1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "LiveRangeCalc.h" 27 #include "llvm/ADT/BitVector.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/DenseSet.h" 30 #include "llvm/ADT/DepthFirstIterator.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SetOperations.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/Twine.h" 37 #include "llvm/Analysis/EHPersonalities.h" 38 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 39 #include "llvm/CodeGen/LiveInterval.h" 40 #include "llvm/CodeGen/LiveIntervals.h" 41 #include "llvm/CodeGen/LiveStacks.h" 42 #include "llvm/CodeGen/LiveVariables.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/PseudoSourceValue.h" 53 #include "llvm/CodeGen/SlotIndexes.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetOpcodes.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/InlineAsm.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/MC/LaneBitmask.h" 64 #include "llvm/MC/MCAsmInfo.h" 65 #include "llvm/MC/MCInstrDesc.h" 66 #include "llvm/MC/MCRegisterInfo.h" 67 #include "llvm/MC/MCTargetOptions.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/LowLevelTypeImpl.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 83 using namespace llvm; 84 85 namespace { 86 87 struct MachineVerifier { 88 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 89 90 unsigned verify(MachineFunction &MF); 91 92 Pass *const PASS; 93 const char *Banner; 94 const MachineFunction *MF; 95 const TargetMachine *TM; 96 const TargetInstrInfo *TII; 97 const TargetRegisterInfo *TRI; 98 const MachineRegisterInfo *MRI; 99 100 unsigned foundErrors; 101 102 // Avoid querying the MachineFunctionProperties for each operand. 103 bool isFunctionRegBankSelected; 104 bool isFunctionSelected; 105 106 using RegVector = SmallVector<unsigned, 16>; 107 using RegMaskVector = SmallVector<const uint32_t *, 4>; 108 using RegSet = DenseSet<unsigned>; 109 using RegMap = DenseMap<unsigned, const MachineInstr *>; 110 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 111 112 const MachineInstr *FirstNonPHI; 113 const MachineInstr *FirstTerminator; 114 BlockSet FunctionBlocks; 115 116 BitVector regsReserved; 117 RegSet regsLive; 118 RegVector regsDefined, regsDead, regsKilled; 119 RegMaskVector regMasks; 120 121 SlotIndex lastIndex; 122 123 // Add Reg and any sub-registers to RV 124 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 125 RV.push_back(Reg); 126 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 127 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 128 RV.push_back(*SubRegs); 129 } 130 131 struct BBInfo { 132 // Is this MBB reachable from the MF entry point? 133 bool reachable = false; 134 135 // Vregs that must be live in because they are used without being 136 // defined. Map value is the user. 137 RegMap vregsLiveIn; 138 139 // Regs killed in MBB. They may be defined again, and will then be in both 140 // regsKilled and regsLiveOut. 141 RegSet regsKilled; 142 143 // Regs defined in MBB and live out. Note that vregs passing through may 144 // be live out without being mentioned here. 145 RegSet regsLiveOut; 146 147 // Vregs that pass through MBB untouched. This set is disjoint from 148 // regsKilled and regsLiveOut. 149 RegSet vregsPassed; 150 151 // Vregs that must pass through MBB because they are needed by a successor 152 // block. This set is disjoint from regsLiveOut. 153 RegSet vregsRequired; 154 155 // Set versions of block's predecessor and successor lists. 156 BlockSet Preds, Succs; 157 158 BBInfo() = default; 159 160 // Add register to vregsPassed if it belongs there. Return true if 161 // anything changed. 162 bool addPassed(unsigned Reg) { 163 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 164 return false; 165 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 166 return false; 167 return vregsPassed.insert(Reg).second; 168 } 169 170 // Same for a full set. 171 bool addPassed(const RegSet &RS) { 172 bool changed = false; 173 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 174 if (addPassed(*I)) 175 changed = true; 176 return changed; 177 } 178 179 // Add register to vregsRequired if it belongs there. Return true if 180 // anything changed. 181 bool addRequired(unsigned Reg) { 182 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 183 return false; 184 if (regsLiveOut.count(Reg)) 185 return false; 186 return vregsRequired.insert(Reg).second; 187 } 188 189 // Same for a full set. 190 bool addRequired(const RegSet &RS) { 191 bool changed = false; 192 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 193 if (addRequired(*I)) 194 changed = true; 195 return changed; 196 } 197 198 // Same for a full map. 199 bool addRequired(const RegMap &RM) { 200 bool changed = false; 201 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 202 if (addRequired(I->first)) 203 changed = true; 204 return changed; 205 } 206 207 // Live-out registers are either in regsLiveOut or vregsPassed. 208 bool isLiveOut(unsigned Reg) const { 209 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 210 } 211 }; 212 213 // Extra register info per MBB. 214 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 215 216 bool isReserved(unsigned Reg) { 217 return Reg < regsReserved.size() && regsReserved.test(Reg); 218 } 219 220 bool isAllocatable(unsigned Reg) const { 221 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 222 !regsReserved.test(Reg); 223 } 224 225 // Analysis information if available 226 LiveVariables *LiveVars; 227 LiveIntervals *LiveInts; 228 LiveStacks *LiveStks; 229 SlotIndexes *Indexes; 230 231 void visitMachineFunctionBefore(); 232 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 233 void visitMachineBundleBefore(const MachineInstr *MI); 234 void visitMachineInstrBefore(const MachineInstr *MI); 235 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 236 void visitMachineInstrAfter(const MachineInstr *MI); 237 void visitMachineBundleAfter(const MachineInstr *MI); 238 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 239 void visitMachineFunctionAfter(); 240 241 void report(const char *msg, const MachineFunction *MF); 242 void report(const char *msg, const MachineBasicBlock *MBB); 243 void report(const char *msg, const MachineInstr *MI); 244 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 245 LLT MOVRegType = LLT{}); 246 247 void report_context(const LiveInterval &LI) const; 248 void report_context(const LiveRange &LR, unsigned VRegUnit, 249 LaneBitmask LaneMask) const; 250 void report_context(const LiveRange::Segment &S) const; 251 void report_context(const VNInfo &VNI) const; 252 void report_context(SlotIndex Pos) const; 253 void report_context(MCPhysReg PhysReg) const; 254 void report_context_liverange(const LiveRange &LR) const; 255 void report_context_lanemask(LaneBitmask LaneMask) const; 256 void report_context_vreg(unsigned VReg) const; 257 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 258 259 void verifyInlineAsm(const MachineInstr *MI); 260 261 void checkLiveness(const MachineOperand *MO, unsigned MONum); 262 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 263 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 264 LaneBitmask LaneMask = LaneBitmask::getNone()); 265 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 266 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 267 bool SubRangeCheck = false, 268 LaneBitmask LaneMask = LaneBitmask::getNone()); 269 270 void markReachable(const MachineBasicBlock *MBB); 271 void calcRegsPassed(); 272 void checkPHIOps(const MachineBasicBlock &MBB); 273 274 void calcRegsRequired(); 275 void verifyLiveVariables(); 276 void verifyLiveIntervals(); 277 void verifyLiveInterval(const LiveInterval&); 278 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 279 LaneBitmask); 280 void verifyLiveRangeSegment(const LiveRange&, 281 const LiveRange::const_iterator I, unsigned, 282 LaneBitmask); 283 void verifyLiveRange(const LiveRange&, unsigned, 284 LaneBitmask LaneMask = LaneBitmask::getNone()); 285 286 void verifyStackFrame(); 287 288 void verifySlotIndexes() const; 289 void verifyProperties(const MachineFunction &MF); 290 }; 291 292 struct MachineVerifierPass : public MachineFunctionPass { 293 static char ID; // Pass ID, replacement for typeid 294 295 const std::string Banner; 296 297 MachineVerifierPass(std::string banner = std::string()) 298 : MachineFunctionPass(ID), Banner(std::move(banner)) { 299 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 300 } 301 302 void getAnalysisUsage(AnalysisUsage &AU) const override { 303 AU.setPreservesAll(); 304 MachineFunctionPass::getAnalysisUsage(AU); 305 } 306 307 bool runOnMachineFunction(MachineFunction &MF) override { 308 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 309 if (FoundErrors) 310 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 311 return false; 312 } 313 }; 314 315 } // end anonymous namespace 316 317 char MachineVerifierPass::ID = 0; 318 319 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 320 "Verify generated machine code", false, false) 321 322 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 323 return new MachineVerifierPass(Banner); 324 } 325 326 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 327 const { 328 MachineFunction &MF = const_cast<MachineFunction&>(*this); 329 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 330 if (AbortOnErrors && FoundErrors) 331 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 332 return FoundErrors == 0; 333 } 334 335 void MachineVerifier::verifySlotIndexes() const { 336 if (Indexes == nullptr) 337 return; 338 339 // Ensure the IdxMBB list is sorted by slot indexes. 340 SlotIndex Last; 341 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 342 E = Indexes->MBBIndexEnd(); I != E; ++I) { 343 assert(!Last.isValid() || I->first > Last); 344 Last = I->first; 345 } 346 } 347 348 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 349 // If a pass has introduced virtual registers without clearing the 350 // NoVRegs property (or set it without allocating the vregs) 351 // then report an error. 352 if (MF.getProperties().hasProperty( 353 MachineFunctionProperties::Property::NoVRegs) && 354 MRI->getNumVirtRegs()) 355 report("Function has NoVRegs property but there are VReg operands", &MF); 356 } 357 358 unsigned MachineVerifier::verify(MachineFunction &MF) { 359 foundErrors = 0; 360 361 this->MF = &MF; 362 TM = &MF.getTarget(); 363 TII = MF.getSubtarget().getInstrInfo(); 364 TRI = MF.getSubtarget().getRegisterInfo(); 365 MRI = &MF.getRegInfo(); 366 367 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 368 MachineFunctionProperties::Property::FailedISel); 369 370 // If we're mid-GlobalISel and we already triggered the fallback path then 371 // it's expected that the MIR is somewhat broken but that's ok since we'll 372 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 373 if (isFunctionFailedISel) 374 return foundErrors; 375 376 isFunctionRegBankSelected = 377 !isFunctionFailedISel && 378 MF.getProperties().hasProperty( 379 MachineFunctionProperties::Property::RegBankSelected); 380 isFunctionSelected = !isFunctionFailedISel && 381 MF.getProperties().hasProperty( 382 MachineFunctionProperties::Property::Selected); 383 LiveVars = nullptr; 384 LiveInts = nullptr; 385 LiveStks = nullptr; 386 Indexes = nullptr; 387 if (PASS) { 388 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 389 // We don't want to verify LiveVariables if LiveIntervals is available. 390 if (!LiveInts) 391 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 392 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 393 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 394 } 395 396 verifySlotIndexes(); 397 398 verifyProperties(MF); 399 400 visitMachineFunctionBefore(); 401 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 402 MFI!=MFE; ++MFI) { 403 visitMachineBasicBlockBefore(&*MFI); 404 // Keep track of the current bundle header. 405 const MachineInstr *CurBundle = nullptr; 406 // Do we expect the next instruction to be part of the same bundle? 407 bool InBundle = false; 408 409 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 410 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 411 if (MBBI->getParent() != &*MFI) { 412 report("Bad instruction parent pointer", &*MFI); 413 errs() << "Instruction: " << *MBBI; 414 continue; 415 } 416 417 // Check for consistent bundle flags. 418 if (InBundle && !MBBI->isBundledWithPred()) 419 report("Missing BundledPred flag, " 420 "BundledSucc was set on predecessor", 421 &*MBBI); 422 if (!InBundle && MBBI->isBundledWithPred()) 423 report("BundledPred flag is set, " 424 "but BundledSucc not set on predecessor", 425 &*MBBI); 426 427 // Is this a bundle header? 428 if (!MBBI->isInsideBundle()) { 429 if (CurBundle) 430 visitMachineBundleAfter(CurBundle); 431 CurBundle = &*MBBI; 432 visitMachineBundleBefore(CurBundle); 433 } else if (!CurBundle) 434 report("No bundle header", &*MBBI); 435 visitMachineInstrBefore(&*MBBI); 436 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 437 const MachineInstr &MI = *MBBI; 438 const MachineOperand &Op = MI.getOperand(I); 439 if (Op.getParent() != &MI) { 440 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 441 // functions when replacing operands of a MachineInstr. 442 report("Instruction has operand with wrong parent set", &MI); 443 } 444 445 visitMachineOperand(&Op, I); 446 } 447 448 visitMachineInstrAfter(&*MBBI); 449 450 // Was this the last bundled instruction? 451 InBundle = MBBI->isBundledWithSucc(); 452 } 453 if (CurBundle) 454 visitMachineBundleAfter(CurBundle); 455 if (InBundle) 456 report("BundledSucc flag set on last instruction in block", &MFI->back()); 457 visitMachineBasicBlockAfter(&*MFI); 458 } 459 visitMachineFunctionAfter(); 460 461 // Clean up. 462 regsLive.clear(); 463 regsDefined.clear(); 464 regsDead.clear(); 465 regsKilled.clear(); 466 regMasks.clear(); 467 MBBInfoMap.clear(); 468 469 return foundErrors; 470 } 471 472 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 473 assert(MF); 474 errs() << '\n'; 475 if (!foundErrors++) { 476 if (Banner) 477 errs() << "# " << Banner << '\n'; 478 if (LiveInts != nullptr) 479 LiveInts->print(errs()); 480 else 481 MF->print(errs(), Indexes); 482 } 483 errs() << "*** Bad machine code: " << msg << " ***\n" 484 << "- function: " << MF->getName() << "\n"; 485 } 486 487 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 488 assert(MBB); 489 report(msg, MBB->getParent()); 490 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 491 << MBB->getName() << " (" << (const void *)MBB << ')'; 492 if (Indexes) 493 errs() << " [" << Indexes->getMBBStartIdx(MBB) 494 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 495 errs() << '\n'; 496 } 497 498 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 499 assert(MI); 500 report(msg, MI->getParent()); 501 errs() << "- instruction: "; 502 if (Indexes && Indexes->hasIndex(*MI)) 503 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 504 MI->print(errs(), /*SkipOpers=*/true); 505 } 506 507 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 508 unsigned MONum, LLT MOVRegType) { 509 assert(MO); 510 report(msg, MO->getParent()); 511 errs() << "- operand " << MONum << ": "; 512 MO->print(errs(), MOVRegType, TRI); 513 errs() << "\n"; 514 } 515 516 void MachineVerifier::report_context(SlotIndex Pos) const { 517 errs() << "- at: " << Pos << '\n'; 518 } 519 520 void MachineVerifier::report_context(const LiveInterval &LI) const { 521 errs() << "- interval: " << LI << '\n'; 522 } 523 524 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 525 LaneBitmask LaneMask) const { 526 report_context_liverange(LR); 527 report_context_vreg_regunit(VRegUnit); 528 if (LaneMask.any()) 529 report_context_lanemask(LaneMask); 530 } 531 532 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 533 errs() << "- segment: " << S << '\n'; 534 } 535 536 void MachineVerifier::report_context(const VNInfo &VNI) const { 537 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 538 } 539 540 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 541 errs() << "- liverange: " << LR << '\n'; 542 } 543 544 void MachineVerifier::report_context(MCPhysReg PReg) const { 545 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 546 } 547 548 void MachineVerifier::report_context_vreg(unsigned VReg) const { 549 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 550 } 551 552 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 553 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 554 report_context_vreg(VRegOrUnit); 555 } else { 556 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 557 } 558 } 559 560 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 561 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 562 } 563 564 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 565 BBInfo &MInfo = MBBInfoMap[MBB]; 566 if (!MInfo.reachable) { 567 MInfo.reachable = true; 568 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 569 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 570 markReachable(*SuI); 571 } 572 } 573 574 void MachineVerifier::visitMachineFunctionBefore() { 575 lastIndex = SlotIndex(); 576 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 577 : TRI->getReservedRegs(*MF); 578 579 if (!MF->empty()) 580 markReachable(&MF->front()); 581 582 // Build a set of the basic blocks in the function. 583 FunctionBlocks.clear(); 584 for (const auto &MBB : *MF) { 585 FunctionBlocks.insert(&MBB); 586 BBInfo &MInfo = MBBInfoMap[&MBB]; 587 588 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 589 if (MInfo.Preds.size() != MBB.pred_size()) 590 report("MBB has duplicate entries in its predecessor list.", &MBB); 591 592 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 593 if (MInfo.Succs.size() != MBB.succ_size()) 594 report("MBB has duplicate entries in its successor list.", &MBB); 595 } 596 597 // Check that the register use lists are sane. 598 MRI->verifyUseLists(); 599 600 if (!MF->empty()) 601 verifyStackFrame(); 602 } 603 604 // Does iterator point to a and b as the first two elements? 605 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 606 const MachineBasicBlock *a, const MachineBasicBlock *b) { 607 if (*i == a) 608 return *++i == b; 609 if (*i == b) 610 return *++i == a; 611 return false; 612 } 613 614 void 615 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 616 FirstTerminator = nullptr; 617 FirstNonPHI = nullptr; 618 619 if (!MF->getProperties().hasProperty( 620 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 621 // If this block has allocatable physical registers live-in, check that 622 // it is an entry block or landing pad. 623 for (const auto &LI : MBB->liveins()) { 624 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 625 MBB->getIterator() != MBB->getParent()->begin()) { 626 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 627 report_context(LI.PhysReg); 628 } 629 } 630 } 631 632 // Count the number of landing pad successors. 633 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 634 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 635 E = MBB->succ_end(); I != E; ++I) { 636 if ((*I)->isEHPad()) 637 LandingPadSuccs.insert(*I); 638 if (!FunctionBlocks.count(*I)) 639 report("MBB has successor that isn't part of the function.", MBB); 640 if (!MBBInfoMap[*I].Preds.count(MBB)) { 641 report("Inconsistent CFG", MBB); 642 errs() << "MBB is not in the predecessor list of the successor " 643 << printMBBReference(*(*I)) << ".\n"; 644 } 645 } 646 647 // Check the predecessor list. 648 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 649 E = MBB->pred_end(); I != E; ++I) { 650 if (!FunctionBlocks.count(*I)) 651 report("MBB has predecessor that isn't part of the function.", MBB); 652 if (!MBBInfoMap[*I].Succs.count(MBB)) { 653 report("Inconsistent CFG", MBB); 654 errs() << "MBB is not in the successor list of the predecessor " 655 << printMBBReference(*(*I)) << ".\n"; 656 } 657 } 658 659 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 660 const BasicBlock *BB = MBB->getBasicBlock(); 661 const Function &F = MF->getFunction(); 662 if (LandingPadSuccs.size() > 1 && 663 !(AsmInfo && 664 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 665 BB && isa<SwitchInst>(BB->getTerminator())) && 666 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 667 report("MBB has more than one landing pad successor", MBB); 668 669 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 670 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 671 SmallVector<MachineOperand, 4> Cond; 672 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 673 Cond)) { 674 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 675 // check whether its answers match up with reality. 676 if (!TBB && !FBB) { 677 // Block falls through to its successor. 678 MachineFunction::const_iterator MBBI = MBB->getIterator(); 679 ++MBBI; 680 if (MBBI == MF->end()) { 681 // It's possible that the block legitimately ends with a noreturn 682 // call or an unreachable, in which case it won't actually fall 683 // out the bottom of the function. 684 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 685 // It's possible that the block legitimately ends with a noreturn 686 // call or an unreachable, in which case it won't actually fall 687 // out of the block. 688 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 689 report("MBB exits via unconditional fall-through but doesn't have " 690 "exactly one CFG successor!", MBB); 691 } else if (!MBB->isSuccessor(&*MBBI)) { 692 report("MBB exits via unconditional fall-through but its successor " 693 "differs from its CFG successor!", MBB); 694 } 695 if (!MBB->empty() && MBB->back().isBarrier() && 696 !TII->isPredicated(MBB->back())) { 697 report("MBB exits via unconditional fall-through but ends with a " 698 "barrier instruction!", MBB); 699 } 700 if (!Cond.empty()) { 701 report("MBB exits via unconditional fall-through but has a condition!", 702 MBB); 703 } 704 } else if (TBB && !FBB && Cond.empty()) { 705 // Block unconditionally branches somewhere. 706 // If the block has exactly one successor, that happens to be a 707 // landingpad, accept it as valid control flow. 708 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 709 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 710 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 711 report("MBB exits via unconditional branch but doesn't have " 712 "exactly one CFG successor!", MBB); 713 } else if (!MBB->isSuccessor(TBB)) { 714 report("MBB exits via unconditional branch but the CFG " 715 "successor doesn't match the actual successor!", MBB); 716 } 717 if (MBB->empty()) { 718 report("MBB exits via unconditional branch but doesn't contain " 719 "any instructions!", MBB); 720 } else if (!MBB->back().isBarrier()) { 721 report("MBB exits via unconditional branch but doesn't end with a " 722 "barrier instruction!", MBB); 723 } else if (!MBB->back().isTerminator()) { 724 report("MBB exits via unconditional branch but the branch isn't a " 725 "terminator instruction!", MBB); 726 } 727 } else if (TBB && !FBB && !Cond.empty()) { 728 // Block conditionally branches somewhere, otherwise falls through. 729 MachineFunction::const_iterator MBBI = MBB->getIterator(); 730 ++MBBI; 731 if (MBBI == MF->end()) { 732 report("MBB conditionally falls through out of function!", MBB); 733 } else if (MBB->succ_size() == 1) { 734 // A conditional branch with only one successor is weird, but allowed. 735 if (&*MBBI != TBB) 736 report("MBB exits via conditional branch/fall-through but only has " 737 "one CFG successor!", MBB); 738 else if (TBB != *MBB->succ_begin()) 739 report("MBB exits via conditional branch/fall-through but the CFG " 740 "successor don't match the actual successor!", MBB); 741 } else if (MBB->succ_size() != 2) { 742 report("MBB exits via conditional branch/fall-through but doesn't have " 743 "exactly two CFG successors!", MBB); 744 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 745 report("MBB exits via conditional branch/fall-through but the CFG " 746 "successors don't match the actual successors!", MBB); 747 } 748 if (MBB->empty()) { 749 report("MBB exits via conditional branch/fall-through but doesn't " 750 "contain any instructions!", MBB); 751 } else if (MBB->back().isBarrier()) { 752 report("MBB exits via conditional branch/fall-through but ends with a " 753 "barrier instruction!", MBB); 754 } else if (!MBB->back().isTerminator()) { 755 report("MBB exits via conditional branch/fall-through but the branch " 756 "isn't a terminator instruction!", MBB); 757 } 758 } else if (TBB && FBB) { 759 // Block conditionally branches somewhere, otherwise branches 760 // somewhere else. 761 if (MBB->succ_size() == 1) { 762 // A conditional branch with only one successor is weird, but allowed. 763 if (FBB != TBB) 764 report("MBB exits via conditional branch/branch through but only has " 765 "one CFG successor!", MBB); 766 else if (TBB != *MBB->succ_begin()) 767 report("MBB exits via conditional branch/branch through but the CFG " 768 "successor don't match the actual successor!", MBB); 769 } else if (MBB->succ_size() != 2) { 770 report("MBB exits via conditional branch/branch but doesn't have " 771 "exactly two CFG successors!", MBB); 772 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 773 report("MBB exits via conditional branch/branch but the CFG " 774 "successors don't match the actual successors!", MBB); 775 } 776 if (MBB->empty()) { 777 report("MBB exits via conditional branch/branch but doesn't " 778 "contain any instructions!", MBB); 779 } else if (!MBB->back().isBarrier()) { 780 report("MBB exits via conditional branch/branch but doesn't end with a " 781 "barrier instruction!", MBB); 782 } else if (!MBB->back().isTerminator()) { 783 report("MBB exits via conditional branch/branch but the branch " 784 "isn't a terminator instruction!", MBB); 785 } 786 if (Cond.empty()) { 787 report("MBB exits via conditional branch/branch but there's no " 788 "condition!", MBB); 789 } 790 } else { 791 report("AnalyzeBranch returned invalid data!", MBB); 792 } 793 } 794 795 regsLive.clear(); 796 if (MRI->tracksLiveness()) { 797 for (const auto &LI : MBB->liveins()) { 798 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 799 report("MBB live-in list contains non-physical register", MBB); 800 continue; 801 } 802 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 803 SubRegs.isValid(); ++SubRegs) 804 regsLive.insert(*SubRegs); 805 } 806 } 807 808 const MachineFrameInfo &MFI = MF->getFrameInfo(); 809 BitVector PR = MFI.getPristineRegs(*MF); 810 for (unsigned I : PR.set_bits()) { 811 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 812 SubRegs.isValid(); ++SubRegs) 813 regsLive.insert(*SubRegs); 814 } 815 816 regsKilled.clear(); 817 regsDefined.clear(); 818 819 if (Indexes) 820 lastIndex = Indexes->getMBBStartIdx(MBB); 821 } 822 823 // This function gets called for all bundle headers, including normal 824 // stand-alone unbundled instructions. 825 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 826 if (Indexes && Indexes->hasIndex(*MI)) { 827 SlotIndex idx = Indexes->getInstructionIndex(*MI); 828 if (!(idx > lastIndex)) { 829 report("Instruction index out of order", MI); 830 errs() << "Last instruction was at " << lastIndex << '\n'; 831 } 832 lastIndex = idx; 833 } 834 835 // Ensure non-terminators don't follow terminators. 836 // Ignore predicated terminators formed by if conversion. 837 // FIXME: If conversion shouldn't need to violate this rule. 838 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 839 if (!FirstTerminator) 840 FirstTerminator = MI; 841 } else if (FirstTerminator) { 842 report("Non-terminator instruction after the first terminator", MI); 843 errs() << "First terminator was:\t" << *FirstTerminator; 844 } 845 } 846 847 // The operands on an INLINEASM instruction must follow a template. 848 // Verify that the flag operands make sense. 849 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 850 // The first two operands on INLINEASM are the asm string and global flags. 851 if (MI->getNumOperands() < 2) { 852 report("Too few operands on inline asm", MI); 853 return; 854 } 855 if (!MI->getOperand(0).isSymbol()) 856 report("Asm string must be an external symbol", MI); 857 if (!MI->getOperand(1).isImm()) 858 report("Asm flags must be an immediate", MI); 859 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 860 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 861 // and Extra_IsConvergent = 32. 862 if (!isUInt<6>(MI->getOperand(1).getImm())) 863 report("Unknown asm flags", &MI->getOperand(1), 1); 864 865 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 866 867 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 868 unsigned NumOps; 869 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 870 const MachineOperand &MO = MI->getOperand(OpNo); 871 // There may be implicit ops after the fixed operands. 872 if (!MO.isImm()) 873 break; 874 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 875 } 876 877 if (OpNo > MI->getNumOperands()) 878 report("Missing operands in last group", MI); 879 880 // An optional MDNode follows the groups. 881 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 882 ++OpNo; 883 884 // All trailing operands must be implicit registers. 885 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 886 const MachineOperand &MO = MI->getOperand(OpNo); 887 if (!MO.isReg() || !MO.isImplicit()) 888 report("Expected implicit register after groups", &MO, OpNo); 889 } 890 } 891 892 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 893 const MCInstrDesc &MCID = MI->getDesc(); 894 if (MI->getNumOperands() < MCID.getNumOperands()) { 895 report("Too few operands", MI); 896 errs() << MCID.getNumOperands() << " operands expected, but " 897 << MI->getNumOperands() << " given.\n"; 898 } 899 900 if (MI->isPHI()) { 901 if (MF->getProperties().hasProperty( 902 MachineFunctionProperties::Property::NoPHIs)) 903 report("Found PHI instruction with NoPHIs property set", MI); 904 905 if (FirstNonPHI) 906 report("Found PHI instruction after non-PHI", MI); 907 } else if (FirstNonPHI == nullptr) 908 FirstNonPHI = MI; 909 910 // Check the tied operands. 911 if (MI->isInlineAsm()) 912 verifyInlineAsm(MI); 913 914 // Check the MachineMemOperands for basic consistency. 915 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 916 E = MI->memoperands_end(); 917 I != E; ++I) { 918 if ((*I)->isLoad() && !MI->mayLoad()) 919 report("Missing mayLoad flag", MI); 920 if ((*I)->isStore() && !MI->mayStore()) 921 report("Missing mayStore flag", MI); 922 } 923 924 // Debug values must not have a slot index. 925 // Other instructions must have one, unless they are inside a bundle. 926 if (LiveInts) { 927 bool mapped = !LiveInts->isNotInMIMap(*MI); 928 if (MI->isDebugInstr()) { 929 if (mapped) 930 report("Debug instruction has a slot index", MI); 931 } else if (MI->isInsideBundle()) { 932 if (mapped) 933 report("Instruction inside bundle has a slot index", MI); 934 } else { 935 if (!mapped) 936 report("Missing slot index", MI); 937 } 938 } 939 940 if (isPreISelGenericOpcode(MCID.getOpcode())) { 941 if (isFunctionSelected) 942 report("Unexpected generic instruction in a Selected function", MI); 943 944 // Check types. 945 SmallVector<LLT, 4> Types; 946 for (unsigned I = 0; I < MCID.getNumOperands(); ++I) { 947 if (!MCID.OpInfo[I].isGenericType()) 948 continue; 949 // Generic instructions specify type equality constraints between some of 950 // their operands. Make sure these are consistent. 951 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 952 Types.resize(std::max(TypeIdx + 1, Types.size())); 953 954 const MachineOperand *MO = &MI->getOperand(I); 955 LLT OpTy = MRI->getType(MO->getReg()); 956 // Don't report a type mismatch if there is no actual mismatch, only a 957 // type missing, to reduce noise: 958 if (OpTy.isValid()) { 959 // Only the first valid type for a type index will be printed: don't 960 // overwrite it later so it's always clear which type was expected: 961 if (!Types[TypeIdx].isValid()) 962 Types[TypeIdx] = OpTy; 963 else if (Types[TypeIdx] != OpTy) 964 report("Type mismatch in generic instruction", MO, I, OpTy); 965 } else { 966 // Generic instructions must have types attached to their operands. 967 report("Generic instruction is missing a virtual register type", MO, I); 968 } 969 } 970 971 // Generic opcodes must not have physical register operands. 972 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 973 const MachineOperand *MO = &MI->getOperand(I); 974 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) 975 report("Generic instruction cannot have physical register", MO, I); 976 } 977 } 978 979 StringRef ErrorInfo; 980 if (!TII->verifyInstruction(*MI, ErrorInfo)) 981 report(ErrorInfo.data(), MI); 982 983 // Verify properties of various specific instruction types 984 switch(MI->getOpcode()) { 985 default: 986 break; 987 case TargetOpcode::G_LOAD: 988 case TargetOpcode::G_STORE: 989 // Generic loads and stores must have a single MachineMemOperand 990 // describing that access. 991 if (!MI->hasOneMemOperand()) 992 report("Generic instruction accessing memory must have one mem operand", 993 MI); 994 break; 995 case TargetOpcode::G_PHI: { 996 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 997 if (!DstTy.isValid() || 998 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 999 [this, &DstTy](const MachineOperand &MO) { 1000 if (!MO.isReg()) 1001 return true; 1002 LLT Ty = MRI->getType(MO.getReg()); 1003 if (!Ty.isValid() || (Ty != DstTy)) 1004 return false; 1005 return true; 1006 })) 1007 report("Generic Instruction G_PHI has operands with incompatible/missing " 1008 "types", 1009 MI); 1010 break; 1011 } 1012 case TargetOpcode::G_SEXT: 1013 case TargetOpcode::G_ZEXT: 1014 case TargetOpcode::G_ANYEXT: 1015 case TargetOpcode::G_TRUNC: 1016 case TargetOpcode::G_FPEXT: 1017 case TargetOpcode::G_FPTRUNC: { 1018 // Number of operands and presense of types is already checked (and 1019 // reported in case of any issues), so no need to report them again. As 1020 // we're trying to report as many issues as possible at once, however, the 1021 // instructions aren't guaranteed to have the right number of operands or 1022 // types attached to them at this point 1023 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1024 if (MI->getNumOperands() < MCID.getNumOperands()) 1025 break; 1026 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1027 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1028 if (!DstTy.isValid() || !SrcTy.isValid()) 1029 break; 1030 1031 LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy; 1032 LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy; 1033 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1034 report("Generic extend/truncate can not operate on pointers", MI); 1035 1036 if (DstTy.isVector() != SrcTy.isVector()) { 1037 report("Generic extend/truncate must be all-vector or all-scalar", MI); 1038 // Generally we try to report as many issues as possible at once, but in 1039 // this case it's not clear what should we be comparing the size of the 1040 // scalar with: the size of the whole vector or its lane. Instead of 1041 // making an arbitrary choice and emitting not so helpful message, let's 1042 // avoid the extra noise and stop here. 1043 break; 1044 } 1045 if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()) 1046 report("Generic vector extend/truncate must preserve number of lanes", 1047 MI); 1048 unsigned DstSize = DstElTy.getSizeInBits(); 1049 unsigned SrcSize = SrcElTy.getSizeInBits(); 1050 switch (MI->getOpcode()) { 1051 default: 1052 if (DstSize <= SrcSize) 1053 report("Generic extend has destination type no larger than source", MI); 1054 break; 1055 case TargetOpcode::G_TRUNC: 1056 case TargetOpcode::G_FPTRUNC: 1057 if (DstSize >= SrcSize) 1058 report("Generic truncate has destination type no smaller than source", 1059 MI); 1060 break; 1061 } 1062 break; 1063 } 1064 case TargetOpcode::G_MERGE_VALUES: { 1065 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1066 // e.g. s2N = MERGE sN, sN 1067 // Merging multiple scalars into a vector is not allowed, should use 1068 // G_BUILD_VECTOR for that. 1069 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1070 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1071 if (DstTy.isVector() || SrcTy.isVector()) 1072 report("G_MERGE_VALUES cannot operate on vectors", MI); 1073 break; 1074 } 1075 case TargetOpcode::G_UNMERGE_VALUES: { 1076 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1077 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1078 // For now G_UNMERGE can split vectors. 1079 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1080 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1081 report("G_UNMERGE_VALUES destination types do not match", MI); 1082 } 1083 if (SrcTy.getSizeInBits() != 1084 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1085 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1086 MI); 1087 } 1088 break; 1089 } 1090 case TargetOpcode::G_BUILD_VECTOR: { 1091 // Source types must be scalars, dest type a vector. Total size of scalars 1092 // must match the dest vector size. 1093 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1094 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1095 if (!DstTy.isVector() || SrcEltTy.isVector()) 1096 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1097 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1098 if (MRI->getType(MI->getOperand(1).getReg()) != 1099 MRI->getType(MI->getOperand(i).getReg())) 1100 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1101 } 1102 if (DstTy.getSizeInBits() != 1103 SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1)) 1104 report("G_BUILD_VECTOR src operands total size don't match dest " 1105 "size.", 1106 MI); 1107 break; 1108 } 1109 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1110 // Source types must be scalars, dest type a vector. Scalar types must be 1111 // larger than the dest vector elt type, as this is a truncating operation. 1112 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1113 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1114 if (!DstTy.isVector() || SrcEltTy.isVector()) 1115 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1116 MI); 1117 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1118 if (MRI->getType(MI->getOperand(1).getReg()) != 1119 MRI->getType(MI->getOperand(i).getReg())) 1120 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1121 MI); 1122 } 1123 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1124 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1125 "dest elt type", 1126 MI); 1127 break; 1128 } 1129 case TargetOpcode::G_CONCAT_VECTORS: { 1130 // Source types should be vectors, and total size should match the dest 1131 // vector size. 1132 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1133 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1134 if (!DstTy.isVector() || !SrcTy.isVector()) 1135 report("G_CONCAT_VECTOR requires vector source and destination operands", 1136 MI); 1137 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1138 if (MRI->getType(MI->getOperand(1).getReg()) != 1139 MRI->getType(MI->getOperand(i).getReg())) 1140 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1141 } 1142 if (DstTy.getNumElements() != 1143 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1144 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1145 break; 1146 } 1147 case TargetOpcode::COPY: { 1148 if (foundErrors) 1149 break; 1150 const MachineOperand &DstOp = MI->getOperand(0); 1151 const MachineOperand &SrcOp = MI->getOperand(1); 1152 LLT DstTy = MRI->getType(DstOp.getReg()); 1153 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1154 if (SrcTy.isValid() && DstTy.isValid()) { 1155 // If both types are valid, check that the types are the same. 1156 if (SrcTy != DstTy) { 1157 report("Copy Instruction is illegal with mismatching types", MI); 1158 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1159 } 1160 } 1161 if (SrcTy.isValid() || DstTy.isValid()) { 1162 // If one of them have valid types, let's just check they have the same 1163 // size. 1164 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1165 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1166 assert(SrcSize && "Expecting size here"); 1167 assert(DstSize && "Expecting size here"); 1168 if (SrcSize != DstSize) 1169 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1170 report("Copy Instruction is illegal with mismatching sizes", MI); 1171 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1172 << "\n"; 1173 } 1174 } 1175 break; 1176 } 1177 case TargetOpcode::STATEPOINT: 1178 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1179 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1180 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1181 report("meta operands to STATEPOINT not constant!", MI); 1182 break; 1183 1184 auto VerifyStackMapConstant = [&](unsigned Offset) { 1185 if (!MI->getOperand(Offset).isImm() || 1186 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1187 !MI->getOperand(Offset + 1).isImm()) 1188 report("stack map constant to STATEPOINT not well formed!", MI); 1189 }; 1190 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1191 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1192 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1193 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1194 1195 // TODO: verify we have properly encoded deopt arguments 1196 }; 1197 } 1198 1199 void 1200 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1201 const MachineInstr *MI = MO->getParent(); 1202 const MCInstrDesc &MCID = MI->getDesc(); 1203 unsigned NumDefs = MCID.getNumDefs(); 1204 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1205 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1206 1207 // The first MCID.NumDefs operands must be explicit register defines 1208 if (MONum < NumDefs) { 1209 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1210 if (!MO->isReg()) 1211 report("Explicit definition must be a register", MO, MONum); 1212 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1213 report("Explicit definition marked as use", MO, MONum); 1214 else if (MO->isImplicit()) 1215 report("Explicit definition marked as implicit", MO, MONum); 1216 } else if (MONum < MCID.getNumOperands()) { 1217 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1218 // Don't check if it's the last operand in a variadic instruction. See, 1219 // e.g., LDM_RET in the arm back end. 1220 if (MO->isReg() && 1221 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1222 if (MO->isDef() && !MCOI.isOptionalDef()) 1223 report("Explicit operand marked as def", MO, MONum); 1224 if (MO->isImplicit()) 1225 report("Explicit operand marked as implicit", MO, MONum); 1226 } 1227 1228 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1229 if (TiedTo != -1) { 1230 if (!MO->isReg()) 1231 report("Tied use must be a register", MO, MONum); 1232 else if (!MO->isTied()) 1233 report("Operand should be tied", MO, MONum); 1234 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1235 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1236 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1237 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1238 if (!MOTied.isReg()) 1239 report("Tied counterpart must be a register", &MOTied, TiedTo); 1240 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1241 MO->getReg() != MOTied.getReg()) 1242 report("Tied physical registers must match.", &MOTied, TiedTo); 1243 } 1244 } else if (MO->isReg() && MO->isTied()) 1245 report("Explicit operand should not be tied", MO, MONum); 1246 } else { 1247 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1248 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1249 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1250 } 1251 1252 switch (MO->getType()) { 1253 case MachineOperand::MO_Register: { 1254 const unsigned Reg = MO->getReg(); 1255 if (!Reg) 1256 return; 1257 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1258 checkLiveness(MO, MONum); 1259 1260 // Verify the consistency of tied operands. 1261 if (MO->isTied()) { 1262 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1263 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1264 if (!OtherMO.isReg()) 1265 report("Must be tied to a register", MO, MONum); 1266 if (!OtherMO.isTied()) 1267 report("Missing tie flags on tied operand", MO, MONum); 1268 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1269 report("Inconsistent tie links", MO, MONum); 1270 if (MONum < MCID.getNumDefs()) { 1271 if (OtherIdx < MCID.getNumOperands()) { 1272 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1273 report("Explicit def tied to explicit use without tie constraint", 1274 MO, MONum); 1275 } else { 1276 if (!OtherMO.isImplicit()) 1277 report("Explicit def should be tied to implicit use", MO, MONum); 1278 } 1279 } 1280 } 1281 1282 // Verify two-address constraints after leaving SSA form. 1283 unsigned DefIdx; 1284 if (!MRI->isSSA() && MO->isUse() && 1285 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1286 Reg != MI->getOperand(DefIdx).getReg()) 1287 report("Two-address instruction operands must be identical", MO, MONum); 1288 1289 // Check register classes. 1290 unsigned SubIdx = MO->getSubReg(); 1291 1292 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1293 if (SubIdx) { 1294 report("Illegal subregister index for physical register", MO, MONum); 1295 return; 1296 } 1297 if (MONum < MCID.getNumOperands()) { 1298 if (const TargetRegisterClass *DRC = 1299 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1300 if (!DRC->contains(Reg)) { 1301 report("Illegal physical register for instruction", MO, MONum); 1302 errs() << printReg(Reg, TRI) << " is not a " 1303 << TRI->getRegClassName(DRC) << " register.\n"; 1304 } 1305 } 1306 } 1307 if (MO->isRenamable()) { 1308 if (MRI->isReserved(Reg)) { 1309 report("isRenamable set on reserved register", MO, MONum); 1310 return; 1311 } 1312 } 1313 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1314 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1315 return; 1316 } 1317 } else { 1318 // Virtual register. 1319 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1320 if (!RC) { 1321 // This is a generic virtual register. 1322 1323 // If we're post-Select, we can't have gvregs anymore. 1324 if (isFunctionSelected) { 1325 report("Generic virtual register invalid in a Selected function", 1326 MO, MONum); 1327 return; 1328 } 1329 1330 // The gvreg must have a type and it must not have a SubIdx. 1331 LLT Ty = MRI->getType(Reg); 1332 if (!Ty.isValid()) { 1333 report("Generic virtual register must have a valid type", MO, 1334 MONum); 1335 return; 1336 } 1337 1338 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1339 1340 // If we're post-RegBankSelect, the gvreg must have a bank. 1341 if (!RegBank && isFunctionRegBankSelected) { 1342 report("Generic virtual register must have a bank in a " 1343 "RegBankSelected function", 1344 MO, MONum); 1345 return; 1346 } 1347 1348 // Make sure the register fits into its register bank if any. 1349 if (RegBank && Ty.isValid() && 1350 RegBank->getSize() < Ty.getSizeInBits()) { 1351 report("Register bank is too small for virtual register", MO, 1352 MONum); 1353 errs() << "Register bank " << RegBank->getName() << " too small(" 1354 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1355 << "-bits\n"; 1356 return; 1357 } 1358 if (SubIdx) { 1359 report("Generic virtual register does not subregister index", MO, 1360 MONum); 1361 return; 1362 } 1363 1364 // If this is a target specific instruction and this operand 1365 // has register class constraint, the virtual register must 1366 // comply to it. 1367 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1368 MONum < MCID.getNumOperands() && 1369 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1370 report("Virtual register does not match instruction constraint", MO, 1371 MONum); 1372 errs() << "Expect register class " 1373 << TRI->getRegClassName( 1374 TII->getRegClass(MCID, MONum, TRI, *MF)) 1375 << " but got nothing\n"; 1376 return; 1377 } 1378 1379 break; 1380 } 1381 if (SubIdx) { 1382 const TargetRegisterClass *SRC = 1383 TRI->getSubClassWithSubReg(RC, SubIdx); 1384 if (!SRC) { 1385 report("Invalid subregister index for virtual register", MO, MONum); 1386 errs() << "Register class " << TRI->getRegClassName(RC) 1387 << " does not support subreg index " << SubIdx << "\n"; 1388 return; 1389 } 1390 if (RC != SRC) { 1391 report("Invalid register class for subregister index", MO, MONum); 1392 errs() << "Register class " << TRI->getRegClassName(RC) 1393 << " does not fully support subreg index " << SubIdx << "\n"; 1394 return; 1395 } 1396 } 1397 if (MONum < MCID.getNumOperands()) { 1398 if (const TargetRegisterClass *DRC = 1399 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1400 if (SubIdx) { 1401 const TargetRegisterClass *SuperRC = 1402 TRI->getLargestLegalSuperClass(RC, *MF); 1403 if (!SuperRC) { 1404 report("No largest legal super class exists.", MO, MONum); 1405 return; 1406 } 1407 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1408 if (!DRC) { 1409 report("No matching super-reg register class.", MO, MONum); 1410 return; 1411 } 1412 } 1413 if (!RC->hasSuperClassEq(DRC)) { 1414 report("Illegal virtual register for instruction", MO, MONum); 1415 errs() << "Expected a " << TRI->getRegClassName(DRC) 1416 << " register, but got a " << TRI->getRegClassName(RC) 1417 << " register\n"; 1418 } 1419 } 1420 } 1421 } 1422 break; 1423 } 1424 1425 case MachineOperand::MO_RegisterMask: 1426 regMasks.push_back(MO->getRegMask()); 1427 break; 1428 1429 case MachineOperand::MO_MachineBasicBlock: 1430 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1431 report("PHI operand is not in the CFG", MO, MONum); 1432 break; 1433 1434 case MachineOperand::MO_FrameIndex: 1435 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1436 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1437 int FI = MO->getIndex(); 1438 LiveInterval &LI = LiveStks->getInterval(FI); 1439 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1440 1441 bool stores = MI->mayStore(); 1442 bool loads = MI->mayLoad(); 1443 // For a memory-to-memory move, we need to check if the frame 1444 // index is used for storing or loading, by inspecting the 1445 // memory operands. 1446 if (stores && loads) { 1447 for (auto *MMO : MI->memoperands()) { 1448 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1449 if (PSV == nullptr) continue; 1450 const FixedStackPseudoSourceValue *Value = 1451 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1452 if (Value == nullptr) continue; 1453 if (Value->getFrameIndex() != FI) continue; 1454 1455 if (MMO->isStore()) 1456 loads = false; 1457 else 1458 stores = false; 1459 break; 1460 } 1461 if (loads == stores) 1462 report("Missing fixed stack memoperand.", MI); 1463 } 1464 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1465 report("Instruction loads from dead spill slot", MO, MONum); 1466 errs() << "Live stack: " << LI << '\n'; 1467 } 1468 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1469 report("Instruction stores to dead spill slot", MO, MONum); 1470 errs() << "Live stack: " << LI << '\n'; 1471 } 1472 } 1473 break; 1474 1475 default: 1476 break; 1477 } 1478 } 1479 1480 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1481 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1482 LaneBitmask LaneMask) { 1483 LiveQueryResult LRQ = LR.Query(UseIdx); 1484 // Check if we have a segment at the use, note however that we only need one 1485 // live subregister range, the others may be dead. 1486 if (!LRQ.valueIn() && LaneMask.none()) { 1487 report("No live segment at use", MO, MONum); 1488 report_context_liverange(LR); 1489 report_context_vreg_regunit(VRegOrUnit); 1490 report_context(UseIdx); 1491 } 1492 if (MO->isKill() && !LRQ.isKill()) { 1493 report("Live range continues after kill flag", MO, MONum); 1494 report_context_liverange(LR); 1495 report_context_vreg_regunit(VRegOrUnit); 1496 if (LaneMask.any()) 1497 report_context_lanemask(LaneMask); 1498 report_context(UseIdx); 1499 } 1500 } 1501 1502 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1503 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1504 bool SubRangeCheck, LaneBitmask LaneMask) { 1505 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1506 assert(VNI && "NULL valno is not allowed"); 1507 if (VNI->def != DefIdx) { 1508 report("Inconsistent valno->def", MO, MONum); 1509 report_context_liverange(LR); 1510 report_context_vreg_regunit(VRegOrUnit); 1511 if (LaneMask.any()) 1512 report_context_lanemask(LaneMask); 1513 report_context(*VNI); 1514 report_context(DefIdx); 1515 } 1516 } else { 1517 report("No live segment at def", MO, MONum); 1518 report_context_liverange(LR); 1519 report_context_vreg_regunit(VRegOrUnit); 1520 if (LaneMask.any()) 1521 report_context_lanemask(LaneMask); 1522 report_context(DefIdx); 1523 } 1524 // Check that, if the dead def flag is present, LiveInts agree. 1525 if (MO->isDead()) { 1526 LiveQueryResult LRQ = LR.Query(DefIdx); 1527 if (!LRQ.isDeadDef()) { 1528 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) && 1529 "Expecting a virtual register."); 1530 // A dead subreg def only tells us that the specific subreg is dead. There 1531 // could be other non-dead defs of other subregs, or we could have other 1532 // parts of the register being live through the instruction. So unless we 1533 // are checking liveness for a subrange it is ok for the live range to 1534 // continue, given that we have a dead def of a subregister. 1535 if (SubRangeCheck || MO->getSubReg() == 0) { 1536 report("Live range continues after dead def flag", MO, MONum); 1537 report_context_liverange(LR); 1538 report_context_vreg_regunit(VRegOrUnit); 1539 if (LaneMask.any()) 1540 report_context_lanemask(LaneMask); 1541 } 1542 } 1543 } 1544 } 1545 1546 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1547 const MachineInstr *MI = MO->getParent(); 1548 const unsigned Reg = MO->getReg(); 1549 1550 // Both use and def operands can read a register. 1551 if (MO->readsReg()) { 1552 if (MO->isKill()) 1553 addRegWithSubRegs(regsKilled, Reg); 1554 1555 // Check that LiveVars knows this kill. 1556 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1557 MO->isKill()) { 1558 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1559 if (!is_contained(VI.Kills, MI)) 1560 report("Kill missing from LiveVariables", MO, MONum); 1561 } 1562 1563 // Check LiveInts liveness and kill. 1564 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1565 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1566 // Check the cached regunit intervals. 1567 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1568 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1569 if (MRI->isReservedRegUnit(*Units)) 1570 continue; 1571 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1572 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1573 } 1574 } 1575 1576 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1577 if (LiveInts->hasInterval(Reg)) { 1578 // This is a virtual register interval. 1579 const LiveInterval &LI = LiveInts->getInterval(Reg); 1580 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1581 1582 if (LI.hasSubRanges() && !MO->isDef()) { 1583 unsigned SubRegIdx = MO->getSubReg(); 1584 LaneBitmask MOMask = SubRegIdx != 0 1585 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1586 : MRI->getMaxLaneMaskForVReg(Reg); 1587 LaneBitmask LiveInMask; 1588 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1589 if ((MOMask & SR.LaneMask).none()) 1590 continue; 1591 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1592 LiveQueryResult LRQ = SR.Query(UseIdx); 1593 if (LRQ.valueIn()) 1594 LiveInMask |= SR.LaneMask; 1595 } 1596 // At least parts of the register has to be live at the use. 1597 if ((LiveInMask & MOMask).none()) { 1598 report("No live subrange at use", MO, MONum); 1599 report_context(LI); 1600 report_context(UseIdx); 1601 } 1602 } 1603 } else { 1604 report("Virtual register has no live interval", MO, MONum); 1605 } 1606 } 1607 } 1608 1609 // Use of a dead register. 1610 if (!regsLive.count(Reg)) { 1611 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1612 // Reserved registers may be used even when 'dead'. 1613 bool Bad = !isReserved(Reg); 1614 // We are fine if just any subregister has a defined value. 1615 if (Bad) { 1616 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1617 ++SubRegs) { 1618 if (regsLive.count(*SubRegs)) { 1619 Bad = false; 1620 break; 1621 } 1622 } 1623 } 1624 // If there is an additional implicit-use of a super register we stop 1625 // here. By definition we are fine if the super register is not 1626 // (completely) dead, if the complete super register is dead we will 1627 // get a report for its operand. 1628 if (Bad) { 1629 for (const MachineOperand &MOP : MI->uses()) { 1630 if (!MOP.isReg() || !MOP.isImplicit()) 1631 continue; 1632 1633 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg())) 1634 continue; 1635 1636 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1637 ++SubRegs) { 1638 if (*SubRegs == Reg) { 1639 Bad = false; 1640 break; 1641 } 1642 } 1643 } 1644 } 1645 if (Bad) 1646 report("Using an undefined physical register", MO, MONum); 1647 } else if (MRI->def_empty(Reg)) { 1648 report("Reading virtual register without a def", MO, MONum); 1649 } else { 1650 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1651 // We don't know which virtual registers are live in, so only complain 1652 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1653 // must be live in. PHI instructions are handled separately. 1654 if (MInfo.regsKilled.count(Reg)) 1655 report("Using a killed virtual register", MO, MONum); 1656 else if (!MI->isPHI()) 1657 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1658 } 1659 } 1660 } 1661 1662 if (MO->isDef()) { 1663 // Register defined. 1664 // TODO: verify that earlyclobber ops are not used. 1665 if (MO->isDead()) 1666 addRegWithSubRegs(regsDead, Reg); 1667 else 1668 addRegWithSubRegs(regsDefined, Reg); 1669 1670 // Verify SSA form. 1671 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1672 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1673 report("Multiple virtual register defs in SSA form", MO, MONum); 1674 1675 // Check LiveInts for a live segment, but only for virtual registers. 1676 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1677 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1678 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1679 1680 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1681 if (LiveInts->hasInterval(Reg)) { 1682 const LiveInterval &LI = LiveInts->getInterval(Reg); 1683 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1684 1685 if (LI.hasSubRanges()) { 1686 unsigned SubRegIdx = MO->getSubReg(); 1687 LaneBitmask MOMask = SubRegIdx != 0 1688 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1689 : MRI->getMaxLaneMaskForVReg(Reg); 1690 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1691 if ((SR.LaneMask & MOMask).none()) 1692 continue; 1693 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 1694 } 1695 } 1696 } else { 1697 report("Virtual register has no Live interval", MO, MONum); 1698 } 1699 } 1700 } 1701 } 1702 } 1703 1704 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1705 1706 // This function gets called after visiting all instructions in a bundle. The 1707 // argument points to the bundle header. 1708 // Normal stand-alone instructions are also considered 'bundles', and this 1709 // function is called for all of them. 1710 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1711 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1712 set_union(MInfo.regsKilled, regsKilled); 1713 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1714 // Kill any masked registers. 1715 while (!regMasks.empty()) { 1716 const uint32_t *Mask = regMasks.pop_back_val(); 1717 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1718 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1719 MachineOperand::clobbersPhysReg(Mask, *I)) 1720 regsDead.push_back(*I); 1721 } 1722 set_subtract(regsLive, regsDead); regsDead.clear(); 1723 set_union(regsLive, regsDefined); regsDefined.clear(); 1724 } 1725 1726 void 1727 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1728 MBBInfoMap[MBB].regsLiveOut = regsLive; 1729 regsLive.clear(); 1730 1731 if (Indexes) { 1732 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1733 if (!(stop > lastIndex)) { 1734 report("Block ends before last instruction index", MBB); 1735 errs() << "Block ends at " << stop 1736 << " last instruction was at " << lastIndex << '\n'; 1737 } 1738 lastIndex = stop; 1739 } 1740 } 1741 1742 // Calculate the largest possible vregsPassed sets. These are the registers that 1743 // can pass through an MBB live, but may not be live every time. It is assumed 1744 // that all vregsPassed sets are empty before the call. 1745 void MachineVerifier::calcRegsPassed() { 1746 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1747 // have any vregsPassed. 1748 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1749 for (const auto &MBB : *MF) { 1750 BBInfo &MInfo = MBBInfoMap[&MBB]; 1751 if (!MInfo.reachable) 1752 continue; 1753 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1754 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1755 BBInfo &SInfo = MBBInfoMap[*SuI]; 1756 if (SInfo.addPassed(MInfo.regsLiveOut)) 1757 todo.insert(*SuI); 1758 } 1759 } 1760 1761 // Iteratively push vregsPassed to successors. This will converge to the same 1762 // final state regardless of DenseSet iteration order. 1763 while (!todo.empty()) { 1764 const MachineBasicBlock *MBB = *todo.begin(); 1765 todo.erase(MBB); 1766 BBInfo &MInfo = MBBInfoMap[MBB]; 1767 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1768 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1769 if (*SuI == MBB) 1770 continue; 1771 BBInfo &SInfo = MBBInfoMap[*SuI]; 1772 if (SInfo.addPassed(MInfo.vregsPassed)) 1773 todo.insert(*SuI); 1774 } 1775 } 1776 } 1777 1778 // Calculate the set of virtual registers that must be passed through each basic 1779 // block in order to satisfy the requirements of successor blocks. This is very 1780 // similar to calcRegsPassed, only backwards. 1781 void MachineVerifier::calcRegsRequired() { 1782 // First push live-in regs to predecessors' vregsRequired. 1783 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1784 for (const auto &MBB : *MF) { 1785 BBInfo &MInfo = MBBInfoMap[&MBB]; 1786 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1787 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1788 BBInfo &PInfo = MBBInfoMap[*PrI]; 1789 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1790 todo.insert(*PrI); 1791 } 1792 } 1793 1794 // Iteratively push vregsRequired to predecessors. This will converge to the 1795 // same final state regardless of DenseSet iteration order. 1796 while (!todo.empty()) { 1797 const MachineBasicBlock *MBB = *todo.begin(); 1798 todo.erase(MBB); 1799 BBInfo &MInfo = MBBInfoMap[MBB]; 1800 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1801 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1802 if (*PrI == MBB) 1803 continue; 1804 BBInfo &SInfo = MBBInfoMap[*PrI]; 1805 if (SInfo.addRequired(MInfo.vregsRequired)) 1806 todo.insert(*PrI); 1807 } 1808 } 1809 } 1810 1811 // Check PHI instructions at the beginning of MBB. It is assumed that 1812 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1813 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1814 BBInfo &MInfo = MBBInfoMap[&MBB]; 1815 1816 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1817 for (const MachineInstr &Phi : MBB) { 1818 if (!Phi.isPHI()) 1819 break; 1820 seen.clear(); 1821 1822 const MachineOperand &MODef = Phi.getOperand(0); 1823 if (!MODef.isReg() || !MODef.isDef()) { 1824 report("Expected first PHI operand to be a register def", &MODef, 0); 1825 continue; 1826 } 1827 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1828 MODef.isEarlyClobber() || MODef.isDebug()) 1829 report("Unexpected flag on PHI operand", &MODef, 0); 1830 unsigned DefReg = MODef.getReg(); 1831 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1832 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1833 1834 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1835 const MachineOperand &MO0 = Phi.getOperand(I); 1836 if (!MO0.isReg()) { 1837 report("Expected PHI operand to be a register", &MO0, I); 1838 continue; 1839 } 1840 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 1841 MO0.isDebug() || MO0.isTied()) 1842 report("Unexpected flag on PHI operand", &MO0, I); 1843 1844 const MachineOperand &MO1 = Phi.getOperand(I + 1); 1845 if (!MO1.isMBB()) { 1846 report("Expected PHI operand to be a basic block", &MO1, I + 1); 1847 continue; 1848 } 1849 1850 const MachineBasicBlock &Pre = *MO1.getMBB(); 1851 if (!Pre.isSuccessor(&MBB)) { 1852 report("PHI input is not a predecessor block", &MO1, I + 1); 1853 continue; 1854 } 1855 1856 if (MInfo.reachable) { 1857 seen.insert(&Pre); 1858 BBInfo &PrInfo = MBBInfoMap[&Pre]; 1859 if (!MO0.isUndef() && PrInfo.reachable && 1860 !PrInfo.isLiveOut(MO0.getReg())) 1861 report("PHI operand is not live-out from predecessor", &MO0, I); 1862 } 1863 } 1864 1865 // Did we see all predecessors? 1866 if (MInfo.reachable) { 1867 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1868 if (!seen.count(Pred)) { 1869 report("Missing PHI operand", &Phi); 1870 errs() << printMBBReference(*Pred) 1871 << " is a predecessor according to the CFG.\n"; 1872 } 1873 } 1874 } 1875 } 1876 } 1877 1878 void MachineVerifier::visitMachineFunctionAfter() { 1879 calcRegsPassed(); 1880 1881 for (const MachineBasicBlock &MBB : *MF) 1882 checkPHIOps(MBB); 1883 1884 // Now check liveness info if available 1885 calcRegsRequired(); 1886 1887 // Check for killed virtual registers that should be live out. 1888 for (const auto &MBB : *MF) { 1889 BBInfo &MInfo = MBBInfoMap[&MBB]; 1890 for (RegSet::iterator 1891 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1892 ++I) 1893 if (MInfo.regsKilled.count(*I)) { 1894 report("Virtual register killed in block, but needed live out.", &MBB); 1895 errs() << "Virtual register " << printReg(*I) 1896 << " is used after the block.\n"; 1897 } 1898 } 1899 1900 if (!MF->empty()) { 1901 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1902 for (RegSet::iterator 1903 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1904 ++I) { 1905 report("Virtual register defs don't dominate all uses.", MF); 1906 report_context_vreg(*I); 1907 } 1908 } 1909 1910 if (LiveVars) 1911 verifyLiveVariables(); 1912 if (LiveInts) 1913 verifyLiveIntervals(); 1914 } 1915 1916 void MachineVerifier::verifyLiveVariables() { 1917 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1918 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1919 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1920 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1921 for (const auto &MBB : *MF) { 1922 BBInfo &MInfo = MBBInfoMap[&MBB]; 1923 1924 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1925 if (MInfo.vregsRequired.count(Reg)) { 1926 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1927 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1928 errs() << "Virtual register " << printReg(Reg) 1929 << " must be live through the block.\n"; 1930 } 1931 } else { 1932 if (VI.AliveBlocks.test(MBB.getNumber())) { 1933 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1934 errs() << "Virtual register " << printReg(Reg) 1935 << " is not needed live through the block.\n"; 1936 } 1937 } 1938 } 1939 } 1940 } 1941 1942 void MachineVerifier::verifyLiveIntervals() { 1943 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1944 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1945 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1946 1947 // Spilling and splitting may leave unused registers around. Skip them. 1948 if (MRI->reg_nodbg_empty(Reg)) 1949 continue; 1950 1951 if (!LiveInts->hasInterval(Reg)) { 1952 report("Missing live interval for virtual register", MF); 1953 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 1954 continue; 1955 } 1956 1957 const LiveInterval &LI = LiveInts->getInterval(Reg); 1958 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1959 verifyLiveInterval(LI); 1960 } 1961 1962 // Verify all the cached regunit intervals. 1963 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1964 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1965 verifyLiveRange(*LR, i); 1966 } 1967 1968 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1969 const VNInfo *VNI, unsigned Reg, 1970 LaneBitmask LaneMask) { 1971 if (VNI->isUnused()) 1972 return; 1973 1974 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1975 1976 if (!DefVNI) { 1977 report("Value not live at VNInfo def and not marked unused", MF); 1978 report_context(LR, Reg, LaneMask); 1979 report_context(*VNI); 1980 return; 1981 } 1982 1983 if (DefVNI != VNI) { 1984 report("Live segment at def has different VNInfo", MF); 1985 report_context(LR, Reg, LaneMask); 1986 report_context(*VNI); 1987 return; 1988 } 1989 1990 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1991 if (!MBB) { 1992 report("Invalid VNInfo definition index", MF); 1993 report_context(LR, Reg, LaneMask); 1994 report_context(*VNI); 1995 return; 1996 } 1997 1998 if (VNI->isPHIDef()) { 1999 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2000 report("PHIDef VNInfo is not defined at MBB start", MBB); 2001 report_context(LR, Reg, LaneMask); 2002 report_context(*VNI); 2003 } 2004 return; 2005 } 2006 2007 // Non-PHI def. 2008 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2009 if (!MI) { 2010 report("No instruction at VNInfo def index", MBB); 2011 report_context(LR, Reg, LaneMask); 2012 report_context(*VNI); 2013 return; 2014 } 2015 2016 if (Reg != 0) { 2017 bool hasDef = false; 2018 bool isEarlyClobber = false; 2019 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2020 if (!MOI->isReg() || !MOI->isDef()) 2021 continue; 2022 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2023 if (MOI->getReg() != Reg) 2024 continue; 2025 } else { 2026 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 2027 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2028 continue; 2029 } 2030 if (LaneMask.any() && 2031 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2032 continue; 2033 hasDef = true; 2034 if (MOI->isEarlyClobber()) 2035 isEarlyClobber = true; 2036 } 2037 2038 if (!hasDef) { 2039 report("Defining instruction does not modify register", MI); 2040 report_context(LR, Reg, LaneMask); 2041 report_context(*VNI); 2042 } 2043 2044 // Early clobber defs begin at USE slots, but other defs must begin at 2045 // DEF slots. 2046 if (isEarlyClobber) { 2047 if (!VNI->def.isEarlyClobber()) { 2048 report("Early clobber def must be at an early-clobber slot", MBB); 2049 report_context(LR, Reg, LaneMask); 2050 report_context(*VNI); 2051 } 2052 } else if (!VNI->def.isRegister()) { 2053 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2054 report_context(LR, Reg, LaneMask); 2055 report_context(*VNI); 2056 } 2057 } 2058 } 2059 2060 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2061 const LiveRange::const_iterator I, 2062 unsigned Reg, LaneBitmask LaneMask) 2063 { 2064 const LiveRange::Segment &S = *I; 2065 const VNInfo *VNI = S.valno; 2066 assert(VNI && "Live segment has no valno"); 2067 2068 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2069 report("Foreign valno in live segment", MF); 2070 report_context(LR, Reg, LaneMask); 2071 report_context(S); 2072 report_context(*VNI); 2073 } 2074 2075 if (VNI->isUnused()) { 2076 report("Live segment valno is marked unused", MF); 2077 report_context(LR, Reg, LaneMask); 2078 report_context(S); 2079 } 2080 2081 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2082 if (!MBB) { 2083 report("Bad start of live segment, no basic block", MF); 2084 report_context(LR, Reg, LaneMask); 2085 report_context(S); 2086 return; 2087 } 2088 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2089 if (S.start != MBBStartIdx && S.start != VNI->def) { 2090 report("Live segment must begin at MBB entry or valno def", MBB); 2091 report_context(LR, Reg, LaneMask); 2092 report_context(S); 2093 } 2094 2095 const MachineBasicBlock *EndMBB = 2096 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2097 if (!EndMBB) { 2098 report("Bad end of live segment, no basic block", MF); 2099 report_context(LR, Reg, LaneMask); 2100 report_context(S); 2101 return; 2102 } 2103 2104 // No more checks for live-out segments. 2105 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2106 return; 2107 2108 // RegUnit intervals are allowed dead phis. 2109 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 2110 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2111 return; 2112 2113 // The live segment is ending inside EndMBB 2114 const MachineInstr *MI = 2115 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2116 if (!MI) { 2117 report("Live segment doesn't end at a valid instruction", EndMBB); 2118 report_context(LR, Reg, LaneMask); 2119 report_context(S); 2120 return; 2121 } 2122 2123 // The block slot must refer to a basic block boundary. 2124 if (S.end.isBlock()) { 2125 report("Live segment ends at B slot of an instruction", EndMBB); 2126 report_context(LR, Reg, LaneMask); 2127 report_context(S); 2128 } 2129 2130 if (S.end.isDead()) { 2131 // Segment ends on the dead slot. 2132 // That means there must be a dead def. 2133 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2134 report("Live segment ending at dead slot spans instructions", EndMBB); 2135 report_context(LR, Reg, LaneMask); 2136 report_context(S); 2137 } 2138 } 2139 2140 // A live segment can only end at an early-clobber slot if it is being 2141 // redefined by an early-clobber def. 2142 if (S.end.isEarlyClobber()) { 2143 if (I+1 == LR.end() || (I+1)->start != S.end) { 2144 report("Live segment ending at early clobber slot must be " 2145 "redefined by an EC def in the same instruction", EndMBB); 2146 report_context(LR, Reg, LaneMask); 2147 report_context(S); 2148 } 2149 } 2150 2151 // The following checks only apply to virtual registers. Physreg liveness 2152 // is too weird to check. 2153 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2154 // A live segment can end with either a redefinition, a kill flag on a 2155 // use, or a dead flag on a def. 2156 bool hasRead = false; 2157 bool hasSubRegDef = false; 2158 bool hasDeadDef = false; 2159 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2160 if (!MOI->isReg() || MOI->getReg() != Reg) 2161 continue; 2162 unsigned Sub = MOI->getSubReg(); 2163 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2164 : LaneBitmask::getAll(); 2165 if (MOI->isDef()) { 2166 if (Sub != 0) { 2167 hasSubRegDef = true; 2168 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2169 // mask for subregister defs. Read-undef defs will be handled by 2170 // readsReg below. 2171 SLM = ~SLM; 2172 } 2173 if (MOI->isDead()) 2174 hasDeadDef = true; 2175 } 2176 if (LaneMask.any() && (LaneMask & SLM).none()) 2177 continue; 2178 if (MOI->readsReg()) 2179 hasRead = true; 2180 } 2181 if (S.end.isDead()) { 2182 // Make sure that the corresponding machine operand for a "dead" live 2183 // range has the dead flag. We cannot perform this check for subregister 2184 // liveranges as partially dead values are allowed. 2185 if (LaneMask.none() && !hasDeadDef) { 2186 report("Instruction ending live segment on dead slot has no dead flag", 2187 MI); 2188 report_context(LR, Reg, LaneMask); 2189 report_context(S); 2190 } 2191 } else { 2192 if (!hasRead) { 2193 // When tracking subregister liveness, the main range must start new 2194 // values on partial register writes, even if there is no read. 2195 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2196 !hasSubRegDef) { 2197 report("Instruction ending live segment doesn't read the register", 2198 MI); 2199 report_context(LR, Reg, LaneMask); 2200 report_context(S); 2201 } 2202 } 2203 } 2204 } 2205 2206 // Now check all the basic blocks in this live segment. 2207 MachineFunction::const_iterator MFI = MBB->getIterator(); 2208 // Is this live segment the beginning of a non-PHIDef VN? 2209 if (S.start == VNI->def && !VNI->isPHIDef()) { 2210 // Not live-in to any blocks. 2211 if (MBB == EndMBB) 2212 return; 2213 // Skip this block. 2214 ++MFI; 2215 } 2216 2217 SmallVector<SlotIndex, 4> Undefs; 2218 if (LaneMask.any()) { 2219 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2220 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2221 } 2222 2223 while (true) { 2224 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2225 // We don't know how to track physregs into a landing pad. 2226 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2227 MFI->isEHPad()) { 2228 if (&*MFI == EndMBB) 2229 break; 2230 ++MFI; 2231 continue; 2232 } 2233 2234 // Is VNI a PHI-def in the current block? 2235 bool IsPHI = VNI->isPHIDef() && 2236 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2237 2238 // Check that VNI is live-out of all predecessors. 2239 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2240 PE = MFI->pred_end(); PI != PE; ++PI) { 2241 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2242 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2243 2244 // All predecessors must have a live-out value. However for a phi 2245 // instruction with subregister intervals 2246 // only one of the subregisters (not necessarily the current one) needs to 2247 // be defined. 2248 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2249 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2250 continue; 2251 report("Register not marked live out of predecessor", *PI); 2252 report_context(LR, Reg, LaneMask); 2253 report_context(*VNI); 2254 errs() << " live into " << printMBBReference(*MFI) << '@' 2255 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2256 << PEnd << '\n'; 2257 continue; 2258 } 2259 2260 // Only PHI-defs can take different predecessor values. 2261 if (!IsPHI && PVNI != VNI) { 2262 report("Different value live out of predecessor", *PI); 2263 report_context(LR, Reg, LaneMask); 2264 errs() << "Valno #" << PVNI->id << " live out of " 2265 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2266 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2267 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2268 } 2269 } 2270 if (&*MFI == EndMBB) 2271 break; 2272 ++MFI; 2273 } 2274 } 2275 2276 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2277 LaneBitmask LaneMask) { 2278 for (const VNInfo *VNI : LR.valnos) 2279 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2280 2281 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2282 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2283 } 2284 2285 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2286 unsigned Reg = LI.reg; 2287 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2288 verifyLiveRange(LI, Reg); 2289 2290 LaneBitmask Mask; 2291 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2292 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2293 if ((Mask & SR.LaneMask).any()) { 2294 report("Lane masks of sub ranges overlap in live interval", MF); 2295 report_context(LI); 2296 } 2297 if ((SR.LaneMask & ~MaxMask).any()) { 2298 report("Subrange lanemask is invalid", MF); 2299 report_context(LI); 2300 } 2301 if (SR.empty()) { 2302 report("Subrange must not be empty", MF); 2303 report_context(SR, LI.reg, SR.LaneMask); 2304 } 2305 Mask |= SR.LaneMask; 2306 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2307 if (!LI.covers(SR)) { 2308 report("A Subrange is not covered by the main range", MF); 2309 report_context(LI); 2310 } 2311 } 2312 2313 // Check the LI only has one connected component. 2314 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2315 unsigned NumComp = ConEQ.Classify(LI); 2316 if (NumComp > 1) { 2317 report("Multiple connected components in live interval", MF); 2318 report_context(LI); 2319 for (unsigned comp = 0; comp != NumComp; ++comp) { 2320 errs() << comp << ": valnos"; 2321 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2322 E = LI.vni_end(); I!=E; ++I) 2323 if (comp == ConEQ.getEqClass(*I)) 2324 errs() << ' ' << (*I)->id; 2325 errs() << '\n'; 2326 } 2327 } 2328 } 2329 2330 namespace { 2331 2332 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2333 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2334 // value is zero. 2335 // We use a bool plus an integer to capture the stack state. 2336 struct StackStateOfBB { 2337 StackStateOfBB() = default; 2338 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2339 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2340 ExitIsSetup(ExitSetup) {} 2341 2342 // Can be negative, which means we are setting up a frame. 2343 int EntryValue = 0; 2344 int ExitValue = 0; 2345 bool EntryIsSetup = false; 2346 bool ExitIsSetup = false; 2347 }; 2348 2349 } // end anonymous namespace 2350 2351 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2352 /// by a FrameDestroy <n>, stack adjustments are identical on all 2353 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2354 void MachineVerifier::verifyStackFrame() { 2355 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2356 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2357 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2358 return; 2359 2360 SmallVector<StackStateOfBB, 8> SPState; 2361 SPState.resize(MF->getNumBlockIDs()); 2362 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2363 2364 // Visit the MBBs in DFS order. 2365 for (df_ext_iterator<const MachineFunction *, 2366 df_iterator_default_set<const MachineBasicBlock *>> 2367 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2368 DFI != DFE; ++DFI) { 2369 const MachineBasicBlock *MBB = *DFI; 2370 2371 StackStateOfBB BBState; 2372 // Check the exit state of the DFS stack predecessor. 2373 if (DFI.getPathLength() >= 2) { 2374 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2375 assert(Reachable.count(StackPred) && 2376 "DFS stack predecessor is already visited.\n"); 2377 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2378 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2379 BBState.ExitValue = BBState.EntryValue; 2380 BBState.ExitIsSetup = BBState.EntryIsSetup; 2381 } 2382 2383 // Update stack state by checking contents of MBB. 2384 for (const auto &I : *MBB) { 2385 if (I.getOpcode() == FrameSetupOpcode) { 2386 if (BBState.ExitIsSetup) 2387 report("FrameSetup is after another FrameSetup", &I); 2388 BBState.ExitValue -= TII->getFrameTotalSize(I); 2389 BBState.ExitIsSetup = true; 2390 } 2391 2392 if (I.getOpcode() == FrameDestroyOpcode) { 2393 int Size = TII->getFrameTotalSize(I); 2394 if (!BBState.ExitIsSetup) 2395 report("FrameDestroy is not after a FrameSetup", &I); 2396 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2397 BBState.ExitValue; 2398 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2399 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2400 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2401 << AbsSPAdj << ">.\n"; 2402 } 2403 BBState.ExitValue += Size; 2404 BBState.ExitIsSetup = false; 2405 } 2406 } 2407 SPState[MBB->getNumber()] = BBState; 2408 2409 // Make sure the exit state of any predecessor is consistent with the entry 2410 // state. 2411 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2412 E = MBB->pred_end(); I != E; ++I) { 2413 if (Reachable.count(*I) && 2414 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2415 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2416 report("The exit stack state of a predecessor is inconsistent.", MBB); 2417 errs() << "Predecessor " << printMBBReference(*(*I)) 2418 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2419 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2420 << printMBBReference(*MBB) << " has entry state (" 2421 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2422 } 2423 } 2424 2425 // Make sure the entry state of any successor is consistent with the exit 2426 // state. 2427 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2428 E = MBB->succ_end(); I != E; ++I) { 2429 if (Reachable.count(*I) && 2430 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2431 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2432 report("The entry stack state of a successor is inconsistent.", MBB); 2433 errs() << "Successor " << printMBBReference(*(*I)) 2434 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2435 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2436 << printMBBReference(*MBB) << " has exit state (" 2437 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2438 } 2439 } 2440 2441 // Make sure a basic block with return ends with zero stack adjustment. 2442 if (!MBB->empty() && MBB->back().isReturn()) { 2443 if (BBState.ExitIsSetup) 2444 report("A return block ends with a FrameSetup.", MBB); 2445 if (BBState.ExitValue) 2446 report("A return block ends with a nonzero stack adjustment.", MBB); 2447 } 2448 } 2449 } 2450