xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/FastISel.cpp (revision 754ed95b6672b9a678a994cc652862a91cdc4406)
1 //===- FastISel.cpp - Implementation of the FastISel class ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the FastISel class.
10 //
11 // "Fast" instruction selection is designed to emit very poor code quickly.
12 // Also, it is not designed to be able to do much lowering, so most illegal
13 // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
14 // also not intended to be able to do much optimization, except in a few cases
15 // where doing optimizations reduces overall compile time.  For example, folding
16 // constants into immediate fields is often done, because it's cheap and it
17 // reduces the number of instructions later phases have to examine.
18 //
19 // "Fast" instruction selection is able to fail gracefully and transfer
20 // control to the SelectionDAG selector for operations that it doesn't
21 // support.  In many cases, this allows us to avoid duplicating a lot of
22 // the complicated lowering logic that SelectionDAG currently has.
23 //
24 // The intended use for "fast" instruction selection is "-O0" mode
25 // compilation, where the quality of the generated code is irrelevant when
26 // weighed against the speed at which the code can be generated.  Also,
27 // at -O0, the LLVM optimizers are not running, and this makes the
28 // compile time of codegen a much higher portion of the overall compile
29 // time.  Despite its limitations, "fast" instruction selection is able to
30 // handle enough code on its own to provide noticeable overall speedups
31 // in -O0 compiles.
32 //
33 // Basic operations are supported in a target-independent way, by reading
34 // the same instruction descriptions that the SelectionDAG selector reads,
35 // and identifying simple arithmetic operations that can be directly selected
36 // from simple operators.  More complicated operations currently require
37 // target-specific code.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #include "llvm/CodeGen/FastISel.h"
42 #include "llvm/ADT/APFloat.h"
43 #include "llvm/ADT/APSInt.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/ADT/Statistic.h"
49 #include "llvm/Analysis/BranchProbabilityInfo.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/CodeGen/Analysis.h"
52 #include "llvm/CodeGen/FunctionLoweringInfo.h"
53 #include "llvm/CodeGen/ISDOpcodes.h"
54 #include "llvm/CodeGen/MachineBasicBlock.h"
55 #include "llvm/CodeGen/MachineFrameInfo.h"
56 #include "llvm/CodeGen/MachineInstr.h"
57 #include "llvm/CodeGen/MachineInstrBuilder.h"
58 #include "llvm/CodeGen/MachineMemOperand.h"
59 #include "llvm/CodeGen/MachineModuleInfo.h"
60 #include "llvm/CodeGen/MachineOperand.h"
61 #include "llvm/CodeGen/MachineRegisterInfo.h"
62 #include "llvm/CodeGen/StackMaps.h"
63 #include "llvm/CodeGen/TargetInstrInfo.h"
64 #include "llvm/CodeGen/TargetLowering.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGenTypes/MachineValueType.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/DiagnosticInfo.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Mangler.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCInstrDesc.h"
97 #include "llvm/Support/Casting.h"
98 #include "llvm/Support/Debug.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include <cassert>
105 #include <cstdint>
106 #include <iterator>
107 #include <optional>
108 #include <utility>
109 
110 using namespace llvm;
111 using namespace PatternMatch;
112 
113 #define DEBUG_TYPE "isel"
114 
115 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
116                                          "target-independent selector");
117 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
118                                     "target-specific selector");
119 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
120 
121 /// Set the current block to which generated machine instructions will be
122 /// appended.
123 void FastISel::startNewBlock() {
124   assert(LocalValueMap.empty() &&
125          "local values should be cleared after finishing a BB");
126 
127   // Instructions are appended to FuncInfo.MBB. If the basic block already
128   // contains labels or copies, use the last instruction as the last local
129   // value.
130   EmitStartPt = nullptr;
131   if (!FuncInfo.MBB->empty())
132     EmitStartPt = &FuncInfo.MBB->back();
133   LastLocalValue = EmitStartPt;
134 }
135 
136 void FastISel::finishBasicBlock() { flushLocalValueMap(); }
137 
138 bool FastISel::lowerArguments() {
139   if (!FuncInfo.CanLowerReturn)
140     // Fallback to SDISel argument lowering code to deal with sret pointer
141     // parameter.
142     return false;
143 
144   if (!fastLowerArguments())
145     return false;
146 
147   // Enter arguments into ValueMap for uses in non-entry BBs.
148   for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
149                                     E = FuncInfo.Fn->arg_end();
150        I != E; ++I) {
151     DenseMap<const Value *, Register>::iterator VI = LocalValueMap.find(&*I);
152     assert(VI != LocalValueMap.end() && "Missed an argument?");
153     FuncInfo.ValueMap[&*I] = VI->second;
154   }
155   return true;
156 }
157 
158 /// Return the defined register if this instruction defines exactly one
159 /// virtual register and uses no other virtual registers. Otherwise return 0.
160 static Register findLocalRegDef(MachineInstr &MI) {
161   Register RegDef;
162   for (const MachineOperand &MO : MI.operands()) {
163     if (!MO.isReg())
164       continue;
165     if (MO.isDef()) {
166       if (RegDef)
167         return Register();
168       RegDef = MO.getReg();
169     } else if (MO.getReg().isVirtual()) {
170       // This is another use of a vreg. Don't delete it.
171       return Register();
172     }
173   }
174   return RegDef;
175 }
176 
177 static bool isRegUsedByPhiNodes(Register DefReg,
178                                 FunctionLoweringInfo &FuncInfo) {
179   for (auto &P : FuncInfo.PHINodesToUpdate)
180     if (P.second == DefReg)
181       return true;
182   return false;
183 }
184 
185 void FastISel::flushLocalValueMap() {
186   // If FastISel bails out, it could leave local value instructions behind
187   // that aren't used for anything.  Detect and erase those.
188   if (LastLocalValue != EmitStartPt) {
189     // Save the first instruction after local values, for later.
190     MachineBasicBlock::iterator FirstNonValue(LastLocalValue);
191     ++FirstNonValue;
192 
193     MachineBasicBlock::reverse_iterator RE =
194         EmitStartPt ? MachineBasicBlock::reverse_iterator(EmitStartPt)
195                     : FuncInfo.MBB->rend();
196     MachineBasicBlock::reverse_iterator RI(LastLocalValue);
197     for (MachineInstr &LocalMI :
198          llvm::make_early_inc_range(llvm::make_range(RI, RE))) {
199       Register DefReg = findLocalRegDef(LocalMI);
200       if (!DefReg)
201         continue;
202       if (FuncInfo.RegsWithFixups.count(DefReg))
203         continue;
204       bool UsedByPHI = isRegUsedByPhiNodes(DefReg, FuncInfo);
205       if (!UsedByPHI && MRI.use_nodbg_empty(DefReg)) {
206         if (EmitStartPt == &LocalMI)
207           EmitStartPt = EmitStartPt->getPrevNode();
208         LLVM_DEBUG(dbgs() << "removing dead local value materialization"
209                           << LocalMI);
210         LocalMI.eraseFromParent();
211       }
212     }
213 
214     if (FirstNonValue != FuncInfo.MBB->end()) {
215       // See if there are any local value instructions left.  If so, we want to
216       // make sure the first one has a debug location; if it doesn't, use the
217       // first non-value instruction's debug location.
218 
219       // If EmitStartPt is non-null, this block had copies at the top before
220       // FastISel started doing anything; it points to the last one, so the
221       // first local value instruction is the one after EmitStartPt.
222       // If EmitStartPt is null, the first local value instruction is at the
223       // top of the block.
224       MachineBasicBlock::iterator FirstLocalValue =
225           EmitStartPt ? ++MachineBasicBlock::iterator(EmitStartPt)
226                       : FuncInfo.MBB->begin();
227       if (FirstLocalValue != FirstNonValue && !FirstLocalValue->getDebugLoc())
228         FirstLocalValue->setDebugLoc(FirstNonValue->getDebugLoc());
229     }
230   }
231 
232   LocalValueMap.clear();
233   LastLocalValue = EmitStartPt;
234   recomputeInsertPt();
235   SavedInsertPt = FuncInfo.InsertPt;
236 }
237 
238 Register FastISel::getRegForValue(const Value *V) {
239   EVT RealVT = TLI.getValueType(DL, V->getType(), /*AllowUnknown=*/true);
240   // Don't handle non-simple values in FastISel.
241   if (!RealVT.isSimple())
242     return Register();
243 
244   // Ignore illegal types. We must do this before looking up the value
245   // in ValueMap because Arguments are given virtual registers regardless
246   // of whether FastISel can handle them.
247   MVT VT = RealVT.getSimpleVT();
248   if (!TLI.isTypeLegal(VT)) {
249     // Handle integer promotions, though, because they're common and easy.
250     if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
251       VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
252     else
253       return Register();
254   }
255 
256   // Look up the value to see if we already have a register for it.
257   Register Reg = lookUpRegForValue(V);
258   if (Reg)
259     return Reg;
260 
261   // In bottom-up mode, just create the virtual register which will be used
262   // to hold the value. It will be materialized later.
263   if (isa<Instruction>(V) &&
264       (!isa<AllocaInst>(V) ||
265        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
266     return FuncInfo.InitializeRegForValue(V);
267 
268   SavePoint SaveInsertPt = enterLocalValueArea();
269 
270   // Materialize the value in a register. Emit any instructions in the
271   // local value area.
272   Reg = materializeRegForValue(V, VT);
273 
274   leaveLocalValueArea(SaveInsertPt);
275 
276   return Reg;
277 }
278 
279 Register FastISel::materializeConstant(const Value *V, MVT VT) {
280   Register Reg;
281   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
282     if (CI->getValue().getActiveBits() <= 64)
283       Reg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
284   } else if (isa<AllocaInst>(V))
285     Reg = fastMaterializeAlloca(cast<AllocaInst>(V));
286   else if (isa<ConstantPointerNull>(V))
287     // Translate this as an integer zero so that it can be
288     // local-CSE'd with actual integer zeros.
289     Reg =
290         getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getType())));
291   else if (const auto *CF = dyn_cast<ConstantFP>(V)) {
292     if (CF->isNullValue())
293       Reg = fastMaterializeFloatZero(CF);
294     else
295       // Try to emit the constant directly.
296       Reg = fastEmit_f(VT, VT, ISD::ConstantFP, CF);
297 
298     if (!Reg) {
299       // Try to emit the constant by using an integer constant with a cast.
300       const APFloat &Flt = CF->getValueAPF();
301       EVT IntVT = TLI.getPointerTy(DL);
302       uint32_t IntBitWidth = IntVT.getSizeInBits();
303       APSInt SIntVal(IntBitWidth, /*isUnsigned=*/false);
304       bool isExact;
305       (void)Flt.convertToInteger(SIntVal, APFloat::rmTowardZero, &isExact);
306       if (isExact) {
307         Register IntegerReg =
308             getRegForValue(ConstantInt::get(V->getContext(), SIntVal));
309         if (IntegerReg)
310           Reg = fastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
311                            IntegerReg);
312       }
313     }
314   } else if (const auto *Op = dyn_cast<Operator>(V)) {
315     if (!selectOperator(Op, Op->getOpcode()))
316       if (!isa<Instruction>(Op) ||
317           !fastSelectInstruction(cast<Instruction>(Op)))
318         return 0;
319     Reg = lookUpRegForValue(Op);
320   } else if (isa<UndefValue>(V)) {
321     Reg = createResultReg(TLI.getRegClassFor(VT));
322     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
323             TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
324   }
325   return Reg;
326 }
327 
328 /// Helper for getRegForValue. This function is called when the value isn't
329 /// already available in a register and must be materialized with new
330 /// instructions.
331 Register FastISel::materializeRegForValue(const Value *V, MVT VT) {
332   Register Reg;
333   // Give the target-specific code a try first.
334   if (isa<Constant>(V))
335     Reg = fastMaterializeConstant(cast<Constant>(V));
336 
337   // If target-specific code couldn't or didn't want to handle the value, then
338   // give target-independent code a try.
339   if (!Reg)
340     Reg = materializeConstant(V, VT);
341 
342   // Don't cache constant materializations in the general ValueMap.
343   // To do so would require tracking what uses they dominate.
344   if (Reg) {
345     LocalValueMap[V] = Reg;
346     LastLocalValue = MRI.getVRegDef(Reg);
347   }
348   return Reg;
349 }
350 
351 Register FastISel::lookUpRegForValue(const Value *V) {
352   // Look up the value to see if we already have a register for it. We
353   // cache values defined by Instructions across blocks, and other values
354   // only locally. This is because Instructions already have the SSA
355   // def-dominates-use requirement enforced.
356   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(V);
357   if (I != FuncInfo.ValueMap.end())
358     return I->second;
359   return LocalValueMap[V];
360 }
361 
362 void FastISel::updateValueMap(const Value *I, Register Reg, unsigned NumRegs) {
363   if (!isa<Instruction>(I)) {
364     LocalValueMap[I] = Reg;
365     return;
366   }
367 
368   Register &AssignedReg = FuncInfo.ValueMap[I];
369   if (!AssignedReg)
370     // Use the new register.
371     AssignedReg = Reg;
372   else if (Reg != AssignedReg) {
373     // Arrange for uses of AssignedReg to be replaced by uses of Reg.
374     for (unsigned i = 0; i < NumRegs; i++) {
375       FuncInfo.RegFixups[AssignedReg + i] = Reg + i;
376       FuncInfo.RegsWithFixups.insert(Reg + i);
377     }
378 
379     AssignedReg = Reg;
380   }
381 }
382 
383 Register FastISel::getRegForGEPIndex(MVT PtrVT, const Value *Idx) {
384   Register IdxN = getRegForValue(Idx);
385   if (!IdxN)
386     // Unhandled operand. Halt "fast" selection and bail.
387     return Register();
388 
389   // If the index is smaller or larger than intptr_t, truncate or extend it.
390   EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
391   if (IdxVT.bitsLT(PtrVT)) {
392     IdxN = fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
393   } else if (IdxVT.bitsGT(PtrVT)) {
394     IdxN =
395         fastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
396   }
397   return IdxN;
398 }
399 
400 void FastISel::recomputeInsertPt() {
401   if (getLastLocalValue()) {
402     FuncInfo.InsertPt = getLastLocalValue();
403     FuncInfo.MBB = FuncInfo.InsertPt->getParent();
404     ++FuncInfo.InsertPt;
405   } else
406     FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
407 }
408 
409 void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
410                               MachineBasicBlock::iterator E) {
411   assert(I.isValid() && E.isValid() && std::distance(I, E) > 0 &&
412          "Invalid iterator!");
413   while (I != E) {
414     if (SavedInsertPt == I)
415       SavedInsertPt = E;
416     if (EmitStartPt == I)
417       EmitStartPt = E.isValid() ? &*E : nullptr;
418     if (LastLocalValue == I)
419       LastLocalValue = E.isValid() ? &*E : nullptr;
420 
421     MachineInstr *Dead = &*I;
422     ++I;
423     Dead->eraseFromParent();
424     ++NumFastIselDead;
425   }
426   recomputeInsertPt();
427 }
428 
429 FastISel::SavePoint FastISel::enterLocalValueArea() {
430   SavePoint OldInsertPt = FuncInfo.InsertPt;
431   recomputeInsertPt();
432   return OldInsertPt;
433 }
434 
435 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
436   if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
437     LastLocalValue = &*std::prev(FuncInfo.InsertPt);
438 
439   // Restore the previous insert position.
440   FuncInfo.InsertPt = OldInsertPt;
441 }
442 
443 bool FastISel::selectBinaryOp(const User *I, unsigned ISDOpcode) {
444   EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
445   if (VT == MVT::Other || !VT.isSimple())
446     // Unhandled type. Halt "fast" selection and bail.
447     return false;
448 
449   // We only handle legal types. For example, on x86-32 the instruction
450   // selector contains all of the 64-bit instructions from x86-64,
451   // under the assumption that i64 won't be used if the target doesn't
452   // support it.
453   if (!TLI.isTypeLegal(VT)) {
454     // MVT::i1 is special. Allow AND, OR, or XOR because they
455     // don't require additional zeroing, which makes them easy.
456     if (VT == MVT::i1 && ISD::isBitwiseLogicOp(ISDOpcode))
457       VT = TLI.getTypeToTransformTo(I->getContext(), VT);
458     else
459       return false;
460   }
461 
462   // Check if the first operand is a constant, and handle it as "ri".  At -O0,
463   // we don't have anything that canonicalizes operand order.
464   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
465     if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
466       Register Op1 = getRegForValue(I->getOperand(1));
467       if (!Op1)
468         return false;
469 
470       Register ResultReg =
471           fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, CI->getZExtValue(),
472                        VT.getSimpleVT());
473       if (!ResultReg)
474         return false;
475 
476       // We successfully emitted code for the given LLVM Instruction.
477       updateValueMap(I, ResultReg);
478       return true;
479     }
480 
481   Register Op0 = getRegForValue(I->getOperand(0));
482   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
483     return false;
484 
485   // Check if the second operand is a constant and handle it appropriately.
486   if (const auto *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
487     uint64_t Imm = CI->getSExtValue();
488 
489     // Transform "sdiv exact X, 8" -> "sra X, 3".
490     if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
491         cast<BinaryOperator>(I)->isExact() && isPowerOf2_64(Imm)) {
492       Imm = Log2_64(Imm);
493       ISDOpcode = ISD::SRA;
494     }
495 
496     // Transform "urem x, pow2" -> "and x, pow2-1".
497     if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
498         isPowerOf2_64(Imm)) {
499       --Imm;
500       ISDOpcode = ISD::AND;
501     }
502 
503     Register ResultReg = fastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, Imm,
504                                       VT.getSimpleVT());
505     if (!ResultReg)
506       return false;
507 
508     // We successfully emitted code for the given LLVM Instruction.
509     updateValueMap(I, ResultReg);
510     return true;
511   }
512 
513   Register Op1 = getRegForValue(I->getOperand(1));
514   if (!Op1) // Unhandled operand. Halt "fast" selection and bail.
515     return false;
516 
517   // Now we have both operands in registers. Emit the instruction.
518   Register ResultReg = fastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
519                                    ISDOpcode, Op0, Op1);
520   if (!ResultReg)
521     // Target-specific code wasn't able to find a machine opcode for
522     // the given ISD opcode and type. Halt "fast" selection and bail.
523     return false;
524 
525   // We successfully emitted code for the given LLVM Instruction.
526   updateValueMap(I, ResultReg);
527   return true;
528 }
529 
530 bool FastISel::selectGetElementPtr(const User *I) {
531   Register N = getRegForValue(I->getOperand(0));
532   if (!N) // Unhandled operand. Halt "fast" selection and bail.
533     return false;
534 
535   // FIXME: The code below does not handle vector GEPs. Halt "fast" selection
536   // and bail.
537   if (isa<VectorType>(I->getType()))
538     return false;
539 
540   // Keep a running tab of the total offset to coalesce multiple N = N + Offset
541   // into a single N = N + TotalOffset.
542   uint64_t TotalOffs = 0;
543   // FIXME: What's a good SWAG number for MaxOffs?
544   uint64_t MaxOffs = 2048;
545   MVT VT = TLI.getValueType(DL, I->getType()).getSimpleVT();
546 
547   for (gep_type_iterator GTI = gep_type_begin(I), E = gep_type_end(I);
548        GTI != E; ++GTI) {
549     const Value *Idx = GTI.getOperand();
550     if (StructType *StTy = GTI.getStructTypeOrNull()) {
551       uint64_t Field = cast<ConstantInt>(Idx)->getZExtValue();
552       if (Field) {
553         // N = N + Offset
554         TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
555         if (TotalOffs >= MaxOffs) {
556           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
557           if (!N) // Unhandled operand. Halt "fast" selection and bail.
558             return false;
559           TotalOffs = 0;
560         }
561       }
562     } else {
563       // If this is a constant subscript, handle it quickly.
564       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
565         if (CI->isZero())
566           continue;
567         // N = N + Offset
568         uint64_t IdxN = CI->getValue().sextOrTrunc(64).getSExtValue();
569         TotalOffs += GTI.getSequentialElementStride(DL) * IdxN;
570         if (TotalOffs >= MaxOffs) {
571           N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
572           if (!N) // Unhandled operand. Halt "fast" selection and bail.
573             return false;
574           TotalOffs = 0;
575         }
576         continue;
577       }
578       if (TotalOffs) {
579         N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
580         if (!N) // Unhandled operand. Halt "fast" selection and bail.
581           return false;
582         TotalOffs = 0;
583       }
584 
585       // N = N + Idx * ElementSize;
586       uint64_t ElementSize = GTI.getSequentialElementStride(DL);
587       Register IdxN = getRegForGEPIndex(VT, Idx);
588       if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
589         return false;
590 
591       if (ElementSize != 1) {
592         IdxN = fastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
593         if (!IdxN) // Unhandled operand. Halt "fast" selection and bail.
594           return false;
595       }
596       N = fastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
597       if (!N) // Unhandled operand. Halt "fast" selection and bail.
598         return false;
599     }
600   }
601   if (TotalOffs) {
602     N = fastEmit_ri_(VT, ISD::ADD, N, TotalOffs, VT);
603     if (!N) // Unhandled operand. Halt "fast" selection and bail.
604       return false;
605   }
606 
607   // We successfully emitted code for the given LLVM Instruction.
608   updateValueMap(I, N);
609   return true;
610 }
611 
612 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops,
613                                    const CallInst *CI, unsigned StartIdx) {
614   for (unsigned i = StartIdx, e = CI->arg_size(); i != e; ++i) {
615     Value *Val = CI->getArgOperand(i);
616     // Check for constants and encode them with a StackMaps::ConstantOp prefix.
617     if (const auto *C = dyn_cast<ConstantInt>(Val)) {
618       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
619       Ops.push_back(MachineOperand::CreateImm(C->getSExtValue()));
620     } else if (isa<ConstantPointerNull>(Val)) {
621       Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp));
622       Ops.push_back(MachineOperand::CreateImm(0));
623     } else if (auto *AI = dyn_cast<AllocaInst>(Val)) {
624       // Values coming from a stack location also require a special encoding,
625       // but that is added later on by the target specific frame index
626       // elimination implementation.
627       auto SI = FuncInfo.StaticAllocaMap.find(AI);
628       if (SI != FuncInfo.StaticAllocaMap.end())
629         Ops.push_back(MachineOperand::CreateFI(SI->second));
630       else
631         return false;
632     } else {
633       Register Reg = getRegForValue(Val);
634       if (!Reg)
635         return false;
636       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
637     }
638   }
639   return true;
640 }
641 
642 bool FastISel::selectStackmap(const CallInst *I) {
643   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
644   //                                  [live variables...])
645   assert(I->getCalledFunction()->getReturnType()->isVoidTy() &&
646          "Stackmap cannot return a value.");
647 
648   // The stackmap intrinsic only records the live variables (the arguments
649   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
650   // intrinsic, this won't be lowered to a function call. This means we don't
651   // have to worry about calling conventions and target-specific lowering code.
652   // Instead we perform the call lowering right here.
653   //
654   // CALLSEQ_START(0, 0...)
655   // STACKMAP(id, nbytes, ...)
656   // CALLSEQ_END(0, 0)
657   //
658   SmallVector<MachineOperand, 32> Ops;
659 
660   // Add the <id> and <numBytes> constants.
661   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
662          "Expected a constant integer.");
663   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
664   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
665 
666   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
667          "Expected a constant integer.");
668   const auto *NumBytes =
669       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
670   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
671 
672   // Push live variables for the stack map (skipping the first two arguments
673   // <id> and <numBytes>).
674   if (!addStackMapLiveVars(Ops, I, 2))
675     return false;
676 
677   // We are not adding any register mask info here, because the stackmap doesn't
678   // clobber anything.
679 
680   // Add scratch registers as implicit def and early clobber.
681   CallingConv::ID CC = I->getCallingConv();
682   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
683   for (unsigned i = 0; ScratchRegs[i]; ++i)
684     Ops.push_back(MachineOperand::CreateReg(
685         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
686         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
687 
688   // Issue CALLSEQ_START
689   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
690   auto Builder =
691       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown));
692   const MCInstrDesc &MCID = Builder.getInstr()->getDesc();
693   for (unsigned I = 0, E = MCID.getNumOperands(); I < E; ++I)
694     Builder.addImm(0);
695 
696   // Issue STACKMAP.
697   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
698                                     TII.get(TargetOpcode::STACKMAP));
699   for (auto const &MO : Ops)
700     MIB.add(MO);
701 
702   // Issue CALLSEQ_END
703   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
704   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp))
705       .addImm(0)
706       .addImm(0);
707 
708   // Inform the Frame Information that we have a stackmap in this function.
709   FuncInfo.MF->getFrameInfo().setHasStackMap();
710 
711   return true;
712 }
713 
714 /// Lower an argument list according to the target calling convention.
715 ///
716 /// This is a helper for lowering intrinsics that follow a target calling
717 /// convention or require stack pointer adjustment. Only a subset of the
718 /// intrinsic's operands need to participate in the calling convention.
719 bool FastISel::lowerCallOperands(const CallInst *CI, unsigned ArgIdx,
720                                  unsigned NumArgs, const Value *Callee,
721                                  bool ForceRetVoidTy, CallLoweringInfo &CLI) {
722   ArgListTy Args;
723   Args.reserve(NumArgs);
724 
725   // Populate the argument list.
726   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; ArgI != ArgE; ++ArgI) {
727     Value *V = CI->getOperand(ArgI);
728 
729     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
730 
731     ArgListEntry Entry;
732     Entry.Val = V;
733     Entry.Ty = V->getType();
734     Entry.setAttributes(CI, ArgI);
735     Args.push_back(Entry);
736   }
737 
738   Type *RetTy = ForceRetVoidTy ? Type::getVoidTy(CI->getType()->getContext())
739                                : CI->getType();
740   CLI.setCallee(CI->getCallingConv(), RetTy, Callee, std::move(Args), NumArgs);
741 
742   return lowerCallTo(CLI);
743 }
744 
745 FastISel::CallLoweringInfo &FastISel::CallLoweringInfo::setCallee(
746     const DataLayout &DL, MCContext &Ctx, CallingConv::ID CC, Type *ResultTy,
747     StringRef Target, ArgListTy &&ArgsList, unsigned FixedArgs) {
748   SmallString<32> MangledName;
749   Mangler::getNameWithPrefix(MangledName, Target, DL);
750   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
751   return setCallee(CC, ResultTy, Sym, std::move(ArgsList), FixedArgs);
752 }
753 
754 bool FastISel::selectPatchpoint(const CallInst *I) {
755   // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>,
756   //                                         i32 <numBytes>,
757   //                                         i8* <target>,
758   //                                         i32 <numArgs>,
759   //                                         [Args...],
760   //                                         [live variables...])
761   CallingConv::ID CC = I->getCallingConv();
762   bool IsAnyRegCC = CC == CallingConv::AnyReg;
763   bool HasDef = !I->getType()->isVoidTy();
764   Value *Callee = I->getOperand(PatchPointOpers::TargetPos)->stripPointerCasts();
765 
766   // Check if we can lower the return type when using anyregcc.
767   MVT ValueType;
768   if (IsAnyRegCC && HasDef) {
769     ValueType = TLI.getSimpleValueType(DL, I->getType(), /*AllowUnknown=*/true);
770     if (ValueType == MVT::Other)
771       return false;
772   }
773 
774   // Get the real number of arguments participating in the call <numArgs>
775   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos)) &&
776          "Expected a constant integer.");
777   const auto *NumArgsVal =
778       cast<ConstantInt>(I->getOperand(PatchPointOpers::NArgPos));
779   unsigned NumArgs = NumArgsVal->getZExtValue();
780 
781   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
782   // This includes all meta-operands up to but not including CC.
783   unsigned NumMetaOpers = PatchPointOpers::CCPos;
784   assert(I->arg_size() >= NumMetaOpers + NumArgs &&
785          "Not enough arguments provided to the patchpoint intrinsic");
786 
787   // For AnyRegCC the arguments are lowered later on manually.
788   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
789   CallLoweringInfo CLI;
790   CLI.setIsPatchPoint();
791   if (!lowerCallOperands(I, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, CLI))
792     return false;
793 
794   assert(CLI.Call && "No call instruction specified.");
795 
796   SmallVector<MachineOperand, 32> Ops;
797 
798   // Add an explicit result reg if we use the anyreg calling convention.
799   if (IsAnyRegCC && HasDef) {
800     assert(CLI.NumResultRegs == 0 && "Unexpected result register.");
801     assert(ValueType.isValid());
802     CLI.ResultReg = createResultReg(TLI.getRegClassFor(ValueType));
803     CLI.NumResultRegs = 1;
804     Ops.push_back(MachineOperand::CreateReg(CLI.ResultReg, /*isDef=*/true));
805   }
806 
807   // Add the <id> and <numBytes> constants.
808   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) &&
809          "Expected a constant integer.");
810   const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos));
811   Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue()));
812 
813   assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) &&
814          "Expected a constant integer.");
815   const auto *NumBytes =
816       cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos));
817   Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue()));
818 
819   // Add the call target.
820   if (const auto *C = dyn_cast<IntToPtrInst>(Callee)) {
821     uint64_t CalleeConstAddr =
822       cast<ConstantInt>(C->getOperand(0))->getZExtValue();
823     Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
824   } else if (const auto *C = dyn_cast<ConstantExpr>(Callee)) {
825     if (C->getOpcode() == Instruction::IntToPtr) {
826       uint64_t CalleeConstAddr =
827         cast<ConstantInt>(C->getOperand(0))->getZExtValue();
828       Ops.push_back(MachineOperand::CreateImm(CalleeConstAddr));
829     } else
830       llvm_unreachable("Unsupported ConstantExpr.");
831   } else if (const auto *GV = dyn_cast<GlobalValue>(Callee)) {
832     Ops.push_back(MachineOperand::CreateGA(GV, 0));
833   } else if (isa<ConstantPointerNull>(Callee))
834     Ops.push_back(MachineOperand::CreateImm(0));
835   else
836     llvm_unreachable("Unsupported callee address.");
837 
838   // Adjust <numArgs> to account for any arguments that have been passed on
839   // the stack instead.
840   unsigned NumCallRegArgs = IsAnyRegCC ? NumArgs : CLI.OutRegs.size();
841   Ops.push_back(MachineOperand::CreateImm(NumCallRegArgs));
842 
843   // Add the calling convention
844   Ops.push_back(MachineOperand::CreateImm((unsigned)CC));
845 
846   // Add the arguments we omitted previously. The register allocator should
847   // place these in any free register.
848   if (IsAnyRegCC) {
849     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) {
850       Register Reg = getRegForValue(I->getArgOperand(i));
851       if (!Reg)
852         return false;
853       Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
854     }
855   }
856 
857   // Push the arguments from the call instruction.
858   for (auto Reg : CLI.OutRegs)
859     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/false));
860 
861   // Push live variables for the stack map.
862   if (!addStackMapLiveVars(Ops, I, NumMetaOpers + NumArgs))
863     return false;
864 
865   // Push the register mask info.
866   Ops.push_back(MachineOperand::CreateRegMask(
867       TRI.getCallPreservedMask(*FuncInfo.MF, CC)));
868 
869   // Add scratch registers as implicit def and early clobber.
870   const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC);
871   for (unsigned i = 0; ScratchRegs[i]; ++i)
872     Ops.push_back(MachineOperand::CreateReg(
873         ScratchRegs[i], /*isDef=*/true, /*isImp=*/true, /*isKill=*/false,
874         /*isDead=*/false, /*isUndef=*/false, /*isEarlyClobber=*/true));
875 
876   // Add implicit defs (return values).
877   for (auto Reg : CLI.InRegs)
878     Ops.push_back(MachineOperand::CreateReg(Reg, /*isDef=*/true,
879                                             /*isImp=*/true));
880 
881   // Insert the patchpoint instruction before the call generated by the target.
882   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, CLI.Call, MIMD,
883                                     TII.get(TargetOpcode::PATCHPOINT));
884 
885   for (auto &MO : Ops)
886     MIB.add(MO);
887 
888   MIB->setPhysRegsDeadExcept(CLI.InRegs, TRI);
889 
890   // Delete the original call instruction.
891   CLI.Call->eraseFromParent();
892 
893   // Inform the Frame Information that we have a patchpoint in this function.
894   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
895 
896   if (CLI.NumResultRegs)
897     updateValueMap(I, CLI.ResultReg, CLI.NumResultRegs);
898   return true;
899 }
900 
901 bool FastISel::selectXRayCustomEvent(const CallInst *I) {
902   const auto &Triple = TM.getTargetTriple();
903   if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
904     return true; // don't do anything to this instruction.
905   SmallVector<MachineOperand, 8> Ops;
906   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
907                                           /*isDef=*/false));
908   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
909                                           /*isDef=*/false));
910   MachineInstrBuilder MIB =
911       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
912               TII.get(TargetOpcode::PATCHABLE_EVENT_CALL));
913   for (auto &MO : Ops)
914     MIB.add(MO);
915 
916   // Insert the Patchable Event Call instruction, that gets lowered properly.
917   return true;
918 }
919 
920 bool FastISel::selectXRayTypedEvent(const CallInst *I) {
921   const auto &Triple = TM.getTargetTriple();
922   if (Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64)
923     return true; // don't do anything to this instruction.
924   SmallVector<MachineOperand, 8> Ops;
925   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(0)),
926                                           /*isDef=*/false));
927   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(1)),
928                                           /*isDef=*/false));
929   Ops.push_back(MachineOperand::CreateReg(getRegForValue(I->getArgOperand(2)),
930                                           /*isDef=*/false));
931   MachineInstrBuilder MIB =
932       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
933               TII.get(TargetOpcode::PATCHABLE_TYPED_EVENT_CALL));
934   for (auto &MO : Ops)
935     MIB.add(MO);
936 
937   // Insert the Patchable Typed Event Call instruction, that gets lowered properly.
938   return true;
939 }
940 
941 /// Returns an AttributeList representing the attributes applied to the return
942 /// value of the given call.
943 static AttributeList getReturnAttrs(FastISel::CallLoweringInfo &CLI) {
944   SmallVector<Attribute::AttrKind, 2> Attrs;
945   if (CLI.RetSExt)
946     Attrs.push_back(Attribute::SExt);
947   if (CLI.RetZExt)
948     Attrs.push_back(Attribute::ZExt);
949   if (CLI.IsInReg)
950     Attrs.push_back(Attribute::InReg);
951 
952   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
953                             Attrs);
954 }
955 
956 bool FastISel::lowerCallTo(const CallInst *CI, const char *SymName,
957                            unsigned NumArgs) {
958   MCContext &Ctx = MF->getContext();
959   SmallString<32> MangledName;
960   Mangler::getNameWithPrefix(MangledName, SymName, DL);
961   MCSymbol *Sym = Ctx.getOrCreateSymbol(MangledName);
962   return lowerCallTo(CI, Sym, NumArgs);
963 }
964 
965 bool FastISel::lowerCallTo(const CallInst *CI, MCSymbol *Symbol,
966                            unsigned NumArgs) {
967   FunctionType *FTy = CI->getFunctionType();
968   Type *RetTy = CI->getType();
969 
970   ArgListTy Args;
971   Args.reserve(NumArgs);
972 
973   // Populate the argument list.
974   // Attributes for args start at offset 1, after the return attribute.
975   for (unsigned ArgI = 0; ArgI != NumArgs; ++ArgI) {
976     Value *V = CI->getOperand(ArgI);
977 
978     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
979 
980     ArgListEntry Entry;
981     Entry.Val = V;
982     Entry.Ty = V->getType();
983     Entry.setAttributes(CI, ArgI);
984     Args.push_back(Entry);
985   }
986   TLI.markLibCallAttributes(MF, CI->getCallingConv(), Args);
987 
988   CallLoweringInfo CLI;
989   CLI.setCallee(RetTy, FTy, Symbol, std::move(Args), *CI, NumArgs);
990 
991   return lowerCallTo(CLI);
992 }
993 
994 bool FastISel::lowerCallTo(CallLoweringInfo &CLI) {
995   // Handle the incoming return values from the call.
996   CLI.clearIns();
997   SmallVector<EVT, 4> RetTys;
998   ComputeValueVTs(TLI, DL, CLI.RetTy, RetTys);
999 
1000   SmallVector<ISD::OutputArg, 4> Outs;
1001   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, TLI, DL);
1002 
1003   bool CanLowerReturn = TLI.CanLowerReturn(
1004       CLI.CallConv, *FuncInfo.MF, CLI.IsVarArg, Outs, CLI.RetTy->getContext(), CLI.RetTy);
1005 
1006   // FIXME: sret demotion isn't supported yet - bail out.
1007   if (!CanLowerReturn)
1008     return false;
1009 
1010   for (EVT VT : RetTys) {
1011     MVT RegisterVT = TLI.getRegisterType(CLI.RetTy->getContext(), VT);
1012     unsigned NumRegs = TLI.getNumRegisters(CLI.RetTy->getContext(), VT);
1013     for (unsigned i = 0; i != NumRegs; ++i) {
1014       ISD::InputArg MyFlags;
1015       MyFlags.VT = RegisterVT;
1016       MyFlags.ArgVT = VT;
1017       MyFlags.Used = CLI.IsReturnValueUsed;
1018       if (CLI.RetSExt)
1019         MyFlags.Flags.setSExt();
1020       if (CLI.RetZExt)
1021         MyFlags.Flags.setZExt();
1022       if (CLI.IsInReg)
1023         MyFlags.Flags.setInReg();
1024       CLI.Ins.push_back(MyFlags);
1025     }
1026   }
1027 
1028   // Handle all of the outgoing arguments.
1029   CLI.clearOuts();
1030   for (auto &Arg : CLI.getArgs()) {
1031     Type *FinalType = Arg.Ty;
1032     if (Arg.IsByVal)
1033       FinalType = Arg.IndirectType;
1034     bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1035         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
1036 
1037     ISD::ArgFlagsTy Flags;
1038     if (Arg.IsZExt)
1039       Flags.setZExt();
1040     if (Arg.IsSExt)
1041       Flags.setSExt();
1042     if (Arg.IsInReg)
1043       Flags.setInReg();
1044     if (Arg.IsSRet)
1045       Flags.setSRet();
1046     if (Arg.IsSwiftSelf)
1047       Flags.setSwiftSelf();
1048     if (Arg.IsSwiftAsync)
1049       Flags.setSwiftAsync();
1050     if (Arg.IsSwiftError)
1051       Flags.setSwiftError();
1052     if (Arg.IsCFGuardTarget)
1053       Flags.setCFGuardTarget();
1054     if (Arg.IsByVal)
1055       Flags.setByVal();
1056     if (Arg.IsInAlloca) {
1057       Flags.setInAlloca();
1058       // Set the byval flag for CCAssignFn callbacks that don't know about
1059       // inalloca. This way we can know how many bytes we should've allocated
1060       // and how many bytes a callee cleanup function will pop.  If we port
1061       // inalloca to more targets, we'll have to add custom inalloca handling in
1062       // the various CC lowering callbacks.
1063       Flags.setByVal();
1064     }
1065     if (Arg.IsPreallocated) {
1066       Flags.setPreallocated();
1067       // Set the byval flag for CCAssignFn callbacks that don't know about
1068       // preallocated. This way we can know how many bytes we should've
1069       // allocated and how many bytes a callee cleanup function will pop.  If we
1070       // port preallocated to more targets, we'll have to add custom
1071       // preallocated handling in the various CC lowering callbacks.
1072       Flags.setByVal();
1073     }
1074     MaybeAlign MemAlign = Arg.Alignment;
1075     if (Arg.IsByVal || Arg.IsInAlloca || Arg.IsPreallocated) {
1076       unsigned FrameSize = DL.getTypeAllocSize(Arg.IndirectType);
1077 
1078       // For ByVal, alignment should come from FE. BE will guess if this info
1079       // is not there, but there are cases it cannot get right.
1080       if (!MemAlign)
1081         MemAlign = TLI.getByValTypeAlignment(Arg.IndirectType, DL);
1082       Flags.setByValSize(FrameSize);
1083     } else if (!MemAlign) {
1084       MemAlign = DL.getABITypeAlign(Arg.Ty);
1085     }
1086     Flags.setMemAlign(*MemAlign);
1087     if (Arg.IsNest)
1088       Flags.setNest();
1089     if (NeedsRegBlock)
1090       Flags.setInConsecutiveRegs();
1091     Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
1092     CLI.OutVals.push_back(Arg.Val);
1093     CLI.OutFlags.push_back(Flags);
1094   }
1095 
1096   if (!fastLowerCall(CLI))
1097     return false;
1098 
1099   // Set all unused physreg defs as dead.
1100   assert(CLI.Call && "No call instruction specified.");
1101   CLI.Call->setPhysRegsDeadExcept(CLI.InRegs, TRI);
1102 
1103   if (CLI.NumResultRegs && CLI.CB)
1104     updateValueMap(CLI.CB, CLI.ResultReg, CLI.NumResultRegs);
1105 
1106   // Set labels for heapallocsite call.
1107   if (CLI.CB)
1108     if (MDNode *MD = CLI.CB->getMetadata("heapallocsite"))
1109       CLI.Call->setHeapAllocMarker(*MF, MD);
1110 
1111   return true;
1112 }
1113 
1114 bool FastISel::lowerCall(const CallInst *CI) {
1115   FunctionType *FuncTy = CI->getFunctionType();
1116   Type *RetTy = CI->getType();
1117 
1118   ArgListTy Args;
1119   ArgListEntry Entry;
1120   Args.reserve(CI->arg_size());
1121 
1122   for (auto i = CI->arg_begin(), e = CI->arg_end(); i != e; ++i) {
1123     Value *V = *i;
1124 
1125     // Skip empty types
1126     if (V->getType()->isEmptyTy())
1127       continue;
1128 
1129     Entry.Val = V;
1130     Entry.Ty = V->getType();
1131 
1132     // Skip the first return-type Attribute to get to params.
1133     Entry.setAttributes(CI, i - CI->arg_begin());
1134     Args.push_back(Entry);
1135   }
1136 
1137   // Check if target-independent constraints permit a tail call here.
1138   // Target-dependent constraints are checked within fastLowerCall.
1139   bool IsTailCall = CI->isTailCall();
1140   if (IsTailCall && !isInTailCallPosition(*CI, TM))
1141     IsTailCall = false;
1142   if (IsTailCall && !CI->isMustTailCall() &&
1143       MF->getFunction().getFnAttribute("disable-tail-calls").getValueAsBool())
1144     IsTailCall = false;
1145 
1146   CallLoweringInfo CLI;
1147   CLI.setCallee(RetTy, FuncTy, CI->getCalledOperand(), std::move(Args), *CI)
1148       .setTailCall(IsTailCall);
1149 
1150   diagnoseDontCall(*CI);
1151 
1152   return lowerCallTo(CLI);
1153 }
1154 
1155 bool FastISel::selectCall(const User *I) {
1156   const CallInst *Call = cast<CallInst>(I);
1157 
1158   // Handle simple inline asms.
1159   if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledOperand())) {
1160     // Don't attempt to handle constraints.
1161     if (!IA->getConstraintString().empty())
1162       return false;
1163 
1164     unsigned ExtraInfo = 0;
1165     if (IA->hasSideEffects())
1166       ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1167     if (IA->isAlignStack())
1168       ExtraInfo |= InlineAsm::Extra_IsAlignStack;
1169     if (Call->isConvergent())
1170       ExtraInfo |= InlineAsm::Extra_IsConvergent;
1171     ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
1172 
1173     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1174                                       TII.get(TargetOpcode::INLINEASM));
1175     MIB.addExternalSymbol(IA->getAsmString().c_str());
1176     MIB.addImm(ExtraInfo);
1177 
1178     const MDNode *SrcLoc = Call->getMetadata("srcloc");
1179     if (SrcLoc)
1180       MIB.addMetadata(SrcLoc);
1181 
1182     return true;
1183   }
1184 
1185   // Handle intrinsic function calls.
1186   if (const auto *II = dyn_cast<IntrinsicInst>(Call))
1187     return selectIntrinsicCall(II);
1188 
1189   return lowerCall(Call);
1190 }
1191 
1192 void FastISel::handleDbgInfo(const Instruction *II) {
1193   if (!II->hasDbgRecords())
1194     return;
1195 
1196   // Clear any metadata.
1197   MIMD = MIMetadata();
1198 
1199   // Reverse order of debug records, because fast-isel walks through backwards.
1200   for (DbgRecord &DR : llvm::reverse(II->getDbgRecordRange())) {
1201     flushLocalValueMap();
1202     recomputeInsertPt();
1203 
1204     if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1205       assert(DLR->getLabel() && "Missing label");
1206       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DLR->getDebugLoc(),
1207               TII.get(TargetOpcode::DBG_LABEL))
1208           .addMetadata(DLR->getLabel());
1209       continue;
1210     }
1211 
1212     DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1213 
1214     Value *V = nullptr;
1215     if (!DVR.hasArgList())
1216       V = DVR.getVariableLocationOp(0);
1217 
1218     bool Res = false;
1219     if (DVR.getType() == DbgVariableRecord::LocationType::Value ||
1220         DVR.getType() == DbgVariableRecord::LocationType::Assign) {
1221       Res = lowerDbgValue(V, DVR.getExpression(), DVR.getVariable(),
1222                           DVR.getDebugLoc());
1223     } else {
1224       assert(DVR.getType() == DbgVariableRecord::LocationType::Declare);
1225       if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR))
1226         continue;
1227       Res = lowerDbgDeclare(V, DVR.getExpression(), DVR.getVariable(),
1228                             DVR.getDebugLoc());
1229     }
1230 
1231     if (!Res)
1232       LLVM_DEBUG(dbgs() << "Dropping debug-info for " << DVR << "\n");
1233   }
1234 }
1235 
1236 bool FastISel::lowerDbgValue(const Value *V, DIExpression *Expr,
1237                              DILocalVariable *Var, const DebugLoc &DL) {
1238   // This form of DBG_VALUE is target-independent.
1239   const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
1240   if (!V || isa<UndefValue>(V)) {
1241     // DI is either undef or cannot produce a valid DBG_VALUE, so produce an
1242     // undef DBG_VALUE to terminate any prior location.
1243     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false, 0U, Var, Expr);
1244     return true;
1245   }
1246   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
1247     // See if there's an expression to constant-fold.
1248     if (Expr)
1249       std::tie(Expr, CI) = Expr->constantFold(CI);
1250     if (CI->getBitWidth() > 64)
1251       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1252           .addCImm(CI)
1253           .addImm(0U)
1254           .addMetadata(Var)
1255           .addMetadata(Expr);
1256     else
1257       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1258           .addImm(CI->getZExtValue())
1259           .addImm(0U)
1260           .addMetadata(Var)
1261           .addMetadata(Expr);
1262     return true;
1263   }
1264   if (const auto *CF = dyn_cast<ConstantFP>(V)) {
1265     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1266         .addFPImm(CF)
1267         .addImm(0U)
1268         .addMetadata(Var)
1269         .addMetadata(Expr);
1270     return true;
1271   }
1272   if (const auto *Arg = dyn_cast<Argument>(V);
1273       Arg && Expr && Expr->isEntryValue()) {
1274     // As per the Verifier, this case is only valid for swift async Args.
1275     assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
1276 
1277     Register Reg = getRegForValue(Arg);
1278     for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
1279       if (Reg == VirtReg || Reg == PhysReg) {
1280         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, false /*IsIndirect*/,
1281                 PhysReg, Var, Expr);
1282         return true;
1283       }
1284 
1285     LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
1286                          "couldn't find a physical register\n");
1287     return false;
1288   }
1289   if (auto SI = FuncInfo.StaticAllocaMap.find(dyn_cast<AllocaInst>(V));
1290       SI != FuncInfo.StaticAllocaMap.end()) {
1291     MachineOperand FrameIndexOp = MachineOperand::CreateFI(SI->second);
1292     bool IsIndirect = false;
1293     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, FrameIndexOp,
1294             Var, Expr);
1295     return true;
1296   }
1297   if (Register Reg = lookUpRegForValue(V)) {
1298     // FIXME: This does not handle register-indirect values at offset 0.
1299     if (!FuncInfo.MF->useDebugInstrRef()) {
1300       bool IsIndirect = false;
1301       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, IsIndirect, Reg, Var,
1302               Expr);
1303       return true;
1304     }
1305     // If using instruction referencing, produce this as a DBG_INSTR_REF,
1306     // to be later patched up by finalizeDebugInstrRefs.
1307     SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
1308         /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
1309         /* isKill */ false, /* isDead */ false,
1310         /* isUndef */ false, /* isEarlyClobber */ false,
1311         /* SubReg */ 0, /* isDebug */ true)});
1312     SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
1313     auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops);
1314     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1315             TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, MOs,
1316             Var, NewExpr);
1317     return true;
1318   }
1319   return false;
1320 }
1321 
1322 bool FastISel::lowerDbgDeclare(const Value *Address, DIExpression *Expr,
1323                                DILocalVariable *Var, const DebugLoc &DL) {
1324   if (!Address || isa<UndefValue>(Address)) {
1325     LLVM_DEBUG(dbgs() << "Dropping debug info (bad/undef address)\n");
1326     return false;
1327   }
1328 
1329   std::optional<MachineOperand> Op;
1330   if (Register Reg = lookUpRegForValue(Address))
1331     Op = MachineOperand::CreateReg(Reg, false);
1332 
1333   // If we have a VLA that has a "use" in a metadata node that's then used
1334   // here but it has no other uses, then we have a problem. E.g.,
1335   //
1336   //   int foo (const int *x) {
1337   //     char a[*x];
1338   //     return 0;
1339   //   }
1340   //
1341   // If we assign 'a' a vreg and fast isel later on has to use the selection
1342   // DAG isel, it will want to copy the value to the vreg. However, there are
1343   // no uses, which goes counter to what selection DAG isel expects.
1344   if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
1345       (!isa<AllocaInst>(Address) ||
1346        !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
1347     Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
1348                                    false);
1349 
1350   if (Op) {
1351     assert(Var->isValidLocationForIntrinsic(DL) &&
1352            "Expected inlined-at fields to agree");
1353     if (FuncInfo.MF->useDebugInstrRef() && Op->isReg()) {
1354       // If using instruction referencing, produce this as a DBG_INSTR_REF,
1355       // to be later patched up by finalizeDebugInstrRefs. Tack a deref onto
1356       // the expression, we don't have an "indirect" flag in DBG_INSTR_REF.
1357       SmallVector<uint64_t, 3> Ops(
1358           {dwarf::DW_OP_LLVM_arg, 0, dwarf::DW_OP_deref});
1359       auto *NewExpr = DIExpression::prependOpcodes(Expr, Ops);
1360       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1361               TII.get(TargetOpcode::DBG_INSTR_REF), /*IsIndirect*/ false, *Op,
1362               Var, NewExpr);
1363       return true;
1364     }
1365 
1366     // A dbg.declare describes the address of a source variable, so lower it
1367     // into an indirect DBG_VALUE.
1368     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1369             TII.get(TargetOpcode::DBG_VALUE), /*IsIndirect*/ true, *Op, Var,
1370             Expr);
1371     return true;
1372   }
1373 
1374   // We can't yet handle anything else here because it would require
1375   // generating code, thus altering codegen because of debug info.
1376   LLVM_DEBUG(
1377       dbgs() << "Dropping debug info (no materialized reg for address)\n");
1378   return false;
1379 }
1380 
1381 bool FastISel::selectIntrinsicCall(const IntrinsicInst *II) {
1382   switch (II->getIntrinsicID()) {
1383   default:
1384     break;
1385   // At -O0 we don't care about the lifetime intrinsics.
1386   case Intrinsic::lifetime_start:
1387   case Intrinsic::lifetime_end:
1388   // The donothing intrinsic does, well, nothing.
1389   case Intrinsic::donothing:
1390   // Neither does the sideeffect intrinsic.
1391   case Intrinsic::sideeffect:
1392   // Neither does the assume intrinsic; it's also OK not to codegen its operand.
1393   case Intrinsic::assume:
1394   // Neither does the llvm.experimental.noalias.scope.decl intrinsic
1395   case Intrinsic::experimental_noalias_scope_decl:
1396     return true;
1397   case Intrinsic::dbg_declare: {
1398     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
1399     assert(DI->getVariable() && "Missing variable");
1400     if (FuncInfo.PreprocessedDbgDeclares.contains(DI))
1401       return true;
1402 
1403     const Value *Address = DI->getAddress();
1404     if (!lowerDbgDeclare(Address, DI->getExpression(), DI->getVariable(),
1405                          MIMD.getDL()))
1406       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI);
1407 
1408     return true;
1409   }
1410   case Intrinsic::dbg_assign:
1411     // A dbg.assign is a dbg.value with more information, typically produced
1412     // during optimisation. If one reaches fastisel then something odd has
1413     // happened (such as an optimised function being always-inlined into an
1414     // optnone function). We will not be using the extra information in the
1415     // dbg.assign in that case, just use its dbg.value fields.
1416     [[fallthrough]];
1417   case Intrinsic::dbg_value: {
1418     // This form of DBG_VALUE is target-independent.
1419     const DbgValueInst *DI = cast<DbgValueInst>(II);
1420     const Value *V = DI->getValue();
1421     DIExpression *Expr = DI->getExpression();
1422     DILocalVariable *Var = DI->getVariable();
1423     if (DI->hasArgList())
1424       // Signal that we don't have a location for this.
1425       V = nullptr;
1426 
1427     assert(Var->isValidLocationForIntrinsic(MIMD.getDL()) &&
1428            "Expected inlined-at fields to agree");
1429 
1430     if (!lowerDbgValue(V, Expr, Var, MIMD.getDL()))
1431       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1432 
1433     return true;
1434   }
1435   case Intrinsic::dbg_label: {
1436     const DbgLabelInst *DI = cast<DbgLabelInst>(II);
1437     assert(DI->getLabel() && "Missing label");
1438     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1439             TII.get(TargetOpcode::DBG_LABEL)).addMetadata(DI->getLabel());
1440     return true;
1441   }
1442   case Intrinsic::objectsize:
1443     llvm_unreachable("llvm.objectsize.* should have been lowered already");
1444 
1445   case Intrinsic::is_constant:
1446     llvm_unreachable("llvm.is.constant.* should have been lowered already");
1447 
1448   case Intrinsic::allow_runtime_check:
1449   case Intrinsic::allow_ubsan_check: {
1450     Register ResultReg = getRegForValue(ConstantInt::getTrue(II->getType()));
1451     if (!ResultReg)
1452       return false;
1453     updateValueMap(II, ResultReg);
1454     return true;
1455   }
1456 
1457   case Intrinsic::launder_invariant_group:
1458   case Intrinsic::strip_invariant_group:
1459   case Intrinsic::expect:
1460   case Intrinsic::expect_with_probability: {
1461     Register ResultReg = getRegForValue(II->getArgOperand(0));
1462     if (!ResultReg)
1463       return false;
1464     updateValueMap(II, ResultReg);
1465     return true;
1466   }
1467   case Intrinsic::fake_use:
1468     // At -O0, we don't need fake use, so just ignore it.
1469     return true;
1470   case Intrinsic::experimental_stackmap:
1471     return selectStackmap(II);
1472   case Intrinsic::experimental_patchpoint_void:
1473   case Intrinsic::experimental_patchpoint:
1474     return selectPatchpoint(II);
1475 
1476   case Intrinsic::xray_customevent:
1477     return selectXRayCustomEvent(II);
1478   case Intrinsic::xray_typedevent:
1479     return selectXRayTypedEvent(II);
1480   }
1481 
1482   return fastLowerIntrinsicCall(II);
1483 }
1484 
1485 bool FastISel::selectCast(const User *I, unsigned Opcode) {
1486   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1487   EVT DstVT = TLI.getValueType(DL, I->getType());
1488 
1489   if (SrcVT == MVT::Other || !SrcVT.isSimple() || DstVT == MVT::Other ||
1490       !DstVT.isSimple())
1491     // Unhandled type. Halt "fast" selection and bail.
1492     return false;
1493 
1494   // Check if the destination type is legal.
1495   if (!TLI.isTypeLegal(DstVT))
1496     return false;
1497 
1498   // Check if the source operand is legal.
1499   if (!TLI.isTypeLegal(SrcVT))
1500     return false;
1501 
1502   Register InputReg = getRegForValue(I->getOperand(0));
1503   if (!InputReg)
1504     // Unhandled operand.  Halt "fast" selection and bail.
1505     return false;
1506 
1507   Register ResultReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
1508                                   Opcode, InputReg);
1509   if (!ResultReg)
1510     return false;
1511 
1512   updateValueMap(I, ResultReg);
1513   return true;
1514 }
1515 
1516 bool FastISel::selectBitCast(const User *I) {
1517   EVT SrcEVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1518   EVT DstEVT = TLI.getValueType(DL, I->getType());
1519   if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
1520       !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
1521     // Unhandled type. Halt "fast" selection and bail.
1522     return false;
1523 
1524   MVT SrcVT = SrcEVT.getSimpleVT();
1525   MVT DstVT = DstEVT.getSimpleVT();
1526   Register Op0 = getRegForValue(I->getOperand(0));
1527   if (!Op0) // Unhandled operand. Halt "fast" selection and bail.
1528     return false;
1529 
1530   // If the bitcast doesn't change the type, just use the operand value.
1531   if (SrcVT == DstVT) {
1532     updateValueMap(I, Op0);
1533     return true;
1534   }
1535 
1536   // Otherwise, select a BITCAST opcode.
1537   Register ResultReg = fastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0);
1538   if (!ResultReg)
1539     return false;
1540 
1541   updateValueMap(I, ResultReg);
1542   return true;
1543 }
1544 
1545 bool FastISel::selectFreeze(const User *I) {
1546   Register Reg = getRegForValue(I->getOperand(0));
1547   if (!Reg)
1548     // Unhandled operand.
1549     return false;
1550 
1551   EVT ETy = TLI.getValueType(DL, I->getOperand(0)->getType());
1552   if (ETy == MVT::Other || !TLI.isTypeLegal(ETy))
1553     // Unhandled type, bail out.
1554     return false;
1555 
1556   MVT Ty = ETy.getSimpleVT();
1557   const TargetRegisterClass *TyRegClass = TLI.getRegClassFor(Ty);
1558   Register ResultReg = createResultReg(TyRegClass);
1559   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1560           TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
1561 
1562   updateValueMap(I, ResultReg);
1563   return true;
1564 }
1565 
1566 // Remove local value instructions starting from the instruction after
1567 // SavedLastLocalValue to the current function insert point.
1568 void FastISel::removeDeadLocalValueCode(MachineInstr *SavedLastLocalValue)
1569 {
1570   MachineInstr *CurLastLocalValue = getLastLocalValue();
1571   if (CurLastLocalValue != SavedLastLocalValue) {
1572     // Find the first local value instruction to be deleted.
1573     // This is the instruction after SavedLastLocalValue if it is non-NULL.
1574     // Otherwise it's the first instruction in the block.
1575     MachineBasicBlock::iterator FirstDeadInst(SavedLastLocalValue);
1576     if (SavedLastLocalValue)
1577       ++FirstDeadInst;
1578     else
1579       FirstDeadInst = FuncInfo.MBB->getFirstNonPHI();
1580     setLastLocalValue(SavedLastLocalValue);
1581     removeDeadCode(FirstDeadInst, FuncInfo.InsertPt);
1582   }
1583 }
1584 
1585 bool FastISel::selectInstruction(const Instruction *I) {
1586   // Flush the local value map before starting each instruction.
1587   // This improves locality and debugging, and can reduce spills.
1588   // Reuse of values across IR instructions is relatively uncommon.
1589   flushLocalValueMap();
1590 
1591   MachineInstr *SavedLastLocalValue = getLastLocalValue();
1592   // Just before the terminator instruction, insert instructions to
1593   // feed PHI nodes in successor blocks.
1594   if (I->isTerminator()) {
1595     if (!handlePHINodesInSuccessorBlocks(I->getParent())) {
1596       // PHI node handling may have generated local value instructions,
1597       // even though it failed to handle all PHI nodes.
1598       // We remove these instructions because SelectionDAGISel will generate
1599       // them again.
1600       removeDeadLocalValueCode(SavedLastLocalValue);
1601       return false;
1602     }
1603   }
1604 
1605   // FastISel does not handle any operand bundles except OB_funclet.
1606   if (auto *Call = dyn_cast<CallBase>(I))
1607     for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i)
1608       if (Call->getOperandBundleAt(i).getTagID() != LLVMContext::OB_funclet)
1609         return false;
1610 
1611   MIMD = MIMetadata(*I);
1612 
1613   SavedInsertPt = FuncInfo.InsertPt;
1614 
1615   if (const auto *Call = dyn_cast<CallInst>(I)) {
1616     const Function *F = Call->getCalledFunction();
1617     LibFunc Func;
1618 
1619     // As a special case, don't handle calls to builtin library functions that
1620     // may be translated directly to target instructions.
1621     if (F && !F->hasLocalLinkage() && F->hasName() &&
1622         LibInfo->getLibFunc(F->getName(), Func) &&
1623         LibInfo->hasOptimizedCodeGen(Func))
1624       return false;
1625 
1626     // Don't handle Intrinsic::trap if a trap function is specified.
1627     if (F && F->getIntrinsicID() == Intrinsic::trap &&
1628         Call->hasFnAttr("trap-func-name"))
1629       return false;
1630   }
1631 
1632   // First, try doing target-independent selection.
1633   if (!SkipTargetIndependentISel) {
1634     if (selectOperator(I, I->getOpcode())) {
1635       ++NumFastIselSuccessIndependent;
1636       MIMD = {};
1637       return true;
1638     }
1639     // Remove dead code.
1640     recomputeInsertPt();
1641     if (SavedInsertPt != FuncInfo.InsertPt)
1642       removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1643     SavedInsertPt = FuncInfo.InsertPt;
1644   }
1645   // Next, try calling the target to attempt to handle the instruction.
1646   if (fastSelectInstruction(I)) {
1647     ++NumFastIselSuccessTarget;
1648     MIMD = {};
1649     return true;
1650   }
1651   // Remove dead code.
1652   recomputeInsertPt();
1653   if (SavedInsertPt != FuncInfo.InsertPt)
1654     removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
1655 
1656   MIMD = {};
1657   // Undo phi node updates, because they will be added again by SelectionDAG.
1658   if (I->isTerminator()) {
1659     // PHI node handling may have generated local value instructions.
1660     // We remove them because SelectionDAGISel will generate them again.
1661     removeDeadLocalValueCode(SavedLastLocalValue);
1662     FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
1663   }
1664   return false;
1665 }
1666 
1667 /// Emit an unconditional branch to the given block, unless it is the immediate
1668 /// (fall-through) successor, and update the CFG.
1669 void FastISel::fastEmitBranch(MachineBasicBlock *MSucc,
1670                               const DebugLoc &DbgLoc) {
1671   const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
1672   bool BlockHasMultipleInstrs = &BB->front() != &BB->back();
1673   // Handle legacy case of debug intrinsics
1674   if (BlockHasMultipleInstrs && !BB->getModule()->IsNewDbgInfoFormat)
1675     BlockHasMultipleInstrs = BB->sizeWithoutDebug() > 1;
1676   if (BlockHasMultipleInstrs && FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
1677     // For more accurate line information if this is the only non-debug
1678     // instruction in the block then emit it, otherwise we have the
1679     // unconditional fall-through case, which needs no instructions.
1680   } else {
1681     // The unconditional branch case.
1682     TII.insertBranch(*FuncInfo.MBB, MSucc, nullptr,
1683                      SmallVector<MachineOperand, 0>(), DbgLoc);
1684   }
1685   if (FuncInfo.BPI) {
1686     auto BranchProbability = FuncInfo.BPI->getEdgeProbability(
1687         FuncInfo.MBB->getBasicBlock(), MSucc->getBasicBlock());
1688     FuncInfo.MBB->addSuccessor(MSucc, BranchProbability);
1689   } else
1690     FuncInfo.MBB->addSuccessorWithoutProb(MSucc);
1691 }
1692 
1693 void FastISel::finishCondBranch(const BasicBlock *BranchBB,
1694                                 MachineBasicBlock *TrueMBB,
1695                                 MachineBasicBlock *FalseMBB) {
1696   // Add TrueMBB as successor unless it is equal to the FalseMBB: This can
1697   // happen in degenerate IR and MachineIR forbids to have a block twice in the
1698   // successor/predecessor lists.
1699   if (TrueMBB != FalseMBB) {
1700     if (FuncInfo.BPI) {
1701       auto BranchProbability =
1702           FuncInfo.BPI->getEdgeProbability(BranchBB, TrueMBB->getBasicBlock());
1703       FuncInfo.MBB->addSuccessor(TrueMBB, BranchProbability);
1704     } else
1705       FuncInfo.MBB->addSuccessorWithoutProb(TrueMBB);
1706   }
1707 
1708   fastEmitBranch(FalseMBB, MIMD.getDL());
1709 }
1710 
1711 /// Emit an FNeg operation.
1712 bool FastISel::selectFNeg(const User *I, const Value *In) {
1713   Register OpReg = getRegForValue(In);
1714   if (!OpReg)
1715     return false;
1716 
1717   // If the target has ISD::FNEG, use it.
1718   EVT VT = TLI.getValueType(DL, I->getType());
1719   Register ResultReg = fastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), ISD::FNEG,
1720                                   OpReg);
1721   if (ResultReg) {
1722     updateValueMap(I, ResultReg);
1723     return true;
1724   }
1725 
1726   // Bitcast the value to integer, twiddle the sign bit with xor,
1727   // and then bitcast it back to floating-point.
1728   if (VT.getSizeInBits() > 64)
1729     return false;
1730   EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
1731   if (!TLI.isTypeLegal(IntVT))
1732     return false;
1733 
1734   Register IntReg = fastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
1735                                ISD::BITCAST, OpReg);
1736   if (!IntReg)
1737     return false;
1738 
1739   Register IntResultReg = fastEmit_ri_(
1740       IntVT.getSimpleVT(), ISD::XOR, IntReg,
1741       UINT64_C(1) << (VT.getSizeInBits() - 1), IntVT.getSimpleVT());
1742   if (!IntResultReg)
1743     return false;
1744 
1745   ResultReg = fastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), ISD::BITCAST,
1746                          IntResultReg);
1747   if (!ResultReg)
1748     return false;
1749 
1750   updateValueMap(I, ResultReg);
1751   return true;
1752 }
1753 
1754 bool FastISel::selectExtractValue(const User *U) {
1755   const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
1756   if (!EVI)
1757     return false;
1758 
1759   // Make sure we only try to handle extracts with a legal result.  But also
1760   // allow i1 because it's easy.
1761   EVT RealVT = TLI.getValueType(DL, EVI->getType(), /*AllowUnknown=*/true);
1762   if (!RealVT.isSimple())
1763     return false;
1764   MVT VT = RealVT.getSimpleVT();
1765   if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
1766     return false;
1767 
1768   const Value *Op0 = EVI->getOperand(0);
1769   Type *AggTy = Op0->getType();
1770 
1771   // Get the base result register.
1772   unsigned ResultReg;
1773   DenseMap<const Value *, Register>::iterator I = FuncInfo.ValueMap.find(Op0);
1774   if (I != FuncInfo.ValueMap.end())
1775     ResultReg = I->second;
1776   else if (isa<Instruction>(Op0))
1777     ResultReg = FuncInfo.InitializeRegForValue(Op0);
1778   else
1779     return false; // fast-isel can't handle aggregate constants at the moment
1780 
1781   // Get the actual result register, which is an offset from the base register.
1782   unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
1783 
1784   SmallVector<EVT, 4> AggValueVTs;
1785   ComputeValueVTs(TLI, DL, AggTy, AggValueVTs);
1786 
1787   for (unsigned i = 0; i < VTIndex; i++)
1788     ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
1789 
1790   updateValueMap(EVI, ResultReg);
1791   return true;
1792 }
1793 
1794 bool FastISel::selectOperator(const User *I, unsigned Opcode) {
1795   switch (Opcode) {
1796   case Instruction::Add:
1797     return selectBinaryOp(I, ISD::ADD);
1798   case Instruction::FAdd:
1799     return selectBinaryOp(I, ISD::FADD);
1800   case Instruction::Sub:
1801     return selectBinaryOp(I, ISD::SUB);
1802   case Instruction::FSub:
1803     return selectBinaryOp(I, ISD::FSUB);
1804   case Instruction::Mul:
1805     return selectBinaryOp(I, ISD::MUL);
1806   case Instruction::FMul:
1807     return selectBinaryOp(I, ISD::FMUL);
1808   case Instruction::SDiv:
1809     return selectBinaryOp(I, ISD::SDIV);
1810   case Instruction::UDiv:
1811     return selectBinaryOp(I, ISD::UDIV);
1812   case Instruction::FDiv:
1813     return selectBinaryOp(I, ISD::FDIV);
1814   case Instruction::SRem:
1815     return selectBinaryOp(I, ISD::SREM);
1816   case Instruction::URem:
1817     return selectBinaryOp(I, ISD::UREM);
1818   case Instruction::FRem:
1819     return selectBinaryOp(I, ISD::FREM);
1820   case Instruction::Shl:
1821     return selectBinaryOp(I, ISD::SHL);
1822   case Instruction::LShr:
1823     return selectBinaryOp(I, ISD::SRL);
1824   case Instruction::AShr:
1825     return selectBinaryOp(I, ISD::SRA);
1826   case Instruction::And:
1827     return selectBinaryOp(I, ISD::AND);
1828   case Instruction::Or:
1829     return selectBinaryOp(I, ISD::OR);
1830   case Instruction::Xor:
1831     return selectBinaryOp(I, ISD::XOR);
1832 
1833   case Instruction::FNeg:
1834     return selectFNeg(I, I->getOperand(0));
1835 
1836   case Instruction::GetElementPtr:
1837     return selectGetElementPtr(I);
1838 
1839   case Instruction::Br: {
1840     const BranchInst *BI = cast<BranchInst>(I);
1841 
1842     if (BI->isUnconditional()) {
1843       const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1844       MachineBasicBlock *MSucc = FuncInfo.getMBB(LLVMSucc);
1845       fastEmitBranch(MSucc, BI->getDebugLoc());
1846       return true;
1847     }
1848 
1849     // Conditional branches are not handed yet.
1850     // Halt "fast" selection and bail.
1851     return false;
1852   }
1853 
1854   case Instruction::Unreachable: {
1855     if (TM.Options.TrapUnreachable) {
1856       if (TM.Options.NoTrapAfterNoreturn) {
1857         const auto *Call =
1858             dyn_cast_or_null<CallInst>(cast<Instruction>(I)->getPrevNode());
1859         if (Call && Call->doesNotReturn())
1860           return true;
1861       }
1862 
1863       return fastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0;
1864     }
1865     return true;
1866   }
1867 
1868   case Instruction::Alloca:
1869     // FunctionLowering has the static-sized case covered.
1870     if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1871       return true;
1872 
1873     // Dynamic-sized alloca is not handled yet.
1874     return false;
1875 
1876   case Instruction::Call:
1877     // On AIX, normal call lowering uses the DAG-ISEL path currently so that the
1878     // callee of the direct function call instruction will be mapped to the
1879     // symbol for the function's entry point, which is distinct from the
1880     // function descriptor symbol. The latter is the symbol whose XCOFF symbol
1881     // name is the C-linkage name of the source level function.
1882     // But fast isel still has the ability to do selection for intrinsics.
1883     if (TM.getTargetTriple().isOSAIX() && !isa<IntrinsicInst>(I))
1884       return false;
1885     return selectCall(I);
1886 
1887   case Instruction::BitCast:
1888     return selectBitCast(I);
1889 
1890   case Instruction::FPToSI:
1891     return selectCast(I, ISD::FP_TO_SINT);
1892   case Instruction::ZExt:
1893     return selectCast(I, ISD::ZERO_EXTEND);
1894   case Instruction::SExt:
1895     return selectCast(I, ISD::SIGN_EXTEND);
1896   case Instruction::Trunc:
1897     return selectCast(I, ISD::TRUNCATE);
1898   case Instruction::SIToFP:
1899     return selectCast(I, ISD::SINT_TO_FP);
1900 
1901   case Instruction::IntToPtr: // Deliberate fall-through.
1902   case Instruction::PtrToInt: {
1903     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
1904     EVT DstVT = TLI.getValueType(DL, I->getType());
1905     if (DstVT.bitsGT(SrcVT))
1906       return selectCast(I, ISD::ZERO_EXTEND);
1907     if (DstVT.bitsLT(SrcVT))
1908       return selectCast(I, ISD::TRUNCATE);
1909     Register Reg = getRegForValue(I->getOperand(0));
1910     if (!Reg)
1911       return false;
1912     updateValueMap(I, Reg);
1913     return true;
1914   }
1915 
1916   case Instruction::ExtractValue:
1917     return selectExtractValue(I);
1918 
1919   case Instruction::Freeze:
1920     return selectFreeze(I);
1921 
1922   case Instruction::PHI:
1923     llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1924 
1925   default:
1926     // Unhandled instruction. Halt "fast" selection and bail.
1927     return false;
1928   }
1929 }
1930 
1931 FastISel::FastISel(FunctionLoweringInfo &FuncInfo,
1932                    const TargetLibraryInfo *LibInfo,
1933                    bool SkipTargetIndependentISel)
1934     : FuncInfo(FuncInfo), MF(FuncInfo.MF), MRI(FuncInfo.MF->getRegInfo()),
1935       MFI(FuncInfo.MF->getFrameInfo()), MCP(*FuncInfo.MF->getConstantPool()),
1936       TM(FuncInfo.MF->getTarget()), DL(MF->getDataLayout()),
1937       TII(*MF->getSubtarget().getInstrInfo()),
1938       TLI(*MF->getSubtarget().getTargetLowering()),
1939       TRI(*MF->getSubtarget().getRegisterInfo()), LibInfo(LibInfo),
1940       SkipTargetIndependentISel(SkipTargetIndependentISel) {}
1941 
1942 FastISel::~FastISel() = default;
1943 
1944 bool FastISel::fastLowerArguments() { return false; }
1945 
1946 bool FastISel::fastLowerCall(CallLoweringInfo & /*CLI*/) { return false; }
1947 
1948 bool FastISel::fastLowerIntrinsicCall(const IntrinsicInst * /*II*/) {
1949   return false;
1950 }
1951 
1952 unsigned FastISel::fastEmit_(MVT, MVT, unsigned) { return 0; }
1953 
1954 unsigned FastISel::fastEmit_r(MVT, MVT, unsigned, unsigned /*Op0*/) {
1955   return 0;
1956 }
1957 
1958 unsigned FastISel::fastEmit_rr(MVT, MVT, unsigned, unsigned /*Op0*/,
1959                                unsigned /*Op1*/) {
1960   return 0;
1961 }
1962 
1963 unsigned FastISel::fastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1964   return 0;
1965 }
1966 
1967 unsigned FastISel::fastEmit_f(MVT, MVT, unsigned,
1968                               const ConstantFP * /*FPImm*/) {
1969   return 0;
1970 }
1971 
1972 unsigned FastISel::fastEmit_ri(MVT, MVT, unsigned, unsigned /*Op0*/,
1973                                uint64_t /*Imm*/) {
1974   return 0;
1975 }
1976 
1977 /// This method is a wrapper of fastEmit_ri. It first tries to emit an
1978 /// instruction with an immediate operand using fastEmit_ri.
1979 /// If that fails, it materializes the immediate into a register and try
1980 /// fastEmit_rr instead.
1981 Register FastISel::fastEmit_ri_(MVT VT, unsigned Opcode, unsigned Op0,
1982                                 uint64_t Imm, MVT ImmType) {
1983   // If this is a multiply by a power of two, emit this as a shift left.
1984   if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1985     Opcode = ISD::SHL;
1986     Imm = Log2_64(Imm);
1987   } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1988     // div x, 8 -> srl x, 3
1989     Opcode = ISD::SRL;
1990     Imm = Log2_64(Imm);
1991   }
1992 
1993   // Horrible hack (to be removed), check to make sure shift amounts are
1994   // in-range.
1995   if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1996       Imm >= VT.getSizeInBits())
1997     return 0;
1998 
1999   // First check if immediate type is legal. If not, we can't use the ri form.
2000   Register ResultReg = fastEmit_ri(VT, VT, Opcode, Op0, Imm);
2001   if (ResultReg)
2002     return ResultReg;
2003   Register MaterialReg = fastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
2004   if (!MaterialReg) {
2005     // This is a bit ugly/slow, but failing here means falling out of
2006     // fast-isel, which would be very slow.
2007     IntegerType *ITy =
2008         IntegerType::get(FuncInfo.Fn->getContext(), VT.getSizeInBits());
2009     MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
2010     if (!MaterialReg)
2011       return 0;
2012   }
2013   return fastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
2014 }
2015 
2016 Register FastISel::createResultReg(const TargetRegisterClass *RC) {
2017   return MRI.createVirtualRegister(RC);
2018 }
2019 
2020 Register FastISel::constrainOperandRegClass(const MCInstrDesc &II, Register Op,
2021                                             unsigned OpNum) {
2022   if (Op.isVirtual()) {
2023     const TargetRegisterClass *RegClass =
2024         TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF);
2025     if (!MRI.constrainRegClass(Op, RegClass)) {
2026       // If it's not legal to COPY between the register classes, something
2027       // has gone very wrong before we got here.
2028       Register NewOp = createResultReg(RegClass);
2029       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2030               TII.get(TargetOpcode::COPY), NewOp).addReg(Op);
2031       return NewOp;
2032     }
2033   }
2034   return Op;
2035 }
2036 
2037 Register FastISel::fastEmitInst_(unsigned MachineInstOpcode,
2038                                  const TargetRegisterClass *RC) {
2039   Register ResultReg = createResultReg(RC);
2040   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2041 
2042   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg);
2043   return ResultReg;
2044 }
2045 
2046 Register FastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2047                                   const TargetRegisterClass *RC, unsigned Op0) {
2048   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2049 
2050   Register ResultReg = createResultReg(RC);
2051   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2052 
2053   if (II.getNumDefs() >= 1)
2054     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2055         .addReg(Op0);
2056   else {
2057     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2058         .addReg(Op0);
2059     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2060             ResultReg)
2061         .addReg(II.implicit_defs()[0]);
2062   }
2063 
2064   return ResultReg;
2065 }
2066 
2067 Register FastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2068                                    const TargetRegisterClass *RC, unsigned Op0,
2069                                    unsigned Op1) {
2070   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2071 
2072   Register ResultReg = createResultReg(RC);
2073   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2074   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2075 
2076   if (II.getNumDefs() >= 1)
2077     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2078         .addReg(Op0)
2079         .addReg(Op1);
2080   else {
2081     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2082         .addReg(Op0)
2083         .addReg(Op1);
2084     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2085             ResultReg)
2086         .addReg(II.implicit_defs()[0]);
2087   }
2088   return ResultReg;
2089 }
2090 
2091 Register FastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
2092                                     const TargetRegisterClass *RC, unsigned Op0,
2093                                     unsigned Op1, unsigned Op2) {
2094   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2095 
2096   Register ResultReg = createResultReg(RC);
2097   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2098   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2099   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
2100 
2101   if (II.getNumDefs() >= 1)
2102     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2103         .addReg(Op0)
2104         .addReg(Op1)
2105         .addReg(Op2);
2106   else {
2107     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2108         .addReg(Op0)
2109         .addReg(Op1)
2110         .addReg(Op2);
2111     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2112             ResultReg)
2113         .addReg(II.implicit_defs()[0]);
2114   }
2115   return ResultReg;
2116 }
2117 
2118 Register FastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2119                                    const TargetRegisterClass *RC, unsigned Op0,
2120                                    uint64_t Imm) {
2121   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2122 
2123   Register ResultReg = createResultReg(RC);
2124   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2125 
2126   if (II.getNumDefs() >= 1)
2127     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2128         .addReg(Op0)
2129         .addImm(Imm);
2130   else {
2131     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2132         .addReg(Op0)
2133         .addImm(Imm);
2134     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2135             ResultReg)
2136         .addReg(II.implicit_defs()[0]);
2137   }
2138   return ResultReg;
2139 }
2140 
2141 Register FastISel::fastEmitInst_rii(unsigned MachineInstOpcode,
2142                                     const TargetRegisterClass *RC, unsigned Op0,
2143                                     uint64_t Imm1, uint64_t Imm2) {
2144   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2145 
2146   Register ResultReg = createResultReg(RC);
2147   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2148 
2149   if (II.getNumDefs() >= 1)
2150     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2151         .addReg(Op0)
2152         .addImm(Imm1)
2153         .addImm(Imm2);
2154   else {
2155     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2156         .addReg(Op0)
2157         .addImm(Imm1)
2158         .addImm(Imm2);
2159     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2160             ResultReg)
2161         .addReg(II.implicit_defs()[0]);
2162   }
2163   return ResultReg;
2164 }
2165 
2166 Register FastISel::fastEmitInst_f(unsigned MachineInstOpcode,
2167                                   const TargetRegisterClass *RC,
2168                                   const ConstantFP *FPImm) {
2169   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2170 
2171   Register ResultReg = createResultReg(RC);
2172 
2173   if (II.getNumDefs() >= 1)
2174     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2175         .addFPImm(FPImm);
2176   else {
2177     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2178         .addFPImm(FPImm);
2179     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2180             ResultReg)
2181         .addReg(II.implicit_defs()[0]);
2182   }
2183   return ResultReg;
2184 }
2185 
2186 Register FastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
2187                                     const TargetRegisterClass *RC, unsigned Op0,
2188                                     unsigned Op1, uint64_t Imm) {
2189   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2190 
2191   Register ResultReg = createResultReg(RC);
2192   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2193   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2194 
2195   if (II.getNumDefs() >= 1)
2196     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2197         .addReg(Op0)
2198         .addReg(Op1)
2199         .addImm(Imm);
2200   else {
2201     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2202         .addReg(Op0)
2203         .addReg(Op1)
2204         .addImm(Imm);
2205     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2206             ResultReg)
2207         .addReg(II.implicit_defs()[0]);
2208   }
2209   return ResultReg;
2210 }
2211 
2212 Register FastISel::fastEmitInst_i(unsigned MachineInstOpcode,
2213                                   const TargetRegisterClass *RC, uint64_t Imm) {
2214   Register ResultReg = createResultReg(RC);
2215   const MCInstrDesc &II = TII.get(MachineInstOpcode);
2216 
2217   if (II.getNumDefs() >= 1)
2218     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
2219         .addImm(Imm);
2220   else {
2221     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II).addImm(Imm);
2222     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2223             ResultReg)
2224         .addReg(II.implicit_defs()[0]);
2225   }
2226   return ResultReg;
2227 }
2228 
2229 Register FastISel::fastEmitInst_extractsubreg(MVT RetVT, unsigned Op0,
2230                                               uint32_t Idx) {
2231   Register ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
2232   assert(Register::isVirtualRegister(Op0) &&
2233          "Cannot yet extract from physregs");
2234   const TargetRegisterClass *RC = MRI.getRegClass(Op0);
2235   MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
2236   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
2237           ResultReg).addReg(Op0, 0, Idx);
2238   return ResultReg;
2239 }
2240 
2241 /// Emit MachineInstrs to compute the value of Op with all but the least
2242 /// significant bit set to zero.
2243 Register FastISel::fastEmitZExtFromI1(MVT VT, unsigned Op0) {
2244   return fastEmit_ri(VT, VT, ISD::AND, Op0, 1);
2245 }
2246 
2247 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
2248 /// Emit code to ensure constants are copied into registers when needed.
2249 /// Remember the virtual registers that need to be added to the Machine PHI
2250 /// nodes as input.  We cannot just directly add them, because expansion
2251 /// might result in multiple MBB's for one BB.  As such, the start of the
2252 /// BB might correspond to a different MBB than the end.
2253 bool FastISel::handlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
2254   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
2255   FuncInfo.OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
2256 
2257   // Check successor nodes' PHI nodes that expect a constant to be available
2258   // from this block.
2259   for (const BasicBlock *SuccBB : successors(LLVMBB)) {
2260     if (!isa<PHINode>(SuccBB->begin()))
2261       continue;
2262     MachineBasicBlock *SuccMBB = FuncInfo.getMBB(SuccBB);
2263 
2264     // If this terminator has multiple identical successors (common for
2265     // switches), only handle each succ once.
2266     if (!SuccsHandled.insert(SuccMBB).second)
2267       continue;
2268 
2269     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
2270 
2271     // At this point we know that there is a 1-1 correspondence between LLVM PHI
2272     // nodes and Machine PHI nodes, but the incoming operands have not been
2273     // emitted yet.
2274     for (const PHINode &PN : SuccBB->phis()) {
2275       // Ignore dead phi's.
2276       if (PN.use_empty())
2277         continue;
2278 
2279       // Only handle legal types. Two interesting things to note here. First,
2280       // by bailing out early, we may leave behind some dead instructions,
2281       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
2282       // own moves. Second, this check is necessary because FastISel doesn't
2283       // use CreateRegs to create registers, so it always creates
2284       // exactly one register for each non-void instruction.
2285       EVT VT = TLI.getValueType(DL, PN.getType(), /*AllowUnknown=*/true);
2286       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
2287         // Handle integer promotions, though, because they're common and easy.
2288         if (!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)) {
2289           FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2290           return false;
2291         }
2292       }
2293 
2294       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
2295 
2296       // Set the DebugLoc for the copy. Use the location of the operand if
2297       // there is one; otherwise no location, flushLocalValueMap will fix it.
2298       MIMD = {};
2299       if (const auto *Inst = dyn_cast<Instruction>(PHIOp))
2300         MIMD = MIMetadata(*Inst);
2301 
2302       Register Reg = getRegForValue(PHIOp);
2303       if (!Reg) {
2304         FuncInfo.PHINodesToUpdate.resize(FuncInfo.OrigNumPHINodesToUpdate);
2305         return false;
2306       }
2307       FuncInfo.PHINodesToUpdate.push_back(std::make_pair(&*MBBI++, Reg));
2308       MIMD = {};
2309     }
2310   }
2311 
2312   return true;
2313 }
2314 
2315 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
2316   assert(LI->hasOneUse() &&
2317          "tryToFoldLoad expected a LoadInst with a single use");
2318   // We know that the load has a single use, but don't know what it is.  If it
2319   // isn't one of the folded instructions, then we can't succeed here.  Handle
2320   // this by scanning the single-use users of the load until we get to FoldInst.
2321   unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs.
2322 
2323   const Instruction *TheUser = LI->user_back();
2324   while (TheUser != FoldInst && // Scan up until we find FoldInst.
2325          // Stay in the right block.
2326          TheUser->getParent() == FoldInst->getParent() &&
2327          --MaxUsers) { // Don't scan too far.
2328     // If there are multiple or no uses of this instruction, then bail out.
2329     if (!TheUser->hasOneUse())
2330       return false;
2331 
2332     TheUser = TheUser->user_back();
2333   }
2334 
2335   // If we didn't find the fold instruction, then we failed to collapse the
2336   // sequence.
2337   if (TheUser != FoldInst)
2338     return false;
2339 
2340   // Don't try to fold volatile loads.  Target has to deal with alignment
2341   // constraints.
2342   if (LI->isVolatile())
2343     return false;
2344 
2345   // Figure out which vreg this is going into.  If there is no assigned vreg yet
2346   // then there actually was no reference to it.  Perhaps the load is referenced
2347   // by a dead instruction.
2348   Register LoadReg = getRegForValue(LI);
2349   if (!LoadReg)
2350     return false;
2351 
2352   // We can't fold if this vreg has no uses or more than one use.  Multiple uses
2353   // may mean that the instruction got lowered to multiple MIs, or the use of
2354   // the loaded value ended up being multiple operands of the result.
2355   if (!MRI.hasOneUse(LoadReg))
2356     return false;
2357 
2358   // If the register has fixups, there may be additional uses through a
2359   // different alias of the register.
2360   if (FuncInfo.RegsWithFixups.contains(LoadReg))
2361     return false;
2362 
2363   MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
2364   MachineInstr *User = RI->getParent();
2365 
2366   // Set the insertion point properly.  Folding the load can cause generation of
2367   // other random instructions (like sign extends) for addressing modes; make
2368   // sure they get inserted in a logical place before the new instruction.
2369   FuncInfo.InsertPt = User;
2370   FuncInfo.MBB = User->getParent();
2371 
2372   // Ask the target to try folding the load.
2373   return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
2374 }
2375 
2376 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
2377   // Must be an add.
2378   if (!isa<AddOperator>(Add))
2379     return false;
2380   // Type size needs to match.
2381   if (DL.getTypeSizeInBits(GEP->getType()) !=
2382       DL.getTypeSizeInBits(Add->getType()))
2383     return false;
2384   // Must be in the same basic block.
2385   if (isa<Instruction>(Add) &&
2386       FuncInfo.getMBB(cast<Instruction>(Add)->getParent()) != FuncInfo.MBB)
2387     return false;
2388   // Must have a constant operand.
2389   return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
2390 }
2391 
2392 MachineMemOperand *
2393 FastISel::createMachineMemOperandFor(const Instruction *I) const {
2394   const Value *Ptr;
2395   Type *ValTy;
2396   MaybeAlign Alignment;
2397   MachineMemOperand::Flags Flags;
2398   bool IsVolatile;
2399 
2400   if (const auto *LI = dyn_cast<LoadInst>(I)) {
2401     Alignment = LI->getAlign();
2402     IsVolatile = LI->isVolatile();
2403     Flags = MachineMemOperand::MOLoad;
2404     Ptr = LI->getPointerOperand();
2405     ValTy = LI->getType();
2406   } else if (const auto *SI = dyn_cast<StoreInst>(I)) {
2407     Alignment = SI->getAlign();
2408     IsVolatile = SI->isVolatile();
2409     Flags = MachineMemOperand::MOStore;
2410     Ptr = SI->getPointerOperand();
2411     ValTy = SI->getValueOperand()->getType();
2412   } else
2413     return nullptr;
2414 
2415   bool IsNonTemporal = I->hasMetadata(LLVMContext::MD_nontemporal);
2416   bool IsInvariant = I->hasMetadata(LLVMContext::MD_invariant_load);
2417   bool IsDereferenceable = I->hasMetadata(LLVMContext::MD_dereferenceable);
2418   const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range);
2419 
2420   AAMDNodes AAInfo = I->getAAMetadata();
2421 
2422   if (!Alignment) // Ensure that codegen never sees alignment 0.
2423     Alignment = DL.getABITypeAlign(ValTy);
2424 
2425   unsigned Size = DL.getTypeStoreSize(ValTy);
2426 
2427   if (IsVolatile)
2428     Flags |= MachineMemOperand::MOVolatile;
2429   if (IsNonTemporal)
2430     Flags |= MachineMemOperand::MONonTemporal;
2431   if (IsDereferenceable)
2432     Flags |= MachineMemOperand::MODereferenceable;
2433   if (IsInvariant)
2434     Flags |= MachineMemOperand::MOInvariant;
2435 
2436   return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size,
2437                                            *Alignment, AAInfo, Ranges);
2438 }
2439 
2440 CmpInst::Predicate FastISel::optimizeCmpPredicate(const CmpInst *CI) const {
2441   // If both operands are the same, then try to optimize or fold the cmp.
2442   CmpInst::Predicate Predicate = CI->getPredicate();
2443   if (CI->getOperand(0) != CI->getOperand(1))
2444     return Predicate;
2445 
2446   switch (Predicate) {
2447   default: llvm_unreachable("Invalid predicate!");
2448   case CmpInst::FCMP_FALSE: Predicate = CmpInst::FCMP_FALSE; break;
2449   case CmpInst::FCMP_OEQ:   Predicate = CmpInst::FCMP_ORD;   break;
2450   case CmpInst::FCMP_OGT:   Predicate = CmpInst::FCMP_FALSE; break;
2451   case CmpInst::FCMP_OGE:   Predicate = CmpInst::FCMP_ORD;   break;
2452   case CmpInst::FCMP_OLT:   Predicate = CmpInst::FCMP_FALSE; break;
2453   case CmpInst::FCMP_OLE:   Predicate = CmpInst::FCMP_ORD;   break;
2454   case CmpInst::FCMP_ONE:   Predicate = CmpInst::FCMP_FALSE; break;
2455   case CmpInst::FCMP_ORD:   Predicate = CmpInst::FCMP_ORD;   break;
2456   case CmpInst::FCMP_UNO:   Predicate = CmpInst::FCMP_UNO;   break;
2457   case CmpInst::FCMP_UEQ:   Predicate = CmpInst::FCMP_TRUE;  break;
2458   case CmpInst::FCMP_UGT:   Predicate = CmpInst::FCMP_UNO;   break;
2459   case CmpInst::FCMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2460   case CmpInst::FCMP_ULT:   Predicate = CmpInst::FCMP_UNO;   break;
2461   case CmpInst::FCMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2462   case CmpInst::FCMP_UNE:   Predicate = CmpInst::FCMP_UNO;   break;
2463   case CmpInst::FCMP_TRUE:  Predicate = CmpInst::FCMP_TRUE;  break;
2464 
2465   case CmpInst::ICMP_EQ:    Predicate = CmpInst::FCMP_TRUE;  break;
2466   case CmpInst::ICMP_NE:    Predicate = CmpInst::FCMP_FALSE; break;
2467   case CmpInst::ICMP_UGT:   Predicate = CmpInst::FCMP_FALSE; break;
2468   case CmpInst::ICMP_UGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2469   case CmpInst::ICMP_ULT:   Predicate = CmpInst::FCMP_FALSE; break;
2470   case CmpInst::ICMP_ULE:   Predicate = CmpInst::FCMP_TRUE;  break;
2471   case CmpInst::ICMP_SGT:   Predicate = CmpInst::FCMP_FALSE; break;
2472   case CmpInst::ICMP_SGE:   Predicate = CmpInst::FCMP_TRUE;  break;
2473   case CmpInst::ICMP_SLT:   Predicate = CmpInst::FCMP_FALSE; break;
2474   case CmpInst::ICMP_SLE:   Predicate = CmpInst::FCMP_TRUE;  break;
2475   }
2476 
2477   return Predicate;
2478 }
2479