1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This implements the ScheduleDAGInstrs class, which implements 10 /// re-scheduling of MachineInstrs. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 15 16 #include "llvm/ADT/IntEqClasses.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LivePhysRegs.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBundle.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/PseudoSourceValue.h" 34 #include "llvm/CodeGen/RegisterPressure.h" 35 #include "llvm/CodeGen/ScheduleDAG.h" 36 #include "llvm/CodeGen/ScheduleDFS.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/MC/LaneBitmask.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/Format.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <iterator> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "machine-scheduler" 64 65 static cl::opt<bool> 66 EnableAASchedMI("enable-aa-sched-mi", cl::Hidden, 67 cl::desc("Enable use of AA during MI DAG construction")); 68 69 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden, 70 cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction")); 71 72 // Note: the two options below might be used in tuning compile time vs 73 // output quality. Setting HugeRegion so large that it will never be 74 // reached means best-effort, but may be slow. 75 76 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads) 77 // together hold this many SUs, a reduction of maps will be done. 78 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden, 79 cl::init(1000), cl::desc("The limit to use while constructing the DAG " 80 "prior to scheduling, at which point a trade-off " 81 "is made to avoid excessive compile time.")); 82 83 static cl::opt<unsigned> ReductionSize( 84 "dag-maps-reduction-size", cl::Hidden, 85 cl::desc("A huge scheduling region will have maps reduced by this many " 86 "nodes at a time. Defaults to HugeRegion / 2.")); 87 88 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 89 static cl::opt<bool> SchedPrintCycles( 90 "sched-print-cycles", cl::Hidden, cl::init(false), 91 cl::desc("Report top/bottom cycles when dumping SUnit instances")); 92 #endif 93 94 static unsigned getReductionSize() { 95 // Always reduce a huge region with half of the elements, except 96 // when user sets this number explicitly. 97 if (ReductionSize.getNumOccurrences() == 0) 98 return HugeRegion / 2; 99 return ReductionSize; 100 } 101 102 static void dumpSUList(const ScheduleDAGInstrs::SUList &L) { 103 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 104 dbgs() << "{ "; 105 for (const SUnit *SU : L) { 106 dbgs() << "SU(" << SU->NodeNum << ")"; 107 if (SU != L.back()) 108 dbgs() << ", "; 109 } 110 dbgs() << "}\n"; 111 #endif 112 } 113 114 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf, 115 const MachineLoopInfo *mli, 116 bool RemoveKillFlags) 117 : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()), 118 RemoveKillFlags(RemoveKillFlags), 119 UnknownValue(UndefValue::get( 120 Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) { 121 DbgValues.clear(); 122 123 const TargetSubtargetInfo &ST = mf.getSubtarget(); 124 SchedModel.init(&ST); 125 } 126 127 /// If this machine instr has memory reference information and it can be 128 /// tracked to a normal reference to a known object, return the Value 129 /// for that object. This function returns false the memory location is 130 /// unknown or may alias anything. 131 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI, 132 const MachineFrameInfo &MFI, 133 UnderlyingObjectsVector &Objects, 134 const DataLayout &DL) { 135 auto AllMMOsOkay = [&]() { 136 for (const MachineMemOperand *MMO : MI->memoperands()) { 137 // TODO: Figure out whether isAtomic is really necessary (see D57601). 138 if (MMO->isVolatile() || MMO->isAtomic()) 139 return false; 140 141 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { 142 // Function that contain tail calls don't have unique PseudoSourceValue 143 // objects. Two PseudoSourceValues might refer to the same or 144 // overlapping locations. The client code calling this function assumes 145 // this is not the case. So return a conservative answer of no known 146 // object. 147 if (MFI.hasTailCall()) 148 return false; 149 150 // For now, ignore PseudoSourceValues which may alias LLVM IR values 151 // because the code that uses this function has no way to cope with 152 // such aliases. 153 if (PSV->isAliased(&MFI)) 154 return false; 155 156 bool MayAlias = PSV->mayAlias(&MFI); 157 Objects.emplace_back(PSV, MayAlias); 158 } else if (const Value *V = MMO->getValue()) { 159 SmallVector<Value *, 4> Objs; 160 if (!getUnderlyingObjectsForCodeGen(V, Objs)) 161 return false; 162 163 for (Value *V : Objs) { 164 assert(isIdentifiedObject(V)); 165 Objects.emplace_back(V, true); 166 } 167 } else 168 return false; 169 } 170 return true; 171 }; 172 173 if (!AllMMOsOkay()) { 174 Objects.clear(); 175 return false; 176 } 177 178 return true; 179 } 180 181 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) { 182 BB = bb; 183 } 184 185 void ScheduleDAGInstrs::finishBlock() { 186 // Subclasses should no longer refer to the old block. 187 BB = nullptr; 188 } 189 190 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb, 191 MachineBasicBlock::iterator begin, 192 MachineBasicBlock::iterator end, 193 unsigned regioninstrs) { 194 assert(bb == BB && "startBlock should set BB"); 195 RegionBegin = begin; 196 RegionEnd = end; 197 NumRegionInstrs = regioninstrs; 198 } 199 200 void ScheduleDAGInstrs::exitRegion() { 201 // Nothing to do. 202 } 203 204 void ScheduleDAGInstrs::addSchedBarrierDeps() { 205 MachineInstr *ExitMI = 206 RegionEnd != BB->end() 207 ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin) 208 : nullptr; 209 ExitSU.setInstr(ExitMI); 210 // Add dependencies on the defs and uses of the instruction. 211 if (ExitMI) { 212 for (const MachineOperand &MO : ExitMI->all_uses()) { 213 Register Reg = MO.getReg(); 214 if (Reg.isPhysical()) { 215 for (MCRegUnit Unit : TRI->regunits(Reg)) 216 Uses.insert(PhysRegSUOper(&ExitSU, -1, Unit)); 217 } else if (Reg.isVirtual() && MO.readsReg()) { 218 addVRegUseDeps(&ExitSU, MO.getOperandNo()); 219 } 220 } 221 } 222 if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) { 223 // For others, e.g. fallthrough, conditional branch, assume the exit 224 // uses all the registers that are livein to the successor blocks. 225 for (const MachineBasicBlock *Succ : BB->successors()) { 226 for (const auto &LI : Succ->liveins()) { 227 for (MCRegUnitMaskIterator U(LI.PhysReg, TRI); U.isValid(); ++U) { 228 auto [Unit, Mask] = *U; 229 if ((Mask & LI.LaneMask).any() && !Uses.contains(Unit)) 230 Uses.insert(PhysRegSUOper(&ExitSU, -1, Unit)); 231 } 232 } 233 } 234 } 235 } 236 237 /// MO is an operand of SU's instruction that defines a physical register. Adds 238 /// data dependencies from SU to any uses of the physical register. 239 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) { 240 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx); 241 assert(MO.isDef() && "expect physreg def"); 242 Register Reg = MO.getReg(); 243 244 // Ask the target if address-backscheduling is desirable, and if so how much. 245 const TargetSubtargetInfo &ST = MF.getSubtarget(); 246 247 // Only use any non-zero latency for real defs/uses, in contrast to 248 // "fake" operands added by regalloc. 249 const MCInstrDesc &DefMIDesc = SU->getInstr()->getDesc(); 250 bool ImplicitPseudoDef = (OperIdx >= DefMIDesc.getNumOperands() && 251 !DefMIDesc.hasImplicitDefOfPhysReg(Reg)); 252 for (MCRegUnit Unit : TRI->regunits(Reg)) { 253 for (RegUnit2SUnitsMap::iterator I = Uses.find(Unit); I != Uses.end(); 254 ++I) { 255 SUnit *UseSU = I->SU; 256 if (UseSU == SU) 257 continue; 258 259 // Adjust the dependence latency using operand def/use information, 260 // then allow the target to perform its own adjustments. 261 MachineInstr *UseInstr = nullptr; 262 int UseOpIdx = I->OpIdx; 263 bool ImplicitPseudoUse = false; 264 SDep Dep; 265 if (UseOpIdx < 0) { 266 Dep = SDep(SU, SDep::Artificial); 267 } else { 268 // Set the hasPhysRegDefs only for physreg defs that have a use within 269 // the scheduling region. 270 SU->hasPhysRegDefs = true; 271 272 UseInstr = UseSU->getInstr(); 273 Register UseReg = UseInstr->getOperand(UseOpIdx).getReg(); 274 const MCInstrDesc &UseMIDesc = UseInstr->getDesc(); 275 ImplicitPseudoUse = UseOpIdx >= ((int)UseMIDesc.getNumOperands()) && 276 !UseMIDesc.hasImplicitUseOfPhysReg(UseReg); 277 278 Dep = SDep(SU, SDep::Data, UseReg); 279 } 280 if (!ImplicitPseudoDef && !ImplicitPseudoUse) { 281 Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, 282 UseInstr, UseOpIdx)); 283 } else { 284 Dep.setLatency(0); 285 } 286 ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOpIdx, Dep, &SchedModel); 287 UseSU->addPred(Dep); 288 } 289 } 290 } 291 292 /// Adds register dependencies (data, anti, and output) from this SUnit 293 /// to following instructions in the same scheduling region that depend the 294 /// physical register referenced at OperIdx. 295 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) { 296 MachineInstr *MI = SU->getInstr(); 297 MachineOperand &MO = MI->getOperand(OperIdx); 298 Register Reg = MO.getReg(); 299 // We do not need to track any dependencies for constant registers. 300 if (MRI.isConstantPhysReg(Reg)) 301 return; 302 303 const TargetSubtargetInfo &ST = MF.getSubtarget(); 304 305 // Optionally add output and anti dependencies. For anti 306 // dependencies we use a latency of 0 because for a multi-issue 307 // target we want to allow the defining instruction to issue 308 // in the same cycle as the using instruction. 309 // TODO: Using a latency of 1 here for output dependencies assumes 310 // there's no cost for reusing registers. 311 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output; 312 for (MCRegUnit Unit : TRI->regunits(Reg)) { 313 for (RegUnit2SUnitsMap::iterator I = Defs.find(Unit); I != Defs.end(); 314 ++I) { 315 SUnit *DefSU = I->SU; 316 if (DefSU == &ExitSU) 317 continue; 318 MachineInstr *DefInstr = DefSU->getInstr(); 319 MachineOperand &DefMO = DefInstr->getOperand(I->OpIdx); 320 if (DefSU != SU && 321 (Kind != SDep::Output || !MO.isDead() || !DefMO.isDead())) { 322 SDep Dep(SU, Kind, DefMO.getReg()); 323 if (Kind != SDep::Anti) { 324 Dep.setLatency( 325 SchedModel.computeOutputLatency(MI, OperIdx, DefInstr)); 326 } 327 ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep, 328 &SchedModel); 329 DefSU->addPred(Dep); 330 } 331 } 332 } 333 334 if (MO.isUse()) { 335 SU->hasPhysRegUses = true; 336 // Either insert a new Reg2SUnits entry with an empty SUnits list, or 337 // retrieve the existing SUnits list for this register's uses. 338 // Push this SUnit on the use list. 339 for (MCRegUnit Unit : TRI->regunits(Reg)) 340 Uses.insert(PhysRegSUOper(SU, OperIdx, Unit)); 341 if (RemoveKillFlags) 342 MO.setIsKill(false); 343 } else { 344 addPhysRegDataDeps(SU, OperIdx); 345 346 // Clear previous uses and defs of this register and its subregisters. 347 for (MCRegUnit Unit : TRI->regunits(Reg)) { 348 Uses.eraseAll(Unit); 349 if (!MO.isDead()) 350 Defs.eraseAll(Unit); 351 } 352 353 if (MO.isDead() && SU->isCall) { 354 // Calls will not be reordered because of chain dependencies (see 355 // below). Since call operands are dead, calls may continue to be added 356 // to the DefList making dependence checking quadratic in the size of 357 // the block. Instead, we leave only one call at the back of the 358 // DefList. 359 for (MCRegUnit Unit : TRI->regunits(Reg)) { 360 RegUnit2SUnitsMap::RangePair P = Defs.equal_range(Unit); 361 RegUnit2SUnitsMap::iterator B = P.first; 362 RegUnit2SUnitsMap::iterator I = P.second; 363 for (bool isBegin = I == B; !isBegin; /* empty */) { 364 isBegin = (--I) == B; 365 if (!I->SU->isCall) 366 break; 367 I = Defs.erase(I); 368 } 369 } 370 } 371 372 // Defs are pushed in the order they are visited and never reordered. 373 for (MCRegUnit Unit : TRI->regunits(Reg)) 374 Defs.insert(PhysRegSUOper(SU, OperIdx, Unit)); 375 } 376 } 377 378 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const 379 { 380 Register Reg = MO.getReg(); 381 // No point in tracking lanemasks if we don't have interesting subregisters. 382 const TargetRegisterClass &RC = *MRI.getRegClass(Reg); 383 if (!RC.HasDisjunctSubRegs) 384 return LaneBitmask::getAll(); 385 386 unsigned SubReg = MO.getSubReg(); 387 if (SubReg == 0) 388 return RC.getLaneMask(); 389 return TRI->getSubRegIndexLaneMask(SubReg); 390 } 391 392 bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) { 393 auto RegUse = CurrentVRegUses.find(MO.getReg()); 394 if (RegUse == CurrentVRegUses.end()) 395 return true; 396 return (RegUse->LaneMask & getLaneMaskForMO(MO)).none(); 397 } 398 399 /// Adds register output and data dependencies from this SUnit to instructions 400 /// that occur later in the same scheduling region if they read from or write to 401 /// the virtual register defined at OperIdx. 402 /// 403 /// TODO: Hoist loop induction variable increments. This has to be 404 /// reevaluated. Generally, IV scheduling should be done before coalescing. 405 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) { 406 MachineInstr *MI = SU->getInstr(); 407 MachineOperand &MO = MI->getOperand(OperIdx); 408 Register Reg = MO.getReg(); 409 410 LaneBitmask DefLaneMask; 411 LaneBitmask KillLaneMask; 412 if (TrackLaneMasks) { 413 bool IsKill = MO.getSubReg() == 0 || MO.isUndef(); 414 DefLaneMask = getLaneMaskForMO(MO); 415 // If we have a <read-undef> flag, none of the lane values comes from an 416 // earlier instruction. 417 KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask; 418 419 if (MO.getSubReg() != 0 && MO.isUndef()) { 420 // There may be other subregister defs on the same instruction of the same 421 // register in later operands. The lanes of other defs will now be live 422 // after this instruction, so these should not be treated as killed by the 423 // instruction even though they appear to be killed in this one operand. 424 for (const MachineOperand &OtherMO : 425 llvm::drop_begin(MI->operands(), OperIdx + 1)) 426 if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg) 427 KillLaneMask &= ~getLaneMaskForMO(OtherMO); 428 } 429 430 // Clear undef flag, we'll re-add it later once we know which subregister 431 // Def is first. 432 MO.setIsUndef(false); 433 } else { 434 DefLaneMask = LaneBitmask::getAll(); 435 KillLaneMask = LaneBitmask::getAll(); 436 } 437 438 if (MO.isDead()) { 439 assert(deadDefHasNoUse(MO) && "Dead defs should have no uses"); 440 } else { 441 // Add data dependence to all uses we found so far. 442 const TargetSubtargetInfo &ST = MF.getSubtarget(); 443 for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg), 444 E = CurrentVRegUses.end(); I != E; /*empty*/) { 445 LaneBitmask LaneMask = I->LaneMask; 446 // Ignore uses of other lanes. 447 if ((LaneMask & KillLaneMask).none()) { 448 ++I; 449 continue; 450 } 451 452 if ((LaneMask & DefLaneMask).any()) { 453 SUnit *UseSU = I->SU; 454 MachineInstr *Use = UseSU->getInstr(); 455 SDep Dep(SU, SDep::Data, Reg); 456 Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use, 457 I->OperandIndex)); 458 ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep, 459 &SchedModel); 460 UseSU->addPred(Dep); 461 } 462 463 LaneMask &= ~KillLaneMask; 464 // If we found a Def for all lanes of this use, remove it from the list. 465 if (LaneMask.any()) { 466 I->LaneMask = LaneMask; 467 ++I; 468 } else 469 I = CurrentVRegUses.erase(I); 470 } 471 } 472 473 // Shortcut: Singly defined vregs do not have output/anti dependencies. 474 if (MRI.hasOneDef(Reg)) 475 return; 476 477 // Add output dependence to the next nearest defs of this vreg. 478 // 479 // Unless this definition is dead, the output dependence should be 480 // transitively redundant with antidependencies from this definition's 481 // uses. We're conservative for now until we have a way to guarantee the uses 482 // are not eliminated sometime during scheduling. The output dependence edge 483 // is also useful if output latency exceeds def-use latency. 484 LaneBitmask LaneMask = DefLaneMask; 485 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 486 CurrentVRegDefs.end())) { 487 // Ignore defs for other lanes. 488 if ((V2SU.LaneMask & LaneMask).none()) 489 continue; 490 // Add an output dependence. 491 SUnit *DefSU = V2SU.SU; 492 // Ignore additional defs of the same lanes in one instruction. This can 493 // happen because lanemasks are shared for targets with too many 494 // subregisters. We also use some representration tricks/hacks where we 495 // add super-register defs/uses, to imply that although we only access parts 496 // of the reg we care about the full one. 497 if (DefSU == SU) 498 continue; 499 SDep Dep(SU, SDep::Output, Reg); 500 Dep.setLatency( 501 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr())); 502 DefSU->addPred(Dep); 503 504 // Update current definition. This can get tricky if the def was about a 505 // bigger lanemask before. We then have to shrink it and create a new 506 // VReg2SUnit for the non-overlapping part. 507 LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask; 508 LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask; 509 V2SU.SU = SU; 510 V2SU.LaneMask = OverlapMask; 511 if (NonOverlapMask.any()) 512 CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU)); 513 } 514 // If there was no CurrentVRegDefs entry for some lanes yet, create one. 515 if (LaneMask.any()) 516 CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU)); 517 } 518 519 /// Adds a register data dependency if the instruction that defines the 520 /// virtual register used at OperIdx is mapped to an SUnit. Add a register 521 /// antidependency from this SUnit to instructions that occur later in the same 522 /// scheduling region if they write the virtual register. 523 /// 524 /// TODO: Handle ExitSU "uses" properly. 525 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) { 526 const MachineInstr *MI = SU->getInstr(); 527 assert(!MI->isDebugOrPseudoInstr()); 528 529 const MachineOperand &MO = MI->getOperand(OperIdx); 530 Register Reg = MO.getReg(); 531 532 // Remember the use. Data dependencies will be added when we find the def. 533 LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) 534 : LaneBitmask::getAll(); 535 CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU)); 536 537 // Add antidependences to the following defs of the vreg. 538 for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg), 539 CurrentVRegDefs.end())) { 540 // Ignore defs for unrelated lanes. 541 LaneBitmask PrevDefLaneMask = V2SU.LaneMask; 542 if ((PrevDefLaneMask & LaneMask).none()) 543 continue; 544 if (V2SU.SU == SU) 545 continue; 546 547 V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg)); 548 } 549 } 550 551 552 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb, 553 unsigned Latency) { 554 if (SUa->getInstr()->mayAlias(getAAForDep(), *SUb->getInstr(), UseTBAA)) { 555 SDep Dep(SUa, SDep::MayAliasMem); 556 Dep.setLatency(Latency); 557 SUb->addPred(Dep); 558 } 559 } 560 561 /// Creates an SUnit for each real instruction, numbered in top-down 562 /// topological order. The instruction order A < B, implies that no edge exists 563 /// from B to A. 564 /// 565 /// Map each real instruction to its SUnit. 566 /// 567 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may 568 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs 569 /// instead of pointers. 570 /// 571 /// MachineScheduler relies on initSUnits numbering the nodes by their order in 572 /// the original instruction list. 573 void ScheduleDAGInstrs::initSUnits() { 574 // We'll be allocating one SUnit for each real instruction in the region, 575 // which is contained within a basic block. 576 SUnits.reserve(NumRegionInstrs); 577 578 for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) { 579 if (MI.isDebugOrPseudoInstr()) 580 continue; 581 582 SUnit *SU = newSUnit(&MI); 583 MISUnitMap[&MI] = SU; 584 585 SU->isCall = MI.isCall(); 586 SU->isCommutable = MI.isCommutable(); 587 588 // Assign the Latency field of SU using target-provided information. 589 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr()); 590 591 // If this SUnit uses a reserved or unbuffered resource, mark it as such. 592 // 593 // Reserved resources block an instruction from issuing and stall the 594 // entire pipeline. These are identified by BufferSize=0. 595 // 596 // Unbuffered resources prevent execution of subsequent instructions that 597 // require the same resources. This is used for in-order execution pipelines 598 // within an out-of-order core. These are identified by BufferSize=1. 599 if (SchedModel.hasInstrSchedModel()) { 600 const MCSchedClassDesc *SC = getSchedClass(SU); 601 for (const MCWriteProcResEntry &PRE : 602 make_range(SchedModel.getWriteProcResBegin(SC), 603 SchedModel.getWriteProcResEnd(SC))) { 604 switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) { 605 case 0: 606 SU->hasReservedResource = true; 607 break; 608 case 1: 609 SU->isUnbuffered = true; 610 break; 611 default: 612 break; 613 } 614 } 615 } 616 } 617 } 618 619 class ScheduleDAGInstrs::Value2SUsMap 620 : public SmallMapVector<ValueType, SUList, 4> { 621 /// Current total number of SUs in map. 622 unsigned NumNodes = 0; 623 624 /// 1 for loads, 0 for stores. (see comment in SUList) 625 unsigned TrueMemOrderLatency; 626 627 public: 628 Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {} 629 630 /// To keep NumNodes up to date, insert() is used instead of 631 /// this operator w/ push_back(). 632 ValueType &operator[](const SUList &Key) { 633 llvm_unreachable("Don't use. Use insert() instead."); }; 634 635 /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling 636 /// reduce(). 637 void inline insert(SUnit *SU, ValueType V) { 638 MapVector::operator[](V).push_back(SU); 639 NumNodes++; 640 } 641 642 /// Clears the list of SUs mapped to V. 643 void inline clearList(ValueType V) { 644 iterator Itr = find(V); 645 if (Itr != end()) { 646 assert(NumNodes >= Itr->second.size()); 647 NumNodes -= Itr->second.size(); 648 649 Itr->second.clear(); 650 } 651 } 652 653 /// Clears map from all contents. 654 void clear() { 655 SmallMapVector<ValueType, SUList, 4>::clear(); 656 NumNodes = 0; 657 } 658 659 unsigned inline size() const { return NumNodes; } 660 661 /// Counts the number of SUs in this map after a reduction. 662 void reComputeSize() { 663 NumNodes = 0; 664 for (auto &I : *this) 665 NumNodes += I.second.size(); 666 } 667 668 unsigned inline getTrueMemOrderLatency() const { 669 return TrueMemOrderLatency; 670 } 671 672 void dump(); 673 }; 674 675 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 676 Value2SUsMap &Val2SUsMap) { 677 for (auto &I : Val2SUsMap) 678 addChainDependencies(SU, I.second, 679 Val2SUsMap.getTrueMemOrderLatency()); 680 } 681 682 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU, 683 Value2SUsMap &Val2SUsMap, 684 ValueType V) { 685 Value2SUsMap::iterator Itr = Val2SUsMap.find(V); 686 if (Itr != Val2SUsMap.end()) 687 addChainDependencies(SU, Itr->second, 688 Val2SUsMap.getTrueMemOrderLatency()); 689 } 690 691 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) { 692 assert(BarrierChain != nullptr); 693 694 for (auto &[V, SUs] : map) { 695 (void)V; 696 for (auto *SU : SUs) 697 SU->addPredBarrier(BarrierChain); 698 } 699 map.clear(); 700 } 701 702 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) { 703 assert(BarrierChain != nullptr); 704 705 // Go through all lists of SUs. 706 for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) { 707 Value2SUsMap::iterator CurrItr = I++; 708 SUList &sus = CurrItr->second; 709 SUList::iterator SUItr = sus.begin(), SUEE = sus.end(); 710 for (; SUItr != SUEE; ++SUItr) { 711 // Stop on BarrierChain or any instruction above it. 712 if ((*SUItr)->NodeNum <= BarrierChain->NodeNum) 713 break; 714 715 (*SUItr)->addPredBarrier(BarrierChain); 716 } 717 718 // Remove also the BarrierChain from list if present. 719 if (SUItr != SUEE && *SUItr == BarrierChain) 720 SUItr++; 721 722 // Remove all SUs that are now successors of BarrierChain. 723 if (SUItr != sus.begin()) 724 sus.erase(sus.begin(), SUItr); 725 } 726 727 // Remove all entries with empty su lists. 728 map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) { 729 return (mapEntry.second.empty()); }); 730 731 // Recompute the size of the map (NumNodes). 732 map.reComputeSize(); 733 } 734 735 void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA, 736 RegPressureTracker *RPTracker, 737 PressureDiffs *PDiffs, 738 LiveIntervals *LIS, 739 bool TrackLaneMasks) { 740 const TargetSubtargetInfo &ST = MF.getSubtarget(); 741 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI 742 : ST.useAA(); 743 if (UseAA && AA) 744 AAForDep.emplace(*AA); 745 746 BarrierChain = nullptr; 747 748 this->TrackLaneMasks = TrackLaneMasks; 749 MISUnitMap.clear(); 750 ScheduleDAG::clearDAG(); 751 752 // Create an SUnit for each real instruction. 753 initSUnits(); 754 755 if (PDiffs) 756 PDiffs->init(SUnits.size()); 757 758 // We build scheduling units by walking a block's instruction list 759 // from bottom to top. 760 761 // Each MIs' memory operand(s) is analyzed to a list of underlying 762 // objects. The SU is then inserted in the SUList(s) mapped from the 763 // Value(s). Each Value thus gets mapped to lists of SUs depending 764 // on it, stores and loads kept separately. Two SUs are trivially 765 // non-aliasing if they both depend on only identified Values and do 766 // not share any common Value. 767 Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/); 768 769 // Certain memory accesses are known to not alias any SU in Stores 770 // or Loads, and have therefore their own 'NonAlias' 771 // domain. E.g. spill / reload instructions never alias LLVM I/R 772 // Values. It would be nice to assume that this type of memory 773 // accesses always have a proper memory operand modelling, and are 774 // therefore never unanalyzable, but this is conservatively not 775 // done. 776 Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/); 777 778 // Track all instructions that may raise floating-point exceptions. 779 // These do not depend on one other (or normal loads or stores), but 780 // must not be rescheduled across global barriers. Note that we don't 781 // really need a "map" here since we don't track those MIs by value; 782 // using the same Value2SUsMap data type here is simply a matter of 783 // convenience. 784 Value2SUsMap FPExceptions; 785 786 // Remove any stale debug info; sometimes BuildSchedGraph is called again 787 // without emitting the info from the previous call. 788 DbgValues.clear(); 789 FirstDbgValue = nullptr; 790 791 assert(Defs.empty() && Uses.empty() && 792 "Only BuildGraph should update Defs/Uses"); 793 Defs.setUniverse(TRI->getNumRegs()); 794 Uses.setUniverse(TRI->getNumRegs()); 795 796 assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs"); 797 assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses"); 798 unsigned NumVirtRegs = MRI.getNumVirtRegs(); 799 CurrentVRegDefs.setUniverse(NumVirtRegs); 800 CurrentVRegUses.setUniverse(NumVirtRegs); 801 802 // Model data dependencies between instructions being scheduled and the 803 // ExitSU. 804 addSchedBarrierDeps(); 805 806 // Walk the list of instructions, from bottom moving up. 807 MachineInstr *DbgMI = nullptr; 808 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin; 809 MII != MIE; --MII) { 810 MachineInstr &MI = *std::prev(MII); 811 if (DbgMI) { 812 DbgValues.emplace_back(DbgMI, &MI); 813 DbgMI = nullptr; 814 } 815 816 if (MI.isDebugValue() || MI.isDebugPHI()) { 817 DbgMI = &MI; 818 continue; 819 } 820 821 if (MI.isDebugLabel() || MI.isDebugRef() || MI.isPseudoProbe()) 822 continue; 823 824 SUnit *SU = MISUnitMap[&MI]; 825 assert(SU && "No SUnit mapped to this MI"); 826 827 if (RPTracker) { 828 RegisterOperands RegOpers; 829 RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false); 830 if (TrackLaneMasks) { 831 SlotIndex SlotIdx = LIS->getInstructionIndex(MI); 832 RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx); 833 } 834 if (PDiffs != nullptr) 835 PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI); 836 837 if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI) 838 RPTracker->recedeSkipDebugValues(); 839 assert(&*RPTracker->getPos() == &MI && "RPTracker in sync"); 840 RPTracker->recede(RegOpers); 841 } 842 843 assert( 844 (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) && 845 "Cannot schedule terminators or labels!"); 846 847 // Add register-based dependencies (data, anti, and output). 848 // For some instructions (calls, returns, inline-asm, etc.) there can 849 // be explicit uses and implicit defs, in which case the use will appear 850 // on the operand list before the def. Do two passes over the operand 851 // list to make sure that defs are processed before any uses. 852 bool HasVRegDef = false; 853 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 854 const MachineOperand &MO = MI.getOperand(j); 855 if (!MO.isReg() || !MO.isDef()) 856 continue; 857 Register Reg = MO.getReg(); 858 if (Reg.isPhysical()) { 859 addPhysRegDeps(SU, j); 860 } else if (Reg.isVirtual()) { 861 HasVRegDef = true; 862 addVRegDefDeps(SU, j); 863 } 864 } 865 // Now process all uses. 866 for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) { 867 const MachineOperand &MO = MI.getOperand(j); 868 // Only look at use operands. 869 // We do not need to check for MO.readsReg() here because subsequent 870 // subregister defs will get output dependence edges and need no 871 // additional use dependencies. 872 if (!MO.isReg() || !MO.isUse()) 873 continue; 874 Register Reg = MO.getReg(); 875 if (Reg.isPhysical()) { 876 addPhysRegDeps(SU, j); 877 } else if (Reg.isVirtual() && MO.readsReg()) { 878 addVRegUseDeps(SU, j); 879 } 880 } 881 882 // If we haven't seen any uses in this scheduling region, create a 883 // dependence edge to ExitSU to model the live-out latency. This is required 884 // for vreg defs with no in-region use, and prefetches with no vreg def. 885 // 886 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This 887 // check currently relies on being called before adding chain deps. 888 if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) { 889 SDep Dep(SU, SDep::Artificial); 890 Dep.setLatency(SU->Latency - 1); 891 ExitSU.addPred(Dep); 892 } 893 894 // Add memory dependencies (Note: isStoreToStackSlot and 895 // isLoadFromStackSLot are not usable after stack slots are lowered to 896 // actual addresses). 897 898 const TargetInstrInfo *TII = ST.getInstrInfo(); 899 // This is a barrier event that acts as a pivotal node in the DAG. 900 if (TII->isGlobalMemoryObject(&MI)) { 901 902 // Become the barrier chain. 903 if (BarrierChain) 904 BarrierChain->addPredBarrier(SU); 905 BarrierChain = SU; 906 907 LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU(" 908 << BarrierChain->NodeNum << ").\n"); 909 910 // Add dependencies against everything below it and clear maps. 911 addBarrierChain(Stores); 912 addBarrierChain(Loads); 913 addBarrierChain(NonAliasStores); 914 addBarrierChain(NonAliasLoads); 915 addBarrierChain(FPExceptions); 916 917 continue; 918 } 919 920 // Instructions that may raise FP exceptions may not be moved 921 // across any global barriers. 922 if (MI.mayRaiseFPException()) { 923 if (BarrierChain) 924 BarrierChain->addPredBarrier(SU); 925 926 FPExceptions.insert(SU, UnknownValue); 927 928 if (FPExceptions.size() >= HugeRegion) { 929 LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n"); 930 Value2SUsMap empty; 931 reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize()); 932 } 933 } 934 935 // If it's not a store or a variant load, we're done. 936 if (!MI.mayStore() && 937 !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad())) 938 continue; 939 940 // Always add dependecy edge to BarrierChain if present. 941 if (BarrierChain) 942 BarrierChain->addPredBarrier(SU); 943 944 // Find the underlying objects for MI. The Objs vector is either 945 // empty, or filled with the Values of memory locations which this 946 // SU depends on. 947 UnderlyingObjectsVector Objs; 948 bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs, 949 MF.getDataLayout()); 950 951 if (MI.mayStore()) { 952 if (!ObjsFound) { 953 // An unknown store depends on all stores and loads. 954 addChainDependencies(SU, Stores); 955 addChainDependencies(SU, NonAliasStores); 956 addChainDependencies(SU, Loads); 957 addChainDependencies(SU, NonAliasLoads); 958 959 // Map this store to 'UnknownValue'. 960 Stores.insert(SU, UnknownValue); 961 } else { 962 // Add precise dependencies against all previously seen memory 963 // accesses mapped to the same Value(s). 964 for (const UnderlyingObject &UnderlObj : Objs) { 965 ValueType V = UnderlObj.getValue(); 966 bool ThisMayAlias = UnderlObj.mayAlias(); 967 968 // Add dependencies to previous stores and loads mapped to V. 969 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 970 addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V); 971 } 972 // Update the store map after all chains have been added to avoid adding 973 // self-loop edge if multiple underlying objects are present. 974 for (const UnderlyingObject &UnderlObj : Objs) { 975 ValueType V = UnderlObj.getValue(); 976 bool ThisMayAlias = UnderlObj.mayAlias(); 977 978 // Map this store to V. 979 (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V); 980 } 981 // The store may have dependencies to unanalyzable loads and 982 // stores. 983 addChainDependencies(SU, Loads, UnknownValue); 984 addChainDependencies(SU, Stores, UnknownValue); 985 } 986 } else { // SU is a load. 987 if (!ObjsFound) { 988 // An unknown load depends on all stores. 989 addChainDependencies(SU, Stores); 990 addChainDependencies(SU, NonAliasStores); 991 992 Loads.insert(SU, UnknownValue); 993 } else { 994 for (const UnderlyingObject &UnderlObj : Objs) { 995 ValueType V = UnderlObj.getValue(); 996 bool ThisMayAlias = UnderlObj.mayAlias(); 997 998 // Add precise dependencies against all previously seen stores 999 // mapping to the same Value(s). 1000 addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V); 1001 1002 // Map this load to V. 1003 (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V); 1004 } 1005 // The load may have dependencies to unanalyzable stores. 1006 addChainDependencies(SU, Stores, UnknownValue); 1007 } 1008 } 1009 1010 // Reduce maps if they grow huge. 1011 if (Stores.size() + Loads.size() >= HugeRegion) { 1012 LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n"); 1013 reduceHugeMemNodeMaps(Stores, Loads, getReductionSize()); 1014 } 1015 if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) { 1016 LLVM_DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n"); 1017 reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize()); 1018 } 1019 } 1020 1021 if (DbgMI) 1022 FirstDbgValue = DbgMI; 1023 1024 Defs.clear(); 1025 Uses.clear(); 1026 CurrentVRegDefs.clear(); 1027 CurrentVRegUses.clear(); 1028 1029 Topo.MarkDirty(); 1030 } 1031 1032 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) { 1033 PSV->printCustom(OS); 1034 return OS; 1035 } 1036 1037 void ScheduleDAGInstrs::Value2SUsMap::dump() { 1038 for (const auto &[ValType, SUs] : *this) { 1039 if (isa<const Value *>(ValType)) { 1040 const Value *V = cast<const Value *>(ValType); 1041 if (isa<UndefValue>(V)) 1042 dbgs() << "Unknown"; 1043 else 1044 V->printAsOperand(dbgs()); 1045 } else if (isa<const PseudoSourceValue *>(ValType)) 1046 dbgs() << cast<const PseudoSourceValue *>(ValType); 1047 else 1048 llvm_unreachable("Unknown Value type."); 1049 1050 dbgs() << " : "; 1051 dumpSUList(SUs); 1052 } 1053 } 1054 1055 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores, 1056 Value2SUsMap &loads, unsigned N) { 1057 LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump(); 1058 dbgs() << "Loading SUnits:\n"; loads.dump()); 1059 1060 // Insert all SU's NodeNums into a vector and sort it. 1061 std::vector<unsigned> NodeNums; 1062 NodeNums.reserve(stores.size() + loads.size()); 1063 for (const auto &[V, SUs] : stores) { 1064 (void)V; 1065 for (const auto *SU : SUs) 1066 NodeNums.push_back(SU->NodeNum); 1067 } 1068 for (const auto &[V, SUs] : loads) { 1069 (void)V; 1070 for (const auto *SU : SUs) 1071 NodeNums.push_back(SU->NodeNum); 1072 } 1073 llvm::sort(NodeNums); 1074 1075 // The N last elements in NodeNums will be removed, and the SU with 1076 // the lowest NodeNum of them will become the new BarrierChain to 1077 // let the not yet seen SUs have a dependency to the removed SUs. 1078 assert(N <= NodeNums.size()); 1079 SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)]; 1080 if (BarrierChain) { 1081 // The aliasing and non-aliasing maps reduce independently of each 1082 // other, but share a common BarrierChain. Check if the 1083 // newBarrierChain is above the former one. If it is not, it may 1084 // introduce a loop to use newBarrierChain, so keep the old one. 1085 if (newBarrierChain->NodeNum < BarrierChain->NodeNum) { 1086 BarrierChain->addPredBarrier(newBarrierChain); 1087 BarrierChain = newBarrierChain; 1088 LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU(" 1089 << BarrierChain->NodeNum << ").\n"); 1090 } 1091 else 1092 LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU(" 1093 << BarrierChain->NodeNum << ").\n"); 1094 } 1095 else 1096 BarrierChain = newBarrierChain; 1097 1098 insertBarrierChain(stores); 1099 insertBarrierChain(loads); 1100 1101 LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump(); 1102 dbgs() << "Loading SUnits:\n"; loads.dump()); 1103 } 1104 1105 static void toggleKills(const MachineRegisterInfo &MRI, LiveRegUnits &LiveRegs, 1106 MachineInstr &MI, bool addToLiveRegs) { 1107 for (MachineOperand &MO : MI.operands()) { 1108 if (!MO.isReg() || !MO.readsReg()) 1109 continue; 1110 Register Reg = MO.getReg(); 1111 if (!Reg) 1112 continue; 1113 1114 // Things that are available after the instruction are killed by it. 1115 bool IsKill = LiveRegs.available(Reg); 1116 1117 // Exception: Do not kill reserved registers 1118 MO.setIsKill(IsKill && !MRI.isReserved(Reg)); 1119 if (addToLiveRegs) 1120 LiveRegs.addReg(Reg); 1121 } 1122 } 1123 1124 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) { 1125 LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n'); 1126 1127 LiveRegs.init(*TRI); 1128 LiveRegs.addLiveOuts(MBB); 1129 1130 // Examine block from end to start... 1131 for (MachineInstr &MI : llvm::reverse(MBB)) { 1132 if (MI.isDebugOrPseudoInstr()) 1133 continue; 1134 1135 // Update liveness. Registers that are defed but not used in this 1136 // instruction are now dead. Mark register and all subregs as they 1137 // are completely defined. 1138 for (ConstMIBundleOperands O(MI); O.isValid(); ++O) { 1139 const MachineOperand &MO = *O; 1140 if (MO.isReg()) { 1141 if (!MO.isDef()) 1142 continue; 1143 Register Reg = MO.getReg(); 1144 if (!Reg) 1145 continue; 1146 LiveRegs.removeReg(Reg); 1147 } else if (MO.isRegMask()) { 1148 LiveRegs.removeRegsNotPreserved(MO.getRegMask()); 1149 } 1150 } 1151 1152 // If there is a bundle header fix it up first. 1153 if (!MI.isBundled()) { 1154 toggleKills(MRI, LiveRegs, MI, true); 1155 } else { 1156 MachineBasicBlock::instr_iterator Bundle = MI.getIterator(); 1157 if (MI.isBundle()) 1158 toggleKills(MRI, LiveRegs, MI, false); 1159 1160 // Some targets make the (questionable) assumtion that the instructions 1161 // inside the bundle are ordered and consequently only the last use of 1162 // a register inside the bundle can kill it. 1163 MachineBasicBlock::instr_iterator I = std::next(Bundle); 1164 while (I->isBundledWithSucc()) 1165 ++I; 1166 do { 1167 if (!I->isDebugOrPseudoInstr()) 1168 toggleKills(MRI, LiveRegs, *I, true); 1169 --I; 1170 } while (I != Bundle); 1171 } 1172 } 1173 } 1174 1175 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const { 1176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1177 dumpNodeName(SU); 1178 if (SchedPrintCycles) 1179 dbgs() << " [TopReadyCycle = " << SU.TopReadyCycle 1180 << ", BottomReadyCycle = " << SU.BotReadyCycle << "]"; 1181 dbgs() << ": "; 1182 SU.getInstr()->dump(); 1183 #endif 1184 } 1185 1186 void ScheduleDAGInstrs::dump() const { 1187 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1188 if (EntrySU.getInstr() != nullptr) 1189 dumpNodeAll(EntrySU); 1190 for (const SUnit &SU : SUnits) 1191 dumpNodeAll(SU); 1192 if (ExitSU.getInstr() != nullptr) 1193 dumpNodeAll(ExitSU); 1194 #endif 1195 } 1196 1197 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const { 1198 std::string s; 1199 raw_string_ostream oss(s); 1200 if (SU == &EntrySU) 1201 oss << "<entry>"; 1202 else if (SU == &ExitSU) 1203 oss << "<exit>"; 1204 else 1205 SU->getInstr()->print(oss, /*IsStandalone=*/true); 1206 return s; 1207 } 1208 1209 /// Return the basic block label. It is not necessarily unique because a block 1210 /// contains multiple scheduling regions. But it is fine for visualization. 1211 std::string ScheduleDAGInstrs::getDAGName() const { 1212 return "dag." + BB->getFullName(); 1213 } 1214 1215 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) { 1216 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU); 1217 } 1218 1219 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) { 1220 if (SuccSU != &ExitSU) { 1221 // Do not use WillCreateCycle, it assumes SD scheduling. 1222 // If Pred is reachable from Succ, then the edge creates a cycle. 1223 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU)) 1224 return false; 1225 Topo.AddPredQueued(SuccSU, PredDep.getSUnit()); 1226 } 1227 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial()); 1228 // Return true regardless of whether a new edge needed to be inserted. 1229 return true; 1230 } 1231 1232 //===----------------------------------------------------------------------===// 1233 // SchedDFSResult Implementation 1234 //===----------------------------------------------------------------------===// 1235 1236 namespace llvm { 1237 1238 /// Internal state used to compute SchedDFSResult. 1239 class SchedDFSImpl { 1240 SchedDFSResult &R; 1241 1242 /// Join DAG nodes into equivalence classes by their subtree. 1243 IntEqClasses SubtreeClasses; 1244 /// List PredSU, SuccSU pairs that represent data edges between subtrees. 1245 std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs; 1246 1247 struct RootData { 1248 unsigned NodeID; 1249 unsigned ParentNodeID; ///< Parent node (member of the parent subtree). 1250 unsigned SubInstrCount = 0; ///< Instr count in this tree only, not 1251 /// children. 1252 1253 RootData(unsigned id): NodeID(id), 1254 ParentNodeID(SchedDFSResult::InvalidSubtreeID) {} 1255 1256 unsigned getSparseSetIndex() const { return NodeID; } 1257 }; 1258 1259 SparseSet<RootData> RootSet; 1260 1261 public: 1262 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) { 1263 RootSet.setUniverse(R.DFSNodeData.size()); 1264 } 1265 1266 /// Returns true if this node been visited by the DFS traversal. 1267 /// 1268 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node 1269 /// ID. Later, SubtreeID is updated but remains valid. 1270 bool isVisited(const SUnit *SU) const { 1271 return R.DFSNodeData[SU->NodeNum].SubtreeID 1272 != SchedDFSResult::InvalidSubtreeID; 1273 } 1274 1275 /// Initializes this node's instruction count. We don't need to flag the node 1276 /// visited until visitPostorder because the DAG cannot have cycles. 1277 void visitPreorder(const SUnit *SU) { 1278 R.DFSNodeData[SU->NodeNum].InstrCount = 1279 SU->getInstr()->isTransient() ? 0 : 1; 1280 } 1281 1282 /// Called once for each node after all predecessors are visited. Revisit this 1283 /// node's predecessors and potentially join them now that we know the ILP of 1284 /// the other predecessors. 1285 void visitPostorderNode(const SUnit *SU) { 1286 // Mark this node as the root of a subtree. It may be joined with its 1287 // successors later. 1288 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum; 1289 RootData RData(SU->NodeNum); 1290 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1; 1291 1292 // If any predecessors are still in their own subtree, they either cannot be 1293 // joined or are large enough to remain separate. If this parent node's 1294 // total instruction count is not greater than a child subtree by at least 1295 // the subtree limit, then try to join it now since splitting subtrees is 1296 // only useful if multiple high-pressure paths are possible. 1297 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount; 1298 for (const SDep &PredDep : SU->Preds) { 1299 if (PredDep.getKind() != SDep::Data) 1300 continue; 1301 unsigned PredNum = PredDep.getSUnit()->NodeNum; 1302 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit) 1303 joinPredSubtree(PredDep, SU, /*CheckLimit=*/false); 1304 1305 // Either link or merge the TreeData entry from the child to the parent. 1306 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) { 1307 // If the predecessor's parent is invalid, this is a tree edge and the 1308 // current node is the parent. 1309 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID) 1310 RootSet[PredNum].ParentNodeID = SU->NodeNum; 1311 } 1312 else if (RootSet.count(PredNum)) { 1313 // The predecessor is not a root, but is still in the root set. This 1314 // must be the new parent that it was just joined to. Note that 1315 // RootSet[PredNum].ParentNodeID may either be invalid or may still be 1316 // set to the original parent. 1317 RData.SubInstrCount += RootSet[PredNum].SubInstrCount; 1318 RootSet.erase(PredNum); 1319 } 1320 } 1321 RootSet[SU->NodeNum] = RData; 1322 } 1323 1324 /// Called once for each tree edge after calling visitPostOrderNode on 1325 /// the predecessor. Increment the parent node's instruction count and 1326 /// preemptively join this subtree to its parent's if it is small enough. 1327 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) { 1328 R.DFSNodeData[Succ->NodeNum].InstrCount 1329 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount; 1330 joinPredSubtree(PredDep, Succ); 1331 } 1332 1333 /// Adds a connection for cross edges. 1334 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) { 1335 ConnectionPairs.emplace_back(PredDep.getSUnit(), Succ); 1336 } 1337 1338 /// Sets each node's subtree ID to the representative ID and record 1339 /// connections between trees. 1340 void finalize() { 1341 SubtreeClasses.compress(); 1342 R.DFSTreeData.resize(SubtreeClasses.getNumClasses()); 1343 assert(SubtreeClasses.getNumClasses() == RootSet.size() 1344 && "number of roots should match trees"); 1345 for (const RootData &Root : RootSet) { 1346 unsigned TreeID = SubtreeClasses[Root.NodeID]; 1347 if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID) 1348 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID]; 1349 R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount; 1350 // Note that SubInstrCount may be greater than InstrCount if we joined 1351 // subtrees across a cross edge. InstrCount will be attributed to the 1352 // original parent, while SubInstrCount will be attributed to the joined 1353 // parent. 1354 } 1355 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses()); 1356 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses()); 1357 LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n"); 1358 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) { 1359 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx]; 1360 LLVM_DEBUG(dbgs() << " SU(" << Idx << ") in tree " 1361 << R.DFSNodeData[Idx].SubtreeID << '\n'); 1362 } 1363 for (const auto &[Pred, Succ] : ConnectionPairs) { 1364 unsigned PredTree = SubtreeClasses[Pred->NodeNum]; 1365 unsigned SuccTree = SubtreeClasses[Succ->NodeNum]; 1366 if (PredTree == SuccTree) 1367 continue; 1368 unsigned Depth = Pred->getDepth(); 1369 addConnection(PredTree, SuccTree, Depth); 1370 addConnection(SuccTree, PredTree, Depth); 1371 } 1372 } 1373 1374 protected: 1375 /// Joins the predecessor subtree with the successor that is its DFS parent. 1376 /// Applies some heuristics before joining. 1377 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ, 1378 bool CheckLimit = true) { 1379 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges"); 1380 1381 // Check if the predecessor is already joined. 1382 const SUnit *PredSU = PredDep.getSUnit(); 1383 unsigned PredNum = PredSU->NodeNum; 1384 if (R.DFSNodeData[PredNum].SubtreeID != PredNum) 1385 return false; 1386 1387 // Four is the magic number of successors before a node is considered a 1388 // pinch point. 1389 unsigned NumDataSucs = 0; 1390 for (const SDep &SuccDep : PredSU->Succs) { 1391 if (SuccDep.getKind() == SDep::Data) { 1392 if (++NumDataSucs >= 4) 1393 return false; 1394 } 1395 } 1396 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit) 1397 return false; 1398 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum; 1399 SubtreeClasses.join(Succ->NodeNum, PredNum); 1400 return true; 1401 } 1402 1403 /// Called by finalize() to record a connection between trees. 1404 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) { 1405 if (!Depth) 1406 return; 1407 1408 do { 1409 SmallVectorImpl<SchedDFSResult::Connection> &Connections = 1410 R.SubtreeConnections[FromTree]; 1411 for (SchedDFSResult::Connection &C : Connections) { 1412 if (C.TreeID == ToTree) { 1413 C.Level = std::max(C.Level, Depth); 1414 return; 1415 } 1416 } 1417 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth)); 1418 FromTree = R.DFSTreeData[FromTree].ParentTreeID; 1419 } while (FromTree != SchedDFSResult::InvalidSubtreeID); 1420 } 1421 }; 1422 1423 } // end namespace llvm 1424 1425 namespace { 1426 1427 /// Manage the stack used by a reverse depth-first search over the DAG. 1428 class SchedDAGReverseDFS { 1429 std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack; 1430 1431 public: 1432 bool isComplete() const { return DFSStack.empty(); } 1433 1434 void follow(const SUnit *SU) { 1435 DFSStack.emplace_back(SU, SU->Preds.begin()); 1436 } 1437 void advance() { ++DFSStack.back().second; } 1438 1439 const SDep *backtrack() { 1440 DFSStack.pop_back(); 1441 return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second); 1442 } 1443 1444 const SUnit *getCurr() const { return DFSStack.back().first; } 1445 1446 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; } 1447 1448 SUnit::const_pred_iterator getPredEnd() const { 1449 return getCurr()->Preds.end(); 1450 } 1451 }; 1452 1453 } // end anonymous namespace 1454 1455 static bool hasDataSucc(const SUnit *SU) { 1456 for (const SDep &SuccDep : SU->Succs) { 1457 if (SuccDep.getKind() == SDep::Data && 1458 !SuccDep.getSUnit()->isBoundaryNode()) 1459 return true; 1460 } 1461 return false; 1462 } 1463 1464 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first 1465 /// search from this root. 1466 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) { 1467 if (!IsBottomUp) 1468 llvm_unreachable("Top-down ILP metric is unimplemented"); 1469 1470 SchedDFSImpl Impl(*this); 1471 for (const SUnit &SU : SUnits) { 1472 if (Impl.isVisited(&SU) || hasDataSucc(&SU)) 1473 continue; 1474 1475 SchedDAGReverseDFS DFS; 1476 Impl.visitPreorder(&SU); 1477 DFS.follow(&SU); 1478 while (true) { 1479 // Traverse the leftmost path as far as possible. 1480 while (DFS.getPred() != DFS.getPredEnd()) { 1481 const SDep &PredDep = *DFS.getPred(); 1482 DFS.advance(); 1483 // Ignore non-data edges. 1484 if (PredDep.getKind() != SDep::Data 1485 || PredDep.getSUnit()->isBoundaryNode()) { 1486 continue; 1487 } 1488 // An already visited edge is a cross edge, assuming an acyclic DAG. 1489 if (Impl.isVisited(PredDep.getSUnit())) { 1490 Impl.visitCrossEdge(PredDep, DFS.getCurr()); 1491 continue; 1492 } 1493 Impl.visitPreorder(PredDep.getSUnit()); 1494 DFS.follow(PredDep.getSUnit()); 1495 } 1496 // Visit the top of the stack in postorder and backtrack. 1497 const SUnit *Child = DFS.getCurr(); 1498 const SDep *PredDep = DFS.backtrack(); 1499 Impl.visitPostorderNode(Child); 1500 if (PredDep) 1501 Impl.visitPostorderEdge(*PredDep, DFS.getCurr()); 1502 if (DFS.isComplete()) 1503 break; 1504 } 1505 } 1506 Impl.finalize(); 1507 } 1508 1509 /// The root of the given SubtreeID was just scheduled. For all subtrees 1510 /// connected to this tree, record the depth of the connection so that the 1511 /// nearest connected subtrees can be prioritized. 1512 void SchedDFSResult::scheduleTree(unsigned SubtreeID) { 1513 for (const Connection &C : SubtreeConnections[SubtreeID]) { 1514 SubtreeConnectLevels[C.TreeID] = 1515 std::max(SubtreeConnectLevels[C.TreeID], C.Level); 1516 LLVM_DEBUG(dbgs() << " Tree: " << C.TreeID << " @" 1517 << SubtreeConnectLevels[C.TreeID] << '\n'); 1518 } 1519 } 1520 1521 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1522 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const { 1523 OS << InstrCount << " / " << Length << " = "; 1524 if (!Length) 1525 OS << "BADILP"; 1526 else 1527 OS << format("%g", ((double)InstrCount / Length)); 1528 } 1529 1530 LLVM_DUMP_METHOD void ILPValue::dump() const { 1531 dbgs() << *this << '\n'; 1532 } 1533 1534 namespace llvm { 1535 1536 LLVM_ATTRIBUTE_UNUSED 1537 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) { 1538 Val.print(OS); 1539 return OS; 1540 } 1541 1542 } // end namespace llvm 1543 1544 #endif 1545