1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the Emit routines for the SelectionDAG class, which creates 10 // MachineInstrs based on the decisions of the SelectionDAG instruction 11 // selection. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "InstrEmitter.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/BinaryFormat/Dwarf.h" 18 #include "llvm/CodeGen/MachineConstantPool.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/StackMaps.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/PseudoProbe.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Target/TargetMachine.h" 30 using namespace llvm; 31 32 #define DEBUG_TYPE "instr-emitter" 33 34 /// MinRCSize - Smallest register class we allow when constraining virtual 35 /// registers. If satisfying all register class constraints would require 36 /// using a smaller register class, emit a COPY to a new virtual register 37 /// instead. 38 const unsigned MinRCSize = 4; 39 40 /// CountResults - The results of target nodes have register or immediate 41 /// operands first, then an optional chain, and optional glue operands (which do 42 /// not go into the resulting MachineInstr). 43 unsigned InstrEmitter::CountResults(SDNode *Node) { 44 unsigned N = Node->getNumValues(); 45 while (N && Node->getValueType(N - 1) == MVT::Glue) 46 --N; 47 if (N && Node->getValueType(N - 1) == MVT::Other) 48 --N; // Skip over chain result. 49 return N; 50 } 51 52 /// countOperands - The inputs to target nodes have any actual inputs first, 53 /// followed by an optional chain operand, then an optional glue operand. 54 /// Compute the number of actual operands that will go into the resulting 55 /// MachineInstr. 56 /// 57 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding 58 /// the chain and glue. These operands may be implicit on the machine instr. 59 static unsigned countOperands(SDNode *Node, unsigned NumExpUses, 60 unsigned &NumImpUses) { 61 unsigned N = Node->getNumOperands(); 62 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) 63 --N; 64 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) 65 --N; // Ignore chain if it exists. 66 67 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses. 68 NumImpUses = N - NumExpUses; 69 for (unsigned I = N; I > NumExpUses; --I) { 70 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1))) 71 continue; 72 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1))) 73 if (RN->getReg().isPhysical()) 74 continue; 75 NumImpUses = N - I; 76 break; 77 } 78 79 return N; 80 } 81 82 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an 83 /// implicit physical register output. 84 void InstrEmitter::EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, 85 Register SrcReg, VRBaseMapType &VRBaseMap) { 86 Register VRBase; 87 if (SrcReg.isVirtual()) { 88 // Just use the input register directly! 89 SDValue Op(Node, ResNo); 90 if (IsClone) 91 VRBaseMap.erase(Op); 92 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second; 93 (void)isNew; // Silence compiler warning. 94 assert(isNew && "Node emitted out of order - early"); 95 return; 96 } 97 98 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 99 // the CopyToReg'd destination register instead of creating a new vreg. 100 bool MatchReg = true; 101 const TargetRegisterClass *UseRC = nullptr; 102 MVT VT = Node->getSimpleValueType(ResNo); 103 104 // Stick to the preferred register classes for legal types. 105 if (TLI->isTypeLegal(VT)) 106 UseRC = TLI->getRegClassFor(VT, Node->isDivergent()); 107 108 for (SDNode *User : Node->users()) { 109 bool Match = true; 110 if (User->getOpcode() == ISD::CopyToReg && 111 User->getOperand(2).getNode() == Node && 112 User->getOperand(2).getResNo() == ResNo) { 113 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 114 if (DestReg.isVirtual()) { 115 VRBase = DestReg; 116 Match = false; 117 } else if (DestReg != SrcReg) 118 Match = false; 119 } else { 120 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 121 SDValue Op = User->getOperand(i); 122 if (Op.getNode() != Node || Op.getResNo() != ResNo) 123 continue; 124 MVT VT = Node->getSimpleValueType(Op.getResNo()); 125 if (VT == MVT::Other || VT == MVT::Glue) 126 continue; 127 Match = false; 128 if (User->isMachineOpcode()) { 129 const MCInstrDesc &II = TII->get(User->getMachineOpcode()); 130 const TargetRegisterClass *RC = nullptr; 131 if (i + II.getNumDefs() < II.getNumOperands()) { 132 RC = TRI->getAllocatableClass( 133 TII->getRegClass(II, i + II.getNumDefs(), TRI, *MF)); 134 } 135 if (!UseRC) 136 UseRC = RC; 137 else if (RC) { 138 const TargetRegisterClass *ComRC = 139 TRI->getCommonSubClass(UseRC, RC); 140 // If multiple uses expect disjoint register classes, we emit 141 // copies in AddRegisterOperand. 142 if (ComRC) 143 UseRC = ComRC; 144 } 145 } 146 } 147 } 148 MatchReg &= Match; 149 if (VRBase) 150 break; 151 } 152 153 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr; 154 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT); 155 156 // Figure out the register class to create for the destreg. 157 if (VRBase) { 158 DstRC = MRI->getRegClass(VRBase); 159 } else if (UseRC) { 160 assert(TRI->isTypeLegalForClass(*UseRC, VT) && 161 "Incompatible phys register def and uses!"); 162 DstRC = UseRC; 163 } else 164 DstRC = SrcRC; 165 166 // If all uses are reading from the src physical register and copying the 167 // register is either impossible or very expensive, then don't create a copy. 168 if (MatchReg && SrcRC->getCopyCost() < 0) { 169 VRBase = SrcReg; 170 } else { 171 // Create the reg, emit the copy. 172 VRBase = MRI->createVirtualRegister(DstRC); 173 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 174 VRBase).addReg(SrcReg); 175 } 176 177 SDValue Op(Node, ResNo); 178 if (IsClone) 179 VRBaseMap.erase(Op); 180 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 181 (void)isNew; // Silence compiler warning. 182 assert(isNew && "Node emitted out of order - early"); 183 } 184 185 void InstrEmitter::CreateVirtualRegisters(SDNode *Node, 186 MachineInstrBuilder &MIB, 187 const MCInstrDesc &II, 188 bool IsClone, bool IsCloned, 189 VRBaseMapType &VRBaseMap) { 190 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF && 191 "IMPLICIT_DEF should have been handled as a special case elsewhere!"); 192 193 unsigned NumResults = CountResults(Node); 194 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() && 195 II.isVariadic() && II.variadicOpsAreDefs(); 196 unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs(); 197 if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT) 198 NumVRegs = NumResults; 199 for (unsigned i = 0; i < NumVRegs; ++i) { 200 // If the specific node value is only used by a CopyToReg and the dest reg 201 // is a vreg in the same register class, use the CopyToReg'd destination 202 // register instead of creating a new vreg. 203 Register VRBase; 204 const TargetRegisterClass *RC = 205 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF)); 206 // Always let the value type influence the used register class. The 207 // constraints on the instruction may be too lax to represent the value 208 // type correctly. For example, a 64-bit float (X86::FR64) can't live in 209 // the 32-bit float super-class (X86::FR32). 210 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) { 211 const TargetRegisterClass *VTRC = TLI->getRegClassFor( 212 Node->getSimpleValueType(i), 213 (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC)))); 214 if (RC) 215 VTRC = TRI->getCommonSubClass(RC, VTRC); 216 if (VTRC) 217 RC = VTRC; 218 } 219 220 if (!II.operands().empty() && II.operands()[i].isOptionalDef()) { 221 // Optional def must be a physical register. 222 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg(); 223 assert(VRBase.isPhysical()); 224 MIB.addReg(VRBase, RegState::Define); 225 } 226 227 if (!VRBase && !IsClone && !IsCloned) 228 for (SDNode *User : Node->users()) { 229 if (User->getOpcode() == ISD::CopyToReg && 230 User->getOperand(2).getNode() == Node && 231 User->getOperand(2).getResNo() == i) { 232 Register Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 233 if (Reg.isVirtual()) { 234 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg); 235 if (RegRC == RC) { 236 VRBase = Reg; 237 MIB.addReg(VRBase, RegState::Define); 238 break; 239 } 240 } 241 } 242 } 243 244 // Create the result registers for this node and add the result regs to 245 // the machine instruction. 246 if (VRBase == 0) { 247 assert(RC && "Isn't a register operand!"); 248 VRBase = MRI->createVirtualRegister(RC); 249 MIB.addReg(VRBase, RegState::Define); 250 } 251 252 // If this def corresponds to a result of the SDNode insert the VRBase into 253 // the lookup map. 254 if (i < NumResults) { 255 SDValue Op(Node, i); 256 if (IsClone) 257 VRBaseMap.erase(Op); 258 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 259 (void)isNew; // Silence compiler warning. 260 assert(isNew && "Node emitted out of order - early"); 261 } 262 } 263 } 264 265 /// getVR - Return the virtual register corresponding to the specified result 266 /// of the specified node. 267 Register InstrEmitter::getVR(SDValue Op, VRBaseMapType &VRBaseMap) { 268 if (Op.isMachineOpcode() && 269 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 270 // Add an IMPLICIT_DEF instruction before every use. 271 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc 272 // does not include operand register class info. 273 const TargetRegisterClass *RC = TLI->getRegClassFor( 274 Op.getSimpleValueType(), Op.getNode()->isDivergent()); 275 Register VReg = MRI->createVirtualRegister(RC); 276 BuildMI(*MBB, InsertPos, Op.getDebugLoc(), 277 TII->get(TargetOpcode::IMPLICIT_DEF), VReg); 278 return VReg; 279 } 280 281 VRBaseMapType::iterator I = VRBaseMap.find(Op); 282 assert(I != VRBaseMap.end() && "Node emitted out of order - late"); 283 return I->second; 284 } 285 286 static bool isConvergenceCtrlMachineOp(SDValue Op) { 287 if (Op->isMachineOpcode()) { 288 switch (Op->getMachineOpcode()) { 289 case TargetOpcode::CONVERGENCECTRL_ANCHOR: 290 case TargetOpcode::CONVERGENCECTRL_ENTRY: 291 case TargetOpcode::CONVERGENCECTRL_LOOP: 292 case TargetOpcode::CONVERGENCECTRL_GLUE: 293 return true; 294 } 295 return false; 296 } 297 298 // We can reach here when CopyFromReg is encountered. But rather than making a 299 // special case for that, we just make sure we don't reach here in some 300 // surprising way. 301 switch (Op->getOpcode()) { 302 case ISD::CONVERGENCECTRL_ANCHOR: 303 case ISD::CONVERGENCECTRL_ENTRY: 304 case ISD::CONVERGENCECTRL_LOOP: 305 case ISD::CONVERGENCECTRL_GLUE: 306 llvm_unreachable("Convergence control should have been selected by now."); 307 } 308 return false; 309 } 310 311 /// AddRegisterOperand - Add the specified register as an operand to the 312 /// specified machine instr. Insert register copies if the register is 313 /// not in the required register class. 314 void 315 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB, 316 SDValue Op, 317 unsigned IIOpNum, 318 const MCInstrDesc *II, 319 VRBaseMapType &VRBaseMap, 320 bool IsDebug, bool IsClone, bool IsCloned) { 321 assert(Op.getValueType() != MVT::Other && 322 Op.getValueType() != MVT::Glue && 323 "Chain and glue operands should occur at end of operand list!"); 324 // Get/emit the operand. 325 Register VReg = getVR(Op, VRBaseMap); 326 327 const MCInstrDesc &MCID = MIB->getDesc(); 328 bool isOptDef = IIOpNum < MCID.getNumOperands() && 329 MCID.operands()[IIOpNum].isOptionalDef(); 330 331 // If the instruction requires a register in a different class, create 332 // a new virtual register and copy the value into it, but first attempt to 333 // shrink VReg's register class within reason. For example, if VReg == GR32 334 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP. 335 if (II) { 336 const TargetRegisterClass *OpRC = nullptr; 337 if (IIOpNum < II->getNumOperands()) 338 OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF); 339 340 if (OpRC) { 341 unsigned MinNumRegs = MinRCSize; 342 // Don't apply any RC size limit for IMPLICIT_DEF. Each use has a unique 343 // virtual register. 344 if (Op.isMachineOpcode() && 345 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) 346 MinNumRegs = 0; 347 348 const TargetRegisterClass *ConstrainedRC 349 = MRI->constrainRegClass(VReg, OpRC, MinNumRegs); 350 if (!ConstrainedRC) { 351 OpRC = TRI->getAllocatableClass(OpRC); 352 assert(OpRC && "Constraints cannot be fulfilled for allocation"); 353 Register NewVReg = MRI->createVirtualRegister(OpRC); 354 BuildMI(*MBB, InsertPos, MIB->getDebugLoc(), 355 TII->get(TargetOpcode::COPY), NewVReg) 356 .addReg(VReg); 357 VReg = NewVReg; 358 } else { 359 assert(ConstrainedRC->isAllocatable() && 360 "Constraining an allocatable VReg produced an unallocatable class?"); 361 } 362 } 363 } 364 365 // If this value has only one use, that use is a kill. This is a 366 // conservative approximation. InstrEmitter does trivial coalescing 367 // with CopyFromReg nodes, so don't emit kill flags for them. 368 // Avoid kill flags on Schedule cloned nodes, since there will be 369 // multiple uses. 370 // Tied operands are never killed, so we need to check that. And that 371 // means we need to determine the index of the operand. 372 // Don't kill convergence control tokens. Initially they are only used in glue 373 // nodes, and the InstrEmitter later adds implicit uses on the users of the 374 // glue node. This can sometimes make it seem like there is only one use, 375 // which is the glue node itself. 376 bool isKill = Op.hasOneUse() && !isConvergenceCtrlMachineOp(Op) && 377 Op.getNode()->getOpcode() != ISD::CopyFromReg && !IsDebug && 378 !(IsClone || IsCloned); 379 if (isKill) { 380 unsigned Idx = MIB->getNumOperands(); 381 while (Idx > 0 && 382 MIB->getOperand(Idx-1).isReg() && 383 MIB->getOperand(Idx-1).isImplicit()) 384 --Idx; 385 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1; 386 if (isTied) 387 isKill = false; 388 } 389 390 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) | 391 getDebugRegState(IsDebug)); 392 } 393 394 /// AddOperand - Add the specified operand to the specified machine instr. II 395 /// specifies the instruction information for the node, and IIOpNum is the 396 /// operand number (in the II) that we are adding. 397 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB, SDValue Op, 398 unsigned IIOpNum, const MCInstrDesc *II, 399 VRBaseMapType &VRBaseMap, bool IsDebug, 400 bool IsClone, bool IsCloned) { 401 if (Op.isMachineOpcode()) { 402 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 403 IsDebug, IsClone, IsCloned); 404 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 405 MIB.addImm(C->getSExtValue()); 406 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) { 407 MIB.addFPImm(F->getConstantFPValue()); 408 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { 409 Register VReg = R->getReg(); 410 MVT OpVT = Op.getSimpleValueType(); 411 const TargetRegisterClass *IIRC = 412 II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF)) 413 : nullptr; 414 const TargetRegisterClass *OpRC = 415 TLI->isTypeLegal(OpVT) 416 ? TLI->getRegClassFor(OpVT, 417 Op.getNode()->isDivergent() || 418 (IIRC && TRI->isDivergentRegClass(IIRC))) 419 : nullptr; 420 421 if (OpRC && IIRC && OpRC != IIRC && VReg.isVirtual()) { 422 Register NewVReg = MRI->createVirtualRegister(IIRC); 423 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(), 424 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg); 425 VReg = NewVReg; 426 } 427 // Turn additional physreg operands into implicit uses on non-variadic 428 // instructions. This is used by call and return instructions passing 429 // arguments in registers. 430 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic()); 431 MIB.addReg(VReg, getImplRegState(Imp)); 432 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) { 433 MIB.addRegMask(RM->getRegMask()); 434 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { 435 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(), 436 TGA->getTargetFlags()); 437 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) { 438 MIB.addMBB(BBNode->getBasicBlock()); 439 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 440 MIB.addFrameIndex(FI->getIndex()); 441 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) { 442 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags()); 443 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) { 444 int Offset = CP->getOffset(); 445 Align Alignment = CP->getAlign(); 446 447 unsigned Idx; 448 MachineConstantPool *MCP = MF->getConstantPool(); 449 if (CP->isMachineConstantPoolEntry()) 450 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment); 451 else 452 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment); 453 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags()); 454 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) { 455 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags()); 456 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) { 457 MIB.addSym(SymNode->getMCSymbol()); 458 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) { 459 MIB.addBlockAddress(BA->getBlockAddress(), 460 BA->getOffset(), 461 BA->getTargetFlags()); 462 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) { 463 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags()); 464 } else { 465 assert(Op.getValueType() != MVT::Other && 466 Op.getValueType() != MVT::Glue && 467 "Chain and glue operands should occur at end of operand list!"); 468 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap, 469 IsDebug, IsClone, IsCloned); 470 } 471 } 472 473 Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx, 474 MVT VT, bool isDivergent, const DebugLoc &DL) { 475 const TargetRegisterClass *VRC = MRI->getRegClass(VReg); 476 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx); 477 478 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg 479 // within reason. 480 if (RC && RC != VRC) 481 RC = MRI->constrainRegClass(VReg, RC, MinRCSize); 482 483 // VReg has been adjusted. It can be used with SubIdx operands now. 484 if (RC) 485 return VReg; 486 487 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual 488 // register instead. 489 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx); 490 assert(RC && "No legal register class for VT supports that SubIdx"); 491 Register NewReg = MRI->createVirtualRegister(RC); 492 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg) 493 .addReg(VReg); 494 return NewReg; 495 } 496 497 /// EmitSubregNode - Generate machine code for subreg nodes. 498 /// 499 void InstrEmitter::EmitSubregNode(SDNode *Node, VRBaseMapType &VRBaseMap, 500 bool IsClone, bool IsCloned) { 501 Register VRBase; 502 unsigned Opc = Node->getMachineOpcode(); 503 504 // If the node is only used by a CopyToReg and the dest reg is a vreg, use 505 // the CopyToReg'd destination register instead of creating a new vreg. 506 for (SDNode *User : Node->users()) { 507 if (User->getOpcode() == ISD::CopyToReg && 508 User->getOperand(2).getNode() == Node) { 509 Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); 510 if (DestReg.isVirtual()) { 511 VRBase = DestReg; 512 break; 513 } 514 } 515 } 516 517 if (Opc == TargetOpcode::EXTRACT_SUBREG) { 518 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no 519 // constraints on the %dst register, COPY can target all legal register 520 // classes. 521 unsigned SubIdx = Node->getConstantOperandVal(1); 522 const TargetRegisterClass *TRC = 523 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent()); 524 525 Register Reg; 526 MachineInstr *DefMI; 527 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0)); 528 if (R && R->getReg().isPhysical()) { 529 Reg = R->getReg(); 530 DefMI = nullptr; 531 } else { 532 Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap); 533 DefMI = MRI->getVRegDef(Reg); 534 } 535 536 Register SrcReg, DstReg; 537 unsigned DefSubIdx; 538 if (DefMI && 539 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) && 540 SubIdx == DefSubIdx && 541 TRC == MRI->getRegClass(SrcReg)) { 542 // Optimize these: 543 // r1025 = s/zext r1024, 4 544 // r1026 = extract_subreg r1025, 4 545 // to a copy 546 // r1026 = copy r1024 547 VRBase = MRI->createVirtualRegister(TRC); 548 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 549 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg); 550 MRI->clearKillFlags(SrcReg); 551 } else { 552 // Reg may not support a SubIdx sub-register, and we may need to 553 // constrain its register class or issue a COPY to a compatible register 554 // class. 555 if (Reg.isVirtual()) 556 Reg = ConstrainForSubReg(Reg, SubIdx, 557 Node->getOperand(0).getSimpleValueType(), 558 Node->isDivergent(), Node->getDebugLoc()); 559 // Create the destreg if it is missing. 560 if (!VRBase) 561 VRBase = MRI->createVirtualRegister(TRC); 562 563 // Create the extract_subreg machine instruction. 564 MachineInstrBuilder CopyMI = 565 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 566 TII->get(TargetOpcode::COPY), VRBase); 567 if (Reg.isVirtual()) 568 CopyMI.addReg(Reg, 0, SubIdx); 569 else 570 CopyMI.addReg(TRI->getSubReg(Reg, SubIdx)); 571 } 572 } else if (Opc == TargetOpcode::INSERT_SUBREG || 573 Opc == TargetOpcode::SUBREG_TO_REG) { 574 SDValue N0 = Node->getOperand(0); 575 SDValue N1 = Node->getOperand(1); 576 SDValue N2 = Node->getOperand(2); 577 unsigned SubIdx = N2->getAsZExtVal(); 578 579 // Figure out the register class to create for the destreg. It should be 580 // the largest legal register class supporting SubIdx sub-registers. 581 // RegisterCoalescer will constrain it further if it decides to eliminate 582 // the INSERT_SUBREG instruction. 583 // 584 // %dst = INSERT_SUBREG %src, %sub, SubIdx 585 // 586 // is lowered by TwoAddressInstructionPass to: 587 // 588 // %dst = COPY %src 589 // %dst:SubIdx = COPY %sub 590 // 591 // There is no constraint on the %src register class. 592 // 593 const TargetRegisterClass *SRC = 594 TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent()); 595 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx); 596 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG"); 597 598 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase))) 599 VRBase = MRI->createVirtualRegister(SRC); 600 601 // Create the insert_subreg or subreg_to_reg machine instruction. 602 MachineInstrBuilder MIB = 603 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase); 604 605 // If creating a subreg_to_reg, then the first input operand 606 // is an implicit value immediate, otherwise it's a register 607 if (Opc == TargetOpcode::SUBREG_TO_REG) { 608 const ConstantSDNode *SD = cast<ConstantSDNode>(N0); 609 MIB.addImm(SD->getZExtValue()); 610 } else 611 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 612 IsClone, IsCloned); 613 // Add the subregister being inserted 614 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false, 615 IsClone, IsCloned); 616 MIB.addImm(SubIdx); 617 MBB->insert(InsertPos, MIB); 618 } else 619 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg"); 620 621 SDValue Op(Node, 0); 622 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second; 623 (void)isNew; // Silence compiler warning. 624 assert(isNew && "Node emitted out of order - early"); 625 } 626 627 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes. 628 /// COPY_TO_REGCLASS is just a normal copy, except that the destination 629 /// register is constrained to be in a particular register class. 630 /// 631 void 632 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node, 633 VRBaseMapType &VRBaseMap) { 634 Register VReg = getVR(Node->getOperand(0), VRBaseMap); 635 636 // Create the new VReg in the destination class and emit a copy. 637 unsigned DstRCIdx = Node->getConstantOperandVal(1); 638 const TargetRegisterClass *DstRC = 639 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx)); 640 Register NewVReg = MRI->createVirtualRegister(DstRC); 641 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 642 NewVReg).addReg(VReg); 643 644 SDValue Op(Node, 0); 645 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 646 (void)isNew; // Silence compiler warning. 647 assert(isNew && "Node emitted out of order - early"); 648 } 649 650 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes. 651 /// 652 void InstrEmitter::EmitRegSequence(SDNode *Node, VRBaseMapType &VRBaseMap, 653 bool IsClone, bool IsCloned) { 654 unsigned DstRCIdx = Node->getConstantOperandVal(0); 655 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx); 656 Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC)); 657 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE); 658 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg); 659 unsigned NumOps = Node->getNumOperands(); 660 // If the input pattern has a chain, then the root of the corresponding 661 // output pattern will get a chain as well. This can happen to be a 662 // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults). 663 if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other) 664 --NumOps; // Ignore chain if it exists. 665 666 assert((NumOps & 1) == 1 && 667 "REG_SEQUENCE must have an odd number of operands!"); 668 for (unsigned i = 1; i != NumOps; ++i) { 669 SDValue Op = Node->getOperand(i); 670 if ((i & 1) == 0) { 671 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1)); 672 // Skip physical registers as they don't have a vreg to get and we'll 673 // insert copies for them in TwoAddressInstructionPass anyway. 674 if (!R || !R->getReg().isPhysical()) { 675 unsigned SubIdx = Op->getAsZExtVal(); 676 Register SubReg = getVR(Node->getOperand(i - 1), VRBaseMap); 677 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg); 678 const TargetRegisterClass *SRC = 679 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx); 680 if (SRC && SRC != RC) { 681 MRI->setRegClass(NewVReg, SRC); 682 RC = SRC; 683 } 684 } 685 } 686 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false, 687 IsClone, IsCloned); 688 } 689 690 MBB->insert(InsertPos, MIB); 691 SDValue Op(Node, 0); 692 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second; 693 (void)isNew; // Silence compiler warning. 694 assert(isNew && "Node emitted out of order - early"); 695 } 696 697 /// EmitDbgValue - Generate machine instruction for a dbg_value node. 698 /// 699 MachineInstr * 700 InstrEmitter::EmitDbgValue(SDDbgValue *SD, 701 VRBaseMapType &VRBaseMap) { 702 DebugLoc DL = SD->getDebugLoc(); 703 assert(cast<DILocalVariable>(SD->getVariable()) 704 ->isValidLocationForIntrinsic(DL) && 705 "Expected inlined-at fields to agree"); 706 707 SD->setIsEmitted(); 708 709 assert(!SD->getLocationOps().empty() && 710 "dbg_value with no location operands?"); 711 712 if (SD->isInvalidated()) 713 return EmitDbgNoLocation(SD); 714 715 // Attempt to produce a DBG_INSTR_REF if we've been asked to. 716 if (EmitDebugInstrRefs) 717 if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap)) 718 return InstrRef; 719 720 // Emit variadic dbg_value nodes as DBG_VALUE_LIST if they have not been 721 // emitted as instruction references. 722 if (SD->isVariadic()) 723 return EmitDbgValueList(SD, VRBaseMap); 724 725 // Emit single-location dbg_value nodes as DBG_VALUE if they have not been 726 // emitted as instruction references. 727 return EmitDbgValueFromSingleOp(SD, VRBaseMap); 728 } 729 730 MachineOperand GetMOForConstDbgOp(const SDDbgOperand &Op) { 731 const Value *V = Op.getConst(); 732 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 733 if (CI->getBitWidth() > 64) 734 return MachineOperand::CreateCImm(CI); 735 return MachineOperand::CreateImm(CI->getSExtValue()); 736 } 737 if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) 738 return MachineOperand::CreateFPImm(CF); 739 // Note: This assumes that all nullptr constants are zero-valued. 740 if (isa<ConstantPointerNull>(V)) 741 return MachineOperand::CreateImm(0); 742 // Undef or unhandled value type, so return an undef operand. 743 return MachineOperand::CreateReg( 744 /* Reg */ 0U, /* isDef */ false, /* isImp */ false, 745 /* isKill */ false, /* isDead */ false, 746 /* isUndef */ false, /* isEarlyClobber */ false, 747 /* SubReg */ 0, /* isDebug */ true); 748 } 749 750 void InstrEmitter::AddDbgValueLocationOps( 751 MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc, 752 ArrayRef<SDDbgOperand> LocationOps, 753 VRBaseMapType &VRBaseMap) { 754 for (const SDDbgOperand &Op : LocationOps) { 755 switch (Op.getKind()) { 756 case SDDbgOperand::FRAMEIX: 757 MIB.addFrameIndex(Op.getFrameIx()); 758 break; 759 case SDDbgOperand::VREG: 760 MIB.addReg(Op.getVReg()); 761 break; 762 case SDDbgOperand::SDNODE: { 763 SDValue V = SDValue(Op.getSDNode(), Op.getResNo()); 764 // It's possible we replaced this SDNode with other(s) and therefore 765 // didn't generate code for it. It's better to catch these cases where 766 // they happen and transfer the debug info, but trying to guarantee that 767 // in all cases would be very fragile; this is a safeguard for any 768 // that were missed. 769 if (VRBaseMap.count(V) == 0) 770 MIB.addReg(0U); // undef 771 else 772 AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap, 773 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false); 774 } break; 775 case SDDbgOperand::CONST: 776 MIB.add(GetMOForConstDbgOp(Op)); 777 break; 778 } 779 } 780 } 781 782 MachineInstr * 783 InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD, 784 VRBaseMapType &VRBaseMap) { 785 MDNode *Var = SD->getVariable(); 786 const DIExpression *Expr = (DIExpression *)SD->getExpression(); 787 DebugLoc DL = SD->getDebugLoc(); 788 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF); 789 790 // Returns true if the given operand is not a legal debug operand for a 791 // DBG_INSTR_REF. 792 auto IsInvalidOp = [](SDDbgOperand DbgOp) { 793 return DbgOp.getKind() == SDDbgOperand::FRAMEIX; 794 }; 795 // Returns true if the given operand is not itself an instruction reference 796 // but is a legal debug operand for a DBG_INSTR_REF. 797 auto IsNonInstrRefOp = [](SDDbgOperand DbgOp) { 798 return DbgOp.getKind() == SDDbgOperand::CONST; 799 }; 800 801 // If this variable location does not depend on any instructions or contains 802 // any stack locations, produce it as a standard debug value instead. 803 if (any_of(SD->getLocationOps(), IsInvalidOp) || 804 all_of(SD->getLocationOps(), IsNonInstrRefOp)) { 805 if (SD->isVariadic()) 806 return EmitDbgValueList(SD, VRBaseMap); 807 return EmitDbgValueFromSingleOp(SD, VRBaseMap); 808 } 809 810 // Immediately fold any indirectness from the LLVM-IR intrinsic into the 811 // expression: 812 if (SD->isIndirect()) 813 Expr = DIExpression::append(Expr, dwarf::DW_OP_deref); 814 // If this is not already a variadic expression, it must be modified to become 815 // one. 816 if (!SD->isVariadic()) 817 Expr = DIExpression::convertToVariadicExpression(Expr); 818 819 SmallVector<MachineOperand> MOs; 820 821 // It may not be immediately possible to identify the MachineInstr that 822 // defines a VReg, it can depend for example on the order blocks are 823 // emitted in. When this happens, or when further analysis is needed later, 824 // produce an instruction like this: 825 // 826 // DBG_INSTR_REF !123, !456, %0:gr64 827 // 828 // i.e., point the instruction at the vreg, and patch it up later in 829 // MachineFunction::finalizeDebugInstrRefs. 830 auto AddVRegOp = [&](unsigned VReg) { 831 MOs.push_back(MachineOperand::CreateReg( 832 /* Reg */ VReg, /* isDef */ false, /* isImp */ false, 833 /* isKill */ false, /* isDead */ false, 834 /* isUndef */ false, /* isEarlyClobber */ false, 835 /* SubReg */ 0, /* isDebug */ true)); 836 }; 837 unsigned OpCount = SD->getLocationOps().size(); 838 for (unsigned OpIdx = 0; OpIdx < OpCount; ++OpIdx) { 839 SDDbgOperand DbgOperand = SD->getLocationOps()[OpIdx]; 840 841 // Try to find both the defined register and the instruction defining it. 842 MachineInstr *DefMI = nullptr; 843 unsigned VReg; 844 845 if (DbgOperand.getKind() == SDDbgOperand::VREG) { 846 VReg = DbgOperand.getVReg(); 847 848 // No definition means that block hasn't been emitted yet. Leave a vreg 849 // reference to be fixed later. 850 if (!MRI->hasOneDef(VReg)) { 851 AddVRegOp(VReg); 852 continue; 853 } 854 855 DefMI = &*MRI->def_instr_begin(VReg); 856 } else if (DbgOperand.getKind() == SDDbgOperand::SDNODE) { 857 // Look up the corresponding VReg for the given SDNode, if any. 858 SDNode *Node = DbgOperand.getSDNode(); 859 SDValue Op = SDValue(Node, DbgOperand.getResNo()); 860 VRBaseMapType::iterator I = VRBaseMap.find(Op); 861 // No VReg -> produce a DBG_VALUE $noreg instead. 862 if (I == VRBaseMap.end()) 863 break; 864 865 // Try to pick out a defining instruction at this point. 866 VReg = getVR(Op, VRBaseMap); 867 868 // Again, if there's no instruction defining the VReg right now, fix it up 869 // later. 870 if (!MRI->hasOneDef(VReg)) { 871 AddVRegOp(VReg); 872 continue; 873 } 874 875 DefMI = &*MRI->def_instr_begin(VReg); 876 } else { 877 assert(DbgOperand.getKind() == SDDbgOperand::CONST); 878 MOs.push_back(GetMOForConstDbgOp(DbgOperand)); 879 continue; 880 } 881 882 // Avoid copy like instructions: they don't define values, only move them. 883 // Leave a virtual-register reference until it can be fixed up later, to 884 // find the underlying value definition. 885 if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI)) { 886 AddVRegOp(VReg); 887 continue; 888 } 889 890 // Find the operand number which defines the specified VReg. 891 unsigned OperandIdx = 0; 892 for (const auto &MO : DefMI->operands()) { 893 if (MO.isReg() && MO.isDef() && MO.getReg() == VReg) 894 break; 895 ++OperandIdx; 896 } 897 assert(OperandIdx < DefMI->getNumOperands()); 898 899 // Make the DBG_INSTR_REF refer to that instruction, and that operand. 900 unsigned InstrNum = DefMI->getDebugInstrNum(); 901 MOs.push_back(MachineOperand::CreateDbgInstrRef(InstrNum, OperandIdx)); 902 } 903 904 // If we haven't created a valid MachineOperand for every DbgOp, abort and 905 // produce an undef DBG_VALUE. 906 if (MOs.size() != OpCount) 907 return EmitDbgNoLocation(SD); 908 909 return BuildMI(*MF, DL, RefII, false, MOs, Var, Expr); 910 } 911 912 MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) { 913 // An invalidated SDNode must generate an undef DBG_VALUE: although the 914 // original value is no longer computed, earlier DBG_VALUEs live ranges 915 // must not leak into later code. 916 DIVariable *Var = SD->getVariable(); 917 const DIExpression *Expr = 918 DIExpression::convertToUndefExpression(SD->getExpression()); 919 DebugLoc DL = SD->getDebugLoc(); 920 const MCInstrDesc &Desc = TII->get(TargetOpcode::DBG_VALUE); 921 return BuildMI(*MF, DL, Desc, false, 0U, Var, Expr); 922 } 923 924 MachineInstr * 925 InstrEmitter::EmitDbgValueList(SDDbgValue *SD, 926 VRBaseMapType &VRBaseMap) { 927 MDNode *Var = SD->getVariable(); 928 DIExpression *Expr = SD->getExpression(); 929 DebugLoc DL = SD->getDebugLoc(); 930 // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)* 931 const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST); 932 // Build the DBG_VALUE_LIST instruction base. 933 auto MIB = BuildMI(*MF, DL, DbgValDesc); 934 MIB.addMetadata(Var); 935 MIB.addMetadata(Expr); 936 AddDbgValueLocationOps(MIB, DbgValDesc, SD->getLocationOps(), VRBaseMap); 937 return &*MIB; 938 } 939 940 MachineInstr * 941 InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD, 942 VRBaseMapType &VRBaseMap) { 943 MDNode *Var = SD->getVariable(); 944 DIExpression *Expr = SD->getExpression(); 945 DebugLoc DL = SD->getDebugLoc(); 946 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE); 947 948 assert(SD->getLocationOps().size() == 1 && 949 "Non variadic dbg_value should have only one location op"); 950 951 // See about constant-folding the expression. 952 // Copy the location operand in case we replace it. 953 SmallVector<SDDbgOperand, 1> LocationOps(1, SD->getLocationOps()[0]); 954 if (Expr && LocationOps[0].getKind() == SDDbgOperand::CONST) { 955 const Value *V = LocationOps[0].getConst(); 956 if (auto *C = dyn_cast<ConstantInt>(V)) { 957 std::tie(Expr, C) = Expr->constantFold(C); 958 LocationOps[0] = SDDbgOperand::fromConst(C); 959 } 960 } 961 962 // Emit non-variadic dbg_value nodes as DBG_VALUE. 963 // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr 964 auto MIB = BuildMI(*MF, DL, II); 965 AddDbgValueLocationOps(MIB, II, LocationOps, VRBaseMap); 966 967 if (SD->isIndirect()) 968 MIB.addImm(0U); 969 else 970 MIB.addReg(0U); 971 972 return MIB.addMetadata(Var).addMetadata(Expr); 973 } 974 975 MachineInstr * 976 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) { 977 MDNode *Label = SD->getLabel(); 978 DebugLoc DL = SD->getDebugLoc(); 979 assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) && 980 "Expected inlined-at fields to agree"); 981 982 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL); 983 MachineInstrBuilder MIB = BuildMI(*MF, DL, II); 984 MIB.addMetadata(Label); 985 986 return &*MIB; 987 } 988 989 /// EmitMachineNode - Generate machine code for a target-specific node and 990 /// needed dependencies. 991 /// 992 void InstrEmitter:: 993 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned, 994 VRBaseMapType &VRBaseMap) { 995 unsigned Opc = Node->getMachineOpcode(); 996 997 // Handle subreg insert/extract specially 998 if (Opc == TargetOpcode::EXTRACT_SUBREG || 999 Opc == TargetOpcode::INSERT_SUBREG || 1000 Opc == TargetOpcode::SUBREG_TO_REG) { 1001 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned); 1002 return; 1003 } 1004 1005 // Handle COPY_TO_REGCLASS specially. 1006 if (Opc == TargetOpcode::COPY_TO_REGCLASS) { 1007 EmitCopyToRegClassNode(Node, VRBaseMap); 1008 return; 1009 } 1010 1011 // Handle REG_SEQUENCE specially. 1012 if (Opc == TargetOpcode::REG_SEQUENCE) { 1013 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned); 1014 return; 1015 } 1016 1017 if (Opc == TargetOpcode::IMPLICIT_DEF) 1018 // We want a unique VR for each IMPLICIT_DEF use. 1019 return; 1020 1021 const MCInstrDesc &II = TII->get(Opc); 1022 unsigned NumResults = CountResults(Node); 1023 unsigned NumDefs = II.getNumDefs(); 1024 const MCPhysReg *ScratchRegs = nullptr; 1025 1026 // Handle STACKMAP and PATCHPOINT specially and then use the generic code. 1027 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) { 1028 // Stackmaps do not have arguments and do not preserve their calling 1029 // convention. However, to simplify runtime support, they clobber the same 1030 // scratch registers as AnyRegCC. 1031 unsigned CC = CallingConv::AnyReg; 1032 if (Opc == TargetOpcode::PATCHPOINT) { 1033 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos); 1034 NumDefs = NumResults; 1035 } 1036 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC); 1037 } else if (Opc == TargetOpcode::STATEPOINT) { 1038 NumDefs = NumResults; 1039 } 1040 1041 unsigned NumImpUses = 0; 1042 unsigned NodeOperands = 1043 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses); 1044 bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() && 1045 II.isVariadic() && II.variadicOpsAreDefs(); 1046 bool HasPhysRegOuts = NumResults > NumDefs && !II.implicit_defs().empty() && 1047 !HasVRegVariadicDefs; 1048 #ifndef NDEBUG 1049 unsigned NumMIOperands = NodeOperands + NumResults; 1050 if (II.isVariadic()) 1051 assert(NumMIOperands >= II.getNumOperands() && 1052 "Too few operands for a variadic node!"); 1053 else 1054 assert(NumMIOperands >= II.getNumOperands() && 1055 NumMIOperands <= 1056 II.getNumOperands() + II.implicit_defs().size() + NumImpUses && 1057 "#operands for dag node doesn't match .td file!"); 1058 #endif 1059 1060 // Create the new machine instruction. 1061 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II); 1062 1063 // Transfer IR flags from the SDNode to the MachineInstr 1064 MachineInstr *MI = MIB.getInstr(); 1065 const SDNodeFlags Flags = Node->getFlags(); 1066 if (Flags.hasUnpredictable()) 1067 MI->setFlag(MachineInstr::MIFlag::Unpredictable); 1068 1069 // Add result register values for things that are defined by this 1070 // instruction. 1071 if (NumResults) { 1072 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap); 1073 1074 if (Flags.hasNoSignedZeros()) 1075 MI->setFlag(MachineInstr::MIFlag::FmNsz); 1076 1077 if (Flags.hasAllowReciprocal()) 1078 MI->setFlag(MachineInstr::MIFlag::FmArcp); 1079 1080 if (Flags.hasNoNaNs()) 1081 MI->setFlag(MachineInstr::MIFlag::FmNoNans); 1082 1083 if (Flags.hasNoInfs()) 1084 MI->setFlag(MachineInstr::MIFlag::FmNoInfs); 1085 1086 if (Flags.hasAllowContract()) 1087 MI->setFlag(MachineInstr::MIFlag::FmContract); 1088 1089 if (Flags.hasApproximateFuncs()) 1090 MI->setFlag(MachineInstr::MIFlag::FmAfn); 1091 1092 if (Flags.hasAllowReassociation()) 1093 MI->setFlag(MachineInstr::MIFlag::FmReassoc); 1094 1095 if (Flags.hasNoUnsignedWrap()) 1096 MI->setFlag(MachineInstr::MIFlag::NoUWrap); 1097 1098 if (Flags.hasNoSignedWrap()) 1099 MI->setFlag(MachineInstr::MIFlag::NoSWrap); 1100 1101 if (Flags.hasExact()) 1102 MI->setFlag(MachineInstr::MIFlag::IsExact); 1103 1104 if (Flags.hasNoFPExcept()) 1105 MI->setFlag(MachineInstr::MIFlag::NoFPExcept); 1106 1107 if (Flags.hasDisjoint()) 1108 MI->setFlag(MachineInstr::MIFlag::Disjoint); 1109 1110 if (Flags.hasSameSign()) 1111 MI->setFlag(MachineInstr::MIFlag::SameSign); 1112 } 1113 1114 // Emit all of the actual operands of this instruction, adding them to the 1115 // instruction as appropriate. 1116 bool HasOptPRefs = NumDefs > NumResults; 1117 assert((!HasOptPRefs || !HasPhysRegOuts) && 1118 "Unable to cope with optional defs and phys regs defs!"); 1119 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0; 1120 for (unsigned i = NumSkip; i != NodeOperands; ++i) 1121 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II, 1122 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned); 1123 1124 // Add scratch registers as implicit def and early clobber 1125 if (ScratchRegs) 1126 for (unsigned i = 0; ScratchRegs[i]; ++i) 1127 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine | 1128 RegState::EarlyClobber); 1129 1130 // Set the memory reference descriptions of this instruction now that it is 1131 // part of the function. 1132 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands()); 1133 1134 // Set the CFI type. 1135 MIB->setCFIType(*MF, Node->getCFIType()); 1136 1137 // Insert the instruction into position in the block. This needs to 1138 // happen before any custom inserter hook is called so that the 1139 // hook knows where in the block to insert the replacement code. 1140 MBB->insert(InsertPos, MIB); 1141 1142 // The MachineInstr may also define physregs instead of virtregs. These 1143 // physreg values can reach other instructions in different ways: 1144 // 1145 // 1. When there is a use of a Node value beyond the explicitly defined 1146 // virtual registers, we emit a CopyFromReg for one of the implicitly 1147 // defined physregs. This only happens when HasPhysRegOuts is true. 1148 // 1149 // 2. A CopyFromReg reading a physreg may be glued to this instruction. 1150 // 1151 // 3. A glued instruction may implicitly use a physreg. 1152 // 1153 // 4. A glued instruction may use a RegisterSDNode operand. 1154 // 1155 // Collect all the used physreg defs, and make sure that any unused physreg 1156 // defs are marked as dead. 1157 SmallVector<Register, 8> UsedRegs; 1158 1159 // Additional results must be physical register defs. 1160 if (HasPhysRegOuts) { 1161 for (unsigned i = NumDefs; i < NumResults; ++i) { 1162 Register Reg = II.implicit_defs()[i - NumDefs]; 1163 if (!Node->hasAnyUseOfValue(i)) 1164 continue; 1165 // This implicitly defined physreg has a use. 1166 UsedRegs.push_back(Reg); 1167 EmitCopyFromReg(Node, i, IsClone, Reg, VRBaseMap); 1168 } 1169 } 1170 1171 // Scan the glue chain for any used physregs. 1172 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) { 1173 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) { 1174 if (F->getOpcode() == ISD::CopyFromReg) { 1175 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg()); 1176 continue; 1177 } else if (F->getOpcode() == ISD::CopyToReg) { 1178 // Skip CopyToReg nodes that are internal to the glue chain. 1179 continue; 1180 } 1181 // Collect declared implicit uses. 1182 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode()); 1183 append_range(UsedRegs, MCID.implicit_uses()); 1184 // In addition to declared implicit uses, we must also check for 1185 // direct RegisterSDNode operands. 1186 for (const SDValue &Op : F->op_values()) 1187 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) { 1188 Register Reg = R->getReg(); 1189 if (Reg.isPhysical()) 1190 UsedRegs.push_back(Reg); 1191 } 1192 } 1193 } 1194 1195 // Add rounding control registers as implicit def for function call. 1196 if (II.isCall() && MF->getFunction().hasFnAttribute(Attribute::StrictFP)) { 1197 ArrayRef<MCPhysReg> RCRegs = TLI->getRoundingControlRegisters(); 1198 for (MCPhysReg Reg : RCRegs) 1199 UsedRegs.push_back(Reg); 1200 } 1201 1202 // Finally mark unused registers as dead. 1203 if (!UsedRegs.empty() || !II.implicit_defs().empty() || II.hasOptionalDef()) 1204 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI); 1205 1206 // STATEPOINT is too 'dynamic' to have meaningful machine description. 1207 // We have to manually tie operands. 1208 if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) { 1209 assert(!HasPhysRegOuts && "STATEPOINT mishandled"); 1210 MachineInstr *MI = MIB; 1211 unsigned Def = 0; 1212 int First = StatepointOpers(MI).getFirstGCPtrIdx(); 1213 assert(First > 0 && "Statepoint has Defs but no GC ptr list"); 1214 unsigned Use = (unsigned)First; 1215 while (Def < NumDefs) { 1216 if (MI->getOperand(Use).isReg()) 1217 MI->tieOperands(Def++, Use); 1218 Use = StackMaps::getNextMetaArgIdx(MI, Use); 1219 } 1220 } 1221 1222 if (SDNode *GluedNode = Node->getGluedNode()) { 1223 // FIXME: Possibly iterate over multiple glue nodes? 1224 if (GluedNode->getOpcode() == 1225 ~(unsigned)TargetOpcode::CONVERGENCECTRL_GLUE) { 1226 Register VReg = getVR(GluedNode->getOperand(0), VRBaseMap); 1227 MachineOperand MO = MachineOperand::CreateReg(VReg, /*isDef=*/false, 1228 /*isImp=*/true); 1229 MIB->addOperand(MO); 1230 } 1231 } 1232 1233 // Run post-isel target hook to adjust this instruction if needed. 1234 if (II.hasPostISelHook()) 1235 TLI->AdjustInstrPostInstrSelection(*MIB, Node); 1236 } 1237 1238 /// EmitSpecialNode - Generate machine code for a target-independent node and 1239 /// needed dependencies. 1240 void InstrEmitter:: 1241 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned, 1242 VRBaseMapType &VRBaseMap) { 1243 switch (Node->getOpcode()) { 1244 default: 1245 #ifndef NDEBUG 1246 Node->dump(); 1247 #endif 1248 llvm_unreachable("This target-independent node should have been selected!"); 1249 case ISD::EntryToken: 1250 case ISD::MERGE_VALUES: 1251 case ISD::TokenFactor: // fall thru 1252 break; 1253 case ISD::CopyToReg: { 1254 Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 1255 SDValue SrcVal = Node->getOperand(2); 1256 if (DestReg.isVirtual() && SrcVal.isMachineOpcode() && 1257 SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 1258 // Instead building a COPY to that vreg destination, build an 1259 // IMPLICIT_DEF instruction instead. 1260 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 1261 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 1262 break; 1263 } 1264 Register SrcReg; 1265 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal)) 1266 SrcReg = R->getReg(); 1267 else 1268 SrcReg = getVR(SrcVal, VRBaseMap); 1269 1270 if (SrcReg == DestReg) // Coalesced away the copy? Ignore. 1271 break; 1272 1273 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY), 1274 DestReg).addReg(SrcReg); 1275 break; 1276 } 1277 case ISD::CopyFromReg: { 1278 Register SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg(); 1279 EmitCopyFromReg(Node, 0, IsClone, SrcReg, VRBaseMap); 1280 break; 1281 } 1282 case ISD::EH_LABEL: 1283 case ISD::ANNOTATION_LABEL: { 1284 unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL) 1285 ? TargetOpcode::EH_LABEL 1286 : TargetOpcode::ANNOTATION_LABEL; 1287 MCSymbol *S = cast<LabelSDNode>(Node)->getLabel(); 1288 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), 1289 TII->get(Opc)).addSym(S); 1290 break; 1291 } 1292 1293 case ISD::LIFETIME_START: 1294 case ISD::LIFETIME_END: { 1295 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) 1296 ? TargetOpcode::LIFETIME_START 1297 : TargetOpcode::LIFETIME_END; 1298 auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1)); 1299 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) 1300 .addFrameIndex(FI->getIndex()); 1301 break; 1302 } 1303 1304 case ISD::PSEUDO_PROBE: { 1305 unsigned TarOp = TargetOpcode::PSEUDO_PROBE; 1306 auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid(); 1307 auto Index = cast<PseudoProbeSDNode>(Node)->getIndex(); 1308 auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes(); 1309 1310 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp)) 1311 .addImm(Guid) 1312 .addImm(Index) 1313 .addImm((uint8_t)PseudoProbeType::Block) 1314 .addImm(Attr); 1315 break; 1316 } 1317 1318 case ISD::INLINEASM: 1319 case ISD::INLINEASM_BR: { 1320 unsigned NumOps = Node->getNumOperands(); 1321 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 1322 --NumOps; // Ignore the glue operand. 1323 1324 // Create the inline asm machine instruction. 1325 unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR 1326 ? TargetOpcode::INLINEASM_BR 1327 : TargetOpcode::INLINEASM; 1328 MachineInstrBuilder MIB = 1329 BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc)); 1330 1331 // Add the asm string as an external symbol operand. 1332 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString); 1333 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol(); 1334 MIB.addExternalSymbol(AsmStr); 1335 1336 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore 1337 // bits. 1338 int64_t ExtraInfo = 1339 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))-> 1340 getZExtValue(); 1341 MIB.addImm(ExtraInfo); 1342 1343 // Remember to operand index of the group flags. 1344 SmallVector<unsigned, 8> GroupIdx; 1345 1346 // Remember registers that are part of early-clobber defs. 1347 SmallVector<Register, 8> ECRegs; 1348 1349 // Add all of the operand registers to the instruction. 1350 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 1351 unsigned Flags = Node->getConstantOperandVal(i); 1352 const InlineAsm::Flag F(Flags); 1353 const unsigned NumVals = F.getNumOperandRegisters(); 1354 1355 GroupIdx.push_back(MIB->getNumOperands()); 1356 MIB.addImm(Flags); 1357 ++i; // Skip the ID value. 1358 1359 switch (F.getKind()) { 1360 case InlineAsm::Kind::RegDef: 1361 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1362 Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1363 // FIXME: Add dead flags for physical and virtual registers defined. 1364 // For now, mark physical register defs as implicit to help fast 1365 // regalloc. This makes inline asm look a lot like calls. 1366 MIB.addReg(Reg, RegState::Define | getImplRegState(Reg.isPhysical())); 1367 } 1368 break; 1369 case InlineAsm::Kind::RegDefEarlyClobber: 1370 case InlineAsm::Kind::Clobber: 1371 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1372 Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 1373 MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber | 1374 getImplRegState(Reg.isPhysical())); 1375 ECRegs.push_back(Reg); 1376 } 1377 break; 1378 case InlineAsm::Kind::RegUse: // Use of register. 1379 case InlineAsm::Kind::Imm: // Immediate. 1380 case InlineAsm::Kind::Mem: // Non-function addressing mode. 1381 // The addressing mode has been selected, just add all of the 1382 // operands to the machine instruction. 1383 for (unsigned j = 0; j != NumVals; ++j, ++i) 1384 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap, 1385 /*IsDebug=*/false, IsClone, IsCloned); 1386 1387 // Manually set isTied bits. 1388 if (F.isRegUseKind()) { 1389 unsigned DefGroup; 1390 if (F.isUseOperandTiedToDef(DefGroup)) { 1391 unsigned DefIdx = GroupIdx[DefGroup] + 1; 1392 unsigned UseIdx = GroupIdx.back() + 1; 1393 for (unsigned j = 0; j != NumVals; ++j) 1394 MIB->tieOperands(DefIdx + j, UseIdx + j); 1395 } 1396 } 1397 break; 1398 case InlineAsm::Kind::Func: // Function addressing mode. 1399 for (unsigned j = 0; j != NumVals; ++j, ++i) { 1400 SDValue Op = Node->getOperand(i); 1401 AddOperand(MIB, Op, 0, nullptr, VRBaseMap, 1402 /*IsDebug=*/false, IsClone, IsCloned); 1403 1404 // Adjust Target Flags for function reference. 1405 if (auto *TGA = dyn_cast<GlobalAddressSDNode>(Op)) { 1406 unsigned NewFlags = 1407 MF->getSubtarget().classifyGlobalFunctionReference( 1408 TGA->getGlobal()); 1409 unsigned LastIdx = MIB.getInstr()->getNumOperands() - 1; 1410 MIB.getInstr()->getOperand(LastIdx).setTargetFlags(NewFlags); 1411 } 1412 } 1413 } 1414 } 1415 1416 // Add rounding control registers as implicit def for inline asm. 1417 if (MF->getFunction().hasFnAttribute(Attribute::StrictFP)) { 1418 ArrayRef<MCPhysReg> RCRegs = TLI->getRoundingControlRegisters(); 1419 for (MCPhysReg Reg : RCRegs) 1420 MIB.addReg(Reg, RegState::ImplicitDefine); 1421 } 1422 1423 // GCC inline assembly allows input operands to also be early-clobber 1424 // output operands (so long as the operand is written only after it's 1425 // used), but this does not match the semantics of our early-clobber flag. 1426 // If an early-clobber operand register is also an input operand register, 1427 // then remove the early-clobber flag. 1428 for (Register Reg : ECRegs) { 1429 if (MIB->readsRegister(Reg, TRI)) { 1430 MachineOperand *MO = 1431 MIB->findRegisterDefOperand(Reg, TRI, false, false); 1432 assert(MO && "No def operand for clobbered register?"); 1433 MO->setIsEarlyClobber(false); 1434 } 1435 } 1436 1437 // Get the mdnode from the asm if it exists and add it to the instruction. 1438 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode); 1439 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD(); 1440 if (MD) 1441 MIB.addMetadata(MD); 1442 1443 MBB->insert(InsertPos, MIB); 1444 break; 1445 } 1446 } 1447 } 1448 1449 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting 1450 /// at the given position in the given block. 1451 InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb, 1452 MachineBasicBlock::iterator insertpos) 1453 : MF(mbb->getParent()), MRI(&MF->getRegInfo()), 1454 TII(MF->getSubtarget().getInstrInfo()), 1455 TRI(MF->getSubtarget().getRegisterInfo()), 1456 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb), 1457 InsertPos(insertpos) { 1458 EmitDebugInstrRefs = mbb->getParent()->useDebugInstrRef(); 1459 } 1460