValue PromoteIntOpVectorReduction(SDNode *N, SDValue V); 302 303 // Integer Result Promotion. 304 void PromoteIntegerResult(SDNode *N, unsigned ResNo); 305 SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo); 306 SDValue PromoteIntRes_AssertSext(SDNode *N); 307 SDValue PromoteIntRes_AssertZext(SDNode *N); 308 SDValue PromoteIntRes_Atomic0(AtomicSDNode *N); 309 SDValue PromoteIntRes_Atomic1(AtomicSDNode *N); 310 SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo); 311 SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N); 312 SDValue PromoteIntRes_INSERT_SUBVECTOR(SDNode *N); 313 SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N); 314 SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N); 315 SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N); 316 SDValue PromoteIntRes_VECTOR_INTERLEAVE_DEINTERLEAVE(SDNode *N); 317 SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N); 318 SDValue PromoteIntRes_ScalarOp(SDNode *N); 319 SDValue PromoteIntRes_STEP_VECTOR(SDNode *N); 320 SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N); 321 SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N); 322 SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N); 323 SDValue PromoteIntRes_BITCAST(SDNode *N); 324 SDValue PromoteIntRes_BSWAP(SDNode *N); 325 SDValue PromoteIntRes_BITREVERSE(SDNode *N); 326 SDValue PromoteIntRes_BUILD_PAIR(SDNode *N); 327 SDValue PromoteIntRes_Constant(SDNode *N); 328 SDValue PromoteIntRes_CTLZ(SDNode *N); 329 SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N); 330 SDValue PromoteIntRes_CTTZ(SDNode *N); 331 SDValue PromoteIntRes_VP_CttzElements(SDNode *N); 332 SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N); 333 SDValue PromoteIntRes_FP_TO_XINT(SDNode *N); 334 SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N); 335 SDValue PromoteIntRes_FP_TO_FP16_BF16(SDNode *N); 336 SDValue PromoteIntRes_STRICT_FP_TO_FP16_BF16(SDNode *N); 337 SDValue PromoteIntRes_XRINT(SDNode *N); 338 SDValue PromoteIntRes_FREEZE(SDNode *N); 339 SDValue PromoteIntRes_INT_EXTEND(SDNode *N); 340 SDValue PromoteIntRes_LOAD(LoadSDNode *N); 341 SDValue PromoteIntRes_VP_LOAD(VPLoadSDNode *N); 342 SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N); 343 SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N); 344 SDValue PromoteIntRes_VECTOR_COMPRESS(SDNode *N); 345 SDValue PromoteIntRes_Overflow(SDNode *N); 346 SDValue PromoteIntRes_FFREXP(SDNode *N); 347 SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo); 348 SDValue PromoteIntRes_CMP(SDNode *N); 349 SDValue PromoteIntRes_Select(SDNode *N); 350 SDValue PromoteIntRes_SELECT_CC(SDNode *N); 351 SDValue PromoteIntRes_SETCC(SDNode *N); 352 SDValue PromoteIntRes_SHL(SDNode *N); 353 SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N); 354 SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N); 355 SDValue PromoteIntRes_SExtIntBinOp(SDNode *N); 356 SDValue PromoteIntRes_UMINUMAX(SDNode *N); 357 SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N); 358 SDValue PromoteIntRes_SRA(SDNode *N); 359 SDValue PromoteIntRes_SRL(SDNode *N); 360 SDValue PromoteIntRes_TRUNCATE(SDNode *N); 361 SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo); 362 SDValue PromoteIntRes_UADDSUBO_CARRY(SDNode *N, unsigned ResNo); 363 SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo); 364 SDValue PromoteIntRes_UNDEF(SDNode *N); 365 SDValue PromoteIntRes_VAARG(SDNode *N); 366 SDValue PromoteIntRes_VSCALE(SDNode *N); 367 SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo); 368 template <class MatchContextClass> 369 SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N); 370 SDValue PromoteIntRes_MULFIX(SDNode *N); 371 SDValue PromoteIntRes_DIVFIX(SDNode *N); 372 SDValue PromoteIntRes_GET_ROUNDING(SDNode *N); 373 SDValue PromoteIntRes_VECREDUCE(SDNode *N); 374 SDValue PromoteIntRes_VP_REDUCE(SDNode *N); 375 SDValue PromoteIntRes_ABS(SDNode *N); 376 SDValue PromoteIntRes_Rotate(SDNode *N); 377 SDValue PromoteIntRes_FunnelShift(SDNode *N); 378 SDValue PromoteIntRes_VPFunnelShift(SDNode *N); 379 SDValue PromoteIntRes_IS_FPCLASS(SDNode *N); 380 SDValue PromoteIntRes_PATCHPOINT(SDNode *N); 381 SDValue PromoteIntRes_VECTOR_FIND_LAST_ACTIVE(SDNode *N); 382 383 // Integer Operand Promotion. 384 bool PromoteIntegerOperand(SDNode *N, unsigned OpNo); 385 SDValue PromoteIntOp_ANY_EXTEND(SDNode *N); 386 SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N); 387 SDValue PromoteIntOp_BITCAST(SDNode *N); 388 SDValue PromoteIntOp_BUILD_PAIR(SDNode *N); 389 SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo); 390 SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo); 391 SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N); 392 SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo); 393 SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N); 394 SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N); 395 SDValue PromoteIntOp_INSERT_SUBVECTOR(SDNode *N); 396 SDValue PromoteIntOp_FAKE_USE(SDNode *N); 397 SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N); 398 SDValue PromoteIntOp_ScalarOp(SDNode *N); 399 SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo); 400 SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo); 401 SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo); 402 SDValue PromoteIntOp_Shift(SDNode *N); 403 SDValue PromoteIntOp_CMP(SDNode *N); 404 SDValue PromoteIntOp_FunnelShift(SDNode *N); 405 SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N); 406 SDValue PromoteIntOp_VP_SIGN_EXTEND(SDNode *N); 407 SDValue PromoteIntOp_SINT_TO_FP(SDNode *N); 408 SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N); 409 SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo); 410 SDValue PromoteIntOp_TRUNCATE(SDNode *N); 411 SDValue PromoteIntOp_UINT_TO_FP(SDNode *N); 412 SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N); 413 SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N); 414 SDValue PromoteIntOp_VP_ZERO_EXTEND(SDNode *N); 415 SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); 416 SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo); 417 SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo); 418 SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo); 419 SDValue PromoteIntOp_VECTOR_COMPRESS(SDNode *N, unsigned OpNo); 420 SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N); 421 SDValue PromoteIntOp_FIX(SDNode *N); 422 SDValue PromoteIntOp_ExpOp(SDNode *N); 423 SDValue PromoteIntOp_VECREDUCE(SDNode *N); 424 SDValue PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo); 425 SDValue PromoteIntOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo); 426 SDValue PromoteIntOp_SET_ROUNDING(SDNode *N); 427 SDValue PromoteIntOp_STACKMAP(SDNode *N, unsigned OpNo); 428 SDValue PromoteIntOp_PATCHPOINT(SDNode *N, unsigned OpNo); 429 SDValue PromoteIntOp_VP_STRIDED(SDNode *N, unsigned OpNo); 430 SDValue PromoteIntOp_VP_SPLICE(SDNode *N, unsigned OpNo); 431 SDValue PromoteIntOp_VECTOR_HISTOGRAM(SDNode *N, unsigned OpNo); 432 SDValue PromoteIntOp_VECTOR_FIND_LAST_ACTIVE(SDNode *N, unsigned OpNo); 433 434 void SExtOrZExtPromotedOperands(SDValue &LHS, SDValue &RHS); 435 void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code); 436 437 //===--------------------------------------------------------------------===// 438 // Integer Expansion Support: LegalizeIntegerTypes.cpp 439 //===--------------------------------------------------------------------===// 440 441 /// Given a processed operand Op which was expanded into two integers of half 442 /// the size, this returns the two halves. The low bits of Op are exactly 443 /// equal to the bits of Lo; the high bits exactly equal Hi. 444 /// For example, if Op is an i64 which was expanded into two i32's, then this 445 /// method returns the two i32's, with Lo being equal to the lower 32 bits of 446 /// Op, and Hi being equal to the upper 32 bits. 447 void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi); 448 void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi); 449 450 // Integer Result Expansion. 451 void ExpandIntegerResult(SDNode *N, unsigned ResNo); 452 void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 453 void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi); 454 void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); 455 void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi); 456 void ExpandIntRes_ABS (SDNode *N, SDValue &Lo, SDValue &Hi); 457 void ExpandIntRes_ABD (SDNode *N, SDValue &Lo, SDValue &Hi); 458 void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi); 459 void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi); 460 void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi); 461 void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi); 462 void ExpandIntRes_READCOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi); 463 void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 464 void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi); 465 void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi); 466 void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 467 void ExpandIntRes_GET_ROUNDING (SDNode *N, SDValue &Lo, SDValue &Hi); 468 void ExpandIntRes_FP_TO_XINT (SDNode *N, SDValue &Lo, SDValue &Hi); 469 void ExpandIntRes_FP_TO_XINT_SAT (SDNode *N, SDValue &Lo, SDValue &Hi); 470 void ExpandIntRes_XROUND_XRINT (SDNode *N, SDValue &Lo, SDValue &Hi); 471 472 void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi); 473 void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi); 474 void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi); 475 void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi); 476 void ExpandIntRes_UADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi); 477 void ExpandIntRes_SADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi); 478 void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi); 479 void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi); 480 void ExpandIntRes_PARITY (SDNode *N, SDValue &Lo, SDValue &Hi); 481 void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi); 482 void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi); 483 void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi); 484 void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi); 485 void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi); 486 void ExpandIntRes_ShiftThroughStack (SDNode *N, SDValue &Lo, SDValue &Hi); 487 void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi); 488 489 void ExpandIntRes_MINMAX (SDNode *N, SDValue &Lo, SDValue &Hi); 490 491 void ExpandIntRes_CMP (SDNode *N, SDValue &Lo, SDValue &Hi); 492 void ExpandIntRes_SETCC (SDNode *N, SDValue &Lo, SDValue &Hi); 493 494 void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); 495 void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); 496 void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi); 497 void ExpandIntRes_AVG (SDNode *N, SDValue &Lo, SDValue &Hi); 498 void ExpandIntRes_ADDSUBSAT (SDNode *N, SDValue &Lo, SDValue &Hi); 499 void ExpandIntRes_SHLSAT (SDNode *N, SDValue &Lo, SDValue &Hi); 500 void ExpandIntRes_MULFIX (SDNode *N, SDValue &Lo, SDValue &Hi); 501 void ExpandIntRes_DIVFIX (SDNode *N, SDValue &Lo, SDValue &Hi); 502 503 void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); 504 void ExpandIntRes_VECREDUCE (SDNode *N, SDValue &Lo, SDValue &Hi); 505 506 void ExpandIntRes_Rotate (SDNode *N, SDValue &Lo, SDValue &Hi); 507 void ExpandIntRes_FunnelShift (SDNode *N, SDValue &Lo, SDValue &Hi); 508 509 void ExpandIntRes_VSCALE (SDNode *N, SDValue &Lo, SDValue &Hi); 510 511 void ExpandShiftByConstant(SDNode *N, const APInt &Amt, 512 SDValue &Lo, SDValue &Hi); 513 bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); 514 bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); 515 516 // Integer Operand Expansion. 517 bool ExpandIntegerOperand(SDNode *N, unsigned OpNo); 518 SDValue ExpandIntOp_BR_CC(SDNode *N); 519 SDValue ExpandIntOp_SELECT_CC(SDNode *N); 520 SDValue ExpandIntOp_SETCC(SDNode *N); 521 SDValue ExpandIntOp_SETCCCARRY(SDNode *N); 522 SDValue ExpandIntOp_Shift(SDNode *N); 523 SDValue ExpandIntOp_CMP(SDNode *N); 524 SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo); 525 SDValue ExpandIntOp_TRUNCATE(SDNode *N); 526 SDValue ExpandIntOp_XINT_TO_FP(SDNode *N); 527 SDValue ExpandIntOp_RETURNADDR(SDNode *N); 528 SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N); 529 SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N); 530 SDValue ExpandIntOp_STACKMAP(SDNode *N, unsigned OpNo); 531 SDValue ExpandIntOp_PATCHPOINT(SDNode *N, unsigned OpNo); 532 SDValue ExpandIntOp_VP_STRIDED(SDNode *N, unsigned OpNo); 533 534 void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, 535 ISD::CondCode &CCCode, const SDLoc &dl); 536 537 //===--------------------------------------------------------------------===// 538 // Float to Integer Conversion Support: LegalizeFloatTypes.cpp 539 //===--------------------------------------------------------------------===// 540 541 /// GetSoftenedFloat - Given a processed operand Op which was converted to an 542 /// integer of the same size, this returns the integer. The integer contains 543 /// exactly the same bits as Op - only the type changed. For example, if Op 544 /// is an f32 which was softened to an i32, then this method returns an i32, 545 /// the bits of which coincide with those of Op 546 SDValue GetSoftenedFloat(SDValue Op) { 547 TableId Id = getTableId(Op); 548 auto Iter = SoftenedFloats.find(Id); 549 if (Iter == SoftenedFloats.end()) { 550 assert(isSimpleLegalType(Op.getValueType()) && 551 "Operand wasn't converted to integer?"); 552 return Op; 553 } 554 SDValue SoftenedOp = getSDValue(Iter->second); 555 assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?"); 556 return SoftenedOp; 557 } 558 void SetSoftenedFloat(SDValue Op, SDValue Result); 559 560 // Convert Float Results to Integer. 561 void SoftenFloatResult(SDNode *N, unsigned ResNo); 562 SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC); 563 SDValue SoftenFloatRes_UnaryWithTwoFPResults(SDNode *N, RTLIB::Libcall LC); 564 SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC); 565 SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo); 566 SDValue SoftenFloatRes_ARITH_FENCE(SDNode *N); 567 SDValue SoftenFloatRes_BITCAST(SDNode *N); 568 SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N); 569 SDValue SoftenFloatRes_ConstantFP(SDNode *N); 570 SDValue SoftenFloatRes_EXTRACT_ELEMENT(SDNode *N); 571 SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo); 572 SDValue SoftenFloatRes_FABS(SDNode *N); 573 SDValue SoftenFloatRes_FACOS(SDNode *N); 574 SDValue SoftenFloatRes_FASIN(SDNode *N); 575 SDValue SoftenFloatRes_FATAN(SDNode *N); 576 SDValue SoftenFloatRes_FATAN2(SDNode *N); 577 SDValue SoftenFloatRes_FMINNUM(SDNode *N); 578 SDValue SoftenFloatRes_FMAXNUM(SDNode *N); 579 SDValue SoftenFloatRes_FMINIMUMNUM(SDNode *N); 580 SDValue SoftenFloatRes_FMAXIMUMNUM(SDNode *N); 581 SDValue SoftenFloatRes_FMINIMUM(SDNode *N); 582 SDValue SoftenFloatRes_FMAXIMUM(SDNode *N); 583 SDValue SoftenFloatRes_FADD(SDNode *N); 584 SDValue SoftenFloatRes_FCBRT(SDNode *N); 585 SDValue SoftenFloatRes_FCEIL(SDNode *N); 586 SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N); 587 SDValue SoftenFloatRes_FCOS(SDNode *N); 588 SDValue SoftenFloatRes_FCOSH(SDNode *N); 589 SDValue SoftenFloatRes_FDIV(SDNode *N); 590 SDValue SoftenFloatRes_FEXP(SDNode *N); 591 SDValue SoftenFloatRes_FEXP2(SDNode *N); 592 SDValue SoftenFloatRes_FEXP10(SDNode *N); 593 SDValue SoftenFloatRes_FFLOOR(SDNode *N); 594 SDValue SoftenFloatRes_FLOG(SDNode *N); 595 SDValue SoftenFloatRes_FLOG2(SDNode *N); 596 SDValue SoftenFloatRes_FLOG10(SDNode *N); 597 SDValue SoftenFloatRes_FMA(SDNode *N); 598 SDValue SoftenFloatRes_FMUL(SDNode *N); 599 SDValue SoftenFloatRes_FNEARBYINT(SDNode *N); 600 SDValue SoftenFloatRes_FNEG(SDNode *N); 601 SDValue SoftenFloatRes_FP_EXTEND(SDNode *N); 602 SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N); 603 SDValue SoftenFloatRes_BF16_TO_FP(SDNode *N); 604 SDValue SoftenFloatRes_FP_ROUND(SDNode *N); 605 SDValue SoftenFloatRes_FPOW(SDNode *N); 606 SDValue SoftenFloatRes_ExpOp(SDNode *N); 607 SDValue SoftenFloatRes_FFREXP(SDNode *N); 608 SDValue SoftenFloatRes_FSINCOS(SDNode *N); 609 SDValue SoftenFloatRes_FREEZE(SDNode *N); 610 SDValue SoftenFloatRes_FREM(SDNode *N); 611 SDValue SoftenFloatRes_FRINT(SDNode *N); 612 SDValue SoftenFloatRes_FROUND(SDNode *N); 613 SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N); 614 SDValue SoftenFloatRes_FSIN(SDNode *N); 615 SDValue SoftenFloatRes_FSINH(SDNode *N); 616 SDValue SoftenFloatRes_FSQRT(SDNode *N); 617 SDValue SoftenFloatRes_FSUB(SDNode *N); 618 SDValue SoftenFloatRes_FTAN(SDNode *N); 619 SDValue SoftenFloatRes_FTANH(SDNode *N); 620 SDValue SoftenFloatRes_FTRUNC(SDNode *N); 621 SDValue SoftenFloatRes_LOAD(SDNode *N); 622 SDValue SoftenFloatRes_ATOMIC_LOAD(SDNode *N); 623 SDValue SoftenFloatRes_SELECT(SDNode *N); 624 SDValue SoftenFloatRes_SELECT_CC(SDNode *N); 625 SDValue SoftenFloatRes_UNDEF(SDNode *N); 626 SDValue SoftenFloatRes_VAARG(SDNode *N); 627 SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N); 628 SDValue SoftenFloatRes_VECREDUCE(SDNode *N); 629 SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N); 630 631 // Convert Float Operand to Integer. 632 bool SoftenFloatOperand(SDNode *N, unsigned OpNo); 633 SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC); 634 SDValue SoftenFloatOp_BITCAST(SDNode *N); 635 SDValue SoftenFloatOp_BR_CC(SDNode *N); 636 SDValue SoftenFloatOp_FP_ROUND(SDNode *N); 637 SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N); 638 SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N); 639 SDValue SoftenFloatOp_LROUND(SDNode *N); 640 SDValue SoftenFloatOp_LLROUND(SDNode *N); 641 SDValue SoftenFloatOp_LRINT(SDNode *N); 642 SDValue SoftenFloatOp_LLRINT(SDNode *N); 643 SDValue SoftenFloatOp_SELECT_CC(SDNode *N); 644 SDValue SoftenFloatOp_SETCC(SDNode *N); 645 SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo); 646 SDValue SoftenFloatOp_ATOMIC_STORE(SDNode *N, unsigned OpNo); 647 SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N); 648 649 //===--------------------------------------------------------------------===// 650 // Float Expansion Support: LegalizeFloatTypes.cpp 651 //===--------------------------------------------------------------------===// 652 653 /// Given a processed operand Op which was expanded into two floating-point 654 /// values of half the size, this returns the two halves. 655 /// The low bits of Op are exactly equal to the bits of Lo; the high bits 656 /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded 657 /// into two f64's, then this method returns the two f64's, with Lo being 658 /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits. 659 void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi); 660 void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi); 661 662 // Float Result Expansion. 663 void ExpandFloatResult(SDNode *N, unsigned ResNo); 664 void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi); 665 void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC, 666 SDValue &Lo, SDValue &Hi); 667 void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC, 668 SDValue &Lo, SDValue &Hi); 669 // clang-format off 670 void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi); 671 void ExpandFloatRes_FACOS (SDNode *N, SDValue &Lo, SDValue &Hi); 672 void ExpandFloatRes_FASIN (SDNode *N, SDValue &Lo, SDValue &Hi); 673 void ExpandFloatRes_FATAN (SDNode *N, SDValue &Lo, SDValue &Hi); 674 void ExpandFloatRes_FATAN2 (SDNode *N, SDValue &Lo, SDValue &Hi); 675 void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi); 676 void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi); 677 void ExpandFloatRes_FMINIMUMNUM(SDNode *N, SDValue &Lo, SDValue &Hi); 678 void ExpandFloatRes_FMAXIMUMNUM(SDNode *N, SDValue &Lo, SDValue &Hi); 679 void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi); 680 void ExpandFloatRes_FCBRT (SDNode *N, SDValue &Lo, SDValue &Hi); 681 void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi); 682 void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi); 683 void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi); 684 void ExpandFloatRes_FCOSH (SDNode *N, SDValue &Lo, SDValue &Hi); 685 void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi); 686 void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi); 687 void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi); 688 void ExpandFloatRes_FEXP10 (SDNode *N, SDValue &Lo, SDValue &Hi); 689 void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi); 690 void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi); 691 void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi); 692 void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi); 693 void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi); 694 void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi); 695 void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi); 696 void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi); 697 void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); 698 void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi); 699 void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi); 700 void ExpandFloatRes_FLDEXP (SDNode *N, SDValue &Lo, SDValue &Hi); 701 void ExpandFloatRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi); 702 void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi); 703 void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi); 704 void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi); 705 void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi); 706 void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi); 707 void ExpandFloatRes_FSINH (SDNode *N, SDValue &Lo, SDValue &Hi); 708 void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi); 709 void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi); 710 void ExpandFloatRes_FTAN (SDNode *N, SDValue &Lo, SDValue &Hi); 711 void ExpandFloatRes_FTANH (SDNode *N, SDValue &Lo, SDValue &Hi); 712 void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi); 713 void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); 714 void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi); 715 // clang-format on 716 717 // Float Operand Expansion. 718 bool ExpandFloatOperand(SDNode *N, unsigned OpNo); 719 SDValue ExpandFloatOp_BR_CC(SDNode *N); 720 SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N); 721 SDValue ExpandFloatOp_FP_ROUND(SDNode *N); 722 SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N); 723 SDValue ExpandFloatOp_LROUND(SDNode *N); 724 SDValue ExpandFloatOp_LLROUND(SDNode *N); 725 SDValue ExpandFloatOp_LRINT(SDNode *N); 726 SDValue ExpandFloatOp_LLRINT(SDNode *N); 727 SDValue ExpandFloatOp_SELECT_CC(SDNode *N); 728 SDValue ExpandFloatOp_SETCC(SDNode *N); 729 SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo); 730 731 void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, 732 ISD::CondCode &CCCode, const SDLoc &dl, 733 SDValue &Chain, bool IsSignaling = false); 734 735 //===--------------------------------------------------------------------===// 736 // Float promotion support: LegalizeFloatTypes.cpp 737 //===--------------------------------------------------------------------===// 738 739 SDValue GetPromotedFloat(SDValue Op) { 740 TableId &PromotedId = PromotedFloats[getTableId(Op)]; 741 SDValue PromotedOp = getSDValue(PromotedId); 742 assert(PromotedOp.getNode() && "Operand wasn't promoted?"); 743 return PromotedOp; 744 } 745 void SetPromotedFloat(SDValue Op, SDValue Result); 746 747 void PromoteFloatResult(SDNode *N, unsigned ResNo); 748 SDValue PromoteFloatRes_BITCAST(SDNode *N); 749 SDValue PromoteFloatRes_BinOp(SDNode *N); 750 SDValue PromoteFloatRes_UnaryWithTwoFPResults(SDNode *N); 751 SDValue PromoteFloatRes_ConstantFP(SDNode *N); 752 SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N); 753 SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N); 754 SDValue PromoteFloatRes_FMAD(SDNode *N); 755 SDValue PromoteFloatRes_ExpOp(SDNode *N); 756 SDValue PromoteFloatRes_FFREXP(SDNode *N); 757 SDValue PromoteFloatRes_FP_ROUND(SDNode *N); 758 SDValue PromoteFloatRes_STRICT_FP_ROUND(SDNode *N); 759 SDValue PromoteFloatRes_LOAD(SDNode *N); 760 SDValue PromoteFloatRes_ATOMIC_LOAD(SDNode *N); 761 SDValue PromoteFloatRes_SELECT(SDNode *N); 762 SDValue PromoteFloatRes_SELECT_CC(SDNode *N); 763 SDValue PromoteFloatRes_UnaryOp(SDNode *N); 764 SDValue PromoteFloatRes_UNDEF(SDNode *N); 765 SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N); 766 SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N); 767 SDValue PromoteFloatRes_VECREDUCE(SDNode *N); 768 SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N); 769 770 bool PromoteFloatOperand(SDNode *N, unsigned OpNo); 771 SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo); 772 SDValue PromoteFloatOp_FAKE_USE(SDNode *N, unsigned OpNo); 773 SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo); 774 SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo); 775 SDValue PromoteFloatOp_STRICT_FP_EXTEND(SDNode *N, unsigned OpNo); 776 SDValue PromoteFloatOp_UnaryOp(SDNode *N, unsigned OpNo); 777 SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo); 778 SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo); 779 SDValue PromoteFloatOp_ATOMIC_STORE(SDNode *N, unsigned OpNo); 780 SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo); 781 SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo); 782 783 //===--------------------------------------------------------------------===// 784 // Half soft promotion support: LegalizeFloatTypes.cpp 785 //===--------------------------------------------------------------------===// 786 787 SDValue GetSoftPromotedHalf(SDValue Op) { 788 TableId &PromotedId = SoftPromotedHalfs[getTableId(Op)]; 789 SDValue PromotedOp = getSDValue(PromotedId); 790 assert(PromotedOp.getNode() && "Operand wasn't promoted?"); 791 return PromotedOp; 792 } 793 void SetSoftPromotedHalf(SDValue Op, SDValue Result); 794 795 void SoftPromoteHalfResult(SDNode *N, unsigned ResNo); 796 SDValue SoftPromoteHalfRes_ARITH_FENCE(SDNode *N); 797 SDValue SoftPromoteHalfRes_BinOp(SDNode *N); 798 SDValue SoftPromoteHalfRes_UnaryWithTwoFPResults(SDNode *N); 799 SDValue SoftPromoteHalfRes_BITCAST(SDNode *N); 800 SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N); 801 SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N); 802 SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N); 803 SDValue SoftPromoteHalfRes_FMAD(SDNode *N); 804 SDValue SoftPromoteHalfRes_ExpOp(SDNode *N); 805 SDValue SoftPromoteHalfRes_FFREXP(SDNode *N); 806 SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N); 807 SDValue SoftPromoteHalfRes_LOAD(SDNode *N); 808 SDValue SoftPromoteHalfRes_ATOMIC_LOAD(SDNode *N); 809 SDValue SoftPromoteHalfRes_SELECT(SDNode *N); 810 SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N); 811 SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N); 812 SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N); 813 SDValue SoftPromoteHalfRes_UNDEF(SDNode *N); 814 SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N); 815 SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N); 816 817 bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo); 818 SDValue SoftPromoteHalfOp_BITCAST(SDNode *N); 819 SDValue SoftPromoteHalfOp_FAKE_USE(SDNode *N, unsigned OpNo); 820 SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo); 821 SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N); 822 SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N); 823 SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N); 824 SDValue SoftPromoteHalfOp_SETCC(SDNode *N); 825 SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo); 826 SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo); 827 SDValue SoftPromoteHalfOp_ATOMIC_STORE(SDNode *N, unsigned OpNo); 828 SDValue SoftPromoteHalfOp_STACKMAP(SDNode *N, unsigned OpNo); 829 SDValue SoftPromoteHalfOp_PATCHPOINT(SDNode *N, unsigned OpNo); 830 831 //===--------------------------------------------------------------------===// 832 // Scalarization Support: LegalizeVectorTypes.cpp 833 //===--------------------------------------------------------------------===// 834 835 /// Given a processed one-element vector Op which was scalarized to its 836 /// element type, this returns the element. For example, if Op is a v1i32, 837 /// Op = < i32 val >, this method returns val, an i32. 838 SDValue GetScalarizedVector(SDValue Op) { 839 TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)]; 840 SDValue ScalarizedOp = getSDValue(ScalarizedId); 841 assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?"); 842 return ScalarizedOp; 843 } 844 void SetScalarizedVector(SDValue Op, SDValue Result); 845 846 // Vector Result Scalarization: <1 x ty> -> ty. 847 void ScalarizeVectorResult(SDNode *N, unsigned ResNo); 848 SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo); 849 SDValue ScalarizeVecRes_BinOp(SDNode *N); 850 SDValue ScalarizeVecRes_CMP(SDNode *N); 851 SDValue ScalarizeVecRes_TernaryOp(SDNode *N); 852 SDValue ScalarizeVecRes_UnaryOp(SDNode *N); 853 SDValue ScalarizeVecRes_StrictFPOp(SDNode *N); 854 SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo); 855 SDValue ScalarizeVecRes_InregOp(SDNode *N); 856 SDValue ScalarizeVecRes_VecInregOp(SDNode *N); 857 858 SDValue ScalarizeVecRes_ADDRSPACECAST(SDNode *N); 859 SDValue ScalarizeVecRes_BITCAST(SDNode *N); 860 SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N); 861 SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N); 862 SDValue ScalarizeVecRes_FP_ROUND(SDNode *N); 863 SDValue ScalarizeVecRes_UnaryOpWithExtraInput(SDNode *N); 864 SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N); 865 SDValue ScalarizeVecRes_LOAD(LoadSDNode *N); 866 SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N); 867 SDValue ScalarizeVecRes_VSELECT(SDNode *N); 868 SDValue ScalarizeVecRes_SELECT(SDNode *N); 869 SDValue ScalarizeVecRes_SELECT_CC(SDNode *N); 870 SDValue ScalarizeVecRes_SETCC(SDNode *N); 871 SDValue ScalarizeVecRes_UNDEF(SDNode *N); 872 SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N); 873 SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N); 874 SDValue ScalarizeVecRes_IS_FPCLASS(SDNode *N); 875 876 SDValue ScalarizeVecRes_FIX(SDNode *N); 877 SDValue ScalarizeVecRes_UnaryOpWithTwoResults(SDNode *N, unsigned ResNo); 878 879 // Vector Operand Scalarization: <1 x ty> -> ty. 880 bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo); 881 SDValue ScalarizeVecOp_BITCAST(SDNode *N); 882 SDValue ScalarizeVecOp_UnaryOp(SDNode *N); 883 SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N); 884 SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N); 885 SDValue ScalarizeVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo); 886 SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N); 887 SDValue ScalarizeVecOp_VSELECT(SDNode *N); 888 SDValue ScalarizeVecOp_VSETCC(SDNode *N); 889 SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo); 890 SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo); 891 SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo); 892 SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N); 893 SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N); 894 SDValue ScalarizeVecOp_VECREDUCE(SDNode *N); 895 SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N); 896 SDValue ScalarizeVecOp_CMP(SDNode *N); 897 SDValue ScalarizeVecOp_FAKE_USE(SDNode *N); 898 899 //===--------------------------------------------------------------------===// 900 // Vector Splitting Support: LegalizeVectorTypes.cpp 901 //===--------------------------------------------------------------------===// 902 903 /// Given a processed vector Op which was split into vectors of half the size, 904 /// this method returns the halves. The first elements of Op coincide with the 905 /// elements of Lo; the remaining elements of Op coincide with the elements of 906 /// Hi: Op is what you would get by concatenating Lo and Hi. 907 /// For example, if Op is a v8i32 that was split into two v4i32's, then this 908 /// method returns the two v4i32's, with Lo corresponding to the first 4 909 /// elements of Op, and Hi to the last 4 elements. 910 void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi); 911 void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi); 912 913 /// Split mask operator of a VP intrinsic. 914 std::pair<SDValue, SDValue> SplitMask(SDValue Mask); 915 916 /// Split mask operator of a VP intrinsic in a given location. 917 std::pair<SDValue, SDValue> SplitMask(SDValue Mask, const SDLoc &DL); 918 919 // Helper function for incrementing the pointer when splitting 920 // memory operations 921 void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI, 922 SDValue &Ptr, uint64_t *ScaledOffset = nullptr); 923 924 // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>. 925 void SplitVectorResult(SDNode *N, unsigned ResNo); 926 void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi); 927 void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); 928 void SplitVecRes_CMP(SDNode *N, SDValue &Lo, SDValue &Hi); 929 void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); 930 void SplitVecRes_ADDRSPACECAST(SDNode *N, SDValue &Lo, SDValue &Hi); 931 void SplitVecRes_UnaryOpWithTwoResults(SDNode *N, unsigned ResNo, SDValue &Lo, 932 SDValue &Hi); 933 void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi); 934 void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi); 935 void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi); 936 void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi); 937 void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo, 938 SDValue &Lo, SDValue &Hi); 939 940 void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi); 941 942 void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi); 943 void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 944 void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi); 945 void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 946 void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 947 void SplitVecRes_FPOp_MultiType(SDNode *N, SDValue &Lo, SDValue &Hi); 948 void SplitVecRes_IS_FPCLASS(SDNode *N, SDValue &Lo, SDValue &Hi); 949 void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); 950 void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi); 951 void SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo, SDValue &Hi); 952 void SplitVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *SLD, SDValue &Lo, 953 SDValue &Hi); 954 void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi); 955 void SplitVecRes_Gather(MemSDNode *VPGT, SDValue &Lo, SDValue &Hi, 956 bool SplitSETCC = false); 957 void SplitVecRes_VECTOR_COMPRESS(SDNode *N, SDValue &Lo, SDValue &Hi); 958 void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi); 959 void SplitVecRes_VP_SPLAT(SDNode *N, SDValue &Lo, SDValue &Hi); 960 void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); 961 void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi); 962 void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi); 963 void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo, 964 SDValue &Hi); 965 void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi); 966 void SplitVecRes_VECTOR_DEINTERLEAVE(SDNode *N); 967 void SplitVecRes_VECTOR_INTERLEAVE(SDNode *N); 968 void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi); 969 void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi); 970 void SplitVecRes_VP_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi); 971 972 // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>. 973 bool SplitVectorOperand(SDNode *N, unsigned OpNo); 974 SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo); 975 SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo); 976 SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N); 977 SDValue SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo); 978 SDValue SplitVecOp_UnaryOp(SDNode *N); 979 SDValue SplitVecOp_TruncateHelper(SDNode *N); 980 SDValue SplitVecOp_VECTOR_COMPRESS(SDNode *N, unsigned OpNo); 981 982 SDValue SplitVecOp_BITCAST(SDNode *N); 983 SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo); 984 SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N); 985 SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N); 986 SDValue SplitVecOp_ExtVecInRegOp(SDNode *N); 987 SDValue SplitVecOp_FAKE_USE(SDNode *N); 988 SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo); 989 SDValue SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo); 990 SDValue SplitVecOp_VP_STRIDED_STORE(VPStridedStoreSDNode *N, unsigned OpNo); 991 SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); 992 SDValue SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo); 993 SDValue SplitVecOp_Gather(MemSDNode *MGT, unsigned OpNo); 994 SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N); 995 SDValue SplitVecOp_VSETCC(SDNode *N); 996 SDValue SplitVecOp_FP_ROUND(SDNode *N); 997 SDValue SplitVecOp_FPOpDifferentTypes(SDNode *N); 998 SDValue SplitVecOp_CMP(SDNode *N); 999 SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N); 1000 SDValue SplitVecOp_VP_CttzElements(SDNode *N); 1001 SDValue SplitVecOp_VECTOR_HISTOGRAM(SDNode *N); 1002 1003 //===--------------------------------------------------------------------===// 1004 // Vector Widening Support: LegalizeVectorTypes.cpp 1005 //===--------------------------------------------------------------------===// 1006 1007 /// Given a processed vector Op which was widened into a larger vector, this 1008 /// method returns the larger vector. The elements of the returned vector 1009 /// consist of the elements of Op followed by elements containing rubbish. 1010 /// For example, if Op is a v2i32 that was widened to a v4i32, then this 1011 /// method returns a v4i32 for which the first two elements are the same as 1012 /// those of Op, while the last two elements contain rubbish. 1013 SDValue GetWidenedVector(SDValue Op) { 1014 TableId &WidenedId = WidenedVectors[getTableId(Op)]; 1015 SDValue WidenedOp = getSDValue(WidenedId); 1016 assert(WidenedOp.getNode() && "Operand wasn't widened?"); 1017 return WidenedOp; 1018 } 1019 void SetWidenedVector(SDValue Op, SDValue Result); 1020 1021 /// Given a mask Mask, returns the larger vector into which Mask was widened. 1022 SDValue GetWidenedMask(SDValue Mask, ElementCount EC) { 1023 // For VP operations, we must also widen the mask. Note that the mask type 1024 // may not actually need widening, leading it be split along with the VP 1025 // operation. 1026 // FIXME: This could lead to an infinite split/widen loop. We only handle 1027 // the case where the mask needs widening to an identically-sized type as 1028 // the vector inputs. 1029 assert(getTypeAction(Mask.getValueType()) == 1030 TargetLowering::TypeWidenVector && 1031 "Unable to widen binary VP op"); 1032 Mask = GetWidenedVector(Mask); 1033 assert(Mask.getValueType().getVectorElementCount() == EC && 1034 "Unable to widen binary VP op"); 1035 return Mask; 1036 } 1037 1038 // Widen Vector Result Promotion. 1039 void WidenVectorResult(SDNode *N, unsigned ResNo); 1040 SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo); 1041 SDValue WidenVecRes_ADDRSPACECAST(SDNode *N); 1042 SDValue WidenVecRes_AssertZext(SDNode* N); 1043 SDValue WidenVecRes_BITCAST(SDNode* N); 1044 SDValue WidenVecRes_BUILD_VECTOR(SDNode* N); 1045 SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N); 1046 SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N); 1047 SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N); 1048 SDValue WidenVecRes_INSERT_SUBVECTOR(SDNode *N); 1049 SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N); 1050 SDValue WidenVecRes_LOAD(SDNode* N); 1051 SDValue WidenVecRes_VP_LOAD(VPLoadSDNode *N); 1052 SDValue WidenVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *N); 1053 SDValue WidenVecRes_VECTOR_COMPRESS(SDNode *N); 1054 SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N); 1055 SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N); 1056 SDValue WidenVecRes_VP_GATHER(VPGatherSDNode* N); 1057 SDValue WidenVecRes_ScalarOp(SDNode* N); 1058 SDValue WidenVecRes_Select(SDNode *N); 1059 SDValue WidenVSELECTMask(SDNode *N); 1060 SDValue WidenVecRes_SELECT_CC(SDNode* N); 1061 SDValue WidenVecRes_SETCC(SDNode* N); 1062 SDValue WidenVecRes_STRICT_FSETCC(SDNode* N); 1063 SDValue WidenVecRes_UNDEF(SDNode *N); 1064 SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N); 1065 SDValue WidenVecRes_VECTOR_REVERSE(SDNode *N); 1066 1067 SDValue WidenVecRes_Ternary(SDNode *N); 1068 SDValue WidenVecRes_Binary(SDNode *N); 1069 SDValue WidenVecRes_CMP(SDNode *N); 1070 SDValue WidenVecRes_BinaryCanTrap(SDNode *N); 1071 SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N); 1072 SDValue WidenVecRes_StrictFP(SDNode *N); 1073 SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo); 1074 SDValue WidenVecRes_Convert(SDNode *N); 1075 SDValue WidenVecRes_Convert_StrictFP(SDNode *N); 1076 SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N); 1077 SDValue WidenVecRes_XROUND(SDNode *N); 1078 SDValue WidenVecRes_FCOPYSIGN(SDNode *N); 1079 SDValue WidenVecRes_UnarySameEltsWithScalarArg(SDNode *N); 1080 SDValue WidenVecRes_ExpOp(SDNode *N); 1081 SDValue WidenVecRes_Unary(SDNode *N); 1082 SDValue WidenVecRes_InregOp(SDNode *N); 1083 SDValue WidenVecRes_UnaryOpWithTwoResults(SDNode *N, unsigned ResNo); 1084 void ReplaceOtherWidenResults(SDNode *N, SDNode *WidenNode, 1085 unsigned WidenResNo); 1086 1087 // Widen Vector Operand. 1088 bool WidenVectorOperand(SDNode *N, unsigned OpNo); 1089 SDValue WidenVecOp_BITCAST(SDNode *N); 1090 SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N); 1091 SDValue WidenVecOp_EXTEND(SDNode *N); 1092 SDValue WidenVecOp_CMP(SDNode *N); 1093 SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N); 1094 SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N); 1095 SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N); 1096 SDValue WidenVecOp_EXTEND_VECTOR_INREG(SDNode *N); 1097 SDValue WidenVecOp_FAKE_USE(SDNode *N); 1098 SDValue WidenVecOp_STORE(SDNode* N); 1099 SDValue WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo); 1100 SDValue WidenVecOp_VP_STRIDED_STORE(SDNode *N, unsigned OpNo); 1101 SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo); 1102 SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo); 1103 SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo); 1104 SDValue WidenVecOp_VP_SCATTER(SDNode* N, unsigned OpNo); 1105 SDValue WidenVecOp_VP_SPLAT(SDNode *N, unsigned OpNo); 1106 SDValue WidenVecOp_SETCC(SDNode* N); 1107 SDValue WidenVecOp_STRICT_FSETCC(SDNode* N); 1108 SDValue WidenVecOp_VSELECT(SDNode *N); 1109 1110 SDValue WidenVecOp_Convert(SDNode *N); 1111 SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N); 1112 SDValue WidenVecOp_UnrollVectorOp(SDNode *N); 1113 SDValue WidenVecOp_IS_FPCLASS(SDNode *N); 1114 SDValue WidenVecOp_VECREDUCE(SDNode *N); 1115 SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N); 1116 SDValue WidenVecOp_VP_REDUCE(SDNode *N); 1117 SDValue WidenVecOp_ExpOp(SDNode *N); 1118 SDValue WidenVecOp_VP_CttzElements(SDNode *N); 1119 1120 /// Helper function to generate a set of operations to perform 1121 /// a vector operation for a wider type. 1122 /// 1123 SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE); 1124 1125 //===--------------------------------------------------------------------===// 1126 // Vector Widening Utilities Support: LegalizeVectorTypes.cpp 1127 //===--------------------------------------------------------------------===// 1128 1129 /// Helper function to generate a set of loads to load a vector with a 1130 /// resulting wider type. It takes: 1131 /// LdChain: list of chains for the load to be generated. 1132 /// Ld: load to widen 1133 SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain, 1134 LoadSDNode *LD); 1135 1136 /// Helper function to generate a set of extension loads to load a vector with 1137 /// a resulting wider type. It takes: 1138 /// LdChain: list of chains for the load to be generated. 1139 /// Ld: load to widen 1140 /// ExtType: extension element type 1141 SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain, 1142 LoadSDNode *LD, ISD::LoadExtType ExtType); 1143 1144 /// Helper function to generate a set of stores to store a widen vector into 1145 /// non-widen memory. Returns true if successful, false otherwise. 1146 /// StChain: list of chains for the stores we have generated 1147 /// ST: store of a widen value 1148 bool GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST); 1149 1150 /// Modifies a vector input (widen or narrows) to a vector of NVT. The 1151 /// input vector must have the same element type as NVT. 1152 /// When FillWithZeroes is "on" the vector will be widened with zeroes. 1153 /// By default, the vector will be widened with undefined values. 1154 SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false); 1155 1156 /// Return a mask of vector type MaskVT to replace InMask. Also adjust 1157 /// MaskVT to ToMaskVT if needed with vector extension or truncation. 1158 SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT); 1159 1160 //===--------------------------------------------------------------------===// 1161 // Generic Splitting: LegalizeTypesGeneric.cpp 1162 //===--------------------------------------------------------------------===// 1163 1164 // Legalization methods which only use that the illegal type is split into two 1165 // not necessarily identical types. As such they can be used for splitting 1166 // vectors and expanding integers and floats. 1167 1168 void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) { 1169 if (Op.getValueType().isVector()) 1170 GetSplitVector(Op, Lo, Hi); 1171 else if (Op.getValueType().isInteger()) 1172 GetExpandedInteger(Op, Lo, Hi); 1173 else 1174 GetExpandedFloat(Op, Lo, Hi); 1175 } 1176 1177 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the 1178 /// given value. 1179 void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi); 1180 1181 // Generic Result Splitting. 1182 void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo, 1183 SDValue &Lo, SDValue &Hi); 1184 void SplitVecRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); 1185 void SplitRes_ARITH_FENCE (SDNode *N, SDValue &Lo, SDValue &Hi); 1186 void SplitRes_Select (SDNode *N, SDValue &Lo, SDValue &Hi); 1187 void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi); 1188 void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi); 1189 void SplitRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi); 1190 1191 //===--------------------------------------------------------------------===// 1192 // Generic Expansion: LegalizeTypesGeneric.cpp 1193 //===--------------------------------------------------------------------===// 1194 1195 // Legalization methods which only use that the illegal type is split into two 1196 // identical types of half the size, and that the Lo/Hi part is stored first 1197 // in memory on little/big-endian machines, followed by the Hi/Lo part. As 1198 // such they can be used for expanding integers and floats. 1199 1200 void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) { 1201 if (Op.getValueType().isInteger()) 1202 GetExpandedInteger(Op, Lo, Hi); 1203 else 1204 GetExpandedFloat(Op, Lo, Hi); 1205 } 1206 1207 1208 /// This function will split the integer \p Op into \p NumElements 1209 /// operations of type \p EltVT and store them in \p Ops. 1210 void IntegerToVector(SDValue Op, unsigned NumElements, 1211 SmallVectorImpl<SDValue> &Ops, EVT EltVT); 1212 1213 // Generic Result Expansion. 1214 void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo, 1215 SDValue &Lo, SDValue &Hi); 1216 void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi); 1217 void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi); 1218 void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi); 1219 void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); 1220 void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi); 1221 void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi); 1222 1223 // Generic Operand Expansion. 1224 SDValue ExpandOp_BITCAST (SDNode *N); 1225 SDValue ExpandOp_BUILD_VECTOR (SDNode *N); 1226 SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N); 1227 SDValue ExpandOp_FAKE_USE(SDNode *N); 1228 SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N); 1229 SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N); 1230 SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo); 1231 }; 1232 1233 } // end namespace llvm. 1234 1235 #endif 1236