xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp (revision 6292a808b3524d9ba6f4ce55bc5b9e547b088dd8)
1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/Analysis/UniformityAnalysis.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/WasmEHFuncInfo.h"
28 #include "llvm/CodeGen/WinEHFuncInfo.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "function-lowering-info"
42 
43 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
44 /// PHI nodes or outside of the basic block that defines it, or used by a
45 /// switch or atomic instruction, which may expand to multiple basic blocks.
46 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
47   if (I->use_empty()) return false;
48   if (isa<PHINode>(I)) return true;
49   const BasicBlock *BB = I->getParent();
50   for (const User *U : I->users())
51     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
52       return true;
53 
54   return false;
55 }
56 
57 static ISD::NodeType getPreferredExtendForValue(const Instruction *I) {
58   // For the users of the source value being used for compare instruction, if
59   // the number of signed predicate is greater than unsigned predicate, we
60   // prefer to use SIGN_EXTEND.
61   //
62   // With this optimization, we would be able to reduce some redundant sign or
63   // zero extension instruction, and eventually more machine CSE opportunities
64   // can be exposed.
65   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
66   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
67   for (const Use &U : I->uses()) {
68     if (const auto *CI = dyn_cast<CmpInst>(U.getUser())) {
69       NumOfSigned += CI->isSigned();
70       NumOfUnsigned += CI->isUnsigned();
71     }
72     if (const auto *CallI = dyn_cast<CallBase>(U.getUser())) {
73       if (!CallI->isArgOperand(&U))
74         continue;
75       unsigned ArgNo = CallI->getArgOperandNo(&U);
76       NumOfUnsigned += CallI->paramHasAttr(ArgNo, Attribute::ZExt);
77       NumOfSigned += CallI->paramHasAttr(ArgNo, Attribute::SExt);
78     }
79   }
80   if (NumOfSigned > NumOfUnsigned)
81     ExtendKind = ISD::SIGN_EXTEND;
82 
83   return ExtendKind;
84 }
85 
86 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
87                                SelectionDAG *DAG) {
88   Fn = &fn;
89   MF = &mf;
90   TLI = MF->getSubtarget().getTargetLowering();
91   RegInfo = &MF->getRegInfo();
92   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
93   UA = DAG->getUniformityInfo();
94 
95   // Check whether the function can return without sret-demotion.
96   SmallVector<ISD::OutputArg, 4> Outs;
97   CallingConv::ID CC = Fn->getCallingConv();
98 
99   GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
100                 mf.getDataLayout());
101   CanLowerReturn =
102       TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext(), Fn->getReturnType());
103 
104   // If this personality uses funclets, we need to do a bit more work.
105   DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
106   EHPersonality Personality = classifyEHPersonality(
107       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
108   if (isFuncletEHPersonality(Personality)) {
109     // Calculate state numbers if we haven't already.
110     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
111     if (Personality == EHPersonality::MSVC_CXX)
112       calculateWinCXXEHStateNumbers(&fn, EHInfo);
113     else if (isAsynchronousEHPersonality(Personality))
114       calculateSEHStateNumbers(&fn, EHInfo);
115     else if (Personality == EHPersonality::CoreCLR)
116       calculateClrEHStateNumbers(&fn, EHInfo);
117 
118     // Map all BB references in the WinEH data to MBBs.
119     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
120       for (WinEHHandlerType &H : TBME.HandlerArray) {
121         if (const AllocaInst *AI = H.CatchObj.Alloca)
122           CatchObjects[AI].push_back(&H.CatchObj.FrameIndex);
123         else
124           H.CatchObj.FrameIndex = INT_MAX;
125       }
126     }
127   }
128 
129   // Initialize the mapping of values to registers.  This is only set up for
130   // instruction values that are used outside of the block that defines
131   // them.
132   const Align StackAlign = TFI->getStackAlign();
133   for (const BasicBlock &BB : *Fn) {
134     for (const Instruction &I : BB) {
135       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
136         Type *Ty = AI->getAllocatedType();
137         Align Alignment = AI->getAlign();
138 
139         // Static allocas can be folded into the initial stack frame
140         // adjustment. For targets that don't realign the stack, don't
141         // do this if there is an extra alignment requirement.
142         if (AI->isStaticAlloca() &&
143             (TFI->isStackRealignable() || (Alignment <= StackAlign))) {
144           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
145           uint64_t TySize =
146               MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinValue();
147 
148           TySize *= CUI->getZExtValue();   // Get total allocated size.
149           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
150           int FrameIndex = INT_MAX;
151           auto Iter = CatchObjects.find(AI);
152           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
153             FrameIndex = MF->getFrameInfo().CreateFixedObject(
154                 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
155             MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
156           } else {
157             FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
158                                                               false, AI);
159           }
160 
161           // Scalable vectors and structures that contain scalable vectors may
162           // need a special StackID to distinguish them from other (fixed size)
163           // stack objects.
164           if (Ty->isScalableTy())
165             MF->getFrameInfo().setStackID(FrameIndex,
166                                           TFI->getStackIDForScalableVectors());
167 
168           StaticAllocaMap[AI] = FrameIndex;
169           // Update the catch handler information.
170           if (Iter != CatchObjects.end()) {
171             for (int *CatchObjPtr : Iter->second)
172               *CatchObjPtr = FrameIndex;
173           }
174         } else {
175           // FIXME: Overaligned static allocas should be grouped into
176           // a single dynamic allocation instead of using a separate
177           // stack allocation for each one.
178           // Inform the Frame Information that we have variable-sized objects.
179           MF->getFrameInfo().CreateVariableSizedObject(
180               Alignment <= StackAlign ? Align(1) : Alignment, AI);
181         }
182       } else if (auto *Call = dyn_cast<CallBase>(&I)) {
183         // Look for inline asm that clobbers the SP register.
184         if (Call->isInlineAsm()) {
185           Register SP = TLI->getStackPointerRegisterToSaveRestore();
186           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
187           std::vector<TargetLowering::AsmOperandInfo> Ops =
188               TLI->ParseConstraints(Fn->getDataLayout(), TRI,
189                                     *Call);
190           for (TargetLowering::AsmOperandInfo &Op : Ops) {
191             if (Op.Type == InlineAsm::isClobber) {
192               // Clobbers don't have SDValue operands, hence SDValue().
193               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
194               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
195                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
196                                                     Op.ConstraintVT);
197               if (PhysReg.first == SP)
198                 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
199             }
200           }
201         }
202         if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
203           switch (II->getIntrinsicID()) {
204           case Intrinsic::vastart:
205             // Look for calls to the @llvm.va_start intrinsic. We can omit
206             // some prologue boilerplate for variadic functions that don't
207             // examine their arguments.
208             MF->getFrameInfo().setHasVAStart(true);
209             break;
210           case Intrinsic::fake_use:
211             // Look for llvm.fake.uses, so that we can remove loads into fake
212             // uses later if necessary.
213             MF->setHasFakeUses(true);
214             break;
215           default:
216             break;
217           }
218         }
219 
220         // If we have a musttail call in a variadic function, we need to ensure
221         // we forward implicit register parameters.
222         if (const auto *CI = dyn_cast<CallInst>(&I)) {
223           if (CI->isMustTailCall() && Fn->isVarArg())
224             MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
225         }
226 
227         // Determine if there is a call to setjmp in the machine function.
228         if (Call->hasFnAttr(Attribute::ReturnsTwice))
229           MF->setExposesReturnsTwice(true);
230       }
231 
232       // Mark values used outside their block as exported, by allocating
233       // a virtual register for them.
234       if (isUsedOutsideOfDefiningBlock(&I))
235         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
236           InitializeRegForValue(&I);
237 
238       // Decide the preferred extend type for a value. This iterates over all
239       // users and therefore isn't cheap, so don't do this at O0.
240       if (DAG->getOptLevel() != CodeGenOptLevel::None)
241         PreferredExtendType[&I] = getPreferredExtendForValue(&I);
242     }
243   }
244 
245   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
246   // also creates the initial PHI MachineInstrs, though none of the input
247   // operands are populated.
248   MBBMap.resize(Fn->getMaxBlockNumber());
249   for (const BasicBlock &BB : *Fn) {
250     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
251     // are really data, and no instructions can live here.
252     if (BB.isEHPad()) {
253       BasicBlock::const_iterator PadInst = BB.getFirstNonPHIIt();
254       // If this is a non-landingpad EH pad, mark this function as using
255       // funclets.
256       // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
257       // setting this in such cases in order to improve frame layout.
258       if (!isa<LandingPadInst>(PadInst)) {
259         MF->setHasEHScopes(true);
260         MF->setHasEHFunclets(true);
261         MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
262       }
263       if (isa<CatchSwitchInst>(PadInst)) {
264         assert(BB.begin() == PadInst &&
265                "WinEHPrepare failed to remove PHIs from imaginary BBs");
266         continue;
267       }
268       if (isa<FuncletPadInst>(PadInst) &&
269           Personality != EHPersonality::Wasm_CXX)
270         assert(BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
271     }
272 
273     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
274     MBBMap[BB.getNumber()] = MBB;
275     MF->push_back(MBB);
276 
277     // Transfer the address-taken flag. This is necessary because there could
278     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
279     // the first one should be marked.
280     if (BB.hasAddressTaken())
281       MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
282 
283     // Mark landing pad blocks.
284     if (BB.isEHPad())
285       MBB->setIsEHPad();
286 
287     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
288     // appropriate.
289     for (const PHINode &PN : BB.phis()) {
290       if (PN.use_empty())
291         continue;
292 
293       // Skip empty types
294       if (PN.getType()->isEmptyTy())
295         continue;
296 
297       DebugLoc DL = PN.getDebugLoc();
298       unsigned PHIReg = ValueMap[&PN];
299       assert(PHIReg && "PHI node does not have an assigned virtual register!");
300 
301       SmallVector<EVT, 4> ValueVTs;
302       ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
303       for (EVT VT : ValueVTs) {
304         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
305         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
306         for (unsigned i = 0; i != NumRegisters; ++i)
307           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
308         PHIReg += NumRegisters;
309       }
310     }
311   }
312 
313   if (isFuncletEHPersonality(Personality)) {
314     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
315 
316     // Map all BB references in the WinEH data to MBBs.
317     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
318       for (WinEHHandlerType &H : TBME.HandlerArray) {
319         if (H.Handler)
320           H.Handler = getMBB(cast<const BasicBlock *>(H.Handler));
321       }
322     }
323     for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
324       if (UME.Cleanup)
325         UME.Cleanup = getMBB(cast<const BasicBlock *>(UME.Cleanup));
326     for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap)
327       UME.Handler = getMBB(cast<const BasicBlock *>(UME.Handler));
328     for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap)
329       CME.Handler = getMBB(cast<const BasicBlock *>(CME.Handler));
330   } else if (Personality == EHPersonality::Wasm_CXX) {
331     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
332     calculateWasmEHInfo(&fn, EHInfo);
333 
334     // Map all BB references in the Wasm EH data to MBBs.
335     DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest;
336     for (auto &KV : EHInfo.SrcToUnwindDest) {
337       const auto *Src = cast<const BasicBlock *>(KV.first);
338       const auto *Dest = cast<const BasicBlock *>(KV.second);
339       SrcToUnwindDest[getMBB(Src)] = getMBB(Dest);
340     }
341     EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest);
342     DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs;
343     for (auto &KV : EHInfo.UnwindDestToSrcs) {
344       const auto *Dest = cast<const BasicBlock *>(KV.first);
345       MachineBasicBlock *DestMBB = getMBB(Dest);
346       UnwindDestToSrcs[DestMBB] = SmallPtrSet<BBOrMBB, 4>();
347       for (const auto P : KV.second)
348         UnwindDestToSrcs[DestMBB].insert(getMBB(cast<const BasicBlock *>(P)));
349     }
350     EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs);
351   }
352 }
353 
354 /// clear - Clear out all the function-specific state. This returns this
355 /// FunctionLoweringInfo to an empty state, ready to be used for a
356 /// different function.
357 void FunctionLoweringInfo::clear() {
358   MBBMap.clear();
359   ValueMap.clear();
360   VirtReg2Value.clear();
361   StaticAllocaMap.clear();
362   LiveOutRegInfo.clear();
363   VisitedBBs.clear();
364   ArgDbgValues.clear();
365   DescribedArgs.clear();
366   ByValArgFrameIndexMap.clear();
367   RegFixups.clear();
368   RegsWithFixups.clear();
369   StatepointStackSlots.clear();
370   StatepointRelocationMaps.clear();
371   PreferredExtendType.clear();
372   PreprocessedDbgDeclares.clear();
373   PreprocessedDVRDeclares.clear();
374 }
375 
376 /// CreateReg - Allocate a single virtual register for the given type.
377 Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
378   return RegInfo->createVirtualRegister(TLI->getRegClassFor(VT, isDivergent));
379 }
380 
381 /// CreateRegs - Allocate the appropriate number of virtual registers of
382 /// the correctly promoted or expanded types.  Assign these registers
383 /// consecutive vreg numbers and return the first assigned number.
384 ///
385 /// In the case that the given value has struct or array type, this function
386 /// will assign registers for each member or element.
387 ///
388 Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
389   SmallVector<EVT, 4> ValueVTs;
390   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
391 
392   Register FirstReg;
393   for (EVT ValueVT : ValueVTs) {
394     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
395 
396     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
397     for (unsigned i = 0; i != NumRegs; ++i) {
398       Register R = CreateReg(RegisterVT, isDivergent);
399       if (!FirstReg) FirstReg = R;
400     }
401   }
402   return FirstReg;
403 }
404 
405 Register FunctionLoweringInfo::CreateRegs(const Value *V) {
406   return CreateRegs(V->getType(), UA && UA->isDivergent(V) &&
407                                       !TLI->requiresUniformRegister(*MF, V));
408 }
409 
410 Register FunctionLoweringInfo::InitializeRegForValue(const Value *V) {
411   // Tokens live in vregs only when used for convergence control.
412   if (V->getType()->isTokenTy() && !isa<ConvergenceControlInst>(V))
413     return 0;
414   Register &R = ValueMap[V];
415   assert(R == Register() && "Already initialized this value register!");
416   assert(VirtReg2Value.empty());
417   return R = CreateRegs(V);
418 }
419 
420 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
421 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
422 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
423 /// the larger bit width by zero extension. The bit width must be no smaller
424 /// than the LiveOutInfo's existing bit width.
425 const FunctionLoweringInfo::LiveOutInfo *
426 FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
427   if (!LiveOutRegInfo.inBounds(Reg))
428     return nullptr;
429 
430   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
431   if (!LOI->IsValid)
432     return nullptr;
433 
434   if (BitWidth > LOI->Known.getBitWidth()) {
435     LOI->NumSignBits = 1;
436     LOI->Known = LOI->Known.anyext(BitWidth);
437   }
438 
439   return LOI;
440 }
441 
442 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
443 /// register based on the LiveOutInfo of its operands.
444 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
445   Type *Ty = PN->getType();
446   if (!Ty->isIntegerTy() || Ty->isVectorTy())
447     return;
448 
449   SmallVector<EVT, 1> ValueVTs;
450   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
451   assert(ValueVTs.size() == 1 &&
452          "PHIs with non-vector integer types should have a single VT.");
453   EVT IntVT = ValueVTs[0];
454 
455   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
456     return;
457   IntVT = TLI->getRegisterType(PN->getContext(), IntVT);
458   unsigned BitWidth = IntVT.getSizeInBits();
459 
460   auto It = ValueMap.find(PN);
461   if (It == ValueMap.end())
462     return;
463 
464   Register DestReg = It->second;
465   if (DestReg == 0)
466     return;
467   assert(DestReg.isVirtual() && "Expected a virtual reg");
468   LiveOutRegInfo.grow(DestReg);
469   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
470 
471   Value *V = PN->getIncomingValue(0);
472   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
473     DestLOI.NumSignBits = 1;
474     DestLOI.Known = KnownBits(BitWidth);
475     return;
476   }
477 
478   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
479     APInt Val;
480     if (TLI->signExtendConstant(CI))
481       Val = CI->getValue().sext(BitWidth);
482     else
483       Val = CI->getValue().zext(BitWidth);
484     DestLOI.NumSignBits = Val.getNumSignBits();
485     DestLOI.Known = KnownBits::makeConstant(Val);
486   } else {
487     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
488                                 "CopyToReg node was created.");
489     Register SrcReg = ValueMap[V];
490     if (!SrcReg.isVirtual()) {
491       DestLOI.IsValid = false;
492       return;
493     }
494     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
495     if (!SrcLOI) {
496       DestLOI.IsValid = false;
497       return;
498     }
499     DestLOI = *SrcLOI;
500   }
501 
502   assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
503          DestLOI.Known.One.getBitWidth() == BitWidth &&
504          "Masks should have the same bit width as the type.");
505 
506   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
507     Value *V = PN->getIncomingValue(i);
508     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
509       DestLOI.NumSignBits = 1;
510       DestLOI.Known = KnownBits(BitWidth);
511       return;
512     }
513 
514     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
515       APInt Val;
516       if (TLI->signExtendConstant(CI))
517         Val = CI->getValue().sext(BitWidth);
518       else
519         Val = CI->getValue().zext(BitWidth);
520       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
521       DestLOI.Known.Zero &= ~Val;
522       DestLOI.Known.One &= Val;
523       continue;
524     }
525 
526     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
527                                 "its CopyToReg node was created.");
528     Register SrcReg = ValueMap[V];
529     if (!SrcReg.isVirtual()) {
530       DestLOI.IsValid = false;
531       return;
532     }
533     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
534     if (!SrcLOI) {
535       DestLOI.IsValid = false;
536       return;
537     }
538     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
539     DestLOI.Known = DestLOI.Known.intersectWith(SrcLOI->Known);
540   }
541 }
542 
543 /// setArgumentFrameIndex - Record frame index for the byval
544 /// argument. This overrides previous frame index entry for this argument,
545 /// if any.
546 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
547                                                  int FI) {
548   ByValArgFrameIndexMap[A] = FI;
549 }
550 
551 /// getArgumentFrameIndex - Get frame index for the byval argument.
552 /// If the argument does not have any assigned frame index then 0 is
553 /// returned.
554 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
555   auto I = ByValArgFrameIndexMap.find(A);
556   if (I != ByValArgFrameIndexMap.end())
557     return I->second;
558   LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
559   return INT_MAX;
560 }
561 
562 Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
563     const Value *CPI, const TargetRegisterClass *RC) {
564   MachineRegisterInfo &MRI = MF->getRegInfo();
565   auto I = CatchPadExceptionPointers.insert({CPI, 0});
566   Register &VReg = I.first->second;
567   if (I.second)
568     VReg = MRI.createVirtualRegister(RC);
569   assert(VReg && "null vreg in exception pointer table!");
570   return VReg;
571 }
572 
573 const Value *
574 FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
575   if (VirtReg2Value.empty()) {
576     SmallVector<EVT, 4> ValueVTs;
577     for (auto &P : ValueMap) {
578       ValueVTs.clear();
579       ComputeValueVTs(*TLI, Fn->getDataLayout(),
580                       P.first->getType(), ValueVTs);
581       unsigned Reg = P.second;
582       for (EVT VT : ValueVTs) {
583         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
584         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
585           VirtReg2Value[Reg++] = P.first;
586       }
587     }
588   }
589   return VirtReg2Value.lookup(Vreg);
590 }
591