xref: /llvm-project/llvm/lib/CodeGen/RDFGraph.cpp (revision b28eebf9264a6b6843b15d4e17be70604f3e4ad8)
1 //===- RDFGraph.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Target-independent, SSA-based data flow graph for register data flow (RDF).
10 //
11 #include "llvm/CodeGen/RDFGraph.h"
12 #include "llvm/ADT/BitVector.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/CodeGen/MachineBasicBlock.h"
16 #include "llvm/CodeGen/MachineDominanceFrontier.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/RDFRegisters.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <cassert>
33 #include <cstdint>
34 #include <cstring>
35 #include <iterator>
36 #include <set>
37 #include <utility>
38 #include <vector>
39 
40 // Printing functions. Have them here first, so that the rest of the code
41 // can use them.
42 namespace llvm::rdf {
43 
44 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P) {
45   P.G.getPRI().print(OS, P.Obj);
46   return OS;
47 }
48 
49 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P) {
50   if (P.Obj == 0)
51     return OS << "null";
52   auto NA = P.G.addr<NodeBase *>(P.Obj);
53   uint16_t Attrs = NA.Addr->getAttrs();
54   uint16_t Kind = NodeAttrs::kind(Attrs);
55   uint16_t Flags = NodeAttrs::flags(Attrs);
56   switch (NodeAttrs::type(Attrs)) {
57   case NodeAttrs::Code:
58     switch (Kind) {
59     case NodeAttrs::Func:
60       OS << 'f';
61       break;
62     case NodeAttrs::Block:
63       OS << 'b';
64       break;
65     case NodeAttrs::Stmt:
66       OS << 's';
67       break;
68     case NodeAttrs::Phi:
69       OS << 'p';
70       break;
71     default:
72       OS << "c?";
73       break;
74     }
75     break;
76   case NodeAttrs::Ref:
77     if (Flags & NodeAttrs::Undef)
78       OS << '/';
79     if (Flags & NodeAttrs::Dead)
80       OS << '\\';
81     if (Flags & NodeAttrs::Preserving)
82       OS << '+';
83     if (Flags & NodeAttrs::Clobbering)
84       OS << '~';
85     switch (Kind) {
86     case NodeAttrs::Use:
87       OS << 'u';
88       break;
89     case NodeAttrs::Def:
90       OS << 'd';
91       break;
92     case NodeAttrs::Block:
93       OS << 'b';
94       break;
95     default:
96       OS << "r?";
97       break;
98     }
99     break;
100   default:
101     OS << '?';
102     break;
103   }
104   OS << P.Obj;
105   if (Flags & NodeAttrs::Shadow)
106     OS << '"';
107   return OS;
108 }
109 
110 static void printRefHeader(raw_ostream &OS, const Ref RA,
111                            const DataFlowGraph &G) {
112   OS << Print(RA.Id, G) << '<' << Print(RA.Addr->getRegRef(G), G) << '>';
113   if (RA.Addr->getFlags() & NodeAttrs::Fixed)
114     OS << '!';
115 }
116 
117 raw_ostream &operator<<(raw_ostream &OS, const Print<Def> &P) {
118   printRefHeader(OS, P.Obj, P.G);
119   OS << '(';
120   if (NodeId N = P.Obj.Addr->getReachingDef())
121     OS << Print(N, P.G);
122   OS << ',';
123   if (NodeId N = P.Obj.Addr->getReachedDef())
124     OS << Print(N, P.G);
125   OS << ',';
126   if (NodeId N = P.Obj.Addr->getReachedUse())
127     OS << Print(N, P.G);
128   OS << "):";
129   if (NodeId N = P.Obj.Addr->getSibling())
130     OS << Print(N, P.G);
131   return OS;
132 }
133 
134 raw_ostream &operator<<(raw_ostream &OS, const Print<Use> &P) {
135   printRefHeader(OS, P.Obj, P.G);
136   OS << '(';
137   if (NodeId N = P.Obj.Addr->getReachingDef())
138     OS << Print(N, P.G);
139   OS << "):";
140   if (NodeId N = P.Obj.Addr->getSibling())
141     OS << Print(N, P.G);
142   return OS;
143 }
144 
145 raw_ostream &operator<<(raw_ostream &OS, const Print<PhiUse> &P) {
146   printRefHeader(OS, P.Obj, P.G);
147   OS << '(';
148   if (NodeId N = P.Obj.Addr->getReachingDef())
149     OS << Print(N, P.G);
150   OS << ',';
151   if (NodeId N = P.Obj.Addr->getPredecessor())
152     OS << Print(N, P.G);
153   OS << "):";
154   if (NodeId N = P.Obj.Addr->getSibling())
155     OS << Print(N, P.G);
156   return OS;
157 }
158 
159 raw_ostream &operator<<(raw_ostream &OS, const Print<Ref> &P) {
160   switch (P.Obj.Addr->getKind()) {
161   case NodeAttrs::Def:
162     OS << PrintNode<DefNode *>(P.Obj, P.G);
163     break;
164   case NodeAttrs::Use:
165     if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
166       OS << PrintNode<PhiUseNode *>(P.Obj, P.G);
167     else
168       OS << PrintNode<UseNode *>(P.Obj, P.G);
169     break;
170   }
171   return OS;
172 }
173 
174 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P) {
175   unsigned N = P.Obj.size();
176   for (auto I : P.Obj) {
177     OS << Print(I.Id, P.G);
178     if (--N)
179       OS << ' ';
180   }
181   return OS;
182 }
183 
184 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P) {
185   unsigned N = P.Obj.size();
186   for (auto I : P.Obj) {
187     OS << Print(I, P.G);
188     if (--N)
189       OS << ' ';
190   }
191   return OS;
192 }
193 
194 namespace {
195 
196 template <typename T> struct PrintListV {
197   PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
198 
199   using Type = T;
200   const NodeList &List;
201   const DataFlowGraph &G;
202 };
203 
204 template <typename T>
205 raw_ostream &operator<<(raw_ostream &OS, const PrintListV<T> &P) {
206   unsigned N = P.List.size();
207   for (NodeAddr<T> A : P.List) {
208     OS << PrintNode<T>(A, P.G);
209     if (--N)
210       OS << ", ";
211   }
212   return OS;
213 }
214 
215 } // end anonymous namespace
216 
217 raw_ostream &operator<<(raw_ostream &OS, const Print<Phi> &P) {
218   OS << Print(P.Obj.Id, P.G) << ": phi ["
219      << PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']';
220   return OS;
221 }
222 
223 raw_ostream &operator<<(raw_ostream &OS, const Print<Stmt> &P) {
224   const MachineInstr &MI = *P.Obj.Addr->getCode();
225   unsigned Opc = MI.getOpcode();
226   OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
227   // Print the target for calls and branches (for readability).
228   if (MI.isCall() || MI.isBranch()) {
229     MachineInstr::const_mop_iterator T =
230         llvm::find_if(MI.operands(), [](const MachineOperand &Op) -> bool {
231           return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
232         });
233     if (T != MI.operands_end()) {
234       OS << ' ';
235       if (T->isMBB())
236         OS << printMBBReference(*T->getMBB());
237       else if (T->isGlobal())
238         OS << T->getGlobal()->getName();
239       else if (T->isSymbol())
240         OS << T->getSymbolName();
241     }
242   }
243   OS << " [" << PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']';
244   return OS;
245 }
246 
247 raw_ostream &operator<<(raw_ostream &OS, const Print<Instr> &P) {
248   switch (P.Obj.Addr->getKind()) {
249   case NodeAttrs::Phi:
250     OS << PrintNode<PhiNode *>(P.Obj, P.G);
251     break;
252   case NodeAttrs::Stmt:
253     OS << PrintNode<StmtNode *>(P.Obj, P.G);
254     break;
255   default:
256     OS << "instr? " << Print(P.Obj.Id, P.G);
257     break;
258   }
259   return OS;
260 }
261 
262 raw_ostream &operator<<(raw_ostream &OS, const Print<Block> &P) {
263   MachineBasicBlock *BB = P.Obj.Addr->getCode();
264   unsigned NP = BB->pred_size();
265   std::vector<int> Ns;
266   auto PrintBBs = [&OS](const std::vector<int> &Ns) -> void {
267     unsigned N = Ns.size();
268     for (int I : Ns) {
269       OS << "%bb." << I;
270       if (--N)
271         OS << ", ";
272     }
273   };
274 
275   OS << Print(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
276      << " --- preds(" << NP << "): ";
277   for (MachineBasicBlock *B : BB->predecessors())
278     Ns.push_back(B->getNumber());
279   PrintBBs(Ns);
280 
281   unsigned NS = BB->succ_size();
282   OS << "  succs(" << NS << "): ";
283   Ns.clear();
284   for (MachineBasicBlock *B : BB->successors())
285     Ns.push_back(B->getNumber());
286   PrintBBs(Ns);
287   OS << '\n';
288 
289   for (auto I : P.Obj.Addr->members(P.G))
290     OS << PrintNode<InstrNode *>(I, P.G) << '\n';
291   return OS;
292 }
293 
294 raw_ostream &operator<<(raw_ostream &OS, const Print<Func> &P) {
295   OS << "DFG dump:[\n"
296      << Print(P.Obj.Id, P.G)
297      << ": Function: " << P.Obj.Addr->getCode()->getName() << '\n';
298   for (auto I : P.Obj.Addr->members(P.G))
299     OS << PrintNode<BlockNode *>(I, P.G) << '\n';
300   OS << "]\n";
301   return OS;
302 }
303 
304 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P) {
305   OS << '{';
306   for (auto I : P.Obj)
307     OS << ' ' << Print(I, P.G);
308   OS << " }";
309   return OS;
310 }
311 
312 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P) {
313   OS << P.Obj;
314   return OS;
315 }
316 
317 raw_ostream &operator<<(raw_ostream &OS,
318                         const Print<DataFlowGraph::DefStack> &P) {
319   for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E;) {
320     OS << Print(I->Id, P.G) << '<' << Print(I->Addr->getRegRef(P.G), P.G)
321        << '>';
322     I.down();
323     if (I != E)
324       OS << ' ';
325   }
326   return OS;
327 }
328 
329 // Node allocation functions.
330 //
331 // Node allocator is like a slab memory allocator: it allocates blocks of
332 // memory in sizes that are multiples of the size of a node. Each block has
333 // the same size. Nodes are allocated from the currently active block, and
334 // when it becomes full, a new one is created.
335 // There is a mapping scheme between node id and its location in a block,
336 // and within that block is described in the header file.
337 //
338 void NodeAllocator::startNewBlock() {
339   void *T = MemPool.Allocate(NodesPerBlock * NodeMemSize, NodeMemSize);
340   char *P = static_cast<char *>(T);
341   Blocks.push_back(P);
342   // Check if the block index is still within the allowed range, i.e. less
343   // than 2^N, where N is the number of bits in NodeId for the block index.
344   // BitsPerIndex is the number of bits per node index.
345   assert((Blocks.size() < ((size_t)1 << (8 * sizeof(NodeId) - BitsPerIndex))) &&
346          "Out of bits for block index");
347   ActiveEnd = P;
348 }
349 
350 bool NodeAllocator::needNewBlock() {
351   if (Blocks.empty())
352     return true;
353 
354   char *ActiveBegin = Blocks.back();
355   uint32_t Index = (ActiveEnd - ActiveBegin) / NodeMemSize;
356   return Index >= NodesPerBlock;
357 }
358 
359 Node NodeAllocator::New() {
360   if (needNewBlock())
361     startNewBlock();
362 
363   uint32_t ActiveB = Blocks.size() - 1;
364   uint32_t Index = (ActiveEnd - Blocks[ActiveB]) / NodeMemSize;
365   Node NA = {reinterpret_cast<NodeBase *>(ActiveEnd), makeId(ActiveB, Index)};
366   ActiveEnd += NodeMemSize;
367   return NA;
368 }
369 
370 NodeId NodeAllocator::id(const NodeBase *P) const {
371   uintptr_t A = reinterpret_cast<uintptr_t>(P);
372   for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
373     uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
374     if (A < B || A >= B + NodesPerBlock * NodeMemSize)
375       continue;
376     uint32_t Idx = (A - B) / NodeMemSize;
377     return makeId(i, Idx);
378   }
379   llvm_unreachable("Invalid node address");
380 }
381 
382 void NodeAllocator::clear() {
383   MemPool.Reset();
384   Blocks.clear();
385   ActiveEnd = nullptr;
386 }
387 
388 // Insert node NA after "this" in the circular chain.
389 void NodeBase::append(Node NA) {
390   NodeId Nx = Next;
391   // If NA is already "next", do nothing.
392   if (Next != NA.Id) {
393     Next = NA.Id;
394     NA.Addr->Next = Nx;
395   }
396 }
397 
398 // Fundamental node manipulator functions.
399 
400 // Obtain the register reference from a reference node.
401 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
402   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
403   if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
404     return G.unpack(RefData.PR);
405   assert(RefData.Op != nullptr);
406   return G.makeRegRef(*RefData.Op);
407 }
408 
409 // Set the register reference in the reference node directly (for references
410 // in phi nodes).
411 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
412   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
413   assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
414   RefData.PR = G.pack(RR);
415 }
416 
417 // Set the register reference in the reference node based on a machine
418 // operand (for references in statement nodes).
419 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
420   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
421   assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
422   (void)G;
423   RefData.Op = Op;
424 }
425 
426 // Get the owner of a given reference node.
427 Node RefNode::getOwner(const DataFlowGraph &G) {
428   Node NA = G.addr<NodeBase *>(getNext());
429 
430   while (NA.Addr != this) {
431     if (NA.Addr->getType() == NodeAttrs::Code)
432       return NA;
433     NA = G.addr<NodeBase *>(NA.Addr->getNext());
434   }
435   llvm_unreachable("No owner in circular list");
436 }
437 
438 // Connect the def node to the reaching def node.
439 void DefNode::linkToDef(NodeId Self, Def DA) {
440   RefData.RD = DA.Id;
441   RefData.Sib = DA.Addr->getReachedDef();
442   DA.Addr->setReachedDef(Self);
443 }
444 
445 // Connect the use node to the reaching def node.
446 void UseNode::linkToDef(NodeId Self, Def DA) {
447   RefData.RD = DA.Id;
448   RefData.Sib = DA.Addr->getReachedUse();
449   DA.Addr->setReachedUse(Self);
450 }
451 
452 // Get the first member of the code node.
453 Node CodeNode::getFirstMember(const DataFlowGraph &G) const {
454   if (CodeData.FirstM == 0)
455     return Node();
456   return G.addr<NodeBase *>(CodeData.FirstM);
457 }
458 
459 // Get the last member of the code node.
460 Node CodeNode::getLastMember(const DataFlowGraph &G) const {
461   if (CodeData.LastM == 0)
462     return Node();
463   return G.addr<NodeBase *>(CodeData.LastM);
464 }
465 
466 // Add node NA at the end of the member list of the given code node.
467 void CodeNode::addMember(Node NA, const DataFlowGraph &G) {
468   Node ML = getLastMember(G);
469   if (ML.Id != 0) {
470     ML.Addr->append(NA);
471   } else {
472     CodeData.FirstM = NA.Id;
473     NodeId Self = G.id(this);
474     NA.Addr->setNext(Self);
475   }
476   CodeData.LastM = NA.Id;
477 }
478 
479 // Add node NA after member node MA in the given code node.
480 void CodeNode::addMemberAfter(Node MA, Node NA, const DataFlowGraph &G) {
481   MA.Addr->append(NA);
482   if (CodeData.LastM == MA.Id)
483     CodeData.LastM = NA.Id;
484 }
485 
486 // Remove member node NA from the given code node.
487 void CodeNode::removeMember(Node NA, const DataFlowGraph &G) {
488   Node MA = getFirstMember(G);
489   assert(MA.Id != 0);
490 
491   // Special handling if the member to remove is the first member.
492   if (MA.Id == NA.Id) {
493     if (CodeData.LastM == MA.Id) {
494       // If it is the only member, set both first and last to 0.
495       CodeData.FirstM = CodeData.LastM = 0;
496     } else {
497       // Otherwise, advance the first member.
498       CodeData.FirstM = MA.Addr->getNext();
499     }
500     return;
501   }
502 
503   while (MA.Addr != this) {
504     NodeId MX = MA.Addr->getNext();
505     if (MX == NA.Id) {
506       MA.Addr->setNext(NA.Addr->getNext());
507       // If the member to remove happens to be the last one, update the
508       // LastM indicator.
509       if (CodeData.LastM == NA.Id)
510         CodeData.LastM = MA.Id;
511       return;
512     }
513     MA = G.addr<NodeBase *>(MX);
514   }
515   llvm_unreachable("No such member");
516 }
517 
518 // Return the list of all members of the code node.
519 NodeList CodeNode::members(const DataFlowGraph &G) const {
520   static auto True = [](Node) -> bool { return true; };
521   return members_if(True, G);
522 }
523 
524 // Return the owner of the given instr node.
525 Node InstrNode::getOwner(const DataFlowGraph &G) {
526   Node NA = G.addr<NodeBase *>(getNext());
527 
528   while (NA.Addr != this) {
529     assert(NA.Addr->getType() == NodeAttrs::Code);
530     if (NA.Addr->getKind() == NodeAttrs::Block)
531       return NA;
532     NA = G.addr<NodeBase *>(NA.Addr->getNext());
533   }
534   llvm_unreachable("No owner in circular list");
535 }
536 
537 // Add the phi node PA to the given block node.
538 void BlockNode::addPhi(Phi PA, const DataFlowGraph &G) {
539   Node M = getFirstMember(G);
540   if (M.Id == 0) {
541     addMember(PA, G);
542     return;
543   }
544 
545   assert(M.Addr->getType() == NodeAttrs::Code);
546   if (M.Addr->getKind() == NodeAttrs::Stmt) {
547     // If the first member of the block is a statement, insert the phi as
548     // the first member.
549     CodeData.FirstM = PA.Id;
550     PA.Addr->setNext(M.Id);
551   } else {
552     // If the first member is a phi, find the last phi, and append PA to it.
553     assert(M.Addr->getKind() == NodeAttrs::Phi);
554     Node MN = M;
555     do {
556       M = MN;
557       MN = G.addr<NodeBase *>(M.Addr->getNext());
558       assert(MN.Addr->getType() == NodeAttrs::Code);
559     } while (MN.Addr->getKind() == NodeAttrs::Phi);
560 
561     // M is the last phi.
562     addMemberAfter(M, PA, G);
563   }
564 }
565 
566 // Find the block node corresponding to the machine basic block BB in the
567 // given func node.
568 Block FuncNode::findBlock(const MachineBasicBlock *BB,
569                           const DataFlowGraph &G) const {
570   auto EqBB = [BB](Node NA) -> bool { return Block(NA).Addr->getCode() == BB; };
571   NodeList Ms = members_if(EqBB, G);
572   if (!Ms.empty())
573     return Ms[0];
574   return Block();
575 }
576 
577 // Get the block node for the entry block in the given function.
578 Block FuncNode::getEntryBlock(const DataFlowGraph &G) {
579   MachineBasicBlock *EntryB = &getCode()->front();
580   return findBlock(EntryB, G);
581 }
582 
583 // Target operand information.
584 //
585 
586 // For a given instruction, check if there are any bits of RR that can remain
587 // unchanged across this def.
588 bool TargetOperandInfo::isPreserving(const MachineInstr &In,
589                                      unsigned OpNum) const {
590   return TII.isPredicated(In);
591 }
592 
593 // Check if the definition of RR produces an unspecified value.
594 bool TargetOperandInfo::isClobbering(const MachineInstr &In,
595                                      unsigned OpNum) const {
596   const MachineOperand &Op = In.getOperand(OpNum);
597   if (Op.isRegMask())
598     return true;
599   assert(Op.isReg());
600   if (In.isCall())
601     if (Op.isDef() && Op.isDead())
602       return true;
603   return false;
604 }
605 
606 // Check if the given instruction specifically requires
607 bool TargetOperandInfo::isFixedReg(const MachineInstr &In,
608                                    unsigned OpNum) const {
609   if (In.isCall() || In.isReturn() || In.isInlineAsm())
610     return true;
611   // Check for a tail call.
612   if (In.isBranch())
613     for (const MachineOperand &O : In.operands())
614       if (O.isGlobal() || O.isSymbol())
615         return true;
616 
617   const MCInstrDesc &D = In.getDesc();
618   if (D.implicit_defs().empty() && D.implicit_uses().empty())
619     return false;
620   const MachineOperand &Op = In.getOperand(OpNum);
621   // If there is a sub-register, treat the operand as non-fixed. Currently,
622   // fixed registers are those that are listed in the descriptor as implicit
623   // uses or defs, and those lists do not allow sub-registers.
624   if (Op.getSubReg() != 0)
625     return false;
626   Register Reg = Op.getReg();
627   ArrayRef<MCPhysReg> ImpOps =
628       Op.isDef() ? D.implicit_defs() : D.implicit_uses();
629   return is_contained(ImpOps, Reg);
630 }
631 
632 //
633 // The data flow graph construction.
634 //
635 
636 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
637                              const TargetRegisterInfo &tri,
638                              const MachineDominatorTree &mdt,
639                              const MachineDominanceFrontier &mdf)
640     : DefaultTOI(std::make_unique<TargetOperandInfo>(tii)), MF(mf), TII(tii),
641       TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(*DefaultTOI),
642       LiveIns(PRI) {}
643 
644 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
645                              const TargetRegisterInfo &tri,
646                              const MachineDominatorTree &mdt,
647                              const MachineDominanceFrontier &mdf,
648                              const TargetOperandInfo &toi)
649     : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
650       LiveIns(PRI) {}
651 
652 // The implementation of the definition stack.
653 // Each register reference has its own definition stack. In particular,
654 // for a register references "Reg" and "Reg:subreg" will each have their
655 // own definition stacks.
656 
657 // Construct a stack iterator.
658 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
659                                             bool Top)
660     : DS(S) {
661   if (!Top) {
662     // Initialize to bottom.
663     Pos = 0;
664     return;
665   }
666   // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
667   Pos = DS.Stack.size();
668   while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos - 1]))
669     Pos--;
670 }
671 
672 // Return the size of the stack, including block delimiters.
673 unsigned DataFlowGraph::DefStack::size() const {
674   unsigned S = 0;
675   for (auto I = top(), E = bottom(); I != E; I.down())
676     S++;
677   return S;
678 }
679 
680 // Remove the top entry from the stack. Remove all intervening delimiters
681 // so that after this, the stack is either empty, or the top of the stack
682 // is a non-delimiter.
683 void DataFlowGraph::DefStack::pop() {
684   assert(!empty());
685   unsigned P = nextDown(Stack.size());
686   Stack.resize(P);
687 }
688 
689 // Push a delimiter for block node N on the stack.
690 void DataFlowGraph::DefStack::start_block(NodeId N) {
691   assert(N != 0);
692   Stack.push_back(Def(nullptr, N));
693 }
694 
695 // Remove all nodes from the top of the stack, until the delimited for
696 // block node N is encountered. Remove the delimiter as well. In effect,
697 // this will remove from the stack all definitions from block N.
698 void DataFlowGraph::DefStack::clear_block(NodeId N) {
699   assert(N != 0);
700   unsigned P = Stack.size();
701   while (P > 0) {
702     bool Found = isDelimiter(Stack[P - 1], N);
703     P--;
704     if (Found)
705       break;
706   }
707   // This will also remove the delimiter, if found.
708   Stack.resize(P);
709 }
710 
711 // Move the stack iterator up by one.
712 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
713   // Get the next valid position after P (skipping all delimiters).
714   // The input position P does not have to point to a non-delimiter.
715   unsigned SS = Stack.size();
716   bool IsDelim;
717   assert(P < SS);
718   do {
719     P++;
720     IsDelim = isDelimiter(Stack[P - 1]);
721   } while (P < SS && IsDelim);
722   assert(!IsDelim);
723   return P;
724 }
725 
726 // Move the stack iterator down by one.
727 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
728   // Get the preceding valid position before P (skipping all delimiters).
729   // The input position P does not have to point to a non-delimiter.
730   assert(P > 0 && P <= Stack.size());
731   bool IsDelim = isDelimiter(Stack[P - 1]);
732   do {
733     if (--P == 0)
734       break;
735     IsDelim = isDelimiter(Stack[P - 1]);
736   } while (P > 0 && IsDelim);
737   assert(!IsDelim);
738   return P;
739 }
740 
741 // Register information.
742 
743 RegisterAggr DataFlowGraph::getLandingPadLiveIns() const {
744   RegisterAggr LR(getPRI());
745   const Function &F = MF.getFunction();
746   const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr;
747   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
748   if (RegisterId R = TLI.getExceptionPointerRegister(PF))
749     LR.insert(RegisterRef(R));
750   if (!isFuncletEHPersonality(classifyEHPersonality(PF))) {
751     if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
752       LR.insert(RegisterRef(R));
753   }
754   return LR;
755 }
756 
757 // Node management functions.
758 
759 // Get the pointer to the node with the id N.
760 NodeBase *DataFlowGraph::ptr(NodeId N) const {
761   if (N == 0)
762     return nullptr;
763   return Memory.ptr(N);
764 }
765 
766 // Get the id of the node at the address P.
767 NodeId DataFlowGraph::id(const NodeBase *P) const {
768   if (P == nullptr)
769     return 0;
770   return Memory.id(P);
771 }
772 
773 // Allocate a new node and set the attributes to Attrs.
774 Node DataFlowGraph::newNode(uint16_t Attrs) {
775   Node P = Memory.New();
776   P.Addr->init();
777   P.Addr->setAttrs(Attrs);
778   return P;
779 }
780 
781 // Make a copy of the given node B, except for the data-flow links, which
782 // are set to 0.
783 Node DataFlowGraph::cloneNode(const Node B) {
784   Node NA = newNode(0);
785   memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
786   // Ref nodes need to have the data-flow links reset.
787   if (NA.Addr->getType() == NodeAttrs::Ref) {
788     Ref RA = NA;
789     RA.Addr->setReachingDef(0);
790     RA.Addr->setSibling(0);
791     if (NA.Addr->getKind() == NodeAttrs::Def) {
792       Def DA = NA;
793       DA.Addr->setReachedDef(0);
794       DA.Addr->setReachedUse(0);
795     }
796   }
797   return NA;
798 }
799 
800 // Allocation routines for specific node types/kinds.
801 
802 Use DataFlowGraph::newUse(Instr Owner, MachineOperand &Op, uint16_t Flags) {
803   Use UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
804   UA.Addr->setRegRef(&Op, *this);
805   return UA;
806 }
807 
808 PhiUse DataFlowGraph::newPhiUse(Phi Owner, RegisterRef RR, Block PredB,
809                                 uint16_t Flags) {
810   PhiUse PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
811   assert(Flags & NodeAttrs::PhiRef);
812   PUA.Addr->setRegRef(RR, *this);
813   PUA.Addr->setPredecessor(PredB.Id);
814   return PUA;
815 }
816 
817 Def DataFlowGraph::newDef(Instr Owner, MachineOperand &Op, uint16_t Flags) {
818   Def DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
819   DA.Addr->setRegRef(&Op, *this);
820   return DA;
821 }
822 
823 Def DataFlowGraph::newDef(Instr Owner, RegisterRef RR, uint16_t Flags) {
824   Def DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
825   assert(Flags & NodeAttrs::PhiRef);
826   DA.Addr->setRegRef(RR, *this);
827   return DA;
828 }
829 
830 Phi DataFlowGraph::newPhi(Block Owner) {
831   Phi PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
832   Owner.Addr->addPhi(PA, *this);
833   return PA;
834 }
835 
836 Stmt DataFlowGraph::newStmt(Block Owner, MachineInstr *MI) {
837   Stmt SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
838   SA.Addr->setCode(MI);
839   Owner.Addr->addMember(SA, *this);
840   return SA;
841 }
842 
843 Block DataFlowGraph::newBlock(Func Owner, MachineBasicBlock *BB) {
844   Block BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
845   BA.Addr->setCode(BB);
846   Owner.Addr->addMember(BA, *this);
847   return BA;
848 }
849 
850 Func DataFlowGraph::newFunc(MachineFunction *MF) {
851   Func FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
852   FA.Addr->setCode(MF);
853   return FA;
854 }
855 
856 // Build the data flow graph.
857 void DataFlowGraph::build(const Config &config) {
858   reset();
859   BuildCfg = config;
860   MachineRegisterInfo &MRI = MF.getRegInfo();
861   ReservedRegs = MRI.getReservedRegs();
862   bool SkipReserved = BuildCfg.Options & BuildOptions::OmitReserved;
863 
864   auto Insert = [](auto &Set, auto &&Range) {
865     Set.insert(Range.begin(), Range.end());
866   };
867 
868   if (BuildCfg.TrackRegs.empty()) {
869     std::set<RegisterId> BaseSet;
870     if (BuildCfg.Classes.empty()) {
871       // Insert every register.
872       for (unsigned R = 1, E = getPRI().getTRI().getNumRegs(); R != E; ++R)
873         BaseSet.insert(R);
874     } else {
875       for (const TargetRegisterClass *RC : BuildCfg.Classes) {
876         for (MCPhysReg R : *RC)
877           BaseSet.insert(R);
878       }
879     }
880     for (RegisterId R : BaseSet) {
881       if (SkipReserved && ReservedRegs[R])
882         continue;
883       Insert(TrackedUnits, getPRI().getUnits(RegisterRef(R)));
884     }
885   } else {
886     // Track set in Config overrides everything.
887     for (unsigned R : BuildCfg.TrackRegs) {
888       if (SkipReserved && ReservedRegs[R])
889         continue;
890       Insert(TrackedUnits, getPRI().getUnits(RegisterRef(R)));
891     }
892   }
893 
894   TheFunc = newFunc(&MF);
895 
896   if (MF.empty())
897     return;
898 
899   for (MachineBasicBlock &B : MF) {
900     Block BA = newBlock(TheFunc, &B);
901     BlockNodes.insert(std::make_pair(&B, BA));
902     for (MachineInstr &I : B) {
903       if (I.isDebugInstr())
904         continue;
905       buildStmt(BA, I);
906     }
907   }
908 
909   Block EA = TheFunc.Addr->getEntryBlock(*this);
910   NodeList Blocks = TheFunc.Addr->members(*this);
911 
912   // Collect function live-ins and entry block live-ins.
913   MachineBasicBlock &EntryB = *EA.Addr->getCode();
914   assert(EntryB.pred_empty() && "Function entry block has predecessors");
915   for (std::pair<MCRegister, Register> P : MRI.liveins())
916     LiveIns.insert(RegisterRef(P.first));
917   if (MRI.tracksLiveness()) {
918     for (auto I : EntryB.liveins())
919       LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
920   }
921 
922   // Add function-entry phi nodes for the live-in registers.
923   for (RegisterRef RR : LiveIns.refs()) {
924     if (RR.isReg() && !isTracked(RR)) // isReg is likely guaranteed
925       continue;
926     Phi PA = newPhi(EA);
927     uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
928     Def DA = newDef(PA, RR, PhiFlags);
929     PA.Addr->addMember(DA, *this);
930   }
931 
932   // Add phis for landing pads.
933   // Landing pads, unlike usual backs blocks, are not entered through
934   // branches in the program, or fall-throughs from other blocks. They
935   // are entered from the exception handling runtime and target's ABI
936   // may define certain registers as defined on entry to such a block.
937   RegisterAggr EHRegs = getLandingPadLiveIns();
938   if (!EHRegs.empty()) {
939     for (Block BA : Blocks) {
940       const MachineBasicBlock &B = *BA.Addr->getCode();
941       if (!B.isEHPad())
942         continue;
943 
944       // Prepare a list of NodeIds of the block's predecessors.
945       NodeList Preds;
946       for (MachineBasicBlock *PB : B.predecessors())
947         Preds.push_back(findBlock(PB));
948 
949       // Build phi nodes for each live-in.
950       for (RegisterRef RR : EHRegs.refs()) {
951         if (RR.isReg() && !isTracked(RR))
952           continue;
953         Phi PA = newPhi(BA);
954         uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
955         // Add def:
956         Def DA = newDef(PA, RR, PhiFlags);
957         PA.Addr->addMember(DA, *this);
958         // Add uses (no reaching defs for phi uses):
959         for (Block PBA : Preds) {
960           PhiUse PUA = newPhiUse(PA, RR, PBA);
961           PA.Addr->addMember(PUA, *this);
962         }
963       }
964     }
965   }
966 
967   // Build a map "PhiM" which will contain, for each block, the set
968   // of references that will require phi definitions in that block.
969   BlockRefsMap PhiM(getPRI());
970   for (Block BA : Blocks)
971     recordDefsForDF(PhiM, BA);
972   for (Block BA : Blocks)
973     buildPhis(PhiM, BA);
974 
975   // Link all the refs. This will recursively traverse the dominator tree.
976   DefStackMap DM;
977   linkBlockRefs(DM, EA);
978 
979   // Finally, remove all unused phi nodes.
980   if (!(BuildCfg.Options & BuildOptions::KeepDeadPhis))
981     removeUnusedPhis();
982 }
983 
984 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
985   assert(RegisterRef::isRegId(Reg) || RegisterRef::isMaskId(Reg));
986   assert(Reg != 0);
987   if (Sub != 0)
988     Reg = TRI.getSubReg(Reg, Sub);
989   return RegisterRef(Reg);
990 }
991 
992 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
993   assert(Op.isReg() || Op.isRegMask());
994   if (Op.isReg())
995     return makeRegRef(Op.getReg(), Op.getSubReg());
996   return RegisterRef(getPRI().getRegMaskId(Op.getRegMask()),
997                      LaneBitmask::getAll());
998 }
999 
1000 // For each stack in the map DefM, push the delimiter for block B on it.
1001 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
1002   // Push block delimiters.
1003   for (auto &P : DefM)
1004     P.second.start_block(B);
1005 }
1006 
1007 // Remove all definitions coming from block B from each stack in DefM.
1008 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
1009   // Pop all defs from this block from the definition stack. Defs that were
1010   // added to the map during the traversal of instructions will not have a
1011   // delimiter, but for those, the whole stack will be emptied.
1012   for (auto &P : DefM)
1013     P.second.clear_block(B);
1014 
1015   // Finally, remove empty stacks from the map.
1016   for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
1017     NextI = std::next(I);
1018     // This preserves the validity of iterators other than I.
1019     if (I->second.empty())
1020       DefM.erase(I);
1021   }
1022 }
1023 
1024 // Push all definitions from the instruction node IA to an appropriate
1025 // stack in DefM.
1026 void DataFlowGraph::pushAllDefs(Instr IA, DefStackMap &DefM) {
1027   pushClobbers(IA, DefM);
1028   pushDefs(IA, DefM);
1029 }
1030 
1031 // Push all definitions from the instruction node IA to an appropriate
1032 // stack in DefM.
1033 void DataFlowGraph::pushClobbers(Instr IA, DefStackMap &DefM) {
1034   NodeSet Visited;
1035   std::set<RegisterId> Defined;
1036 
1037   // The important objectives of this function are:
1038   // - to be able to handle instructions both while the graph is being
1039   //   constructed, and after the graph has been constructed, and
1040   // - maintain proper ordering of definitions on the stack for each
1041   //   register reference:
1042   //   - if there are two or more related defs in IA (i.e. coming from
1043   //     the same machine operand), then only push one def on the stack,
1044   //   - if there are multiple unrelated defs of non-overlapping
1045   //     subregisters of S, then the stack for S will have both (in an
1046   //     unspecified order), but the order does not matter from the data-
1047   //     -flow perspective.
1048 
1049   for (Def DA : IA.Addr->members_if(IsDef, *this)) {
1050     if (Visited.count(DA.Id))
1051       continue;
1052     if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
1053       continue;
1054 
1055     NodeList Rel = getRelatedRefs(IA, DA);
1056     Def PDA = Rel.front();
1057     RegisterRef RR = PDA.Addr->getRegRef(*this);
1058 
1059     // Push the definition on the stack for the register and all aliases.
1060     // The def stack traversal in linkNodeUp will check the exact aliasing.
1061     DefM[RR.Reg].push(DA);
1062     Defined.insert(RR.Reg);
1063     for (RegisterId A : getPRI().getAliasSet(RR.Reg)) {
1064       if (RegisterRef::isRegId(A) && !isTracked(RegisterRef(A)))
1065         continue;
1066       // Check that we don't push the same def twice.
1067       assert(A != RR.Reg);
1068       if (!Defined.count(A))
1069         DefM[A].push(DA);
1070     }
1071     // Mark all the related defs as visited.
1072     for (Node T : Rel)
1073       Visited.insert(T.Id);
1074   }
1075 }
1076 
1077 // Push all definitions from the instruction node IA to an appropriate
1078 // stack in DefM.
1079 void DataFlowGraph::pushDefs(Instr IA, DefStackMap &DefM) {
1080   NodeSet Visited;
1081 #ifndef NDEBUG
1082   std::set<RegisterId> Defined;
1083 #endif
1084 
1085   // The important objectives of this function are:
1086   // - to be able to handle instructions both while the graph is being
1087   //   constructed, and after the graph has been constructed, and
1088   // - maintain proper ordering of definitions on the stack for each
1089   //   register reference:
1090   //   - if there are two or more related defs in IA (i.e. coming from
1091   //     the same machine operand), then only push one def on the stack,
1092   //   - if there are multiple unrelated defs of non-overlapping
1093   //     subregisters of S, then the stack for S will have both (in an
1094   //     unspecified order), but the order does not matter from the data-
1095   //     -flow perspective.
1096 
1097   for (Def DA : IA.Addr->members_if(IsDef, *this)) {
1098     if (Visited.count(DA.Id))
1099       continue;
1100     if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
1101       continue;
1102 
1103     NodeList Rel = getRelatedRefs(IA, DA);
1104     Def PDA = Rel.front();
1105     RegisterRef RR = PDA.Addr->getRegRef(*this);
1106 #ifndef NDEBUG
1107     // Assert if the register is defined in two or more unrelated defs.
1108     // This could happen if there are two or more def operands defining it.
1109     if (!Defined.insert(RR.Reg).second) {
1110       MachineInstr *MI = Stmt(IA).Addr->getCode();
1111       dbgs() << "Multiple definitions of register: " << Print(RR, *this)
1112              << " in\n  " << *MI << "in " << printMBBReference(*MI->getParent())
1113              << '\n';
1114       llvm_unreachable(nullptr);
1115     }
1116 #endif
1117     // Push the definition on the stack for the register and all aliases.
1118     // The def stack traversal in linkNodeUp will check the exact aliasing.
1119     DefM[RR.Reg].push(DA);
1120     for (RegisterId A : getPRI().getAliasSet(RR.Reg)) {
1121       if (RegisterRef::isRegId(A) && !isTracked(RegisterRef(A)))
1122         continue;
1123       // Check that we don't push the same def twice.
1124       assert(A != RR.Reg);
1125       DefM[A].push(DA);
1126     }
1127     // Mark all the related defs as visited.
1128     for (Node T : Rel)
1129       Visited.insert(T.Id);
1130   }
1131 }
1132 
1133 // Return the list of all reference nodes related to RA, including RA itself.
1134 // See "getNextRelated" for the meaning of a "related reference".
1135 NodeList DataFlowGraph::getRelatedRefs(Instr IA, Ref RA) const {
1136   assert(IA.Id != 0 && RA.Id != 0);
1137 
1138   NodeList Refs;
1139   NodeId Start = RA.Id;
1140   do {
1141     Refs.push_back(RA);
1142     RA = getNextRelated(IA, RA);
1143   } while (RA.Id != 0 && RA.Id != Start);
1144   return Refs;
1145 }
1146 
1147 // Clear all information in the graph.
1148 void DataFlowGraph::reset() {
1149   Memory.clear();
1150   BlockNodes.clear();
1151   TrackedUnits.clear();
1152   ReservedRegs.clear();
1153   TheFunc = Func();
1154 }
1155 
1156 // Return the next reference node in the instruction node IA that is related
1157 // to RA. Conceptually, two reference nodes are related if they refer to the
1158 // same instance of a register access, but differ in flags or other minor
1159 // characteristics. Specific examples of related nodes are shadow reference
1160 // nodes.
1161 // Return the equivalent of nullptr if there are no more related references.
1162 Ref DataFlowGraph::getNextRelated(Instr IA, Ref RA) const {
1163   assert(IA.Id != 0 && RA.Id != 0);
1164 
1165   auto IsRelated = [this, RA](Ref TA) -> bool {
1166     if (TA.Addr->getKind() != RA.Addr->getKind())
1167       return false;
1168     if (!getPRI().equal_to(TA.Addr->getRegRef(*this),
1169                            RA.Addr->getRegRef(*this))) {
1170       return false;
1171     }
1172     return true;
1173   };
1174 
1175   RegisterRef RR = RA.Addr->getRegRef(*this);
1176   if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1177     auto Cond = [&IsRelated, RA](Ref TA) -> bool {
1178       return IsRelated(TA) && &RA.Addr->getOp() == &TA.Addr->getOp();
1179     };
1180     return RA.Addr->getNextRef(RR, Cond, true, *this);
1181   }
1182 
1183   assert(IA.Addr->getKind() == NodeAttrs::Phi);
1184   auto Cond = [&IsRelated, RA](Ref TA) -> bool {
1185     if (!IsRelated(TA))
1186       return false;
1187     if (TA.Addr->getKind() != NodeAttrs::Use)
1188       return true;
1189     // For phi uses, compare predecessor blocks.
1190     return PhiUse(TA).Addr->getPredecessor() ==
1191            PhiUse(RA).Addr->getPredecessor();
1192   };
1193   return RA.Addr->getNextRef(RR, Cond, true, *this);
1194 }
1195 
1196 // Find the next node related to RA in IA that satisfies condition P.
1197 // If such a node was found, return a pair where the second element is the
1198 // located node. If such a node does not exist, return a pair where the
1199 // first element is the element after which such a node should be inserted,
1200 // and the second element is a null-address.
1201 template <typename Predicate>
1202 std::pair<Ref, Ref> DataFlowGraph::locateNextRef(Instr IA, Ref RA,
1203                                                  Predicate P) const {
1204   assert(IA.Id != 0 && RA.Id != 0);
1205 
1206   Ref NA;
1207   NodeId Start = RA.Id;
1208   while (true) {
1209     NA = getNextRelated(IA, RA);
1210     if (NA.Id == 0 || NA.Id == Start)
1211       break;
1212     if (P(NA))
1213       break;
1214     RA = NA;
1215   }
1216 
1217   if (NA.Id != 0 && NA.Id != Start)
1218     return std::make_pair(RA, NA);
1219   return std::make_pair(RA, Ref());
1220 }
1221 
1222 // Get the next shadow node in IA corresponding to RA, and optionally create
1223 // such a node if it does not exist.
1224 Ref DataFlowGraph::getNextShadow(Instr IA, Ref RA, bool Create) {
1225   assert(IA.Id != 0 && RA.Id != 0);
1226 
1227   uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1228   auto IsShadow = [Flags](Ref TA) -> bool {
1229     return TA.Addr->getFlags() == Flags;
1230   };
1231   auto Loc = locateNextRef(IA, RA, IsShadow);
1232   if (Loc.second.Id != 0 || !Create)
1233     return Loc.second;
1234 
1235   // Create a copy of RA and mark is as shadow.
1236   Ref NA = cloneNode(RA);
1237   NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1238   IA.Addr->addMemberAfter(Loc.first, NA, *this);
1239   return NA;
1240 }
1241 
1242 // Create a new statement node in the block node BA that corresponds to
1243 // the machine instruction MI.
1244 void DataFlowGraph::buildStmt(Block BA, MachineInstr &In) {
1245   Stmt SA = newStmt(BA, &In);
1246 
1247   auto isCall = [](const MachineInstr &In) -> bool {
1248     if (In.isCall())
1249       return true;
1250     // Is tail call?
1251     if (In.isBranch()) {
1252       for (const MachineOperand &Op : In.operands())
1253         if (Op.isGlobal() || Op.isSymbol())
1254           return true;
1255       // Assume indirect branches are calls. This is for the purpose of
1256       // keeping implicit operands, and so it won't hurt on intra-function
1257       // indirect branches.
1258       if (In.isIndirectBranch())
1259         return true;
1260     }
1261     return false;
1262   };
1263 
1264   auto isDefUndef = [this](const MachineInstr &In, RegisterRef DR) -> bool {
1265     // This instruction defines DR. Check if there is a use operand that
1266     // would make DR live on entry to the instruction.
1267     for (const MachineOperand &Op : In.all_uses()) {
1268       if (Op.getReg() == 0 || Op.isUndef())
1269         continue;
1270       RegisterRef UR = makeRegRef(Op);
1271       if (getPRI().alias(DR, UR))
1272         return false;
1273     }
1274     return true;
1275   };
1276 
1277   bool IsCall = isCall(In);
1278   unsigned NumOps = In.getNumOperands();
1279 
1280   // Avoid duplicate implicit defs. This will not detect cases of implicit
1281   // defs that define registers that overlap, but it is not clear how to
1282   // interpret that in the absence of explicit defs. Overlapping explicit
1283   // defs are likely illegal already.
1284   BitVector DoneDefs(TRI.getNumRegs());
1285   // Process explicit defs first.
1286   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1287     MachineOperand &Op = In.getOperand(OpN);
1288     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1289       continue;
1290     Register R = Op.getReg();
1291     if (!R || !R.isPhysical() || !isTracked(RegisterRef(R)))
1292       continue;
1293     uint16_t Flags = NodeAttrs::None;
1294     if (TOI.isPreserving(In, OpN)) {
1295       Flags |= NodeAttrs::Preserving;
1296       // If the def is preserving, check if it is also undefined.
1297       if (isDefUndef(In, makeRegRef(Op)))
1298         Flags |= NodeAttrs::Undef;
1299     }
1300     if (TOI.isClobbering(In, OpN))
1301       Flags |= NodeAttrs::Clobbering;
1302     if (TOI.isFixedReg(In, OpN))
1303       Flags |= NodeAttrs::Fixed;
1304     if (IsCall && Op.isDead())
1305       Flags |= NodeAttrs::Dead;
1306     Def DA = newDef(SA, Op, Flags);
1307     SA.Addr->addMember(DA, *this);
1308     assert(!DoneDefs.test(R));
1309     DoneDefs.set(R);
1310   }
1311 
1312   // Process reg-masks (as clobbers).
1313   BitVector DoneClobbers(TRI.getNumRegs());
1314   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1315     MachineOperand &Op = In.getOperand(OpN);
1316     if (!Op.isRegMask())
1317       continue;
1318     uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | NodeAttrs::Dead;
1319     Def DA = newDef(SA, Op, Flags);
1320     SA.Addr->addMember(DA, *this);
1321     // Record all clobbered registers in DoneDefs.
1322     const uint32_t *RM = Op.getRegMask();
1323     for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) {
1324       if (!isTracked(RegisterRef(i)))
1325         continue;
1326       if (!(RM[i / 32] & (1u << (i % 32))))
1327         DoneClobbers.set(i);
1328     }
1329   }
1330 
1331   // Process implicit defs, skipping those that have already been added
1332   // as explicit.
1333   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1334     MachineOperand &Op = In.getOperand(OpN);
1335     if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1336       continue;
1337     Register R = Op.getReg();
1338     if (!R || !R.isPhysical() || !isTracked(RegisterRef(R)) || DoneDefs.test(R))
1339       continue;
1340     RegisterRef RR = makeRegRef(Op);
1341     uint16_t Flags = NodeAttrs::None;
1342     if (TOI.isPreserving(In, OpN)) {
1343       Flags |= NodeAttrs::Preserving;
1344       // If the def is preserving, check if it is also undefined.
1345       if (isDefUndef(In, RR))
1346         Flags |= NodeAttrs::Undef;
1347     }
1348     if (TOI.isClobbering(In, OpN))
1349       Flags |= NodeAttrs::Clobbering;
1350     if (TOI.isFixedReg(In, OpN))
1351       Flags |= NodeAttrs::Fixed;
1352     if (IsCall && Op.isDead()) {
1353       if (DoneClobbers.test(R))
1354         continue;
1355       Flags |= NodeAttrs::Dead;
1356     }
1357     Def DA = newDef(SA, Op, Flags);
1358     SA.Addr->addMember(DA, *this);
1359     DoneDefs.set(R);
1360   }
1361 
1362   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1363     MachineOperand &Op = In.getOperand(OpN);
1364     if (!Op.isReg() || !Op.isUse())
1365       continue;
1366     Register R = Op.getReg();
1367     if (!R || !R.isPhysical() || !isTracked(RegisterRef(R)))
1368       continue;
1369     uint16_t Flags = NodeAttrs::None;
1370     if (Op.isUndef())
1371       Flags |= NodeAttrs::Undef;
1372     if (TOI.isFixedReg(In, OpN))
1373       Flags |= NodeAttrs::Fixed;
1374     Use UA = newUse(SA, Op, Flags);
1375     SA.Addr->addMember(UA, *this);
1376   }
1377 }
1378 
1379 // Scan all defs in the block node BA and record in PhiM the locations of
1380 // phi nodes corresponding to these defs.
1381 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, Block BA) {
1382   // Check all defs from block BA and record them in each block in BA's
1383   // iterated dominance frontier. This information will later be used to
1384   // create phi nodes.
1385   MachineBasicBlock *BB = BA.Addr->getCode();
1386   assert(BB);
1387   auto DFLoc = MDF.find(BB);
1388   if (DFLoc == MDF.end() || DFLoc->second.empty())
1389     return;
1390 
1391   // Traverse all instructions in the block and collect the set of all
1392   // defined references. For each reference there will be a phi created
1393   // in the block's iterated dominance frontier.
1394   // This is done to make sure that each defined reference gets only one
1395   // phi node, even if it is defined multiple times.
1396   RegisterAggr Defs(getPRI());
1397   for (Instr IA : BA.Addr->members(*this)) {
1398     for (Ref RA : IA.Addr->members_if(IsDef, *this)) {
1399       RegisterRef RR = RA.Addr->getRegRef(*this);
1400       if (RR.isReg() && isTracked(RR))
1401         Defs.insert(RR);
1402     }
1403   }
1404 
1405   // Calculate the iterated dominance frontier of BB.
1406   const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1407   SetVector<MachineBasicBlock *> IDF(DF.begin(), DF.end());
1408   for (unsigned i = 0; i < IDF.size(); ++i) {
1409     auto F = MDF.find(IDF[i]);
1410     if (F != MDF.end())
1411       IDF.insert(F->second.begin(), F->second.end());
1412   }
1413 
1414   // Finally, add the set of defs to each block in the iterated dominance
1415   // frontier.
1416   for (auto *DB : IDF) {
1417     Block DBA = findBlock(DB);
1418     PhiM[DBA.Id].insert(Defs);
1419   }
1420 }
1421 
1422 // Given the locations of phi nodes in the map PhiM, create the phi nodes
1423 // that are located in the block node BA.
1424 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, Block BA) {
1425   // Check if this blocks has any DF defs, i.e. if there are any defs
1426   // that this block is in the iterated dominance frontier of.
1427   auto HasDF = PhiM.find(BA.Id);
1428   if (HasDF == PhiM.end() || HasDF->second.empty())
1429     return;
1430 
1431   // Prepare a list of NodeIds of the block's predecessors.
1432   NodeList Preds;
1433   const MachineBasicBlock *MBB = BA.Addr->getCode();
1434   for (MachineBasicBlock *PB : MBB->predecessors())
1435     Preds.push_back(findBlock(PB));
1436 
1437   const RegisterAggr &Defs = PhiM[BA.Id];
1438   uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1439 
1440   for (RegisterRef RR : Defs.refs()) {
1441     Phi PA = newPhi(BA);
1442     PA.Addr->addMember(newDef(PA, RR, PhiFlags), *this);
1443 
1444     // Add phi uses.
1445     for (Block PBA : Preds) {
1446       PA.Addr->addMember(newPhiUse(PA, RR, PBA), *this);
1447     }
1448   }
1449 }
1450 
1451 // Remove any unneeded phi nodes that were created during the build process.
1452 void DataFlowGraph::removeUnusedPhis() {
1453   // This will remove unused phis, i.e. phis where each def does not reach
1454   // any uses or other defs. This will not detect or remove circular phi
1455   // chains that are otherwise dead. Unused/dead phis are created during
1456   // the build process and this function is intended to remove these cases
1457   // that are easily determinable to be unnecessary.
1458 
1459   SetVector<NodeId> PhiQ;
1460   for (Block BA : TheFunc.Addr->members(*this)) {
1461     for (auto P : BA.Addr->members_if(IsPhi, *this))
1462       PhiQ.insert(P.Id);
1463   }
1464 
1465   static auto HasUsedDef = [](NodeList &Ms) -> bool {
1466     for (Node M : Ms) {
1467       if (M.Addr->getKind() != NodeAttrs::Def)
1468         continue;
1469       Def DA = M;
1470       if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1471         return true;
1472     }
1473     return false;
1474   };
1475 
1476   // Any phi, if it is removed, may affect other phis (make them dead).
1477   // For each removed phi, collect the potentially affected phis and add
1478   // them back to the queue.
1479   while (!PhiQ.empty()) {
1480     auto PA = addr<PhiNode *>(PhiQ[0]);
1481     PhiQ.remove(PA.Id);
1482     NodeList Refs = PA.Addr->members(*this);
1483     if (HasUsedDef(Refs))
1484       continue;
1485     for (Ref RA : Refs) {
1486       if (NodeId RD = RA.Addr->getReachingDef()) {
1487         auto RDA = addr<DefNode *>(RD);
1488         Instr OA = RDA.Addr->getOwner(*this);
1489         if (IsPhi(OA))
1490           PhiQ.insert(OA.Id);
1491       }
1492       if (RA.Addr->isDef())
1493         unlinkDef(RA, true);
1494       else
1495         unlinkUse(RA, true);
1496     }
1497     Block BA = PA.Addr->getOwner(*this);
1498     BA.Addr->removeMember(PA, *this);
1499   }
1500 }
1501 
1502 // For a given reference node TA in an instruction node IA, connect the
1503 // reaching def of TA to the appropriate def node. Create any shadow nodes
1504 // as appropriate.
1505 template <typename T>
1506 void DataFlowGraph::linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS) {
1507   if (DS.empty())
1508     return;
1509   RegisterRef RR = TA.Addr->getRegRef(*this);
1510   NodeAddr<T> TAP;
1511 
1512   // References from the def stack that have been examined so far.
1513   RegisterAggr Defs(getPRI());
1514 
1515   for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
1516     RegisterRef QR = I->Addr->getRegRef(*this);
1517 
1518     // Skip all defs that we have already seen.
1519     // If this completes a cover of RR, stop the stack traversal.
1520     bool Seen = Defs.hasCoverOf(QR);
1521     if (Seen)
1522       continue;
1523 
1524     bool Cover = Defs.insert(QR).hasCoverOf(RR);
1525 
1526     // The reaching def.
1527     Def RDA = *I;
1528 
1529     // Pick the reached node.
1530     if (TAP.Id == 0) {
1531       TAP = TA;
1532     } else {
1533       // Mark the existing ref as "shadow" and create a new shadow.
1534       TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1535       TAP = getNextShadow(IA, TAP, true);
1536     }
1537 
1538     // Create the link.
1539     TAP.Addr->linkToDef(TAP.Id, RDA);
1540 
1541     if (Cover)
1542       break;
1543   }
1544 }
1545 
1546 // Create data-flow links for all reference nodes in the statement node SA.
1547 template <typename Predicate>
1548 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P) {
1549 #ifndef NDEBUG
1550   RegisterSet Defs(getPRI());
1551 #endif
1552 
1553   // Link all nodes (upwards in the data-flow) with their reaching defs.
1554   for (Ref RA : SA.Addr->members_if(P, *this)) {
1555     uint16_t Kind = RA.Addr->getKind();
1556     assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
1557     RegisterRef RR = RA.Addr->getRegRef(*this);
1558 #ifndef NDEBUG
1559     // Do not expect multiple defs of the same reference.
1560     assert(Kind != NodeAttrs::Def || !Defs.count(RR));
1561     Defs.insert(RR);
1562 #endif
1563 
1564     auto F = DefM.find(RR.Reg);
1565     if (F == DefM.end())
1566       continue;
1567     DefStack &DS = F->second;
1568     if (Kind == NodeAttrs::Use)
1569       linkRefUp<UseNode *>(SA, RA, DS);
1570     else if (Kind == NodeAttrs::Def)
1571       linkRefUp<DefNode *>(SA, RA, DS);
1572     else
1573       llvm_unreachable("Unexpected node in instruction");
1574   }
1575 }
1576 
1577 // Create data-flow links for all instructions in the block node BA. This
1578 // will include updating any phi nodes in BA.
1579 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, Block BA) {
1580   // Push block delimiters.
1581   markBlock(BA.Id, DefM);
1582 
1583   auto IsClobber = [](Ref RA) -> bool {
1584     return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
1585   };
1586   auto IsNoClobber = [](Ref RA) -> bool {
1587     return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
1588   };
1589 
1590   assert(BA.Addr && "block node address is needed to create a data-flow link");
1591   // For each non-phi instruction in the block, link all the defs and uses
1592   // to their reaching defs. For any member of the block (including phis),
1593   // push the defs on the corresponding stacks.
1594   for (Instr IA : BA.Addr->members(*this)) {
1595     // Ignore phi nodes here. They will be linked part by part from the
1596     // predecessors.
1597     if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1598       linkStmtRefs(DefM, IA, IsUse);
1599       linkStmtRefs(DefM, IA, IsClobber);
1600     }
1601 
1602     // Push the definitions on the stack.
1603     pushClobbers(IA, DefM);
1604 
1605     if (IA.Addr->getKind() == NodeAttrs::Stmt)
1606       linkStmtRefs(DefM, IA, IsNoClobber);
1607 
1608     pushDefs(IA, DefM);
1609   }
1610 
1611   // Recursively process all children in the dominator tree.
1612   MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1613   for (auto *I : *N) {
1614     MachineBasicBlock *SB = I->getBlock();
1615     Block SBA = findBlock(SB);
1616     linkBlockRefs(DefM, SBA);
1617   }
1618 
1619   // Link the phi uses from the successor blocks.
1620   auto IsUseForBA = [BA](Node NA) -> bool {
1621     if (NA.Addr->getKind() != NodeAttrs::Use)
1622       return false;
1623     assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1624     return PhiUse(NA).Addr->getPredecessor() == BA.Id;
1625   };
1626 
1627   RegisterAggr EHLiveIns = getLandingPadLiveIns();
1628   MachineBasicBlock *MBB = BA.Addr->getCode();
1629 
1630   for (MachineBasicBlock *SB : MBB->successors()) {
1631     bool IsEHPad = SB->isEHPad();
1632     Block SBA = findBlock(SB);
1633     for (Instr IA : SBA.Addr->members_if(IsPhi, *this)) {
1634       // Do not link phi uses for landing pad live-ins.
1635       if (IsEHPad) {
1636         // Find what register this phi is for.
1637         Ref RA = IA.Addr->getFirstMember(*this);
1638         assert(RA.Id != 0);
1639         if (EHLiveIns.hasCoverOf(RA.Addr->getRegRef(*this)))
1640           continue;
1641       }
1642       // Go over each phi use associated with MBB, and link it.
1643       for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1644         PhiUse PUA = U;
1645         RegisterRef RR = PUA.Addr->getRegRef(*this);
1646         linkRefUp<UseNode *>(IA, PUA, DefM[RR.Reg]);
1647       }
1648     }
1649   }
1650 
1651   // Pop all defs from this block from the definition stacks.
1652   releaseBlock(BA.Id, DefM);
1653 }
1654 
1655 // Remove the use node UA from any data-flow and structural links.
1656 void DataFlowGraph::unlinkUseDF(Use UA) {
1657   NodeId RD = UA.Addr->getReachingDef();
1658   NodeId Sib = UA.Addr->getSibling();
1659 
1660   if (RD == 0) {
1661     assert(Sib == 0);
1662     return;
1663   }
1664 
1665   auto RDA = addr<DefNode *>(RD);
1666   auto TA = addr<UseNode *>(RDA.Addr->getReachedUse());
1667   if (TA.Id == UA.Id) {
1668     RDA.Addr->setReachedUse(Sib);
1669     return;
1670   }
1671 
1672   while (TA.Id != 0) {
1673     NodeId S = TA.Addr->getSibling();
1674     if (S == UA.Id) {
1675       TA.Addr->setSibling(UA.Addr->getSibling());
1676       return;
1677     }
1678     TA = addr<UseNode *>(S);
1679   }
1680 }
1681 
1682 // Remove the def node DA from any data-flow and structural links.
1683 void DataFlowGraph::unlinkDefDF(Def DA) {
1684   //
1685   //         RD
1686   //         | reached
1687   //         | def
1688   //         :
1689   //         .
1690   //        +----+
1691   // ... -- | DA | -- ... -- 0  : sibling chain of DA
1692   //        +----+
1693   //         |  | reached
1694   //         |  : def
1695   //         |  .
1696   //         | ...  : Siblings (defs)
1697   //         |
1698   //         : reached
1699   //         . use
1700   //        ... : sibling chain of reached uses
1701 
1702   NodeId RD = DA.Addr->getReachingDef();
1703 
1704   // Visit all siblings of the reached def and reset their reaching defs.
1705   // Also, defs reached by DA are now "promoted" to being reached by RD,
1706   // so all of them will need to be spliced into the sibling chain where
1707   // DA belongs.
1708   auto getAllNodes = [this](NodeId N) -> NodeList {
1709     NodeList Res;
1710     while (N) {
1711       auto RA = addr<RefNode *>(N);
1712       // Keep the nodes in the exact sibling order.
1713       Res.push_back(RA);
1714       N = RA.Addr->getSibling();
1715     }
1716     return Res;
1717   };
1718   NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1719   NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1720 
1721   if (RD == 0) {
1722     for (Ref I : ReachedDefs)
1723       I.Addr->setSibling(0);
1724     for (Ref I : ReachedUses)
1725       I.Addr->setSibling(0);
1726   }
1727   for (Def I : ReachedDefs)
1728     I.Addr->setReachingDef(RD);
1729   for (Use I : ReachedUses)
1730     I.Addr->setReachingDef(RD);
1731 
1732   NodeId Sib = DA.Addr->getSibling();
1733   if (RD == 0) {
1734     assert(Sib == 0);
1735     return;
1736   }
1737 
1738   // Update the reaching def node and remove DA from the sibling list.
1739   auto RDA = addr<DefNode *>(RD);
1740   auto TA = addr<DefNode *>(RDA.Addr->getReachedDef());
1741   if (TA.Id == DA.Id) {
1742     // If DA is the first reached def, just update the RD's reached def
1743     // to the DA's sibling.
1744     RDA.Addr->setReachedDef(Sib);
1745   } else {
1746     // Otherwise, traverse the sibling list of the reached defs and remove
1747     // DA from it.
1748     while (TA.Id != 0) {
1749       NodeId S = TA.Addr->getSibling();
1750       if (S == DA.Id) {
1751         TA.Addr->setSibling(Sib);
1752         break;
1753       }
1754       TA = addr<DefNode *>(S);
1755     }
1756   }
1757 
1758   // Splice the DA's reached defs into the RDA's reached def chain.
1759   if (!ReachedDefs.empty()) {
1760     auto Last = Def(ReachedDefs.back());
1761     Last.Addr->setSibling(RDA.Addr->getReachedDef());
1762     RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1763   }
1764   // Splice the DA's reached uses into the RDA's reached use chain.
1765   if (!ReachedUses.empty()) {
1766     auto Last = Use(ReachedUses.back());
1767     Last.Addr->setSibling(RDA.Addr->getReachedUse());
1768     RDA.Addr->setReachedUse(ReachedUses.front().Id);
1769   }
1770 }
1771 
1772 bool DataFlowGraph::isTracked(RegisterRef RR) const {
1773   return !disjoint(getPRI().getUnits(RR), TrackedUnits);
1774 }
1775 
1776 bool DataFlowGraph::hasUntrackedRef(Stmt S, bool IgnoreReserved) const {
1777   SmallVector<MachineOperand *> Ops;
1778 
1779   for (Ref R : S.Addr->members(*this)) {
1780     Ops.push_back(&R.Addr->getOp());
1781     RegisterRef RR = R.Addr->getRegRef(*this);
1782     if (IgnoreReserved && RR.isReg() && ReservedRegs[RR.idx()])
1783       continue;
1784     if (!isTracked(RR))
1785       return true;
1786   }
1787   for (const MachineOperand &Op : S.Addr->getCode()->operands()) {
1788     if (!Op.isReg() && !Op.isRegMask())
1789       continue;
1790     if (!llvm::is_contained(Ops, &Op))
1791       return true;
1792   }
1793   return false;
1794 }
1795 
1796 } // end namespace llvm::rdf
1797