1 //===- RDFGraph.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Target-independent, SSA-based data flow graph for register data flow (RDF). 10 // 11 #include "llvm/CodeGen/RDFGraph.h" 12 #include "llvm/ADT/BitVector.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/CodeGen/MachineBasicBlock.h" 16 #include "llvm/CodeGen/MachineDominanceFrontier.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineOperand.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/RDFRegisters.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/MC/LaneBitmask.h" 29 #include "llvm/MC/MCInstrDesc.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <cassert> 33 #include <cstdint> 34 #include <cstring> 35 #include <iterator> 36 #include <set> 37 #include <utility> 38 #include <vector> 39 40 // Printing functions. Have them here first, so that the rest of the code 41 // can use them. 42 namespace llvm::rdf { 43 44 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P) { 45 P.G.getPRI().print(OS, P.Obj); 46 return OS; 47 } 48 49 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P) { 50 if (P.Obj == 0) 51 return OS << "null"; 52 auto NA = P.G.addr<NodeBase *>(P.Obj); 53 uint16_t Attrs = NA.Addr->getAttrs(); 54 uint16_t Kind = NodeAttrs::kind(Attrs); 55 uint16_t Flags = NodeAttrs::flags(Attrs); 56 switch (NodeAttrs::type(Attrs)) { 57 case NodeAttrs::Code: 58 switch (Kind) { 59 case NodeAttrs::Func: 60 OS << 'f'; 61 break; 62 case NodeAttrs::Block: 63 OS << 'b'; 64 break; 65 case NodeAttrs::Stmt: 66 OS << 's'; 67 break; 68 case NodeAttrs::Phi: 69 OS << 'p'; 70 break; 71 default: 72 OS << "c?"; 73 break; 74 } 75 break; 76 case NodeAttrs::Ref: 77 if (Flags & NodeAttrs::Undef) 78 OS << '/'; 79 if (Flags & NodeAttrs::Dead) 80 OS << '\\'; 81 if (Flags & NodeAttrs::Preserving) 82 OS << '+'; 83 if (Flags & NodeAttrs::Clobbering) 84 OS << '~'; 85 switch (Kind) { 86 case NodeAttrs::Use: 87 OS << 'u'; 88 break; 89 case NodeAttrs::Def: 90 OS << 'd'; 91 break; 92 case NodeAttrs::Block: 93 OS << 'b'; 94 break; 95 default: 96 OS << "r?"; 97 break; 98 } 99 break; 100 default: 101 OS << '?'; 102 break; 103 } 104 OS << P.Obj; 105 if (Flags & NodeAttrs::Shadow) 106 OS << '"'; 107 return OS; 108 } 109 110 static void printRefHeader(raw_ostream &OS, const Ref RA, 111 const DataFlowGraph &G) { 112 OS << Print(RA.Id, G) << '<' << Print(RA.Addr->getRegRef(G), G) << '>'; 113 if (RA.Addr->getFlags() & NodeAttrs::Fixed) 114 OS << '!'; 115 } 116 117 raw_ostream &operator<<(raw_ostream &OS, const Print<Def> &P) { 118 printRefHeader(OS, P.Obj, P.G); 119 OS << '('; 120 if (NodeId N = P.Obj.Addr->getReachingDef()) 121 OS << Print(N, P.G); 122 OS << ','; 123 if (NodeId N = P.Obj.Addr->getReachedDef()) 124 OS << Print(N, P.G); 125 OS << ','; 126 if (NodeId N = P.Obj.Addr->getReachedUse()) 127 OS << Print(N, P.G); 128 OS << "):"; 129 if (NodeId N = P.Obj.Addr->getSibling()) 130 OS << Print(N, P.G); 131 return OS; 132 } 133 134 raw_ostream &operator<<(raw_ostream &OS, const Print<Use> &P) { 135 printRefHeader(OS, P.Obj, P.G); 136 OS << '('; 137 if (NodeId N = P.Obj.Addr->getReachingDef()) 138 OS << Print(N, P.G); 139 OS << "):"; 140 if (NodeId N = P.Obj.Addr->getSibling()) 141 OS << Print(N, P.G); 142 return OS; 143 } 144 145 raw_ostream &operator<<(raw_ostream &OS, const Print<PhiUse> &P) { 146 printRefHeader(OS, P.Obj, P.G); 147 OS << '('; 148 if (NodeId N = P.Obj.Addr->getReachingDef()) 149 OS << Print(N, P.G); 150 OS << ','; 151 if (NodeId N = P.Obj.Addr->getPredecessor()) 152 OS << Print(N, P.G); 153 OS << "):"; 154 if (NodeId N = P.Obj.Addr->getSibling()) 155 OS << Print(N, P.G); 156 return OS; 157 } 158 159 raw_ostream &operator<<(raw_ostream &OS, const Print<Ref> &P) { 160 switch (P.Obj.Addr->getKind()) { 161 case NodeAttrs::Def: 162 OS << PrintNode<DefNode *>(P.Obj, P.G); 163 break; 164 case NodeAttrs::Use: 165 if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) 166 OS << PrintNode<PhiUseNode *>(P.Obj, P.G); 167 else 168 OS << PrintNode<UseNode *>(P.Obj, P.G); 169 break; 170 } 171 return OS; 172 } 173 174 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P) { 175 unsigned N = P.Obj.size(); 176 for (auto I : P.Obj) { 177 OS << Print(I.Id, P.G); 178 if (--N) 179 OS << ' '; 180 } 181 return OS; 182 } 183 184 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P) { 185 unsigned N = P.Obj.size(); 186 for (auto I : P.Obj) { 187 OS << Print(I, P.G); 188 if (--N) 189 OS << ' '; 190 } 191 return OS; 192 } 193 194 namespace { 195 196 template <typename T> struct PrintListV { 197 PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} 198 199 using Type = T; 200 const NodeList &List; 201 const DataFlowGraph &G; 202 }; 203 204 template <typename T> 205 raw_ostream &operator<<(raw_ostream &OS, const PrintListV<T> &P) { 206 unsigned N = P.List.size(); 207 for (NodeAddr<T> A : P.List) { 208 OS << PrintNode<T>(A, P.G); 209 if (--N) 210 OS << ", "; 211 } 212 return OS; 213 } 214 215 } // end anonymous namespace 216 217 raw_ostream &operator<<(raw_ostream &OS, const Print<Phi> &P) { 218 OS << Print(P.Obj.Id, P.G) << ": phi [" 219 << PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']'; 220 return OS; 221 } 222 223 raw_ostream &operator<<(raw_ostream &OS, const Print<Stmt> &P) { 224 const MachineInstr &MI = *P.Obj.Addr->getCode(); 225 unsigned Opc = MI.getOpcode(); 226 OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc); 227 // Print the target for calls and branches (for readability). 228 if (MI.isCall() || MI.isBranch()) { 229 MachineInstr::const_mop_iterator T = 230 llvm::find_if(MI.operands(), [](const MachineOperand &Op) -> bool { 231 return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); 232 }); 233 if (T != MI.operands_end()) { 234 OS << ' '; 235 if (T->isMBB()) 236 OS << printMBBReference(*T->getMBB()); 237 else if (T->isGlobal()) 238 OS << T->getGlobal()->getName(); 239 else if (T->isSymbol()) 240 OS << T->getSymbolName(); 241 } 242 } 243 OS << " [" << PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']'; 244 return OS; 245 } 246 247 raw_ostream &operator<<(raw_ostream &OS, const Print<Instr> &P) { 248 switch (P.Obj.Addr->getKind()) { 249 case NodeAttrs::Phi: 250 OS << PrintNode<PhiNode *>(P.Obj, P.G); 251 break; 252 case NodeAttrs::Stmt: 253 OS << PrintNode<StmtNode *>(P.Obj, P.G); 254 break; 255 default: 256 OS << "instr? " << Print(P.Obj.Id, P.G); 257 break; 258 } 259 return OS; 260 } 261 262 raw_ostream &operator<<(raw_ostream &OS, const Print<Block> &P) { 263 MachineBasicBlock *BB = P.Obj.Addr->getCode(); 264 unsigned NP = BB->pred_size(); 265 std::vector<int> Ns; 266 auto PrintBBs = [&OS](const std::vector<int> &Ns) -> void { 267 unsigned N = Ns.size(); 268 for (int I : Ns) { 269 OS << "%bb." << I; 270 if (--N) 271 OS << ", "; 272 } 273 }; 274 275 OS << Print(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB) 276 << " --- preds(" << NP << "): "; 277 for (MachineBasicBlock *B : BB->predecessors()) 278 Ns.push_back(B->getNumber()); 279 PrintBBs(Ns); 280 281 unsigned NS = BB->succ_size(); 282 OS << " succs(" << NS << "): "; 283 Ns.clear(); 284 for (MachineBasicBlock *B : BB->successors()) 285 Ns.push_back(B->getNumber()); 286 PrintBBs(Ns); 287 OS << '\n'; 288 289 for (auto I : P.Obj.Addr->members(P.G)) 290 OS << PrintNode<InstrNode *>(I, P.G) << '\n'; 291 return OS; 292 } 293 294 raw_ostream &operator<<(raw_ostream &OS, const Print<Func> &P) { 295 OS << "DFG dump:[\n" 296 << Print(P.Obj.Id, P.G) 297 << ": Function: " << P.Obj.Addr->getCode()->getName() << '\n'; 298 for (auto I : P.Obj.Addr->members(P.G)) 299 OS << PrintNode<BlockNode *>(I, P.G) << '\n'; 300 OS << "]\n"; 301 return OS; 302 } 303 304 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P) { 305 OS << '{'; 306 for (auto I : P.Obj) 307 OS << ' ' << Print(I, P.G); 308 OS << " }"; 309 return OS; 310 } 311 312 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P) { 313 OS << P.Obj; 314 return OS; 315 } 316 317 raw_ostream &operator<<(raw_ostream &OS, 318 const Print<DataFlowGraph::DefStack> &P) { 319 for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E;) { 320 OS << Print(I->Id, P.G) << '<' << Print(I->Addr->getRegRef(P.G), P.G) 321 << '>'; 322 I.down(); 323 if (I != E) 324 OS << ' '; 325 } 326 return OS; 327 } 328 329 // Node allocation functions. 330 // 331 // Node allocator is like a slab memory allocator: it allocates blocks of 332 // memory in sizes that are multiples of the size of a node. Each block has 333 // the same size. Nodes are allocated from the currently active block, and 334 // when it becomes full, a new one is created. 335 // There is a mapping scheme between node id and its location in a block, 336 // and within that block is described in the header file. 337 // 338 void NodeAllocator::startNewBlock() { 339 void *T = MemPool.Allocate(NodesPerBlock * NodeMemSize, NodeMemSize); 340 char *P = static_cast<char *>(T); 341 Blocks.push_back(P); 342 // Check if the block index is still within the allowed range, i.e. less 343 // than 2^N, where N is the number of bits in NodeId for the block index. 344 // BitsPerIndex is the number of bits per node index. 345 assert((Blocks.size() < ((size_t)1 << (8 * sizeof(NodeId) - BitsPerIndex))) && 346 "Out of bits for block index"); 347 ActiveEnd = P; 348 } 349 350 bool NodeAllocator::needNewBlock() { 351 if (Blocks.empty()) 352 return true; 353 354 char *ActiveBegin = Blocks.back(); 355 uint32_t Index = (ActiveEnd - ActiveBegin) / NodeMemSize; 356 return Index >= NodesPerBlock; 357 } 358 359 Node NodeAllocator::New() { 360 if (needNewBlock()) 361 startNewBlock(); 362 363 uint32_t ActiveB = Blocks.size() - 1; 364 uint32_t Index = (ActiveEnd - Blocks[ActiveB]) / NodeMemSize; 365 Node NA = {reinterpret_cast<NodeBase *>(ActiveEnd), makeId(ActiveB, Index)}; 366 ActiveEnd += NodeMemSize; 367 return NA; 368 } 369 370 NodeId NodeAllocator::id(const NodeBase *P) const { 371 uintptr_t A = reinterpret_cast<uintptr_t>(P); 372 for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { 373 uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); 374 if (A < B || A >= B + NodesPerBlock * NodeMemSize) 375 continue; 376 uint32_t Idx = (A - B) / NodeMemSize; 377 return makeId(i, Idx); 378 } 379 llvm_unreachable("Invalid node address"); 380 } 381 382 void NodeAllocator::clear() { 383 MemPool.Reset(); 384 Blocks.clear(); 385 ActiveEnd = nullptr; 386 } 387 388 // Insert node NA after "this" in the circular chain. 389 void NodeBase::append(Node NA) { 390 NodeId Nx = Next; 391 // If NA is already "next", do nothing. 392 if (Next != NA.Id) { 393 Next = NA.Id; 394 NA.Addr->Next = Nx; 395 } 396 } 397 398 // Fundamental node manipulator functions. 399 400 // Obtain the register reference from a reference node. 401 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { 402 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 403 if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) 404 return G.unpack(RefData.PR); 405 assert(RefData.Op != nullptr); 406 return G.makeRegRef(*RefData.Op); 407 } 408 409 // Set the register reference in the reference node directly (for references 410 // in phi nodes). 411 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { 412 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 413 assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); 414 RefData.PR = G.pack(RR); 415 } 416 417 // Set the register reference in the reference node based on a machine 418 // operand (for references in statement nodes). 419 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { 420 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 421 assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); 422 (void)G; 423 RefData.Op = Op; 424 } 425 426 // Get the owner of a given reference node. 427 Node RefNode::getOwner(const DataFlowGraph &G) { 428 Node NA = G.addr<NodeBase *>(getNext()); 429 430 while (NA.Addr != this) { 431 if (NA.Addr->getType() == NodeAttrs::Code) 432 return NA; 433 NA = G.addr<NodeBase *>(NA.Addr->getNext()); 434 } 435 llvm_unreachable("No owner in circular list"); 436 } 437 438 // Connect the def node to the reaching def node. 439 void DefNode::linkToDef(NodeId Self, Def DA) { 440 RefData.RD = DA.Id; 441 RefData.Sib = DA.Addr->getReachedDef(); 442 DA.Addr->setReachedDef(Self); 443 } 444 445 // Connect the use node to the reaching def node. 446 void UseNode::linkToDef(NodeId Self, Def DA) { 447 RefData.RD = DA.Id; 448 RefData.Sib = DA.Addr->getReachedUse(); 449 DA.Addr->setReachedUse(Self); 450 } 451 452 // Get the first member of the code node. 453 Node CodeNode::getFirstMember(const DataFlowGraph &G) const { 454 if (CodeData.FirstM == 0) 455 return Node(); 456 return G.addr<NodeBase *>(CodeData.FirstM); 457 } 458 459 // Get the last member of the code node. 460 Node CodeNode::getLastMember(const DataFlowGraph &G) const { 461 if (CodeData.LastM == 0) 462 return Node(); 463 return G.addr<NodeBase *>(CodeData.LastM); 464 } 465 466 // Add node NA at the end of the member list of the given code node. 467 void CodeNode::addMember(Node NA, const DataFlowGraph &G) { 468 Node ML = getLastMember(G); 469 if (ML.Id != 0) { 470 ML.Addr->append(NA); 471 } else { 472 CodeData.FirstM = NA.Id; 473 NodeId Self = G.id(this); 474 NA.Addr->setNext(Self); 475 } 476 CodeData.LastM = NA.Id; 477 } 478 479 // Add node NA after member node MA in the given code node. 480 void CodeNode::addMemberAfter(Node MA, Node NA, const DataFlowGraph &G) { 481 MA.Addr->append(NA); 482 if (CodeData.LastM == MA.Id) 483 CodeData.LastM = NA.Id; 484 } 485 486 // Remove member node NA from the given code node. 487 void CodeNode::removeMember(Node NA, const DataFlowGraph &G) { 488 Node MA = getFirstMember(G); 489 assert(MA.Id != 0); 490 491 // Special handling if the member to remove is the first member. 492 if (MA.Id == NA.Id) { 493 if (CodeData.LastM == MA.Id) { 494 // If it is the only member, set both first and last to 0. 495 CodeData.FirstM = CodeData.LastM = 0; 496 } else { 497 // Otherwise, advance the first member. 498 CodeData.FirstM = MA.Addr->getNext(); 499 } 500 return; 501 } 502 503 while (MA.Addr != this) { 504 NodeId MX = MA.Addr->getNext(); 505 if (MX == NA.Id) { 506 MA.Addr->setNext(NA.Addr->getNext()); 507 // If the member to remove happens to be the last one, update the 508 // LastM indicator. 509 if (CodeData.LastM == NA.Id) 510 CodeData.LastM = MA.Id; 511 return; 512 } 513 MA = G.addr<NodeBase *>(MX); 514 } 515 llvm_unreachable("No such member"); 516 } 517 518 // Return the list of all members of the code node. 519 NodeList CodeNode::members(const DataFlowGraph &G) const { 520 static auto True = [](Node) -> bool { return true; }; 521 return members_if(True, G); 522 } 523 524 // Return the owner of the given instr node. 525 Node InstrNode::getOwner(const DataFlowGraph &G) { 526 Node NA = G.addr<NodeBase *>(getNext()); 527 528 while (NA.Addr != this) { 529 assert(NA.Addr->getType() == NodeAttrs::Code); 530 if (NA.Addr->getKind() == NodeAttrs::Block) 531 return NA; 532 NA = G.addr<NodeBase *>(NA.Addr->getNext()); 533 } 534 llvm_unreachable("No owner in circular list"); 535 } 536 537 // Add the phi node PA to the given block node. 538 void BlockNode::addPhi(Phi PA, const DataFlowGraph &G) { 539 Node M = getFirstMember(G); 540 if (M.Id == 0) { 541 addMember(PA, G); 542 return; 543 } 544 545 assert(M.Addr->getType() == NodeAttrs::Code); 546 if (M.Addr->getKind() == NodeAttrs::Stmt) { 547 // If the first member of the block is a statement, insert the phi as 548 // the first member. 549 CodeData.FirstM = PA.Id; 550 PA.Addr->setNext(M.Id); 551 } else { 552 // If the first member is a phi, find the last phi, and append PA to it. 553 assert(M.Addr->getKind() == NodeAttrs::Phi); 554 Node MN = M; 555 do { 556 M = MN; 557 MN = G.addr<NodeBase *>(M.Addr->getNext()); 558 assert(MN.Addr->getType() == NodeAttrs::Code); 559 } while (MN.Addr->getKind() == NodeAttrs::Phi); 560 561 // M is the last phi. 562 addMemberAfter(M, PA, G); 563 } 564 } 565 566 // Find the block node corresponding to the machine basic block BB in the 567 // given func node. 568 Block FuncNode::findBlock(const MachineBasicBlock *BB, 569 const DataFlowGraph &G) const { 570 auto EqBB = [BB](Node NA) -> bool { return Block(NA).Addr->getCode() == BB; }; 571 NodeList Ms = members_if(EqBB, G); 572 if (!Ms.empty()) 573 return Ms[0]; 574 return Block(); 575 } 576 577 // Get the block node for the entry block in the given function. 578 Block FuncNode::getEntryBlock(const DataFlowGraph &G) { 579 MachineBasicBlock *EntryB = &getCode()->front(); 580 return findBlock(EntryB, G); 581 } 582 583 // Target operand information. 584 // 585 586 // For a given instruction, check if there are any bits of RR that can remain 587 // unchanged across this def. 588 bool TargetOperandInfo::isPreserving(const MachineInstr &In, 589 unsigned OpNum) const { 590 return TII.isPredicated(In); 591 } 592 593 // Check if the definition of RR produces an unspecified value. 594 bool TargetOperandInfo::isClobbering(const MachineInstr &In, 595 unsigned OpNum) const { 596 const MachineOperand &Op = In.getOperand(OpNum); 597 if (Op.isRegMask()) 598 return true; 599 assert(Op.isReg()); 600 if (In.isCall()) 601 if (Op.isDef() && Op.isDead()) 602 return true; 603 return false; 604 } 605 606 // Check if the given instruction specifically requires 607 bool TargetOperandInfo::isFixedReg(const MachineInstr &In, 608 unsigned OpNum) const { 609 if (In.isCall() || In.isReturn() || In.isInlineAsm()) 610 return true; 611 // Check for a tail call. 612 if (In.isBranch()) 613 for (const MachineOperand &O : In.operands()) 614 if (O.isGlobal() || O.isSymbol()) 615 return true; 616 617 const MCInstrDesc &D = In.getDesc(); 618 if (D.implicit_defs().empty() && D.implicit_uses().empty()) 619 return false; 620 const MachineOperand &Op = In.getOperand(OpNum); 621 // If there is a sub-register, treat the operand as non-fixed. Currently, 622 // fixed registers are those that are listed in the descriptor as implicit 623 // uses or defs, and those lists do not allow sub-registers. 624 if (Op.getSubReg() != 0) 625 return false; 626 Register Reg = Op.getReg(); 627 ArrayRef<MCPhysReg> ImpOps = 628 Op.isDef() ? D.implicit_defs() : D.implicit_uses(); 629 return is_contained(ImpOps, Reg); 630 } 631 632 // 633 // The data flow graph construction. 634 // 635 636 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, 637 const TargetRegisterInfo &tri, 638 const MachineDominatorTree &mdt, 639 const MachineDominanceFrontier &mdf) 640 : DefaultTOI(std::make_unique<TargetOperandInfo>(tii)), MF(mf), TII(tii), 641 TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(*DefaultTOI), 642 LiveIns(PRI) {} 643 644 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, 645 const TargetRegisterInfo &tri, 646 const MachineDominatorTree &mdt, 647 const MachineDominanceFrontier &mdf, 648 const TargetOperandInfo &toi) 649 : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi), 650 LiveIns(PRI) {} 651 652 // The implementation of the definition stack. 653 // Each register reference has its own definition stack. In particular, 654 // for a register references "Reg" and "Reg:subreg" will each have their 655 // own definition stacks. 656 657 // Construct a stack iterator. 658 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, 659 bool Top) 660 : DS(S) { 661 if (!Top) { 662 // Initialize to bottom. 663 Pos = 0; 664 return; 665 } 666 // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). 667 Pos = DS.Stack.size(); 668 while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos - 1])) 669 Pos--; 670 } 671 672 // Return the size of the stack, including block delimiters. 673 unsigned DataFlowGraph::DefStack::size() const { 674 unsigned S = 0; 675 for (auto I = top(), E = bottom(); I != E; I.down()) 676 S++; 677 return S; 678 } 679 680 // Remove the top entry from the stack. Remove all intervening delimiters 681 // so that after this, the stack is either empty, or the top of the stack 682 // is a non-delimiter. 683 void DataFlowGraph::DefStack::pop() { 684 assert(!empty()); 685 unsigned P = nextDown(Stack.size()); 686 Stack.resize(P); 687 } 688 689 // Push a delimiter for block node N on the stack. 690 void DataFlowGraph::DefStack::start_block(NodeId N) { 691 assert(N != 0); 692 Stack.push_back(Def(nullptr, N)); 693 } 694 695 // Remove all nodes from the top of the stack, until the delimited for 696 // block node N is encountered. Remove the delimiter as well. In effect, 697 // this will remove from the stack all definitions from block N. 698 void DataFlowGraph::DefStack::clear_block(NodeId N) { 699 assert(N != 0); 700 unsigned P = Stack.size(); 701 while (P > 0) { 702 bool Found = isDelimiter(Stack[P - 1], N); 703 P--; 704 if (Found) 705 break; 706 } 707 // This will also remove the delimiter, if found. 708 Stack.resize(P); 709 } 710 711 // Move the stack iterator up by one. 712 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { 713 // Get the next valid position after P (skipping all delimiters). 714 // The input position P does not have to point to a non-delimiter. 715 unsigned SS = Stack.size(); 716 bool IsDelim; 717 assert(P < SS); 718 do { 719 P++; 720 IsDelim = isDelimiter(Stack[P - 1]); 721 } while (P < SS && IsDelim); 722 assert(!IsDelim); 723 return P; 724 } 725 726 // Move the stack iterator down by one. 727 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { 728 // Get the preceding valid position before P (skipping all delimiters). 729 // The input position P does not have to point to a non-delimiter. 730 assert(P > 0 && P <= Stack.size()); 731 bool IsDelim = isDelimiter(Stack[P - 1]); 732 do { 733 if (--P == 0) 734 break; 735 IsDelim = isDelimiter(Stack[P - 1]); 736 } while (P > 0 && IsDelim); 737 assert(!IsDelim); 738 return P; 739 } 740 741 // Register information. 742 743 RegisterAggr DataFlowGraph::getLandingPadLiveIns() const { 744 RegisterAggr LR(getPRI()); 745 const Function &F = MF.getFunction(); 746 const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr; 747 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 748 if (RegisterId R = TLI.getExceptionPointerRegister(PF)) 749 LR.insert(RegisterRef(R)); 750 if (!isFuncletEHPersonality(classifyEHPersonality(PF))) { 751 if (RegisterId R = TLI.getExceptionSelectorRegister(PF)) 752 LR.insert(RegisterRef(R)); 753 } 754 return LR; 755 } 756 757 // Node management functions. 758 759 // Get the pointer to the node with the id N. 760 NodeBase *DataFlowGraph::ptr(NodeId N) const { 761 if (N == 0) 762 return nullptr; 763 return Memory.ptr(N); 764 } 765 766 // Get the id of the node at the address P. 767 NodeId DataFlowGraph::id(const NodeBase *P) const { 768 if (P == nullptr) 769 return 0; 770 return Memory.id(P); 771 } 772 773 // Allocate a new node and set the attributes to Attrs. 774 Node DataFlowGraph::newNode(uint16_t Attrs) { 775 Node P = Memory.New(); 776 P.Addr->init(); 777 P.Addr->setAttrs(Attrs); 778 return P; 779 } 780 781 // Make a copy of the given node B, except for the data-flow links, which 782 // are set to 0. 783 Node DataFlowGraph::cloneNode(const Node B) { 784 Node NA = newNode(0); 785 memcpy(NA.Addr, B.Addr, sizeof(NodeBase)); 786 // Ref nodes need to have the data-flow links reset. 787 if (NA.Addr->getType() == NodeAttrs::Ref) { 788 Ref RA = NA; 789 RA.Addr->setReachingDef(0); 790 RA.Addr->setSibling(0); 791 if (NA.Addr->getKind() == NodeAttrs::Def) { 792 Def DA = NA; 793 DA.Addr->setReachedDef(0); 794 DA.Addr->setReachedUse(0); 795 } 796 } 797 return NA; 798 } 799 800 // Allocation routines for specific node types/kinds. 801 802 Use DataFlowGraph::newUse(Instr Owner, MachineOperand &Op, uint16_t Flags) { 803 Use UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); 804 UA.Addr->setRegRef(&Op, *this); 805 return UA; 806 } 807 808 PhiUse DataFlowGraph::newPhiUse(Phi Owner, RegisterRef RR, Block PredB, 809 uint16_t Flags) { 810 PhiUse PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); 811 assert(Flags & NodeAttrs::PhiRef); 812 PUA.Addr->setRegRef(RR, *this); 813 PUA.Addr->setPredecessor(PredB.Id); 814 return PUA; 815 } 816 817 Def DataFlowGraph::newDef(Instr Owner, MachineOperand &Op, uint16_t Flags) { 818 Def DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); 819 DA.Addr->setRegRef(&Op, *this); 820 return DA; 821 } 822 823 Def DataFlowGraph::newDef(Instr Owner, RegisterRef RR, uint16_t Flags) { 824 Def DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); 825 assert(Flags & NodeAttrs::PhiRef); 826 DA.Addr->setRegRef(RR, *this); 827 return DA; 828 } 829 830 Phi DataFlowGraph::newPhi(Block Owner) { 831 Phi PA = newNode(NodeAttrs::Code | NodeAttrs::Phi); 832 Owner.Addr->addPhi(PA, *this); 833 return PA; 834 } 835 836 Stmt DataFlowGraph::newStmt(Block Owner, MachineInstr *MI) { 837 Stmt SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt); 838 SA.Addr->setCode(MI); 839 Owner.Addr->addMember(SA, *this); 840 return SA; 841 } 842 843 Block DataFlowGraph::newBlock(Func Owner, MachineBasicBlock *BB) { 844 Block BA = newNode(NodeAttrs::Code | NodeAttrs::Block); 845 BA.Addr->setCode(BB); 846 Owner.Addr->addMember(BA, *this); 847 return BA; 848 } 849 850 Func DataFlowGraph::newFunc(MachineFunction *MF) { 851 Func FA = newNode(NodeAttrs::Code | NodeAttrs::Func); 852 FA.Addr->setCode(MF); 853 return FA; 854 } 855 856 // Build the data flow graph. 857 void DataFlowGraph::build(const Config &config) { 858 reset(); 859 BuildCfg = config; 860 MachineRegisterInfo &MRI = MF.getRegInfo(); 861 ReservedRegs = MRI.getReservedRegs(); 862 bool SkipReserved = BuildCfg.Options & BuildOptions::OmitReserved; 863 864 auto Insert = [](auto &Set, auto &&Range) { 865 Set.insert(Range.begin(), Range.end()); 866 }; 867 868 if (BuildCfg.TrackRegs.empty()) { 869 std::set<RegisterId> BaseSet; 870 if (BuildCfg.Classes.empty()) { 871 // Insert every register. 872 for (unsigned R = 1, E = getPRI().getTRI().getNumRegs(); R != E; ++R) 873 BaseSet.insert(R); 874 } else { 875 for (const TargetRegisterClass *RC : BuildCfg.Classes) { 876 for (MCPhysReg R : *RC) 877 BaseSet.insert(R); 878 } 879 } 880 for (RegisterId R : BaseSet) { 881 if (SkipReserved && ReservedRegs[R]) 882 continue; 883 Insert(TrackedUnits, getPRI().getUnits(RegisterRef(R))); 884 } 885 } else { 886 // Track set in Config overrides everything. 887 for (unsigned R : BuildCfg.TrackRegs) { 888 if (SkipReserved && ReservedRegs[R]) 889 continue; 890 Insert(TrackedUnits, getPRI().getUnits(RegisterRef(R))); 891 } 892 } 893 894 TheFunc = newFunc(&MF); 895 896 if (MF.empty()) 897 return; 898 899 for (MachineBasicBlock &B : MF) { 900 Block BA = newBlock(TheFunc, &B); 901 BlockNodes.insert(std::make_pair(&B, BA)); 902 for (MachineInstr &I : B) { 903 if (I.isDebugInstr()) 904 continue; 905 buildStmt(BA, I); 906 } 907 } 908 909 Block EA = TheFunc.Addr->getEntryBlock(*this); 910 NodeList Blocks = TheFunc.Addr->members(*this); 911 912 // Collect function live-ins and entry block live-ins. 913 MachineBasicBlock &EntryB = *EA.Addr->getCode(); 914 assert(EntryB.pred_empty() && "Function entry block has predecessors"); 915 for (std::pair<MCRegister, Register> P : MRI.liveins()) 916 LiveIns.insert(RegisterRef(P.first)); 917 if (MRI.tracksLiveness()) { 918 for (auto I : EntryB.liveins()) 919 LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask)); 920 } 921 922 // Add function-entry phi nodes for the live-in registers. 923 for (RegisterRef RR : LiveIns.refs()) { 924 if (RR.isReg() && !isTracked(RR)) // isReg is likely guaranteed 925 continue; 926 Phi PA = newPhi(EA); 927 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 928 Def DA = newDef(PA, RR, PhiFlags); 929 PA.Addr->addMember(DA, *this); 930 } 931 932 // Add phis for landing pads. 933 // Landing pads, unlike usual backs blocks, are not entered through 934 // branches in the program, or fall-throughs from other blocks. They 935 // are entered from the exception handling runtime and target's ABI 936 // may define certain registers as defined on entry to such a block. 937 RegisterAggr EHRegs = getLandingPadLiveIns(); 938 if (!EHRegs.empty()) { 939 for (Block BA : Blocks) { 940 const MachineBasicBlock &B = *BA.Addr->getCode(); 941 if (!B.isEHPad()) 942 continue; 943 944 // Prepare a list of NodeIds of the block's predecessors. 945 NodeList Preds; 946 for (MachineBasicBlock *PB : B.predecessors()) 947 Preds.push_back(findBlock(PB)); 948 949 // Build phi nodes for each live-in. 950 for (RegisterRef RR : EHRegs.refs()) { 951 if (RR.isReg() && !isTracked(RR)) 952 continue; 953 Phi PA = newPhi(BA); 954 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 955 // Add def: 956 Def DA = newDef(PA, RR, PhiFlags); 957 PA.Addr->addMember(DA, *this); 958 // Add uses (no reaching defs for phi uses): 959 for (Block PBA : Preds) { 960 PhiUse PUA = newPhiUse(PA, RR, PBA); 961 PA.Addr->addMember(PUA, *this); 962 } 963 } 964 } 965 } 966 967 // Build a map "PhiM" which will contain, for each block, the set 968 // of references that will require phi definitions in that block. 969 BlockRefsMap PhiM(getPRI()); 970 for (Block BA : Blocks) 971 recordDefsForDF(PhiM, BA); 972 for (Block BA : Blocks) 973 buildPhis(PhiM, BA); 974 975 // Link all the refs. This will recursively traverse the dominator tree. 976 DefStackMap DM; 977 linkBlockRefs(DM, EA); 978 979 // Finally, remove all unused phi nodes. 980 if (!(BuildCfg.Options & BuildOptions::KeepDeadPhis)) 981 removeUnusedPhis(); 982 } 983 984 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { 985 assert(RegisterRef::isRegId(Reg) || RegisterRef::isMaskId(Reg)); 986 assert(Reg != 0); 987 if (Sub != 0) 988 Reg = TRI.getSubReg(Reg, Sub); 989 return RegisterRef(Reg); 990 } 991 992 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const { 993 assert(Op.isReg() || Op.isRegMask()); 994 if (Op.isReg()) 995 return makeRegRef(Op.getReg(), Op.getSubReg()); 996 return RegisterRef(getPRI().getRegMaskId(Op.getRegMask()), 997 LaneBitmask::getAll()); 998 } 999 1000 // For each stack in the map DefM, push the delimiter for block B on it. 1001 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { 1002 // Push block delimiters. 1003 for (auto &P : DefM) 1004 P.second.start_block(B); 1005 } 1006 1007 // Remove all definitions coming from block B from each stack in DefM. 1008 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { 1009 // Pop all defs from this block from the definition stack. Defs that were 1010 // added to the map during the traversal of instructions will not have a 1011 // delimiter, but for those, the whole stack will be emptied. 1012 for (auto &P : DefM) 1013 P.second.clear_block(B); 1014 1015 // Finally, remove empty stacks from the map. 1016 for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { 1017 NextI = std::next(I); 1018 // This preserves the validity of iterators other than I. 1019 if (I->second.empty()) 1020 DefM.erase(I); 1021 } 1022 } 1023 1024 // Push all definitions from the instruction node IA to an appropriate 1025 // stack in DefM. 1026 void DataFlowGraph::pushAllDefs(Instr IA, DefStackMap &DefM) { 1027 pushClobbers(IA, DefM); 1028 pushDefs(IA, DefM); 1029 } 1030 1031 // Push all definitions from the instruction node IA to an appropriate 1032 // stack in DefM. 1033 void DataFlowGraph::pushClobbers(Instr IA, DefStackMap &DefM) { 1034 NodeSet Visited; 1035 std::set<RegisterId> Defined; 1036 1037 // The important objectives of this function are: 1038 // - to be able to handle instructions both while the graph is being 1039 // constructed, and after the graph has been constructed, and 1040 // - maintain proper ordering of definitions on the stack for each 1041 // register reference: 1042 // - if there are two or more related defs in IA (i.e. coming from 1043 // the same machine operand), then only push one def on the stack, 1044 // - if there are multiple unrelated defs of non-overlapping 1045 // subregisters of S, then the stack for S will have both (in an 1046 // unspecified order), but the order does not matter from the data- 1047 // -flow perspective. 1048 1049 for (Def DA : IA.Addr->members_if(IsDef, *this)) { 1050 if (Visited.count(DA.Id)) 1051 continue; 1052 if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering)) 1053 continue; 1054 1055 NodeList Rel = getRelatedRefs(IA, DA); 1056 Def PDA = Rel.front(); 1057 RegisterRef RR = PDA.Addr->getRegRef(*this); 1058 1059 // Push the definition on the stack for the register and all aliases. 1060 // The def stack traversal in linkNodeUp will check the exact aliasing. 1061 DefM[RR.Reg].push(DA); 1062 Defined.insert(RR.Reg); 1063 for (RegisterId A : getPRI().getAliasSet(RR.Reg)) { 1064 if (RegisterRef::isRegId(A) && !isTracked(RegisterRef(A))) 1065 continue; 1066 // Check that we don't push the same def twice. 1067 assert(A != RR.Reg); 1068 if (!Defined.count(A)) 1069 DefM[A].push(DA); 1070 } 1071 // Mark all the related defs as visited. 1072 for (Node T : Rel) 1073 Visited.insert(T.Id); 1074 } 1075 } 1076 1077 // Push all definitions from the instruction node IA to an appropriate 1078 // stack in DefM. 1079 void DataFlowGraph::pushDefs(Instr IA, DefStackMap &DefM) { 1080 NodeSet Visited; 1081 #ifndef NDEBUG 1082 std::set<RegisterId> Defined; 1083 #endif 1084 1085 // The important objectives of this function are: 1086 // - to be able to handle instructions both while the graph is being 1087 // constructed, and after the graph has been constructed, and 1088 // - maintain proper ordering of definitions on the stack for each 1089 // register reference: 1090 // - if there are two or more related defs in IA (i.e. coming from 1091 // the same machine operand), then only push one def on the stack, 1092 // - if there are multiple unrelated defs of non-overlapping 1093 // subregisters of S, then the stack for S will have both (in an 1094 // unspecified order), but the order does not matter from the data- 1095 // -flow perspective. 1096 1097 for (Def DA : IA.Addr->members_if(IsDef, *this)) { 1098 if (Visited.count(DA.Id)) 1099 continue; 1100 if (DA.Addr->getFlags() & NodeAttrs::Clobbering) 1101 continue; 1102 1103 NodeList Rel = getRelatedRefs(IA, DA); 1104 Def PDA = Rel.front(); 1105 RegisterRef RR = PDA.Addr->getRegRef(*this); 1106 #ifndef NDEBUG 1107 // Assert if the register is defined in two or more unrelated defs. 1108 // This could happen if there are two or more def operands defining it. 1109 if (!Defined.insert(RR.Reg).second) { 1110 MachineInstr *MI = Stmt(IA).Addr->getCode(); 1111 dbgs() << "Multiple definitions of register: " << Print(RR, *this) 1112 << " in\n " << *MI << "in " << printMBBReference(*MI->getParent()) 1113 << '\n'; 1114 llvm_unreachable(nullptr); 1115 } 1116 #endif 1117 // Push the definition on the stack for the register and all aliases. 1118 // The def stack traversal in linkNodeUp will check the exact aliasing. 1119 DefM[RR.Reg].push(DA); 1120 for (RegisterId A : getPRI().getAliasSet(RR.Reg)) { 1121 if (RegisterRef::isRegId(A) && !isTracked(RegisterRef(A))) 1122 continue; 1123 // Check that we don't push the same def twice. 1124 assert(A != RR.Reg); 1125 DefM[A].push(DA); 1126 } 1127 // Mark all the related defs as visited. 1128 for (Node T : Rel) 1129 Visited.insert(T.Id); 1130 } 1131 } 1132 1133 // Return the list of all reference nodes related to RA, including RA itself. 1134 // See "getNextRelated" for the meaning of a "related reference". 1135 NodeList DataFlowGraph::getRelatedRefs(Instr IA, Ref RA) const { 1136 assert(IA.Id != 0 && RA.Id != 0); 1137 1138 NodeList Refs; 1139 NodeId Start = RA.Id; 1140 do { 1141 Refs.push_back(RA); 1142 RA = getNextRelated(IA, RA); 1143 } while (RA.Id != 0 && RA.Id != Start); 1144 return Refs; 1145 } 1146 1147 // Clear all information in the graph. 1148 void DataFlowGraph::reset() { 1149 Memory.clear(); 1150 BlockNodes.clear(); 1151 TrackedUnits.clear(); 1152 ReservedRegs.clear(); 1153 TheFunc = Func(); 1154 } 1155 1156 // Return the next reference node in the instruction node IA that is related 1157 // to RA. Conceptually, two reference nodes are related if they refer to the 1158 // same instance of a register access, but differ in flags or other minor 1159 // characteristics. Specific examples of related nodes are shadow reference 1160 // nodes. 1161 // Return the equivalent of nullptr if there are no more related references. 1162 Ref DataFlowGraph::getNextRelated(Instr IA, Ref RA) const { 1163 assert(IA.Id != 0 && RA.Id != 0); 1164 1165 auto IsRelated = [this, RA](Ref TA) -> bool { 1166 if (TA.Addr->getKind() != RA.Addr->getKind()) 1167 return false; 1168 if (!getPRI().equal_to(TA.Addr->getRegRef(*this), 1169 RA.Addr->getRegRef(*this))) { 1170 return false; 1171 } 1172 return true; 1173 }; 1174 1175 RegisterRef RR = RA.Addr->getRegRef(*this); 1176 if (IA.Addr->getKind() == NodeAttrs::Stmt) { 1177 auto Cond = [&IsRelated, RA](Ref TA) -> bool { 1178 return IsRelated(TA) && &RA.Addr->getOp() == &TA.Addr->getOp(); 1179 }; 1180 return RA.Addr->getNextRef(RR, Cond, true, *this); 1181 } 1182 1183 assert(IA.Addr->getKind() == NodeAttrs::Phi); 1184 auto Cond = [&IsRelated, RA](Ref TA) -> bool { 1185 if (!IsRelated(TA)) 1186 return false; 1187 if (TA.Addr->getKind() != NodeAttrs::Use) 1188 return true; 1189 // For phi uses, compare predecessor blocks. 1190 return PhiUse(TA).Addr->getPredecessor() == 1191 PhiUse(RA).Addr->getPredecessor(); 1192 }; 1193 return RA.Addr->getNextRef(RR, Cond, true, *this); 1194 } 1195 1196 // Find the next node related to RA in IA that satisfies condition P. 1197 // If such a node was found, return a pair where the second element is the 1198 // located node. If such a node does not exist, return a pair where the 1199 // first element is the element after which such a node should be inserted, 1200 // and the second element is a null-address. 1201 template <typename Predicate> 1202 std::pair<Ref, Ref> DataFlowGraph::locateNextRef(Instr IA, Ref RA, 1203 Predicate P) const { 1204 assert(IA.Id != 0 && RA.Id != 0); 1205 1206 Ref NA; 1207 NodeId Start = RA.Id; 1208 while (true) { 1209 NA = getNextRelated(IA, RA); 1210 if (NA.Id == 0 || NA.Id == Start) 1211 break; 1212 if (P(NA)) 1213 break; 1214 RA = NA; 1215 } 1216 1217 if (NA.Id != 0 && NA.Id != Start) 1218 return std::make_pair(RA, NA); 1219 return std::make_pair(RA, Ref()); 1220 } 1221 1222 // Get the next shadow node in IA corresponding to RA, and optionally create 1223 // such a node if it does not exist. 1224 Ref DataFlowGraph::getNextShadow(Instr IA, Ref RA, bool Create) { 1225 assert(IA.Id != 0 && RA.Id != 0); 1226 1227 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; 1228 auto IsShadow = [Flags](Ref TA) -> bool { 1229 return TA.Addr->getFlags() == Flags; 1230 }; 1231 auto Loc = locateNextRef(IA, RA, IsShadow); 1232 if (Loc.second.Id != 0 || !Create) 1233 return Loc.second; 1234 1235 // Create a copy of RA and mark is as shadow. 1236 Ref NA = cloneNode(RA); 1237 NA.Addr->setFlags(Flags | NodeAttrs::Shadow); 1238 IA.Addr->addMemberAfter(Loc.first, NA, *this); 1239 return NA; 1240 } 1241 1242 // Create a new statement node in the block node BA that corresponds to 1243 // the machine instruction MI. 1244 void DataFlowGraph::buildStmt(Block BA, MachineInstr &In) { 1245 Stmt SA = newStmt(BA, &In); 1246 1247 auto isCall = [](const MachineInstr &In) -> bool { 1248 if (In.isCall()) 1249 return true; 1250 // Is tail call? 1251 if (In.isBranch()) { 1252 for (const MachineOperand &Op : In.operands()) 1253 if (Op.isGlobal() || Op.isSymbol()) 1254 return true; 1255 // Assume indirect branches are calls. This is for the purpose of 1256 // keeping implicit operands, and so it won't hurt on intra-function 1257 // indirect branches. 1258 if (In.isIndirectBranch()) 1259 return true; 1260 } 1261 return false; 1262 }; 1263 1264 auto isDefUndef = [this](const MachineInstr &In, RegisterRef DR) -> bool { 1265 // This instruction defines DR. Check if there is a use operand that 1266 // would make DR live on entry to the instruction. 1267 for (const MachineOperand &Op : In.all_uses()) { 1268 if (Op.getReg() == 0 || Op.isUndef()) 1269 continue; 1270 RegisterRef UR = makeRegRef(Op); 1271 if (getPRI().alias(DR, UR)) 1272 return false; 1273 } 1274 return true; 1275 }; 1276 1277 bool IsCall = isCall(In); 1278 unsigned NumOps = In.getNumOperands(); 1279 1280 // Avoid duplicate implicit defs. This will not detect cases of implicit 1281 // defs that define registers that overlap, but it is not clear how to 1282 // interpret that in the absence of explicit defs. Overlapping explicit 1283 // defs are likely illegal already. 1284 BitVector DoneDefs(TRI.getNumRegs()); 1285 // Process explicit defs first. 1286 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1287 MachineOperand &Op = In.getOperand(OpN); 1288 if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) 1289 continue; 1290 Register R = Op.getReg(); 1291 if (!R || !R.isPhysical() || !isTracked(RegisterRef(R))) 1292 continue; 1293 uint16_t Flags = NodeAttrs::None; 1294 if (TOI.isPreserving(In, OpN)) { 1295 Flags |= NodeAttrs::Preserving; 1296 // If the def is preserving, check if it is also undefined. 1297 if (isDefUndef(In, makeRegRef(Op))) 1298 Flags |= NodeAttrs::Undef; 1299 } 1300 if (TOI.isClobbering(In, OpN)) 1301 Flags |= NodeAttrs::Clobbering; 1302 if (TOI.isFixedReg(In, OpN)) 1303 Flags |= NodeAttrs::Fixed; 1304 if (IsCall && Op.isDead()) 1305 Flags |= NodeAttrs::Dead; 1306 Def DA = newDef(SA, Op, Flags); 1307 SA.Addr->addMember(DA, *this); 1308 assert(!DoneDefs.test(R)); 1309 DoneDefs.set(R); 1310 } 1311 1312 // Process reg-masks (as clobbers). 1313 BitVector DoneClobbers(TRI.getNumRegs()); 1314 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1315 MachineOperand &Op = In.getOperand(OpN); 1316 if (!Op.isRegMask()) 1317 continue; 1318 uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | NodeAttrs::Dead; 1319 Def DA = newDef(SA, Op, Flags); 1320 SA.Addr->addMember(DA, *this); 1321 // Record all clobbered registers in DoneDefs. 1322 const uint32_t *RM = Op.getRegMask(); 1323 for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) { 1324 if (!isTracked(RegisterRef(i))) 1325 continue; 1326 if (!(RM[i / 32] & (1u << (i % 32)))) 1327 DoneClobbers.set(i); 1328 } 1329 } 1330 1331 // Process implicit defs, skipping those that have already been added 1332 // as explicit. 1333 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1334 MachineOperand &Op = In.getOperand(OpN); 1335 if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) 1336 continue; 1337 Register R = Op.getReg(); 1338 if (!R || !R.isPhysical() || !isTracked(RegisterRef(R)) || DoneDefs.test(R)) 1339 continue; 1340 RegisterRef RR = makeRegRef(Op); 1341 uint16_t Flags = NodeAttrs::None; 1342 if (TOI.isPreserving(In, OpN)) { 1343 Flags |= NodeAttrs::Preserving; 1344 // If the def is preserving, check if it is also undefined. 1345 if (isDefUndef(In, RR)) 1346 Flags |= NodeAttrs::Undef; 1347 } 1348 if (TOI.isClobbering(In, OpN)) 1349 Flags |= NodeAttrs::Clobbering; 1350 if (TOI.isFixedReg(In, OpN)) 1351 Flags |= NodeAttrs::Fixed; 1352 if (IsCall && Op.isDead()) { 1353 if (DoneClobbers.test(R)) 1354 continue; 1355 Flags |= NodeAttrs::Dead; 1356 } 1357 Def DA = newDef(SA, Op, Flags); 1358 SA.Addr->addMember(DA, *this); 1359 DoneDefs.set(R); 1360 } 1361 1362 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1363 MachineOperand &Op = In.getOperand(OpN); 1364 if (!Op.isReg() || !Op.isUse()) 1365 continue; 1366 Register R = Op.getReg(); 1367 if (!R || !R.isPhysical() || !isTracked(RegisterRef(R))) 1368 continue; 1369 uint16_t Flags = NodeAttrs::None; 1370 if (Op.isUndef()) 1371 Flags |= NodeAttrs::Undef; 1372 if (TOI.isFixedReg(In, OpN)) 1373 Flags |= NodeAttrs::Fixed; 1374 Use UA = newUse(SA, Op, Flags); 1375 SA.Addr->addMember(UA, *this); 1376 } 1377 } 1378 1379 // Scan all defs in the block node BA and record in PhiM the locations of 1380 // phi nodes corresponding to these defs. 1381 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, Block BA) { 1382 // Check all defs from block BA and record them in each block in BA's 1383 // iterated dominance frontier. This information will later be used to 1384 // create phi nodes. 1385 MachineBasicBlock *BB = BA.Addr->getCode(); 1386 assert(BB); 1387 auto DFLoc = MDF.find(BB); 1388 if (DFLoc == MDF.end() || DFLoc->second.empty()) 1389 return; 1390 1391 // Traverse all instructions in the block and collect the set of all 1392 // defined references. For each reference there will be a phi created 1393 // in the block's iterated dominance frontier. 1394 // This is done to make sure that each defined reference gets only one 1395 // phi node, even if it is defined multiple times. 1396 RegisterAggr Defs(getPRI()); 1397 for (Instr IA : BA.Addr->members(*this)) { 1398 for (Ref RA : IA.Addr->members_if(IsDef, *this)) { 1399 RegisterRef RR = RA.Addr->getRegRef(*this); 1400 if (RR.isReg() && isTracked(RR)) 1401 Defs.insert(RR); 1402 } 1403 } 1404 1405 // Calculate the iterated dominance frontier of BB. 1406 const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; 1407 SetVector<MachineBasicBlock *> IDF(DF.begin(), DF.end()); 1408 for (unsigned i = 0; i < IDF.size(); ++i) { 1409 auto F = MDF.find(IDF[i]); 1410 if (F != MDF.end()) 1411 IDF.insert(F->second.begin(), F->second.end()); 1412 } 1413 1414 // Finally, add the set of defs to each block in the iterated dominance 1415 // frontier. 1416 for (auto *DB : IDF) { 1417 Block DBA = findBlock(DB); 1418 PhiM[DBA.Id].insert(Defs); 1419 } 1420 } 1421 1422 // Given the locations of phi nodes in the map PhiM, create the phi nodes 1423 // that are located in the block node BA. 1424 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, Block BA) { 1425 // Check if this blocks has any DF defs, i.e. if there are any defs 1426 // that this block is in the iterated dominance frontier of. 1427 auto HasDF = PhiM.find(BA.Id); 1428 if (HasDF == PhiM.end() || HasDF->second.empty()) 1429 return; 1430 1431 // Prepare a list of NodeIds of the block's predecessors. 1432 NodeList Preds; 1433 const MachineBasicBlock *MBB = BA.Addr->getCode(); 1434 for (MachineBasicBlock *PB : MBB->predecessors()) 1435 Preds.push_back(findBlock(PB)); 1436 1437 const RegisterAggr &Defs = PhiM[BA.Id]; 1438 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 1439 1440 for (RegisterRef RR : Defs.refs()) { 1441 Phi PA = newPhi(BA); 1442 PA.Addr->addMember(newDef(PA, RR, PhiFlags), *this); 1443 1444 // Add phi uses. 1445 for (Block PBA : Preds) { 1446 PA.Addr->addMember(newPhiUse(PA, RR, PBA), *this); 1447 } 1448 } 1449 } 1450 1451 // Remove any unneeded phi nodes that were created during the build process. 1452 void DataFlowGraph::removeUnusedPhis() { 1453 // This will remove unused phis, i.e. phis where each def does not reach 1454 // any uses or other defs. This will not detect or remove circular phi 1455 // chains that are otherwise dead. Unused/dead phis are created during 1456 // the build process and this function is intended to remove these cases 1457 // that are easily determinable to be unnecessary. 1458 1459 SetVector<NodeId> PhiQ; 1460 for (Block BA : TheFunc.Addr->members(*this)) { 1461 for (auto P : BA.Addr->members_if(IsPhi, *this)) 1462 PhiQ.insert(P.Id); 1463 } 1464 1465 static auto HasUsedDef = [](NodeList &Ms) -> bool { 1466 for (Node M : Ms) { 1467 if (M.Addr->getKind() != NodeAttrs::Def) 1468 continue; 1469 Def DA = M; 1470 if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) 1471 return true; 1472 } 1473 return false; 1474 }; 1475 1476 // Any phi, if it is removed, may affect other phis (make them dead). 1477 // For each removed phi, collect the potentially affected phis and add 1478 // them back to the queue. 1479 while (!PhiQ.empty()) { 1480 auto PA = addr<PhiNode *>(PhiQ[0]); 1481 PhiQ.remove(PA.Id); 1482 NodeList Refs = PA.Addr->members(*this); 1483 if (HasUsedDef(Refs)) 1484 continue; 1485 for (Ref RA : Refs) { 1486 if (NodeId RD = RA.Addr->getReachingDef()) { 1487 auto RDA = addr<DefNode *>(RD); 1488 Instr OA = RDA.Addr->getOwner(*this); 1489 if (IsPhi(OA)) 1490 PhiQ.insert(OA.Id); 1491 } 1492 if (RA.Addr->isDef()) 1493 unlinkDef(RA, true); 1494 else 1495 unlinkUse(RA, true); 1496 } 1497 Block BA = PA.Addr->getOwner(*this); 1498 BA.Addr->removeMember(PA, *this); 1499 } 1500 } 1501 1502 // For a given reference node TA in an instruction node IA, connect the 1503 // reaching def of TA to the appropriate def node. Create any shadow nodes 1504 // as appropriate. 1505 template <typename T> 1506 void DataFlowGraph::linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS) { 1507 if (DS.empty()) 1508 return; 1509 RegisterRef RR = TA.Addr->getRegRef(*this); 1510 NodeAddr<T> TAP; 1511 1512 // References from the def stack that have been examined so far. 1513 RegisterAggr Defs(getPRI()); 1514 1515 for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { 1516 RegisterRef QR = I->Addr->getRegRef(*this); 1517 1518 // Skip all defs that we have already seen. 1519 // If this completes a cover of RR, stop the stack traversal. 1520 bool Seen = Defs.hasCoverOf(QR); 1521 if (Seen) 1522 continue; 1523 1524 bool Cover = Defs.insert(QR).hasCoverOf(RR); 1525 1526 // The reaching def. 1527 Def RDA = *I; 1528 1529 // Pick the reached node. 1530 if (TAP.Id == 0) { 1531 TAP = TA; 1532 } else { 1533 // Mark the existing ref as "shadow" and create a new shadow. 1534 TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); 1535 TAP = getNextShadow(IA, TAP, true); 1536 } 1537 1538 // Create the link. 1539 TAP.Addr->linkToDef(TAP.Id, RDA); 1540 1541 if (Cover) 1542 break; 1543 } 1544 } 1545 1546 // Create data-flow links for all reference nodes in the statement node SA. 1547 template <typename Predicate> 1548 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P) { 1549 #ifndef NDEBUG 1550 RegisterSet Defs(getPRI()); 1551 #endif 1552 1553 // Link all nodes (upwards in the data-flow) with their reaching defs. 1554 for (Ref RA : SA.Addr->members_if(P, *this)) { 1555 uint16_t Kind = RA.Addr->getKind(); 1556 assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); 1557 RegisterRef RR = RA.Addr->getRegRef(*this); 1558 #ifndef NDEBUG 1559 // Do not expect multiple defs of the same reference. 1560 assert(Kind != NodeAttrs::Def || !Defs.count(RR)); 1561 Defs.insert(RR); 1562 #endif 1563 1564 auto F = DefM.find(RR.Reg); 1565 if (F == DefM.end()) 1566 continue; 1567 DefStack &DS = F->second; 1568 if (Kind == NodeAttrs::Use) 1569 linkRefUp<UseNode *>(SA, RA, DS); 1570 else if (Kind == NodeAttrs::Def) 1571 linkRefUp<DefNode *>(SA, RA, DS); 1572 else 1573 llvm_unreachable("Unexpected node in instruction"); 1574 } 1575 } 1576 1577 // Create data-flow links for all instructions in the block node BA. This 1578 // will include updating any phi nodes in BA. 1579 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, Block BA) { 1580 // Push block delimiters. 1581 markBlock(BA.Id, DefM); 1582 1583 auto IsClobber = [](Ref RA) -> bool { 1584 return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering); 1585 }; 1586 auto IsNoClobber = [](Ref RA) -> bool { 1587 return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering); 1588 }; 1589 1590 assert(BA.Addr && "block node address is needed to create a data-flow link"); 1591 // For each non-phi instruction in the block, link all the defs and uses 1592 // to their reaching defs. For any member of the block (including phis), 1593 // push the defs on the corresponding stacks. 1594 for (Instr IA : BA.Addr->members(*this)) { 1595 // Ignore phi nodes here. They will be linked part by part from the 1596 // predecessors. 1597 if (IA.Addr->getKind() == NodeAttrs::Stmt) { 1598 linkStmtRefs(DefM, IA, IsUse); 1599 linkStmtRefs(DefM, IA, IsClobber); 1600 } 1601 1602 // Push the definitions on the stack. 1603 pushClobbers(IA, DefM); 1604 1605 if (IA.Addr->getKind() == NodeAttrs::Stmt) 1606 linkStmtRefs(DefM, IA, IsNoClobber); 1607 1608 pushDefs(IA, DefM); 1609 } 1610 1611 // Recursively process all children in the dominator tree. 1612 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); 1613 for (auto *I : *N) { 1614 MachineBasicBlock *SB = I->getBlock(); 1615 Block SBA = findBlock(SB); 1616 linkBlockRefs(DefM, SBA); 1617 } 1618 1619 // Link the phi uses from the successor blocks. 1620 auto IsUseForBA = [BA](Node NA) -> bool { 1621 if (NA.Addr->getKind() != NodeAttrs::Use) 1622 return false; 1623 assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); 1624 return PhiUse(NA).Addr->getPredecessor() == BA.Id; 1625 }; 1626 1627 RegisterAggr EHLiveIns = getLandingPadLiveIns(); 1628 MachineBasicBlock *MBB = BA.Addr->getCode(); 1629 1630 for (MachineBasicBlock *SB : MBB->successors()) { 1631 bool IsEHPad = SB->isEHPad(); 1632 Block SBA = findBlock(SB); 1633 for (Instr IA : SBA.Addr->members_if(IsPhi, *this)) { 1634 // Do not link phi uses for landing pad live-ins. 1635 if (IsEHPad) { 1636 // Find what register this phi is for. 1637 Ref RA = IA.Addr->getFirstMember(*this); 1638 assert(RA.Id != 0); 1639 if (EHLiveIns.hasCoverOf(RA.Addr->getRegRef(*this))) 1640 continue; 1641 } 1642 // Go over each phi use associated with MBB, and link it. 1643 for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { 1644 PhiUse PUA = U; 1645 RegisterRef RR = PUA.Addr->getRegRef(*this); 1646 linkRefUp<UseNode *>(IA, PUA, DefM[RR.Reg]); 1647 } 1648 } 1649 } 1650 1651 // Pop all defs from this block from the definition stacks. 1652 releaseBlock(BA.Id, DefM); 1653 } 1654 1655 // Remove the use node UA from any data-flow and structural links. 1656 void DataFlowGraph::unlinkUseDF(Use UA) { 1657 NodeId RD = UA.Addr->getReachingDef(); 1658 NodeId Sib = UA.Addr->getSibling(); 1659 1660 if (RD == 0) { 1661 assert(Sib == 0); 1662 return; 1663 } 1664 1665 auto RDA = addr<DefNode *>(RD); 1666 auto TA = addr<UseNode *>(RDA.Addr->getReachedUse()); 1667 if (TA.Id == UA.Id) { 1668 RDA.Addr->setReachedUse(Sib); 1669 return; 1670 } 1671 1672 while (TA.Id != 0) { 1673 NodeId S = TA.Addr->getSibling(); 1674 if (S == UA.Id) { 1675 TA.Addr->setSibling(UA.Addr->getSibling()); 1676 return; 1677 } 1678 TA = addr<UseNode *>(S); 1679 } 1680 } 1681 1682 // Remove the def node DA from any data-flow and structural links. 1683 void DataFlowGraph::unlinkDefDF(Def DA) { 1684 // 1685 // RD 1686 // | reached 1687 // | def 1688 // : 1689 // . 1690 // +----+ 1691 // ... -- | DA | -- ... -- 0 : sibling chain of DA 1692 // +----+ 1693 // | | reached 1694 // | : def 1695 // | . 1696 // | ... : Siblings (defs) 1697 // | 1698 // : reached 1699 // . use 1700 // ... : sibling chain of reached uses 1701 1702 NodeId RD = DA.Addr->getReachingDef(); 1703 1704 // Visit all siblings of the reached def and reset their reaching defs. 1705 // Also, defs reached by DA are now "promoted" to being reached by RD, 1706 // so all of them will need to be spliced into the sibling chain where 1707 // DA belongs. 1708 auto getAllNodes = [this](NodeId N) -> NodeList { 1709 NodeList Res; 1710 while (N) { 1711 auto RA = addr<RefNode *>(N); 1712 // Keep the nodes in the exact sibling order. 1713 Res.push_back(RA); 1714 N = RA.Addr->getSibling(); 1715 } 1716 return Res; 1717 }; 1718 NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); 1719 NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); 1720 1721 if (RD == 0) { 1722 for (Ref I : ReachedDefs) 1723 I.Addr->setSibling(0); 1724 for (Ref I : ReachedUses) 1725 I.Addr->setSibling(0); 1726 } 1727 for (Def I : ReachedDefs) 1728 I.Addr->setReachingDef(RD); 1729 for (Use I : ReachedUses) 1730 I.Addr->setReachingDef(RD); 1731 1732 NodeId Sib = DA.Addr->getSibling(); 1733 if (RD == 0) { 1734 assert(Sib == 0); 1735 return; 1736 } 1737 1738 // Update the reaching def node and remove DA from the sibling list. 1739 auto RDA = addr<DefNode *>(RD); 1740 auto TA = addr<DefNode *>(RDA.Addr->getReachedDef()); 1741 if (TA.Id == DA.Id) { 1742 // If DA is the first reached def, just update the RD's reached def 1743 // to the DA's sibling. 1744 RDA.Addr->setReachedDef(Sib); 1745 } else { 1746 // Otherwise, traverse the sibling list of the reached defs and remove 1747 // DA from it. 1748 while (TA.Id != 0) { 1749 NodeId S = TA.Addr->getSibling(); 1750 if (S == DA.Id) { 1751 TA.Addr->setSibling(Sib); 1752 break; 1753 } 1754 TA = addr<DefNode *>(S); 1755 } 1756 } 1757 1758 // Splice the DA's reached defs into the RDA's reached def chain. 1759 if (!ReachedDefs.empty()) { 1760 auto Last = Def(ReachedDefs.back()); 1761 Last.Addr->setSibling(RDA.Addr->getReachedDef()); 1762 RDA.Addr->setReachedDef(ReachedDefs.front().Id); 1763 } 1764 // Splice the DA's reached uses into the RDA's reached use chain. 1765 if (!ReachedUses.empty()) { 1766 auto Last = Use(ReachedUses.back()); 1767 Last.Addr->setSibling(RDA.Addr->getReachedUse()); 1768 RDA.Addr->setReachedUse(ReachedUses.front().Id); 1769 } 1770 } 1771 1772 bool DataFlowGraph::isTracked(RegisterRef RR) const { 1773 return !disjoint(getPRI().getUnits(RR), TrackedUnits); 1774 } 1775 1776 bool DataFlowGraph::hasUntrackedRef(Stmt S, bool IgnoreReserved) const { 1777 SmallVector<MachineOperand *> Ops; 1778 1779 for (Ref R : S.Addr->members(*this)) { 1780 Ops.push_back(&R.Addr->getOp()); 1781 RegisterRef RR = R.Addr->getRegRef(*this); 1782 if (IgnoreReserved && RR.isReg() && ReservedRegs[RR.idx()]) 1783 continue; 1784 if (!isTracked(RR)) 1785 return true; 1786 } 1787 for (const MachineOperand &Op : S.Addr->getCode()->operands()) { 1788 if (!Op.isReg() && !Op.isRegMask()) 1789 continue; 1790 if (!llvm::is_contained(Ops, &Op)) 1791 return true; 1792 } 1793 return false; 1794 } 1795 1796 } // end namespace llvm::rdf 1797