xref: /llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp (revision 1d5ce614a7cd266909169bc251d7b1aee743e5a3)
1 //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts selects to conditional jumps when profitable.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectOptimize.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/BlockFrequencyInfo.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ProfileSummaryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSchedule.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/ProfDataUtils.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/ScaledNumber.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Transforms/Utils/SizeOpts.h"
40 #include <algorithm>
41 #include <queue>
42 #include <stack>
43 
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 #define DEBUG_TYPE "select-optimize"
48 
49 STATISTIC(NumSelectOptAnalyzed,
50           "Number of select groups considered for conversion to branch");
51 STATISTIC(NumSelectConvertedExpColdOperand,
52           "Number of select groups converted due to expensive cold operand");
53 STATISTIC(NumSelectConvertedHighPred,
54           "Number of select groups converted due to high-predictability");
55 STATISTIC(NumSelectUnPred,
56           "Number of select groups not converted due to unpredictability");
57 STATISTIC(NumSelectColdBB,
58           "Number of select groups not converted due to cold basic block");
59 STATISTIC(NumSelectConvertedLoop,
60           "Number of select groups converted due to loop-level analysis");
61 STATISTIC(NumSelectsConverted, "Number of selects converted");
62 
63 static cl::opt<unsigned> ColdOperandThreshold(
64     "cold-operand-threshold",
65     cl::desc("Maximum frequency of path for an operand to be considered cold."),
66     cl::init(20), cl::Hidden);
67 
68 static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
69     "cold-operand-max-cost-multiplier",
70     cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
71              "slice of a cold operand to be considered inexpensive."),
72     cl::init(1), cl::Hidden);
73 
74 static cl::opt<unsigned>
75     GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
76                           cl::desc("Gradient gain threshold (%)."),
77                           cl::init(25), cl::Hidden);
78 
79 static cl::opt<unsigned>
80     GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
81                        cl::desc("Minimum gain per loop (in cycles) threshold."),
82                        cl::init(4), cl::Hidden);
83 
84 static cl::opt<unsigned> GainRelativeThreshold(
85     "select-opti-loop-relative-gain-threshold",
86     cl::desc(
87         "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
88     cl::init(8), cl::Hidden);
89 
90 static cl::opt<unsigned> MispredictDefaultRate(
91     "mispredict-default-rate", cl::Hidden, cl::init(25),
92     cl::desc("Default mispredict rate (initialized to 25%)."));
93 
94 static cl::opt<bool>
95     DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
96                                cl::init(false),
97                                cl::desc("Disable loop-level heuristics."));
98 
99 namespace {
100 
101 class SelectOptimizeImpl {
102   const TargetMachine *TM = nullptr;
103   const TargetSubtargetInfo *TSI = nullptr;
104   const TargetLowering *TLI = nullptr;
105   const TargetTransformInfo *TTI = nullptr;
106   const LoopInfo *LI = nullptr;
107   BlockFrequencyInfo *BFI;
108   ProfileSummaryInfo *PSI = nullptr;
109   OptimizationRemarkEmitter *ORE = nullptr;
110   TargetSchedModel TSchedModel;
111 
112 public:
113   SelectOptimizeImpl() = default;
114   SelectOptimizeImpl(const TargetMachine *TM) : TM(TM){};
115   PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
116   bool runOnFunction(Function &F, Pass &P);
117 
118   using Scaled64 = ScaledNumber<uint64_t>;
119 
120   struct CostInfo {
121     /// Predicated cost (with selects as conditional moves).
122     Scaled64 PredCost;
123     /// Non-predicated cost (with selects converted to branches).
124     Scaled64 NonPredCost;
125   };
126 
127   /// SelectLike is an abstraction over SelectInst and other operations that can
128   /// act like selects. For example Or(Zext(icmp), X) can be treated like
129   /// select(icmp, X|1, X).
130   class SelectLike {
131     /// The select (/or) instruction.
132     Instruction *I;
133     /// Whether this select is inverted, "not(cond), FalseVal, TrueVal", as
134     /// opposed to the original condition.
135     bool Inverted = false;
136 
137     /// The index of the operand that depends on condition. Only for select-like
138     /// instruction such as Or/Add.
139     unsigned CondIdx;
140 
141   public:
142     SelectLike(Instruction *I, bool Inverted = false, unsigned CondIdx = 0)
143         : I(I), Inverted(Inverted), CondIdx(CondIdx) {}
144 
145     Instruction *getI() { return I; }
146     const Instruction *getI() const { return I; }
147 
148     Type *getType() const { return I->getType(); }
149 
150     unsigned getConditionOpIndex() { return CondIdx; };
151 
152     /// Return the true value for the SelectLike instruction. Note this may not
153     /// exist for all SelectLike instructions. For example, for `or(zext(c), x)`
154     /// the true value would be `or(x,1)`. As this value does not exist, nullptr
155     /// is returned.
156     Value *getTrueValue(bool HonorInverts = true) const {
157       if (Inverted && HonorInverts)
158         return getFalseValue(/*HonorInverts=*/false);
159       if (auto *Sel = dyn_cast<SelectInst>(I))
160         return Sel->getTrueValue();
161       // Or(zext) case - The true value is Or(X), so return nullptr as the value
162       // does not yet exist.
163       if (isa<BinaryOperator>(I))
164         return nullptr;
165 
166       llvm_unreachable("Unhandled case in getTrueValue");
167     }
168 
169     /// Return the false value for the SelectLike instruction. For example the
170     /// getFalseValue of a select or `x` in `or(zext(c), x)` (which is
171     /// `select(c, x|1, x)`)
172     Value *getFalseValue(bool HonorInverts = true) const {
173       if (Inverted && HonorInverts)
174         return getTrueValue(/*HonorInverts=*/false);
175       if (auto *Sel = dyn_cast<SelectInst>(I))
176         return Sel->getFalseValue();
177       // We are on the branch where the condition is zero, which means BinOp
178       // does not perform any computation, and we can simply return the operand
179       // that is not related to the condition
180       if (auto *BO = dyn_cast<BinaryOperator>(I))
181         return BO->getOperand(1 - CondIdx);
182 
183       llvm_unreachable("Unhandled case in getFalseValue");
184     }
185 
186     /// Return the NonPredCost cost of the op on \p isTrue branch, given the
187     /// costs in \p InstCostMap. This may need to be generated for select-like
188     /// instructions.
189     Scaled64 getOpCostOnBranch(
190         bool IsTrue, const DenseMap<const Instruction *, CostInfo> &InstCostMap,
191         const TargetTransformInfo *TTI) {
192       auto *V = IsTrue ? getTrueValue() : getFalseValue();
193       if (V) {
194         if (auto *IV = dyn_cast<Instruction>(V)) {
195           auto It = InstCostMap.find(IV);
196           return It != InstCostMap.end() ? It->second.NonPredCost
197                                          : Scaled64::getZero();
198         }
199         return Scaled64::getZero();
200       }
201       // If getTrue(False)Value() return nullptr, it means we are dealing with
202       // select-like instructions on the branch where the actual computation is
203       // happening. In that case the cost is equal to the cost of computation +
204       // cost of non-dependant on condition operand
205       InstructionCost Cost = TTI->getArithmeticInstrCost(
206           getI()->getOpcode(), I->getType(), TargetTransformInfo::TCK_Latency,
207           {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
208           {TTI::OK_UniformConstantValue, TTI::OP_PowerOf2});
209       auto TotalCost = Scaled64::get(*Cost.getValue());
210       if (auto *OpI = dyn_cast<Instruction>(I->getOperand(1 - CondIdx))) {
211         auto It = InstCostMap.find(OpI);
212         if (It != InstCostMap.end())
213           TotalCost += It->second.NonPredCost;
214       }
215       return TotalCost;
216     }
217   };
218 
219 private:
220   // Select groups consist of consecutive select-like instructions with the same
221   // condition. Between select-likes could be any number of auxiliary
222   // instructions related to the condition like not, zext, ashr/lshr
223   struct SelectGroup {
224     Value *Condition;
225     SmallVector<SelectLike, 2> Selects;
226   };
227   using SelectGroups = SmallVector<SelectGroup, 2>;
228 
229   // Converts select instructions of a function to conditional jumps when deemed
230   // profitable. Returns true if at least one select was converted.
231   bool optimizeSelects(Function &F);
232 
233   // Heuristics for determining which select instructions can be profitably
234   // conveted to branches. Separate heuristics for selects in inner-most loops
235   // and the rest of code regions (base heuristics for non-inner-most loop
236   // regions).
237   void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
238   void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
239 
240   // Converts to branches the select groups that were deemed
241   // profitable-to-convert.
242   void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
243 
244   // Splits selects of a given basic block into select groups.
245   void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
246 
247   // Determines for which select groups it is profitable converting to branches
248   // (base and inner-most-loop heuristics).
249   void findProfitableSIGroupsBase(SelectGroups &SIGroups,
250                                   SelectGroups &ProfSIGroups);
251   void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
252                                         SelectGroups &ProfSIGroups);
253 
254   // Determines if a select group should be converted to a branch (base
255   // heuristics).
256   bool isConvertToBranchProfitableBase(const SelectGroup &ASI);
257 
258   // Returns true if there are expensive instructions in the cold value
259   // operand's (if any) dependence slice of any of the selects of the given
260   // group.
261   bool hasExpensiveColdOperand(const SelectGroup &ASI);
262 
263   // For a given source instruction, collect its backwards dependence slice
264   // consisting of instructions exclusively computed for producing the operands
265   // of the source instruction.
266   void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
267                              Instruction *SI, bool ForSinking = false);
268 
269   // Returns true if the condition of the select is highly predictable.
270   bool isSelectHighlyPredictable(const SelectLike SI);
271 
272   // Loop-level checks to determine if a non-predicated version (with branches)
273   // of the given loop is more profitable than its predicated version.
274   bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
275 
276   // Computes instruction and loop-critical-path costs for both the predicated
277   // and non-predicated version of the given loop.
278   bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
279                         DenseMap<const Instruction *, CostInfo> &InstCostMap,
280                         CostInfo *LoopCost);
281 
282   // Returns a set of all the select instructions in the given select groups.
283   SmallDenseMap<const Instruction *, SelectLike, 2>
284   getSImap(const SelectGroups &SIGroups);
285 
286   // Returns a map from select-like instructions to the corresponding select
287   // group.
288   SmallDenseMap<const Instruction *, const SelectGroup *, 2>
289   getSGmap(const SelectGroups &SIGroups);
290 
291   // Returns the latency cost of a given instruction.
292   std::optional<uint64_t> computeInstCost(const Instruction *I);
293 
294   // Returns the misprediction cost of a given select when converted to branch.
295   Scaled64 getMispredictionCost(const SelectLike SI, const Scaled64 CondCost);
296 
297   // Returns the cost of a branch when the prediction is correct.
298   Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
299                                 const SelectLike SI);
300 
301   // Returns true if the target architecture supports lowering a given select.
302   bool isSelectKindSupported(const SelectLike SI);
303 };
304 
305 class SelectOptimize : public FunctionPass {
306   SelectOptimizeImpl Impl;
307 
308 public:
309   static char ID;
310 
311   SelectOptimize() : FunctionPass(ID) {
312     initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
313   }
314 
315   bool runOnFunction(Function &F) override {
316     return Impl.runOnFunction(F, *this);
317   }
318 
319   void getAnalysisUsage(AnalysisUsage &AU) const override {
320     AU.addRequired<ProfileSummaryInfoWrapperPass>();
321     AU.addRequired<TargetPassConfig>();
322     AU.addRequired<TargetTransformInfoWrapperPass>();
323     AU.addRequired<LoopInfoWrapperPass>();
324     AU.addRequired<BlockFrequencyInfoWrapperPass>();
325     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
326   }
327 };
328 
329 } // namespace
330 
331 PreservedAnalyses SelectOptimizePass::run(Function &F,
332                                           FunctionAnalysisManager &FAM) {
333   SelectOptimizeImpl Impl(TM);
334   return Impl.run(F, FAM);
335 }
336 
337 char SelectOptimize::ID = 0;
338 
339 INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
340                       false)
341 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
342 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
343 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
344 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
345 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
346 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
347 INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
348                     false)
349 
350 FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
351 
352 PreservedAnalyses SelectOptimizeImpl::run(Function &F,
353                                           FunctionAnalysisManager &FAM) {
354   TSI = TM->getSubtargetImpl(F);
355   TLI = TSI->getTargetLowering();
356 
357   // If none of the select types are supported then skip this pass.
358   // This is an optimization pass. Legality issues will be handled by
359   // instruction selection.
360   if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
361       !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
362       !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
363     return PreservedAnalyses::all();
364 
365   TTI = &FAM.getResult<TargetIRAnalysis>(F);
366   if (!TTI->enableSelectOptimize())
367     return PreservedAnalyses::all();
368 
369   PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
370             .getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
371   assert(PSI && "This pass requires module analysis pass `profile-summary`!");
372   BFI = &FAM.getResult<BlockFrequencyAnalysis>(F);
373 
374   // When optimizing for size, selects are preferable over branches.
375   if (llvm::shouldOptimizeForSize(&F, PSI, BFI))
376     return PreservedAnalyses::all();
377 
378   LI = &FAM.getResult<LoopAnalysis>(F);
379   ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
380   TSchedModel.init(TSI);
381 
382   bool Changed = optimizeSelects(F);
383   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
384 }
385 
386 bool SelectOptimizeImpl::runOnFunction(Function &F, Pass &P) {
387   TM = &P.getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
388   TSI = TM->getSubtargetImpl(F);
389   TLI = TSI->getTargetLowering();
390 
391   // If none of the select types are supported then skip this pass.
392   // This is an optimization pass. Legality issues will be handled by
393   // instruction selection.
394   if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
395       !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
396       !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
397     return false;
398 
399   TTI = &P.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
400 
401   if (!TTI->enableSelectOptimize())
402     return false;
403 
404   LI = &P.getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
405   BFI = &P.getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
406   PSI = &P.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
407   ORE = &P.getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
408   TSchedModel.init(TSI);
409 
410   // When optimizing for size, selects are preferable over branches.
411   if (llvm::shouldOptimizeForSize(&F, PSI, BFI))
412     return false;
413 
414   return optimizeSelects(F);
415 }
416 
417 bool SelectOptimizeImpl::optimizeSelects(Function &F) {
418   // Determine for which select groups it is profitable converting to branches.
419   SelectGroups ProfSIGroups;
420   // Base heuristics apply only to non-loops and outer loops.
421   optimizeSelectsBase(F, ProfSIGroups);
422   // Separate heuristics for inner-most loops.
423   optimizeSelectsInnerLoops(F, ProfSIGroups);
424 
425   // Convert to branches the select groups that were deemed
426   // profitable-to-convert.
427   convertProfitableSIGroups(ProfSIGroups);
428 
429   // Code modified if at least one select group was converted.
430   return !ProfSIGroups.empty();
431 }
432 
433 void SelectOptimizeImpl::optimizeSelectsBase(Function &F,
434                                              SelectGroups &ProfSIGroups) {
435   // Collect all the select groups.
436   SelectGroups SIGroups;
437   for (BasicBlock &BB : F) {
438     // Base heuristics apply only to non-loops and outer loops.
439     Loop *L = LI->getLoopFor(&BB);
440     if (L && L->isInnermost())
441       continue;
442     collectSelectGroups(BB, SIGroups);
443   }
444 
445   // Determine for which select groups it is profitable converting to branches.
446   findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
447 }
448 
449 void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function &F,
450                                                    SelectGroups &ProfSIGroups) {
451   SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
452   // Need to check size on each iteration as we accumulate child loops.
453   for (unsigned long i = 0; i < Loops.size(); ++i)
454     for (Loop *ChildL : Loops[i]->getSubLoops())
455       Loops.push_back(ChildL);
456 
457   for (Loop *L : Loops) {
458     if (!L->isInnermost())
459       continue;
460 
461     SelectGroups SIGroups;
462     for (BasicBlock *BB : L->getBlocks())
463       collectSelectGroups(*BB, SIGroups);
464 
465     findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
466   }
467 }
468 
469 /// Returns optimised value on \p IsTrue branch. For SelectInst that would be
470 /// either True or False value. For (BinaryOperator) instructions, where the
471 /// condition may be skipped, the operation will use a non-conditional operand.
472 /// For example, for `or(V,zext(cond))` this function would return V.
473 /// However, if the conditional operand on \p IsTrue branch matters, we create a
474 /// clone of instruction at the end of that branch \p B and replace the
475 /// condition operand with a constant.
476 ///
477 /// Also /p OptSelects contains previously optimised select-like instructions.
478 /// If the current value uses one of the optimised values, we can optimise it
479 /// further by replacing it with the corresponding value on the given branch
480 static Value *getTrueOrFalseValue(
481     SelectOptimizeImpl::SelectLike &SI, bool isTrue,
482     SmallDenseMap<Instruction *, std::pair<Value *, Value *>, 2> &OptSelects,
483     BasicBlock *B) {
484   Value *V = isTrue ? SI.getTrueValue() : SI.getFalseValue();
485   if (V) {
486     if (auto *IV = dyn_cast<Instruction>(V))
487       if (auto It = OptSelects.find(IV); It != OptSelects.end())
488         return isTrue ? It->second.first : It->second.second;
489     return V;
490   }
491 
492   auto *BO = cast<BinaryOperator>(SI.getI());
493   assert((BO->getOpcode() == Instruction::Add ||
494           BO->getOpcode() == Instruction::Or ||
495           BO->getOpcode() == Instruction::Sub) &&
496          "Only currently handling Add, Or and Sub binary operators.");
497 
498   auto *CBO = BO->clone();
499   auto CondIdx = SI.getConditionOpIndex();
500   auto *AuxI = cast<Instruction>(CBO->getOperand(CondIdx));
501   if (isa<ZExtInst>(AuxI) || isa<LShrOperator>(AuxI)) {
502     CBO->setOperand(CondIdx, ConstantInt::get(CBO->getType(), 1));
503   } else {
504     assert((isa<AShrOperator>(AuxI) || isa<SExtInst>(AuxI)) &&
505            "Unexpected opcode");
506     CBO->setOperand(CondIdx, ConstantInt::get(CBO->getType(), -1));
507   }
508 
509   unsigned OtherIdx = 1 - CondIdx;
510   if (auto *IV = dyn_cast<Instruction>(CBO->getOperand(OtherIdx))) {
511     if (auto It = OptSelects.find(IV); It != OptSelects.end())
512       CBO->setOperand(OtherIdx, isTrue ? It->second.first : It->second.second);
513   }
514   CBO->insertBefore(B->getTerminator()->getIterator());
515   return CBO;
516 }
517 
518 void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
519   for (SelectGroup &ASI : ProfSIGroups) {
520     // The code transformation here is a modified version of the sinking
521     // transformation in CodeGenPrepare::optimizeSelectInst with a more
522     // aggressive strategy of which instructions to sink.
523     //
524     // TODO: eliminate the redundancy of logic transforming selects to branches
525     // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
526     // selects for all cases (with and without profile information).
527 
528     // Transform a sequence like this:
529     //    start:
530     //       %cmp = cmp uge i32 %a, %b
531     //       %sel = select i1 %cmp, i32 %c, i32 %d
532     //
533     // Into:
534     //    start:
535     //       %cmp = cmp uge i32 %a, %b
536     //       %cmp.frozen = freeze %cmp
537     //       br i1 %cmp.frozen, label %select.true, label %select.false
538     //    select.true:
539     //       br label %select.end
540     //    select.false:
541     //       br label %select.end
542     //    select.end:
543     //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
544     //
545     // %cmp should be frozen, otherwise it may introduce undefined behavior.
546     // In addition, we may sink instructions that produce %c or %d into the
547     // destination(s) of the new branch.
548     // If the true or false blocks do not contain a sunken instruction, that
549     // block and its branch may be optimized away. In that case, one side of the
550     // first branch will point directly to select.end, and the corresponding PHI
551     // predecessor block will be the start block.
552 
553     // Find all the instructions that can be soundly sunk to the true/false
554     // blocks. These are instructions that are computed solely for producing the
555     // operands of the select instructions in the group and can be sunk without
556     // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
557     // with side effects).
558     SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
559     typedef std::stack<Instruction *>::size_type StackSizeType;
560     StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
561     for (SelectLike &SI : ASI.Selects) {
562       if (!isa<SelectInst>(SI.getI()))
563         continue;
564       // For each select, compute the sinkable dependence chains of the true and
565       // false operands.
566       if (auto *TI = dyn_cast_or_null<Instruction>(SI.getTrueValue())) {
567         std::stack<Instruction *> TrueSlice;
568         getExclBackwardsSlice(TI, TrueSlice, SI.getI(), true);
569         maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
570         TrueSlices.push_back(TrueSlice);
571       }
572       if (auto *FI = dyn_cast_or_null<Instruction>(SI.getFalseValue())) {
573         if (isa<SelectInst>(SI.getI()) || !FI->hasOneUse()) {
574           std::stack<Instruction *> FalseSlice;
575           getExclBackwardsSlice(FI, FalseSlice, SI.getI(), true);
576           maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
577           FalseSlices.push_back(FalseSlice);
578         }
579       }
580     }
581     // In the case of multiple select instructions in the same group, the order
582     // of non-dependent instructions (instructions of different dependence
583     // slices) in the true/false blocks appears to affect performance.
584     // Interleaving the slices seems to experimentally be the optimal approach.
585     // This interleaving scheduling allows for more ILP (with a natural downside
586     // of increasing a bit register pressure) compared to a simple ordering of
587     // one whole chain after another. One would expect that this ordering would
588     // not matter since the scheduling in the backend of the compiler  would
589     // take care of it, but apparently the scheduler fails to deliver optimal
590     // ILP with a naive ordering here.
591     SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
592     for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
593       for (auto &S : TrueSlices) {
594         if (!S.empty()) {
595           TrueSlicesInterleaved.push_back(S.top());
596           S.pop();
597         }
598       }
599     }
600     for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
601       for (auto &S : FalseSlices) {
602         if (!S.empty()) {
603           FalseSlicesInterleaved.push_back(S.top());
604           S.pop();
605         }
606       }
607     }
608 
609     // We split the block containing the select(s) into two blocks.
610     SelectLike &SI = ASI.Selects.front();
611     SelectLike &LastSI = ASI.Selects.back();
612     BasicBlock *StartBlock = SI.getI()->getParent();
613     BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI.getI()));
614     // With RemoveDIs turned off, SplitPt can be a dbg.* intrinsic. With
615     // RemoveDIs turned on, SplitPt would instead point to the next
616     // instruction. To match existing dbg.* intrinsic behaviour with RemoveDIs,
617     // tell splitBasicBlock that we want to include any DbgVariableRecords
618     // attached to SplitPt in the splice.
619     SplitPt.setHeadBit(true);
620     BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
621     BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
622     // Delete the unconditional branch that was just created by the split.
623     StartBlock->getTerminator()->eraseFromParent();
624 
625     // Move any debug/pseudo and auxiliary instructions that were in-between the
626     // select group to the newly-created end block.
627     SmallVector<Instruction *, 2> SinkInstrs;
628     auto DIt = SI.getI()->getIterator();
629     auto NIt = ASI.Selects.begin();
630     while (&*DIt != LastSI.getI()) {
631       if (NIt != ASI.Selects.end() && &*DIt == NIt->getI())
632         ++NIt;
633       else
634         SinkInstrs.push_back(&*DIt);
635       DIt++;
636     }
637     auto InsertionPoint = EndBlock->getFirstInsertionPt();
638     for (auto *DI : SinkInstrs)
639       DI->moveBeforePreserving(InsertionPoint);
640 
641     // Duplicate implementation for DbgRecords, the non-instruction debug-info
642     // format. Helper lambda for moving DbgRecords to the end block.
643     auto TransferDbgRecords = [&](Instruction &I) {
644       for (auto &DbgRecord :
645            llvm::make_early_inc_range(I.getDbgRecordRange())) {
646         DbgRecord.removeFromParent();
647         EndBlock->insertDbgRecordBefore(&DbgRecord,
648                                         EndBlock->getFirstInsertionPt());
649       }
650     };
651 
652     // Iterate over all instructions in between SI and LastSI, not including
653     // SI itself. These are all the variable assignments that happen "in the
654     // middle" of the select group.
655     auto R = make_range(std::next(SI.getI()->getIterator()),
656                         std::next(LastSI.getI()->getIterator()));
657     llvm::for_each(R, TransferDbgRecords);
658 
659     // These are the new basic blocks for the conditional branch.
660     // At least one will become an actual new basic block.
661     BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
662     BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
663     // Checks if select-like instruction would materialise on the given branch
664     auto HasSelectLike = [](SelectGroup &SG, bool IsTrue) {
665       for (auto &SL : SG.Selects) {
666         if ((IsTrue ? SL.getTrueValue() : SL.getFalseValue()) == nullptr)
667           return true;
668       }
669       return false;
670     };
671     if (!TrueSlicesInterleaved.empty() || HasSelectLike(ASI, true)) {
672       TrueBlock = BasicBlock::Create(EndBlock->getContext(), "select.true.sink",
673                                      EndBlock->getParent(), EndBlock);
674       TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
675       TrueBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
676       for (Instruction *TrueInst : TrueSlicesInterleaved)
677         TrueInst->moveBefore(TrueBranch->getIterator());
678     }
679     if (!FalseSlicesInterleaved.empty() || HasSelectLike(ASI, false)) {
680       FalseBlock =
681           BasicBlock::Create(EndBlock->getContext(), "select.false.sink",
682                              EndBlock->getParent(), EndBlock);
683       FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
684       FalseBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
685       for (Instruction *FalseInst : FalseSlicesInterleaved)
686         FalseInst->moveBefore(FalseBranch->getIterator());
687     }
688     // If there was nothing to sink, then arbitrarily choose the 'false' side
689     // for a new input value to the PHI.
690     if (TrueBlock == FalseBlock) {
691       assert(TrueBlock == nullptr &&
692              "Unexpected basic block transform while optimizing select");
693 
694       FalseBlock = BasicBlock::Create(StartBlock->getContext(), "select.false",
695                                       EndBlock->getParent(), EndBlock);
696       auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
697       FalseBranch->setDebugLoc(SI.getI()->getDebugLoc());
698     }
699 
700     // Insert the real conditional branch based on the original condition.
701     // If we did not create a new block for one of the 'true' or 'false' paths
702     // of the condition, it means that side of the branch goes to the end block
703     // directly and the path originates from the start block from the point of
704     // view of the new PHI.
705     BasicBlock *TT, *FT;
706     if (TrueBlock == nullptr) {
707       TT = EndBlock;
708       FT = FalseBlock;
709       TrueBlock = StartBlock;
710     } else if (FalseBlock == nullptr) {
711       TT = TrueBlock;
712       FT = EndBlock;
713       FalseBlock = StartBlock;
714     } else {
715       TT = TrueBlock;
716       FT = FalseBlock;
717     }
718     IRBuilder<> IB(SI.getI());
719     auto *CondFr =
720         IB.CreateFreeze(ASI.Condition, ASI.Condition->getName() + ".frozen");
721 
722     SmallDenseMap<Instruction *, std::pair<Value *, Value *>, 2> INS;
723 
724     // Use reverse iterator because later select may use the value of the
725     // earlier select, and we need to propagate value through earlier select
726     // to get the PHI operand.
727     InsertionPoint = EndBlock->begin();
728     for (SelectLike &SI : ASI.Selects) {
729       // The select itself is replaced with a PHI Node.
730       PHINode *PN = PHINode::Create(SI.getType(), 2, "");
731       PN->insertBefore(InsertionPoint);
732       PN->takeName(SI.getI());
733       // Current instruction might be a condition of some other group, so we
734       // need to replace it there to avoid dangling pointer
735       if (PN->getType()->isIntegerTy(1)) {
736         for (auto &SG : ProfSIGroups) {
737           if (SG.Condition == SI.getI())
738             SG.Condition = PN;
739         }
740       }
741       SI.getI()->replaceAllUsesWith(PN);
742       auto *TV = getTrueOrFalseValue(SI, true, INS, TrueBlock);
743       auto *FV = getTrueOrFalseValue(SI, false, INS, FalseBlock);
744       INS[PN] = {TV, FV};
745       PN->addIncoming(TV, TrueBlock);
746       PN->addIncoming(FV, FalseBlock);
747       PN->setDebugLoc(SI.getI()->getDebugLoc());
748       ++NumSelectsConverted;
749     }
750     IB.CreateCondBr(CondFr, TT, FT, SI.getI());
751 
752     // Remove the old select instructions, now that they are not longer used.
753     for (SelectLike &SI : ASI.Selects)
754       SI.getI()->eraseFromParent();
755   }
756 }
757 
758 void SelectOptimizeImpl::collectSelectGroups(BasicBlock &BB,
759                                              SelectGroups &SIGroups) {
760   // Represents something that can be considered as select instruction.
761   // Auxiliary instruction are instructions that depends on a condition and have
762   // zero or some constant value on True/False branch, such as:
763   // * ZExt(1bit)
764   // * SExt(1bit)
765   // * Not(1bit)
766   // * A(L)Shr(Val), ValBitSize - 1, where there is a condition like `Val <= 0`
767   // earlier in the BB. For conditions that check the sign of the Val compiler
768   // may generate shifts instead of ZExt/SExt.
769   struct SelectLikeInfo {
770     Value *Cond;
771     bool IsAuxiliary;
772     bool IsInverted;
773     unsigned ConditionIdx;
774   };
775 
776   DenseMap<Value *, SelectLikeInfo> SelectInfo;
777   // Keeps visited comparisons to help identify AShr/LShr variants of auxiliary
778   // instructions.
779   SmallSetVector<CmpInst *, 4> SeenCmp;
780 
781   // Check if the instruction is SelectLike or might be part of SelectLike
782   // expression, put information into SelectInfo and return the iterator to the
783   // inserted position.
784   auto ProcessSelectInfo = [&SelectInfo, &SeenCmp](Instruction *I) {
785     if (auto *Cmp = dyn_cast<CmpInst>(I)) {
786       SeenCmp.insert(Cmp);
787       return SelectInfo.end();
788     }
789 
790     Value *Cond;
791     if (match(I, m_OneUse(m_ZExtOrSExt(m_Value(Cond)))) &&
792         Cond->getType()->isIntegerTy(1)) {
793       bool Inverted = match(Cond, m_Not(m_Value(Cond)));
794       return SelectInfo.insert({I, {Cond, true, Inverted, 0}}).first;
795     }
796 
797     if (match(I, m_Not(m_Value(Cond)))) {
798       return SelectInfo.insert({I, {Cond, true, true, 0}}).first;
799     }
800 
801     // Select instruction are what we are usually looking for.
802     if (match(I, m_Select(m_Value(Cond), m_Value(), m_Value()))) {
803       bool Inverted = match(Cond, m_Not(m_Value(Cond)));
804       return SelectInfo.insert({I, {Cond, false, Inverted, 0}}).first;
805     }
806     Value *Val;
807     ConstantInt *Shift;
808     if (match(I, m_Shr(m_Value(Val), m_ConstantInt(Shift))) &&
809         I->getType()->getIntegerBitWidth() == Shift->getZExtValue() + 1) {
810       for (auto *CmpI : SeenCmp) {
811         auto Pred = CmpI->getPredicate();
812         if (Val != CmpI->getOperand(0))
813           continue;
814         if ((Pred == CmpInst::ICMP_SGT &&
815              match(CmpI->getOperand(1), m_ConstantInt<-1>())) ||
816             (Pred == CmpInst::ICMP_SGE &&
817              match(CmpI->getOperand(1), m_Zero())) ||
818             (Pred == CmpInst::ICMP_SLT &&
819              match(CmpI->getOperand(1), m_Zero())) ||
820             (Pred == CmpInst::ICMP_SLE &&
821              match(CmpI->getOperand(1), m_ConstantInt<-1>()))) {
822           bool Inverted =
823               Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
824           return SelectInfo.insert({I, {CmpI, true, Inverted, 0}}).first;
825         }
826       }
827       return SelectInfo.end();
828     }
829 
830     // An BinOp(Aux(X), Y) can also be treated like a select, with condition X
831     // and values Y|1 and Y.
832     // `Aux` can be either `ZExt(1bit)`, `SExt(1bit)` or `XShr(Val), ValBitSize
833     // - 1` `BinOp` can be Add, Sub, Or
834     Value *X;
835     auto MatchZExtOrSExtPattern =
836         m_c_BinOp(m_Value(), m_OneUse(m_ZExtOrSExt(m_Value(X))));
837     auto MatchShiftPattern =
838         m_c_BinOp(m_Value(), m_OneUse(m_Shr(m_Value(X), m_ConstantInt(Shift))));
839 
840     // This check is unnecessary, but it prevents costly access to the
841     // SelectInfo map.
842     if ((match(I, MatchZExtOrSExtPattern) && X->getType()->isIntegerTy(1)) ||
843         (match(I, MatchShiftPattern) &&
844          X->getType()->getIntegerBitWidth() == Shift->getZExtValue() + 1)) {
845       if (I->getOpcode() != Instruction::Add &&
846           I->getOpcode() != Instruction::Sub &&
847           I->getOpcode() != Instruction::Or)
848         return SelectInfo.end();
849 
850       if (I->getOpcode() == Instruction::Or && I->getType()->isIntegerTy(1))
851         return SelectInfo.end();
852 
853       // Iterate through operands and find dependant on recognised sign
854       // extending auxiliary select-like instructions. The operand index does
855       // not matter for Add and Or. However, for Sub, we can only safely
856       // transform when the operand is second.
857       unsigned Idx = I->getOpcode() == Instruction::Sub ? 1 : 0;
858       for (; Idx < 2; Idx++) {
859         auto *Op = I->getOperand(Idx);
860         auto It = SelectInfo.find(Op);
861         if (It != SelectInfo.end() && It->second.IsAuxiliary) {
862           Cond = It->second.Cond;
863           bool Inverted = It->second.IsInverted;
864           return SelectInfo.insert({I, {Cond, false, Inverted, Idx}}).first;
865         }
866       }
867     }
868     return SelectInfo.end();
869   };
870 
871   bool AlreadyProcessed = false;
872   BasicBlock::iterator BBIt = BB.begin();
873   DenseMap<Value *, SelectLikeInfo>::iterator It;
874   while (BBIt != BB.end()) {
875     Instruction *I = &*BBIt++;
876     if (I->isDebugOrPseudoInst())
877       continue;
878 
879     if (!AlreadyProcessed)
880       It = ProcessSelectInfo(I);
881     else
882       AlreadyProcessed = false;
883 
884     if (It == SelectInfo.end() || It->second.IsAuxiliary)
885       continue;
886 
887     if (!TTI->shouldTreatInstructionLikeSelect(I))
888       continue;
889 
890     Value *Cond = It->second.Cond;
891     // Vector conditions are not supported.
892     if (!Cond->getType()->isIntegerTy(1))
893       continue;
894 
895     SelectGroup SIGroup = {Cond, {}};
896     SIGroup.Selects.emplace_back(I, It->second.IsInverted,
897                                  It->second.ConditionIdx);
898 
899     // If the select type is not supported, no point optimizing it.
900     // Instruction selection will take care of it.
901     if (!isSelectKindSupported(SIGroup.Selects.front()))
902       continue;
903 
904     while (BBIt != BB.end()) {
905       Instruction *NI = &*BBIt;
906       // Debug/pseudo instructions should be skipped and not prevent the
907       // formation of a select group.
908       if (NI->isDebugOrPseudoInst()) {
909         ++BBIt;
910         continue;
911       }
912 
913       It = ProcessSelectInfo(NI);
914       if (It == SelectInfo.end()) {
915         AlreadyProcessed = true;
916         break;
917       }
918 
919       // Auxiliary with same condition
920       auto [CurrCond, IsAux, IsRev, CondIdx] = It->second;
921       if (Cond != CurrCond) {
922         AlreadyProcessed = true;
923         break;
924       }
925 
926       if (!IsAux)
927         SIGroup.Selects.emplace_back(NI, IsRev, CondIdx);
928       ++BBIt;
929     }
930     LLVM_DEBUG({
931       dbgs() << "New Select group (" << SIGroup.Selects.size() << ") with\n";
932       for (auto &SI : SIGroup.Selects)
933         dbgs() << "  " << *SI.getI() << "\n";
934     });
935 
936     SIGroups.push_back(SIGroup);
937   }
938 }
939 
940 void SelectOptimizeImpl::findProfitableSIGroupsBase(
941     SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
942   for (SelectGroup &ASI : SIGroups) {
943     ++NumSelectOptAnalyzed;
944     if (isConvertToBranchProfitableBase(ASI))
945       ProfSIGroups.push_back(ASI);
946   }
947 }
948 
949 static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE,
950                                DiagnosticInfoOptimizationBase &Rem) {
951   LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n");
952   ORE->emit(Rem);
953 }
954 
955 void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops(
956     const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
957   NumSelectOptAnalyzed += SIGroups.size();
958   // For each select group in an inner-most loop,
959   // a branch is more preferable than a select/conditional-move if:
960   // i) conversion to branches for all the select groups of the loop satisfies
961   //    loop-level heuristics including reducing the loop's critical path by
962   //    some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and
963   // ii) the total cost of the select group is cheaper with a branch compared
964   //     to its predicated version. The cost is in terms of latency and the cost
965   //     of a select group is the cost of its most expensive select instruction
966   //     (assuming infinite resources and thus fully leveraging available ILP).
967 
968   DenseMap<const Instruction *, CostInfo> InstCostMap;
969   CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
970                           {Scaled64::getZero(), Scaled64::getZero()}};
971   if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
972       !checkLoopHeuristics(L, LoopCost)) {
973     return;
974   }
975 
976   for (SelectGroup &ASI : SIGroups) {
977     // Assuming infinite resources, the cost of a group of instructions is the
978     // cost of the most expensive instruction of the group.
979     Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
980     for (SelectLike &SI : ASI.Selects) {
981       SelectCost = std::max(SelectCost, InstCostMap[SI.getI()].PredCost);
982       BranchCost = std::max(BranchCost, InstCostMap[SI.getI()].NonPredCost);
983     }
984     if (BranchCost < SelectCost) {
985       OptimizationRemark OR(DEBUG_TYPE, "SelectOpti",
986                             ASI.Selects.front().getI());
987       OR << "Profitable to convert to branch (loop analysis). BranchCost="
988          << BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
989          << ". ";
990       EmitAndPrintRemark(ORE, OR);
991       ++NumSelectConvertedLoop;
992       ProfSIGroups.push_back(ASI);
993     } else {
994       OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
995                                       ASI.Selects.front().getI());
996       ORmiss << "Select is more profitable (loop analysis). BranchCost="
997              << BranchCost.toString()
998              << ", SelectCost=" << SelectCost.toString() << ". ";
999       EmitAndPrintRemark(ORE, ORmiss);
1000     }
1001   }
1002 }
1003 
1004 bool SelectOptimizeImpl::isConvertToBranchProfitableBase(
1005     const SelectGroup &ASI) {
1006   const SelectLike &SI = ASI.Selects.front();
1007   LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI.getI()
1008                     << "\n");
1009   OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI.getI());
1010   OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI.getI());
1011 
1012   // Skip cold basic blocks. Better to optimize for size for cold blocks.
1013   if (PSI->isColdBlock(SI.getI()->getParent(), BFI)) {
1014     ++NumSelectColdBB;
1015     ORmiss << "Not converted to branch because of cold basic block. ";
1016     EmitAndPrintRemark(ORE, ORmiss);
1017     return false;
1018   }
1019 
1020   // If unpredictable, branch form is less profitable.
1021   if (SI.getI()->getMetadata(LLVMContext::MD_unpredictable)) {
1022     ++NumSelectUnPred;
1023     ORmiss << "Not converted to branch because of unpredictable branch. ";
1024     EmitAndPrintRemark(ORE, ORmiss);
1025     return false;
1026   }
1027 
1028   // If highly predictable, branch form is more profitable, unless a
1029   // predictable select is inexpensive in the target architecture.
1030   if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
1031     ++NumSelectConvertedHighPred;
1032     OR << "Converted to branch because of highly predictable branch. ";
1033     EmitAndPrintRemark(ORE, OR);
1034     return true;
1035   }
1036 
1037   // Look for expensive instructions in the cold operand's (if any) dependence
1038   // slice of any of the selects in the group.
1039   if (hasExpensiveColdOperand(ASI)) {
1040     ++NumSelectConvertedExpColdOperand;
1041     OR << "Converted to branch because of expensive cold operand.";
1042     EmitAndPrintRemark(ORE, OR);
1043     return true;
1044   }
1045 
1046   // If latch has a select group with several elements, it is usually profitable
1047   // to convert it to branches. We let `optimizeSelectsInnerLoops` decide if
1048   // conversion is profitable for innermost loops.
1049   auto *BB = SI.getI()->getParent();
1050   auto *L = LI->getLoopFor(BB);
1051   if (L && !L->isInnermost() && L->getLoopLatch() == BB &&
1052       ASI.Selects.size() >= 3) {
1053     OR << "Converted to branch because select group in the latch block is big.";
1054     EmitAndPrintRemark(ORE, OR);
1055     return true;
1056   }
1057 
1058   ORmiss << "Not profitable to convert to branch (base heuristic).";
1059   EmitAndPrintRemark(ORE, ORmiss);
1060   return false;
1061 }
1062 
1063 static InstructionCost divideNearest(InstructionCost Numerator,
1064                                      uint64_t Denominator) {
1065   return (Numerator + (Denominator / 2)) / Denominator;
1066 }
1067 
1068 static bool extractBranchWeights(const SelectOptimizeImpl::SelectLike SI,
1069                                  uint64_t &TrueVal, uint64_t &FalseVal) {
1070   if (isa<SelectInst>(SI.getI()))
1071     return extractBranchWeights(*SI.getI(), TrueVal, FalseVal);
1072   return false;
1073 }
1074 
1075 bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup &ASI) {
1076   bool ColdOperand = false;
1077   uint64_t TrueWeight, FalseWeight, TotalWeight;
1078   if (extractBranchWeights(ASI.Selects.front(), TrueWeight, FalseWeight)) {
1079     uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
1080     TotalWeight = TrueWeight + FalseWeight;
1081     // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
1082     ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
1083   } else if (PSI->hasProfileSummary()) {
1084     OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
1085                                     ASI.Selects.front().getI());
1086     ORmiss << "Profile data available but missing branch-weights metadata for "
1087               "select instruction. ";
1088     EmitAndPrintRemark(ORE, ORmiss);
1089   }
1090   if (!ColdOperand)
1091     return false;
1092   // Check if the cold path's dependence slice is expensive for any of the
1093   // selects of the group.
1094   for (SelectLike SI : ASI.Selects) {
1095     Instruction *ColdI = nullptr;
1096     uint64_t HotWeight;
1097     if (TrueWeight < FalseWeight) {
1098       ColdI = dyn_cast_or_null<Instruction>(SI.getTrueValue());
1099       HotWeight = FalseWeight;
1100     } else {
1101       ColdI = dyn_cast_or_null<Instruction>(SI.getFalseValue());
1102       HotWeight = TrueWeight;
1103     }
1104     if (ColdI) {
1105       std::stack<Instruction *> ColdSlice;
1106       getExclBackwardsSlice(ColdI, ColdSlice, SI.getI());
1107       InstructionCost SliceCost = 0;
1108       while (!ColdSlice.empty()) {
1109         SliceCost += TTI->getInstructionCost(ColdSlice.top(),
1110                                              TargetTransformInfo::TCK_Latency);
1111         ColdSlice.pop();
1112       }
1113       // The colder the cold value operand of the select is the more expensive
1114       // the cmov becomes for computing the cold value operand every time. Thus,
1115       // the colder the cold operand is the more its cost counts.
1116       // Get nearest integer cost adjusted for coldness.
1117       InstructionCost AdjSliceCost =
1118           divideNearest(SliceCost * HotWeight, TotalWeight);
1119       if (AdjSliceCost >=
1120           ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
1121         return true;
1122     }
1123   }
1124   return false;
1125 }
1126 
1127 // Check if it is safe to move LoadI next to the SI.
1128 // Conservatively assume it is safe only if there is no instruction
1129 // modifying memory in-between the load and the select instruction.
1130 static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) {
1131   // Assume loads from different basic blocks are unsafe to move.
1132   if (LoadI->getParent() != SI->getParent())
1133     return false;
1134   auto It = LoadI->getIterator();
1135   while (&*It != SI) {
1136     if (It->mayWriteToMemory())
1137       return false;
1138     It++;
1139   }
1140   return true;
1141 }
1142 
1143 // For a given source instruction, collect its backwards dependence slice
1144 // consisting of instructions exclusively computed for the purpose of producing
1145 // the operands of the source instruction. As an approximation
1146 // (sufficiently-accurate in practice), we populate this set with the
1147 // instructions of the backwards dependence slice that only have one-use and
1148 // form an one-use chain that leads to the source instruction.
1149 void SelectOptimizeImpl::getExclBackwardsSlice(Instruction *I,
1150                                                std::stack<Instruction *> &Slice,
1151                                                Instruction *SI,
1152                                                bool ForSinking) {
1153   SmallPtrSet<Instruction *, 2> Visited;
1154   std::queue<Instruction *> Worklist;
1155   Worklist.push(I);
1156   while (!Worklist.empty()) {
1157     Instruction *II = Worklist.front();
1158     Worklist.pop();
1159 
1160     // Avoid cycles.
1161     if (!Visited.insert(II).second)
1162       continue;
1163 
1164     if (!II->hasOneUse())
1165       continue;
1166 
1167     // Cannot soundly sink instructions with side-effects.
1168     // Terminator or phi instructions cannot be sunk.
1169     // Avoid sinking other select instructions (should be handled separetely).
1170     if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
1171                        isa<SelectInst>(II) || isa<PHINode>(II)))
1172       continue;
1173 
1174     // Avoid sinking loads in order not to skip state-modifying instructions,
1175     // that may alias with the loaded address.
1176     // Only allow sinking of loads within the same basic block that are
1177     // conservatively proven to be safe.
1178     if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI))
1179       continue;
1180 
1181     // Avoid considering instructions with less frequency than the source
1182     // instruction (i.e., avoid colder code regions of the dependence slice).
1183     if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
1184       continue;
1185 
1186     // Eligible one-use instruction added to the dependence slice.
1187     Slice.push(II);
1188 
1189     // Explore all the operands of the current instruction to expand the slice.
1190     for (Value *Op : II->operand_values())
1191       if (auto *OpI = dyn_cast<Instruction>(Op))
1192         Worklist.push(OpI);
1193   }
1194 }
1195 
1196 bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI) {
1197   uint64_t TrueWeight, FalseWeight;
1198   if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
1199     uint64_t Max = std::max(TrueWeight, FalseWeight);
1200     uint64_t Sum = TrueWeight + FalseWeight;
1201     if (Sum != 0) {
1202       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
1203       if (Probability > TTI->getPredictableBranchThreshold())
1204         return true;
1205     }
1206   }
1207   return false;
1208 }
1209 
1210 bool SelectOptimizeImpl::checkLoopHeuristics(const Loop *L,
1211                                              const CostInfo LoopCost[2]) {
1212   // Loop-level checks to determine if a non-predicated version (with branches)
1213   // of the loop is more profitable than its predicated version.
1214 
1215   if (DisableLoopLevelHeuristics)
1216     return true;
1217 
1218   OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
1219                                    &*L->getHeader()->getFirstNonPHIIt());
1220 
1221   if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
1222       LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
1223     ORmissL << "No select conversion in the loop due to no reduction of loop's "
1224                "critical path. ";
1225     EmitAndPrintRemark(ORE, ORmissL);
1226     return false;
1227   }
1228 
1229   Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
1230                       LoopCost[1].PredCost - LoopCost[1].NonPredCost};
1231 
1232   // Profitably converting to branches need to reduce the loop's critical path
1233   // by at least some threshold (absolute gain of GainCycleThreshold cycles and
1234   // relative gain of 12.5%).
1235   if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
1236       Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
1237     Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
1238     ORmissL << "No select conversion in the loop due to small reduction of "
1239                "loop's critical path. Gain="
1240             << Gain[1].toString()
1241             << ", RelativeGain=" << RelativeGain.toString() << "%. ";
1242     EmitAndPrintRemark(ORE, ORmissL);
1243     return false;
1244   }
1245 
1246   // If the loop's critical path involves loop-carried dependences, the gradient
1247   // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
1248   // This check ensures that the latency reduction for the loop's critical path
1249   // keeps decreasing with sufficient rate beyond the two analyzed loop
1250   // iterations.
1251   if (Gain[1] > Gain[0]) {
1252     Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
1253                             (LoopCost[1].PredCost - LoopCost[0].PredCost);
1254     if (GradientGain < Scaled64::get(GainGradientThreshold)) {
1255       ORmissL << "No select conversion in the loop due to small gradient gain. "
1256                  "GradientGain="
1257               << GradientGain.toString() << "%. ";
1258       EmitAndPrintRemark(ORE, ORmissL);
1259       return false;
1260     }
1261   }
1262   // If the gain decreases it is not profitable to convert.
1263   else if (Gain[1] < Gain[0]) {
1264     ORmissL
1265         << "No select conversion in the loop due to negative gradient gain. ";
1266     EmitAndPrintRemark(ORE, ORmissL);
1267     return false;
1268   }
1269 
1270   // Non-predicated version of the loop is more profitable than its
1271   // predicated version.
1272   return true;
1273 }
1274 
1275 // Computes instruction and loop-critical-path costs for both the predicated
1276 // and non-predicated version of the given loop.
1277 // Returns false if unable to compute these costs due to invalid cost of loop
1278 // instruction(s).
1279 bool SelectOptimizeImpl::computeLoopCosts(
1280     const Loop *L, const SelectGroups &SIGroups,
1281     DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
1282   LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop "
1283                     << L->getHeader()->getName() << "\n");
1284   const auto SImap = getSImap(SIGroups);
1285   const auto SGmap = getSGmap(SIGroups);
1286   // Compute instruction and loop-critical-path costs across two iterations for
1287   // both predicated and non-predicated version.
1288   const unsigned Iterations = 2;
1289   for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
1290     // Cost of the loop's critical path.
1291     CostInfo &MaxCost = LoopCost[Iter];
1292     for (BasicBlock *BB : L->getBlocks()) {
1293       for (const Instruction &I : *BB) {
1294         if (I.isDebugOrPseudoInst())
1295           continue;
1296         // Compute the predicated and non-predicated cost of the instruction.
1297         Scaled64 IPredCost = Scaled64::getZero(),
1298                  INonPredCost = Scaled64::getZero();
1299 
1300         // Assume infinite resources that allow to fully exploit the available
1301         // instruction-level parallelism.
1302         // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
1303         for (const Use &U : I.operands()) {
1304           auto UI = dyn_cast<Instruction>(U.get());
1305           if (!UI)
1306             continue;
1307           if (auto It = InstCostMap.find(UI); It != InstCostMap.end()) {
1308             IPredCost = std::max(IPredCost, It->second.PredCost);
1309             INonPredCost = std::max(INonPredCost, It->second.NonPredCost);
1310           }
1311         }
1312         auto ILatency = computeInstCost(&I);
1313         if (!ILatency) {
1314           OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
1315           ORmissL << "Invalid instruction cost preventing analysis and "
1316                      "optimization of the inner-most loop containing this "
1317                      "instruction. ";
1318           EmitAndPrintRemark(ORE, ORmissL);
1319           return false;
1320         }
1321         IPredCost += Scaled64::get(*ILatency);
1322         INonPredCost += Scaled64::get(*ILatency);
1323 
1324         // For a select that can be converted to branch,
1325         // compute its cost as a branch (non-predicated cost).
1326         //
1327         // BranchCost = PredictedPathCost + MispredictCost
1328         // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
1329         // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
1330         if (SImap.contains(&I)) {
1331           auto SI = SImap.at(&I);
1332           const auto *SG = SGmap.at(&I);
1333           Scaled64 TrueOpCost = SI.getOpCostOnBranch(true, InstCostMap, TTI);
1334           Scaled64 FalseOpCost = SI.getOpCostOnBranch(false, InstCostMap, TTI);
1335           Scaled64 PredictedPathCost =
1336               getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
1337 
1338           Scaled64 CondCost = Scaled64::getZero();
1339           if (auto *CI = dyn_cast<Instruction>(SG->Condition))
1340             if (auto It = InstCostMap.find(CI); It != InstCostMap.end())
1341               CondCost = It->second.NonPredCost;
1342           Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
1343 
1344           INonPredCost = PredictedPathCost + MispredictCost;
1345         }
1346         LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/"
1347                           << INonPredCost << " for " << I << "\n");
1348 
1349         InstCostMap[&I] = {IPredCost, INonPredCost};
1350         MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
1351         MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
1352       }
1353     }
1354     LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1
1355                       << " MaxCost = " << MaxCost.PredCost << " "
1356                       << MaxCost.NonPredCost << "\n");
1357   }
1358   return true;
1359 }
1360 
1361 SmallDenseMap<const Instruction *, SelectOptimizeImpl::SelectLike, 2>
1362 SelectOptimizeImpl::getSImap(const SelectGroups &SIGroups) {
1363   SmallDenseMap<const Instruction *, SelectLike, 2> SImap;
1364   for (const SelectGroup &ASI : SIGroups)
1365     for (const SelectLike &SI : ASI.Selects)
1366       SImap.try_emplace(SI.getI(), SI);
1367   return SImap;
1368 }
1369 
1370 SmallDenseMap<const Instruction *, const SelectOptimizeImpl::SelectGroup *, 2>
1371 SelectOptimizeImpl::getSGmap(const SelectGroups &SIGroups) {
1372   SmallDenseMap<const Instruction *, const SelectGroup *, 2> SImap;
1373   for (const SelectGroup &ASI : SIGroups)
1374     for (const SelectLike &SI : ASI.Selects)
1375       SImap.try_emplace(SI.getI(), &ASI);
1376   return SImap;
1377 }
1378 
1379 std::optional<uint64_t>
1380 SelectOptimizeImpl::computeInstCost(const Instruction *I) {
1381   InstructionCost ICost =
1382       TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
1383   if (auto OC = ICost.getValue())
1384     return std::optional<uint64_t>(*OC);
1385   return std::nullopt;
1386 }
1387 
1388 ScaledNumber<uint64_t>
1389 SelectOptimizeImpl::getMispredictionCost(const SelectLike SI,
1390                                          const Scaled64 CondCost) {
1391   uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
1392 
1393   // Account for the default misprediction rate when using a branch
1394   // (conservatively set to 25% by default).
1395   uint64_t MispredictRate = MispredictDefaultRate;
1396   // If the select condition is obviously predictable, then the misprediction
1397   // rate is zero.
1398   if (isSelectHighlyPredictable(SI))
1399     MispredictRate = 0;
1400 
1401   // CondCost is included to account for cases where the computation of the
1402   // condition is part of a long dependence chain (potentially loop-carried)
1403   // that would delay detection of a misprediction and increase its cost.
1404   Scaled64 MispredictCost =
1405       std::max(Scaled64::get(MispredictPenalty), CondCost) *
1406       Scaled64::get(MispredictRate);
1407   MispredictCost /= Scaled64::get(100);
1408 
1409   return MispredictCost;
1410 }
1411 
1412 // Returns the cost of a branch when the prediction is correct.
1413 // TrueCost * TrueProbability + FalseCost * FalseProbability.
1414 ScaledNumber<uint64_t>
1415 SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
1416                                          const SelectLike SI) {
1417   Scaled64 PredPathCost;
1418   uint64_t TrueWeight, FalseWeight;
1419   if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
1420     uint64_t SumWeight = TrueWeight + FalseWeight;
1421     if (SumWeight != 0) {
1422       PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
1423                      FalseCost * Scaled64::get(FalseWeight);
1424       PredPathCost /= Scaled64::get(SumWeight);
1425       return PredPathCost;
1426     }
1427   }
1428   // Without branch weight metadata, we assume 75% for the one path and 25% for
1429   // the other, and pick the result with the biggest cost.
1430   PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
1431                           FalseCost * Scaled64::get(3) + TrueCost);
1432   PredPathCost /= Scaled64::get(4);
1433   return PredPathCost;
1434 }
1435 
1436 bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI) {
1437   TargetLowering::SelectSupportKind SelectKind;
1438   if (SI.getType()->isVectorTy())
1439     SelectKind = TargetLowering::ScalarCondVectorVal;
1440   else
1441     SelectKind = TargetLowering::ScalarValSelect;
1442   return TLI->isSelectSupported(SelectKind);
1443 }
1444