xref: /llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision ccb810fb5481dd91b3890805f3f85a89237faf40)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
24 
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (TargetRegisterInfo::isPhysicalRegister(Reg))
126         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127           RV.push_back(*SubRegs);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsPassed if it belongs there. Return true if
160       // anything changed.
161       bool addPassed(unsigned Reg) {
162         if (!TargetRegisterInfo::isVirtualRegister(Reg))
163           return false;
164         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165           return false;
166         return vregsPassed.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addPassed(const RegSet &RS) {
171         bool changed = false;
172         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173           if (addPassed(*I))
174             changed = true;
175         return changed;
176       }
177 
178       // Add register to vregsRequired if it belongs there. Return true if
179       // anything changed.
180       bool addRequired(unsigned Reg) {
181         if (!TargetRegisterInfo::isVirtualRegister(Reg))
182           return false;
183         if (regsLiveOut.count(Reg))
184           return false;
185         return vregsRequired.insert(Reg).second;
186       }
187 
188       // Same for a full set.
189       bool addRequired(const RegSet &RS) {
190         bool changed = false;
191         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192           if (addRequired(*I))
193             changed = true;
194         return changed;
195       }
196 
197       // Same for a full map.
198       bool addRequired(const RegMap &RM) {
199         bool changed = false;
200         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201           if (addRequired(I->first))
202             changed = true;
203         return changed;
204       }
205 
206       // Live-out registers are either in regsLiveOut or vregsPassed.
207       bool isLiveOut(unsigned Reg) const {
208         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
209       }
210     };
211 
212     // Extra register info per MBB.
213     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
214 
215     bool isReserved(unsigned Reg) {
216       return Reg < regsReserved.size() && regsReserved.test(Reg);
217     }
218 
219     bool isAllocatable(unsigned Reg) const {
220       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221         !regsReserved.test(Reg);
222     }
223 
224     // Analysis information if available
225     LiveVariables *LiveVars;
226     LiveIntervals *LiveInts;
227     LiveStacks *LiveStks;
228     SlotIndexes *Indexes;
229 
230     void visitMachineFunctionBefore();
231     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232     void visitMachineBundleBefore(const MachineInstr *MI);
233     void visitMachineInstrBefore(const MachineInstr *MI);
234     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
235     void visitMachineInstrAfter(const MachineInstr *MI);
236     void visitMachineBundleAfter(const MachineInstr *MI);
237     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
238     void visitMachineFunctionAfter();
239 
240     void report(const char *msg, const MachineFunction *MF);
241     void report(const char *msg, const MachineBasicBlock *MBB);
242     void report(const char *msg, const MachineInstr *MI);
243     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
244                 LLT MOVRegType = LLT{});
245 
246     void report_context(const LiveInterval &LI) const;
247     void report_context(const LiveRange &LR, unsigned VRegUnit,
248                         LaneBitmask LaneMask) const;
249     void report_context(const LiveRange::Segment &S) const;
250     void report_context(const VNInfo &VNI) const;
251     void report_context(SlotIndex Pos) const;
252     void report_context(MCPhysReg PhysReg) const;
253     void report_context_liverange(const LiveRange &LR) const;
254     void report_context_lanemask(LaneBitmask LaneMask) const;
255     void report_context_vreg(unsigned VReg) const;
256     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
257 
258     void verifyInlineAsm(const MachineInstr *MI);
259 
260     void checkLiveness(const MachineOperand *MO, unsigned MONum);
261     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
262                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
263                             LaneBitmask LaneMask = LaneBitmask::getNone());
264     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
265                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                             bool SubRangeCheck = false,
267                             LaneBitmask LaneMask = LaneBitmask::getNone());
268 
269     void markReachable(const MachineBasicBlock *MBB);
270     void calcRegsPassed();
271     void checkPHIOps(const MachineBasicBlock &MBB);
272 
273     void calcRegsRequired();
274     void verifyLiveVariables();
275     void verifyLiveIntervals();
276     void verifyLiveInterval(const LiveInterval&);
277     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
278                               LaneBitmask);
279     void verifyLiveRangeSegment(const LiveRange&,
280                                 const LiveRange::const_iterator I, unsigned,
281                                 LaneBitmask);
282     void verifyLiveRange(const LiveRange&, unsigned,
283                          LaneBitmask LaneMask = LaneBitmask::getNone());
284 
285     void verifyStackFrame();
286 
287     void verifySlotIndexes() const;
288     void verifyProperties(const MachineFunction &MF);
289   };
290 
291   struct MachineVerifierPass : public MachineFunctionPass {
292     static char ID; // Pass ID, replacement for typeid
293 
294     const std::string Banner;
295 
296     MachineVerifierPass(std::string banner = std::string())
297       : MachineFunctionPass(ID), Banner(std::move(banner)) {
298         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
299       }
300 
301     void getAnalysisUsage(AnalysisUsage &AU) const override {
302       AU.setPreservesAll();
303       MachineFunctionPass::getAnalysisUsage(AU);
304     }
305 
306     bool runOnMachineFunction(MachineFunction &MF) override {
307       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
308       if (FoundErrors)
309         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
310       return false;
311     }
312   };
313 
314 } // end anonymous namespace
315 
316 char MachineVerifierPass::ID = 0;
317 
318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
319                 "Verify generated machine code", false, false)
320 
321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
322   return new MachineVerifierPass(Banner);
323 }
324 
325 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
326     const {
327   MachineFunction &MF = const_cast<MachineFunction&>(*this);
328   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
329   if (AbortOnErrors && FoundErrors)
330     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
331   return FoundErrors == 0;
332 }
333 
334 void MachineVerifier::verifySlotIndexes() const {
335   if (Indexes == nullptr)
336     return;
337 
338   // Ensure the IdxMBB list is sorted by slot indexes.
339   SlotIndex Last;
340   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
341        E = Indexes->MBBIndexEnd(); I != E; ++I) {
342     assert(!Last.isValid() || I->first > Last);
343     Last = I->first;
344   }
345 }
346 
347 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
348   // If a pass has introduced virtual registers without clearing the
349   // NoVRegs property (or set it without allocating the vregs)
350   // then report an error.
351   if (MF.getProperties().hasProperty(
352           MachineFunctionProperties::Property::NoVRegs) &&
353       MRI->getNumVirtRegs())
354     report("Function has NoVRegs property but there are VReg operands", &MF);
355 }
356 
357 unsigned MachineVerifier::verify(MachineFunction &MF) {
358   foundErrors = 0;
359 
360   this->MF = &MF;
361   TM = &MF.getTarget();
362   TII = MF.getSubtarget().getInstrInfo();
363   TRI = MF.getSubtarget().getRegisterInfo();
364   MRI = &MF.getRegInfo();
365 
366   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
367       MachineFunctionProperties::Property::FailedISel);
368 
369   // If we're mid-GlobalISel and we already triggered the fallback path then
370   // it's expected that the MIR is somewhat broken but that's ok since we'll
371   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
372   if (isFunctionFailedISel)
373     return foundErrors;
374 
375   isFunctionRegBankSelected =
376       !isFunctionFailedISel &&
377       MF.getProperties().hasProperty(
378           MachineFunctionProperties::Property::RegBankSelected);
379   isFunctionSelected = !isFunctionFailedISel &&
380                        MF.getProperties().hasProperty(
381                            MachineFunctionProperties::Property::Selected);
382   LiveVars = nullptr;
383   LiveInts = nullptr;
384   LiveStks = nullptr;
385   Indexes = nullptr;
386   if (PASS) {
387     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
388     // We don't want to verify LiveVariables if LiveIntervals is available.
389     if (!LiveInts)
390       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
391     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
392     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
393   }
394 
395   verifySlotIndexes();
396 
397   verifyProperties(MF);
398 
399   visitMachineFunctionBefore();
400   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
401        MFI!=MFE; ++MFI) {
402     visitMachineBasicBlockBefore(&*MFI);
403     // Keep track of the current bundle header.
404     const MachineInstr *CurBundle = nullptr;
405     // Do we expect the next instruction to be part of the same bundle?
406     bool InBundle = false;
407 
408     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
409            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
410       if (MBBI->getParent() != &*MFI) {
411         report("Bad instruction parent pointer", &*MFI);
412         errs() << "Instruction: " << *MBBI;
413         continue;
414       }
415 
416       // Check for consistent bundle flags.
417       if (InBundle && !MBBI->isBundledWithPred())
418         report("Missing BundledPred flag, "
419                "BundledSucc was set on predecessor",
420                &*MBBI);
421       if (!InBundle && MBBI->isBundledWithPred())
422         report("BundledPred flag is set, "
423                "but BundledSucc not set on predecessor",
424                &*MBBI);
425 
426       // Is this a bundle header?
427       if (!MBBI->isInsideBundle()) {
428         if (CurBundle)
429           visitMachineBundleAfter(CurBundle);
430         CurBundle = &*MBBI;
431         visitMachineBundleBefore(CurBundle);
432       } else if (!CurBundle)
433         report("No bundle header", &*MBBI);
434       visitMachineInstrBefore(&*MBBI);
435       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
436         const MachineInstr &MI = *MBBI;
437         const MachineOperand &Op = MI.getOperand(I);
438         if (Op.getParent() != &MI) {
439           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
440           // functions when replacing operands of a MachineInstr.
441           report("Instruction has operand with wrong parent set", &MI);
442         }
443 
444         visitMachineOperand(&Op, I);
445       }
446 
447       visitMachineInstrAfter(&*MBBI);
448 
449       // Was this the last bundled instruction?
450       InBundle = MBBI->isBundledWithSucc();
451     }
452     if (CurBundle)
453       visitMachineBundleAfter(CurBundle);
454     if (InBundle)
455       report("BundledSucc flag set on last instruction in block", &MFI->back());
456     visitMachineBasicBlockAfter(&*MFI);
457   }
458   visitMachineFunctionAfter();
459 
460   // Clean up.
461   regsLive.clear();
462   regsDefined.clear();
463   regsDead.clear();
464   regsKilled.clear();
465   regMasks.clear();
466   MBBInfoMap.clear();
467 
468   return foundErrors;
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
472   assert(MF);
473   errs() << '\n';
474   if (!foundErrors++) {
475     if (Banner)
476       errs() << "# " << Banner << '\n';
477     if (LiveInts != nullptr)
478       LiveInts->print(errs());
479     else
480       MF->print(errs(), Indexes);
481   }
482   errs() << "*** Bad machine code: " << msg << " ***\n"
483       << "- function:    " << MF->getName() << "\n";
484 }
485 
486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
487   assert(MBB);
488   report(msg, MBB->getParent());
489   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
490          << MBB->getName() << " (" << (const void *)MBB << ')';
491   if (Indexes)
492     errs() << " [" << Indexes->getMBBStartIdx(MBB)
493         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
494   errs() << '\n';
495 }
496 
497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
498   assert(MI);
499   report(msg, MI->getParent());
500   errs() << "- instruction: ";
501   if (Indexes && Indexes->hasIndex(*MI))
502     errs() << Indexes->getInstructionIndex(*MI) << '\t';
503   MI->print(errs(), /*SkipOpers=*/true);
504 }
505 
506 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
507                              unsigned MONum, LLT MOVRegType) {
508   assert(MO);
509   report(msg, MO->getParent());
510   errs() << "- operand " << MONum << ":   ";
511   MO->print(errs(), MOVRegType, TRI);
512   errs() << "\n";
513 }
514 
515 void MachineVerifier::report_context(SlotIndex Pos) const {
516   errs() << "- at:          " << Pos << '\n';
517 }
518 
519 void MachineVerifier::report_context(const LiveInterval &LI) const {
520   errs() << "- interval:    " << LI << '\n';
521 }
522 
523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
524                                      LaneBitmask LaneMask) const {
525   report_context_liverange(LR);
526   report_context_vreg_regunit(VRegUnit);
527   if (LaneMask.any())
528     report_context_lanemask(LaneMask);
529 }
530 
531 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
532   errs() << "- segment:     " << S << '\n';
533 }
534 
535 void MachineVerifier::report_context(const VNInfo &VNI) const {
536   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
537 }
538 
539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
540   errs() << "- liverange:   " << LR << '\n';
541 }
542 
543 void MachineVerifier::report_context(MCPhysReg PReg) const {
544   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
545 }
546 
547 void MachineVerifier::report_context_vreg(unsigned VReg) const {
548   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
549 }
550 
551 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
552   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
553     report_context_vreg(VRegOrUnit);
554   } else {
555     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
556   }
557 }
558 
559 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
560   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
561 }
562 
563 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
564   BBInfo &MInfo = MBBInfoMap[MBB];
565   if (!MInfo.reachable) {
566     MInfo.reachable = true;
567     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
568            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
569       markReachable(*SuI);
570   }
571 }
572 
573 void MachineVerifier::visitMachineFunctionBefore() {
574   lastIndex = SlotIndex();
575   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
576                                            : TRI->getReservedRegs(*MF);
577 
578   if (!MF->empty())
579     markReachable(&MF->front());
580 
581   // Build a set of the basic blocks in the function.
582   FunctionBlocks.clear();
583   for (const auto &MBB : *MF) {
584     FunctionBlocks.insert(&MBB);
585     BBInfo &MInfo = MBBInfoMap[&MBB];
586 
587     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
588     if (MInfo.Preds.size() != MBB.pred_size())
589       report("MBB has duplicate entries in its predecessor list.", &MBB);
590 
591     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
592     if (MInfo.Succs.size() != MBB.succ_size())
593       report("MBB has duplicate entries in its successor list.", &MBB);
594   }
595 
596   // Check that the register use lists are sane.
597   MRI->verifyUseLists();
598 
599   if (!MF->empty())
600     verifyStackFrame();
601 }
602 
603 // Does iterator point to a and b as the first two elements?
604 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
605                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
606   if (*i == a)
607     return *++i == b;
608   if (*i == b)
609     return *++i == a;
610   return false;
611 }
612 
613 void
614 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
615   FirstTerminator = nullptr;
616   FirstNonPHI = nullptr;
617 
618   if (!MF->getProperties().hasProperty(
619       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
620     // If this block has allocatable physical registers live-in, check that
621     // it is an entry block or landing pad.
622     for (const auto &LI : MBB->liveins()) {
623       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
624           MBB->getIterator() != MBB->getParent()->begin()) {
625         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
626         report_context(LI.PhysReg);
627       }
628     }
629   }
630 
631   // Count the number of landing pad successors.
632   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
633   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
634        E = MBB->succ_end(); I != E; ++I) {
635     if ((*I)->isEHPad())
636       LandingPadSuccs.insert(*I);
637     if (!FunctionBlocks.count(*I))
638       report("MBB has successor that isn't part of the function.", MBB);
639     if (!MBBInfoMap[*I].Preds.count(MBB)) {
640       report("Inconsistent CFG", MBB);
641       errs() << "MBB is not in the predecessor list of the successor "
642              << printMBBReference(*(*I)) << ".\n";
643     }
644   }
645 
646   // Check the predecessor list.
647   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
648        E = MBB->pred_end(); I != E; ++I) {
649     if (!FunctionBlocks.count(*I))
650       report("MBB has predecessor that isn't part of the function.", MBB);
651     if (!MBBInfoMap[*I].Succs.count(MBB)) {
652       report("Inconsistent CFG", MBB);
653       errs() << "MBB is not in the successor list of the predecessor "
654              << printMBBReference(*(*I)) << ".\n";
655     }
656   }
657 
658   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
659   const BasicBlock *BB = MBB->getBasicBlock();
660   const Function &F = MF->getFunction();
661   if (LandingPadSuccs.size() > 1 &&
662       !(AsmInfo &&
663         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
664         BB && isa<SwitchInst>(BB->getTerminator())) &&
665       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
666     report("MBB has more than one landing pad successor", MBB);
667 
668   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
669   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
670   SmallVector<MachineOperand, 4> Cond;
671   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
672                           Cond)) {
673     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
674     // check whether its answers match up with reality.
675     if (!TBB && !FBB) {
676       // Block falls through to its successor.
677       MachineFunction::const_iterator MBBI = MBB->getIterator();
678       ++MBBI;
679       if (MBBI == MF->end()) {
680         // It's possible that the block legitimately ends with a noreturn
681         // call or an unreachable, in which case it won't actually fall
682         // out the bottom of the function.
683       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
684         // It's possible that the block legitimately ends with a noreturn
685         // call or an unreachable, in which case it won't actually fall
686         // out of the block.
687       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
688         report("MBB exits via unconditional fall-through but doesn't have "
689                "exactly one CFG successor!", MBB);
690       } else if (!MBB->isSuccessor(&*MBBI)) {
691         report("MBB exits via unconditional fall-through but its successor "
692                "differs from its CFG successor!", MBB);
693       }
694       if (!MBB->empty() && MBB->back().isBarrier() &&
695           !TII->isPredicated(MBB->back())) {
696         report("MBB exits via unconditional fall-through but ends with a "
697                "barrier instruction!", MBB);
698       }
699       if (!Cond.empty()) {
700         report("MBB exits via unconditional fall-through but has a condition!",
701                MBB);
702       }
703     } else if (TBB && !FBB && Cond.empty()) {
704       // Block unconditionally branches somewhere.
705       // If the block has exactly one successor, that happens to be a
706       // landingpad, accept it as valid control flow.
707       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
708           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
709            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
710         report("MBB exits via unconditional branch but doesn't have "
711                "exactly one CFG successor!", MBB);
712       } else if (!MBB->isSuccessor(TBB)) {
713         report("MBB exits via unconditional branch but the CFG "
714                "successor doesn't match the actual successor!", MBB);
715       }
716       if (MBB->empty()) {
717         report("MBB exits via unconditional branch but doesn't contain "
718                "any instructions!", MBB);
719       } else if (!MBB->back().isBarrier()) {
720         report("MBB exits via unconditional branch but doesn't end with a "
721                "barrier instruction!", MBB);
722       } else if (!MBB->back().isTerminator()) {
723         report("MBB exits via unconditional branch but the branch isn't a "
724                "terminator instruction!", MBB);
725       }
726     } else if (TBB && !FBB && !Cond.empty()) {
727       // Block conditionally branches somewhere, otherwise falls through.
728       MachineFunction::const_iterator MBBI = MBB->getIterator();
729       ++MBBI;
730       if (MBBI == MF->end()) {
731         report("MBB conditionally falls through out of function!", MBB);
732       } else if (MBB->succ_size() == 1) {
733         // A conditional branch with only one successor is weird, but allowed.
734         if (&*MBBI != TBB)
735           report("MBB exits via conditional branch/fall-through but only has "
736                  "one CFG successor!", MBB);
737         else if (TBB != *MBB->succ_begin())
738           report("MBB exits via conditional branch/fall-through but the CFG "
739                  "successor don't match the actual successor!", MBB);
740       } else if (MBB->succ_size() != 2) {
741         report("MBB exits via conditional branch/fall-through but doesn't have "
742                "exactly two CFG successors!", MBB);
743       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
744         report("MBB exits via conditional branch/fall-through but the CFG "
745                "successors don't match the actual successors!", MBB);
746       }
747       if (MBB->empty()) {
748         report("MBB exits via conditional branch/fall-through but doesn't "
749                "contain any instructions!", MBB);
750       } else if (MBB->back().isBarrier()) {
751         report("MBB exits via conditional branch/fall-through but ends with a "
752                "barrier instruction!", MBB);
753       } else if (!MBB->back().isTerminator()) {
754         report("MBB exits via conditional branch/fall-through but the branch "
755                "isn't a terminator instruction!", MBB);
756       }
757     } else if (TBB && FBB) {
758       // Block conditionally branches somewhere, otherwise branches
759       // somewhere else.
760       if (MBB->succ_size() == 1) {
761         // A conditional branch with only one successor is weird, but allowed.
762         if (FBB != TBB)
763           report("MBB exits via conditional branch/branch through but only has "
764                  "one CFG successor!", MBB);
765         else if (TBB != *MBB->succ_begin())
766           report("MBB exits via conditional branch/branch through but the CFG "
767                  "successor don't match the actual successor!", MBB);
768       } else if (MBB->succ_size() != 2) {
769         report("MBB exits via conditional branch/branch but doesn't have "
770                "exactly two CFG successors!", MBB);
771       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
772         report("MBB exits via conditional branch/branch but the CFG "
773                "successors don't match the actual successors!", MBB);
774       }
775       if (MBB->empty()) {
776         report("MBB exits via conditional branch/branch but doesn't "
777                "contain any instructions!", MBB);
778       } else if (!MBB->back().isBarrier()) {
779         report("MBB exits via conditional branch/branch but doesn't end with a "
780                "barrier instruction!", MBB);
781       } else if (!MBB->back().isTerminator()) {
782         report("MBB exits via conditional branch/branch but the branch "
783                "isn't a terminator instruction!", MBB);
784       }
785       if (Cond.empty()) {
786         report("MBB exits via conditional branch/branch but there's no "
787                "condition!", MBB);
788       }
789     } else {
790       report("AnalyzeBranch returned invalid data!", MBB);
791     }
792   }
793 
794   regsLive.clear();
795   if (MRI->tracksLiveness()) {
796     for (const auto &LI : MBB->liveins()) {
797       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
798         report("MBB live-in list contains non-physical register", MBB);
799         continue;
800       }
801       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
802            SubRegs.isValid(); ++SubRegs)
803         regsLive.insert(*SubRegs);
804     }
805   }
806 
807   const MachineFrameInfo &MFI = MF->getFrameInfo();
808   BitVector PR = MFI.getPristineRegs(*MF);
809   for (unsigned I : PR.set_bits()) {
810     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
811          SubRegs.isValid(); ++SubRegs)
812       regsLive.insert(*SubRegs);
813   }
814 
815   regsKilled.clear();
816   regsDefined.clear();
817 
818   if (Indexes)
819     lastIndex = Indexes->getMBBStartIdx(MBB);
820 }
821 
822 // This function gets called for all bundle headers, including normal
823 // stand-alone unbundled instructions.
824 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
825   if (Indexes && Indexes->hasIndex(*MI)) {
826     SlotIndex idx = Indexes->getInstructionIndex(*MI);
827     if (!(idx > lastIndex)) {
828       report("Instruction index out of order", MI);
829       errs() << "Last instruction was at " << lastIndex << '\n';
830     }
831     lastIndex = idx;
832   }
833 
834   // Ensure non-terminators don't follow terminators.
835   // Ignore predicated terminators formed by if conversion.
836   // FIXME: If conversion shouldn't need to violate this rule.
837   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
838     if (!FirstTerminator)
839       FirstTerminator = MI;
840   } else if (FirstTerminator) {
841     report("Non-terminator instruction after the first terminator", MI);
842     errs() << "First terminator was:\t" << *FirstTerminator;
843   }
844 }
845 
846 // The operands on an INLINEASM instruction must follow a template.
847 // Verify that the flag operands make sense.
848 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
849   // The first two operands on INLINEASM are the asm string and global flags.
850   if (MI->getNumOperands() < 2) {
851     report("Too few operands on inline asm", MI);
852     return;
853   }
854   if (!MI->getOperand(0).isSymbol())
855     report("Asm string must be an external symbol", MI);
856   if (!MI->getOperand(1).isImm())
857     report("Asm flags must be an immediate", MI);
858   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
859   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
860   // and Extra_IsConvergent = 32.
861   if (!isUInt<6>(MI->getOperand(1).getImm()))
862     report("Unknown asm flags", &MI->getOperand(1), 1);
863 
864   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
865 
866   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
867   unsigned NumOps;
868   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
869     const MachineOperand &MO = MI->getOperand(OpNo);
870     // There may be implicit ops after the fixed operands.
871     if (!MO.isImm())
872       break;
873     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
874   }
875 
876   if (OpNo > MI->getNumOperands())
877     report("Missing operands in last group", MI);
878 
879   // An optional MDNode follows the groups.
880   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
881     ++OpNo;
882 
883   // All trailing operands must be implicit registers.
884   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
885     const MachineOperand &MO = MI->getOperand(OpNo);
886     if (!MO.isReg() || !MO.isImplicit())
887       report("Expected implicit register after groups", &MO, OpNo);
888   }
889 }
890 
891 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
892   const MCInstrDesc &MCID = MI->getDesc();
893   if (MI->getNumOperands() < MCID.getNumOperands()) {
894     report("Too few operands", MI);
895     errs() << MCID.getNumOperands() << " operands expected, but "
896            << MI->getNumOperands() << " given.\n";
897   }
898 
899   if (MI->isPHI()) {
900     if (MF->getProperties().hasProperty(
901             MachineFunctionProperties::Property::NoPHIs))
902       report("Found PHI instruction with NoPHIs property set", MI);
903 
904     if (FirstNonPHI)
905       report("Found PHI instruction after non-PHI", MI);
906   } else if (FirstNonPHI == nullptr)
907     FirstNonPHI = MI;
908 
909   // Check the tied operands.
910   if (MI->isInlineAsm())
911     verifyInlineAsm(MI);
912 
913   // Check the MachineMemOperands for basic consistency.
914   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
915                                   E = MI->memoperands_end();
916        I != E; ++I) {
917     if ((*I)->isLoad() && !MI->mayLoad())
918       report("Missing mayLoad flag", MI);
919     if ((*I)->isStore() && !MI->mayStore())
920       report("Missing mayStore flag", MI);
921   }
922 
923   // Debug values must not have a slot index.
924   // Other instructions must have one, unless they are inside a bundle.
925   if (LiveInts) {
926     bool mapped = !LiveInts->isNotInMIMap(*MI);
927     if (MI->isDebugInstr()) {
928       if (mapped)
929         report("Debug instruction has a slot index", MI);
930     } else if (MI->isInsideBundle()) {
931       if (mapped)
932         report("Instruction inside bundle has a slot index", MI);
933     } else {
934       if (!mapped)
935         report("Missing slot index", MI);
936     }
937   }
938 
939   if (isPreISelGenericOpcode(MCID.getOpcode())) {
940     if (isFunctionSelected)
941       report("Unexpected generic instruction in a Selected function", MI);
942 
943     unsigned NumOps = MI->getNumOperands();
944 
945     // Check types.
946     SmallVector<LLT, 4> Types;
947     for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
948          I != E; ++I) {
949       if (!MCID.OpInfo[I].isGenericType())
950         continue;
951       // Generic instructions specify type equality constraints between some of
952       // their operands. Make sure these are consistent.
953       size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
954       Types.resize(std::max(TypeIdx + 1, Types.size()));
955 
956       const MachineOperand *MO = &MI->getOperand(I);
957       LLT OpTy = MRI->getType(MO->getReg());
958       // Don't report a type mismatch if there is no actual mismatch, only a
959       // type missing, to reduce noise:
960       if (OpTy.isValid()) {
961         // Only the first valid type for a type index will be printed: don't
962         // overwrite it later so it's always clear which type was expected:
963         if (!Types[TypeIdx].isValid())
964           Types[TypeIdx] = OpTy;
965         else if (Types[TypeIdx] != OpTy)
966           report("Type mismatch in generic instruction", MO, I, OpTy);
967       } else {
968         // Generic instructions must have types attached to their operands.
969         report("Generic instruction is missing a virtual register type", MO, I);
970       }
971     }
972 
973     // Generic opcodes must not have physical register operands.
974     for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
975       const MachineOperand *MO = &MI->getOperand(I);
976       if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
977         report("Generic instruction cannot have physical register", MO, I);
978     }
979 
980     // Avoid out of bounds in checks below. This was already reported earlier.
981     if (MI->getNumOperands() < MCID.getNumOperands())
982       return;
983   }
984 
985   StringRef ErrorInfo;
986   if (!TII->verifyInstruction(*MI, ErrorInfo))
987     report(ErrorInfo.data(), MI);
988 
989   // Verify properties of various specific instruction types
990   switch(MI->getOpcode()) {
991   default:
992     break;
993   case TargetOpcode::G_CONSTANT:
994   case TargetOpcode::G_FCONSTANT: {
995     if (MI->getNumOperands() < MCID.getNumOperands())
996       break;
997 
998     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
999     if (DstTy.isVector())
1000       report("Instruction cannot use a vector result type", MI);
1001     break;
1002   }
1003   case TargetOpcode::G_LOAD:
1004   case TargetOpcode::G_STORE:
1005   case TargetOpcode::G_ZEXTLOAD:
1006   case TargetOpcode::G_SEXTLOAD: {
1007     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1008     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1009     if (!PtrTy.isPointer())
1010       report("Generic memory instruction must access a pointer", MI);
1011 
1012     // Generic loads and stores must have a single MachineMemOperand
1013     // describing that access.
1014     if (!MI->hasOneMemOperand()) {
1015       report("Generic instruction accessing memory must have one mem operand",
1016              MI);
1017     } else {
1018       const MachineMemOperand &MMO = **MI->memoperands_begin();
1019       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1020           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1021         if (MMO.getSize() * 8 >= ValTy.getSizeInBits())
1022           report("Generic extload must have a narrower memory type", MI);
1023       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1024         if (MMO.getSize() > (ValTy.getSizeInBits() + 7) / 8)
1025           report("load memory size cannot exceed result size", MI);
1026       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1027         if ((ValTy.getSizeInBits() + 7) / 8 < MMO.getSize())
1028           report("store memory size cannot exceed value size", MI);
1029       }
1030     }
1031 
1032     break;
1033   }
1034   case TargetOpcode::G_PHI: {
1035     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1036     if (!DstTy.isValid() ||
1037         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1038                      [this, &DstTy](const MachineOperand &MO) {
1039                        if (!MO.isReg())
1040                          return true;
1041                        LLT Ty = MRI->getType(MO.getReg());
1042                        if (!Ty.isValid() || (Ty != DstTy))
1043                          return false;
1044                        return true;
1045                      }))
1046       report("Generic Instruction G_PHI has operands with incompatible/missing "
1047              "types",
1048              MI);
1049     break;
1050   }
1051   case TargetOpcode::G_BITCAST: {
1052     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1053     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1054     if (!DstTy.isValid() || !SrcTy.isValid())
1055       break;
1056 
1057     if (SrcTy.isPointer() != DstTy.isPointer())
1058       report("bitcast cannot convert between pointers and other types", MI);
1059 
1060     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1061       report("bitcast sizes must match", MI);
1062     break;
1063   }
1064   case TargetOpcode::G_INTTOPTR:
1065   case TargetOpcode::G_PTRTOINT:
1066   case TargetOpcode::G_ADDRSPACE_CAST: {
1067     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1068     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1069     if (!DstTy.isValid() || !SrcTy.isValid())
1070       break;
1071 
1072     if (DstTy.isVector() != SrcTy.isVector())
1073       report("pointer casts must be all-vector or all-scalar", MI);
1074     else {
1075       if (DstTy.isVector() ) {
1076         if (DstTy.getNumElements() != SrcTy.getNumElements()) {
1077           report("pointer casts must preserve number of elements", MI);
1078           break;
1079         }
1080       }
1081     }
1082 
1083     DstTy = DstTy.getScalarType();
1084     SrcTy = SrcTy.getScalarType();
1085 
1086     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1087       if (!DstTy.isPointer())
1088         report("inttoptr result type must be a pointer", MI);
1089       if (SrcTy.isPointer())
1090         report("inttoptr source type must not be a pointer", MI);
1091     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1092       if (!SrcTy.isPointer())
1093         report("ptrtoint source type must be a pointer", MI);
1094       if (DstTy.isPointer())
1095         report("ptrtoint result type must not be a pointer", MI);
1096     } else {
1097       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1098       if (!SrcTy.isPointer() || !DstTy.isPointer())
1099         report("addrspacecast types must be pointers", MI);
1100       else {
1101         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1102           report("addrspacecast must convert different address spaces", MI);
1103       }
1104     }
1105 
1106     break;
1107   }
1108   case TargetOpcode::G_SEXT:
1109   case TargetOpcode::G_ZEXT:
1110   case TargetOpcode::G_ANYEXT:
1111   case TargetOpcode::G_TRUNC:
1112   case TargetOpcode::G_FPEXT:
1113   case TargetOpcode::G_FPTRUNC: {
1114     // Number of operands and presense of types is already checked (and
1115     // reported in case of any issues), so no need to report them again. As
1116     // we're trying to report as many issues as possible at once, however, the
1117     // instructions aren't guaranteed to have the right number of operands or
1118     // types attached to them at this point
1119     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1120     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1121     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1122     if (!DstTy.isValid() || !SrcTy.isValid())
1123       break;
1124 
1125     LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy;
1126     LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
1127     if (DstElTy.isPointer() || SrcElTy.isPointer())
1128       report("Generic extend/truncate can not operate on pointers", MI);
1129 
1130     if (DstTy.isVector() != SrcTy.isVector()) {
1131       report("Generic extend/truncate must be all-vector or all-scalar", MI);
1132       // Generally we try to report as many issues as possible at once, but in
1133       // this case it's not clear what should we be comparing the size of the
1134       // scalar with: the size of the whole vector or its lane. Instead of
1135       // making an arbitrary choice and emitting not so helpful message, let's
1136       // avoid the extra noise and stop here.
1137       break;
1138     }
1139     if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())
1140       report("Generic vector extend/truncate must preserve number of lanes",
1141              MI);
1142     unsigned DstSize = DstElTy.getSizeInBits();
1143     unsigned SrcSize = SrcElTy.getSizeInBits();
1144     switch (MI->getOpcode()) {
1145     default:
1146       if (DstSize <= SrcSize)
1147         report("Generic extend has destination type no larger than source", MI);
1148       break;
1149     case TargetOpcode::G_TRUNC:
1150     case TargetOpcode::G_FPTRUNC:
1151       if (DstSize >= SrcSize)
1152         report("Generic truncate has destination type no smaller than source",
1153                MI);
1154       break;
1155     }
1156     break;
1157   }
1158   case TargetOpcode::G_MERGE_VALUES: {
1159     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1160     // e.g. s2N = MERGE sN, sN
1161     // Merging multiple scalars into a vector is not allowed, should use
1162     // G_BUILD_VECTOR for that.
1163     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1164     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1165     if (DstTy.isVector() || SrcTy.isVector())
1166       report("G_MERGE_VALUES cannot operate on vectors", MI);
1167     break;
1168   }
1169   case TargetOpcode::G_UNMERGE_VALUES: {
1170     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1171     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1172     // For now G_UNMERGE can split vectors.
1173     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1174       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1175         report("G_UNMERGE_VALUES destination types do not match", MI);
1176     }
1177     if (SrcTy.getSizeInBits() !=
1178         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1179       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1180              MI);
1181     }
1182     break;
1183   }
1184   case TargetOpcode::G_BUILD_VECTOR: {
1185     // Source types must be scalars, dest type a vector. Total size of scalars
1186     // must match the dest vector size.
1187     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1188     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1189     if (!DstTy.isVector() || SrcEltTy.isVector())
1190       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1191     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1192       if (MRI->getType(MI->getOperand(1).getReg()) !=
1193           MRI->getType(MI->getOperand(i).getReg()))
1194         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1195     }
1196     if (DstTy.getSizeInBits() !=
1197         SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1))
1198       report("G_BUILD_VECTOR src operands total size don't match dest "
1199              "size.",
1200              MI);
1201     break;
1202   }
1203   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1204     // Source types must be scalars, dest type a vector. Scalar types must be
1205     // larger than the dest vector elt type, as this is a truncating operation.
1206     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1207     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1208     if (!DstTy.isVector() || SrcEltTy.isVector())
1209       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1210              MI);
1211     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1212       if (MRI->getType(MI->getOperand(1).getReg()) !=
1213           MRI->getType(MI->getOperand(i).getReg()))
1214         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1215                MI);
1216     }
1217     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1218       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1219              "dest elt type",
1220              MI);
1221     break;
1222   }
1223   case TargetOpcode::G_CONCAT_VECTORS: {
1224     // Source types should be vectors, and total size should match the dest
1225     // vector size.
1226     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1227     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1228     if (!DstTy.isVector() || !SrcTy.isVector())
1229       report("G_CONCAT_VECTOR requires vector source and destination operands",
1230              MI);
1231     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1232       if (MRI->getType(MI->getOperand(1).getReg()) !=
1233           MRI->getType(MI->getOperand(i).getReg()))
1234         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1235     }
1236     if (DstTy.getNumElements() !=
1237         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1238       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1239     break;
1240   }
1241   case TargetOpcode::COPY: {
1242     if (foundErrors)
1243       break;
1244     const MachineOperand &DstOp = MI->getOperand(0);
1245     const MachineOperand &SrcOp = MI->getOperand(1);
1246     LLT DstTy = MRI->getType(DstOp.getReg());
1247     LLT SrcTy = MRI->getType(SrcOp.getReg());
1248     if (SrcTy.isValid() && DstTy.isValid()) {
1249       // If both types are valid, check that the types are the same.
1250       if (SrcTy != DstTy) {
1251         report("Copy Instruction is illegal with mismatching types", MI);
1252         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1253       }
1254     }
1255     if (SrcTy.isValid() || DstTy.isValid()) {
1256       // If one of them have valid types, let's just check they have the same
1257       // size.
1258       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1259       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1260       assert(SrcSize && "Expecting size here");
1261       assert(DstSize && "Expecting size here");
1262       if (SrcSize != DstSize)
1263         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1264           report("Copy Instruction is illegal with mismatching sizes", MI);
1265           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1266                  << "\n";
1267         }
1268     }
1269     break;
1270   }
1271   case TargetOpcode::G_ICMP:
1272   case TargetOpcode::G_FCMP: {
1273     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1274     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1275 
1276     if ((DstTy.isVector() != SrcTy.isVector()) ||
1277         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1278       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1279 
1280     break;
1281   }
1282   case TargetOpcode::STATEPOINT:
1283     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1284         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1285         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1286       report("meta operands to STATEPOINT not constant!", MI);
1287     break;
1288 
1289     auto VerifyStackMapConstant = [&](unsigned Offset) {
1290       if (!MI->getOperand(Offset).isImm() ||
1291           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1292           !MI->getOperand(Offset + 1).isImm())
1293         report("stack map constant to STATEPOINT not well formed!", MI);
1294     };
1295     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1296     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1297     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1298     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1299 
1300     // TODO: verify we have properly encoded deopt arguments
1301   };
1302 }
1303 
1304 void
1305 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1306   const MachineInstr *MI = MO->getParent();
1307   const MCInstrDesc &MCID = MI->getDesc();
1308   unsigned NumDefs = MCID.getNumDefs();
1309   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1310     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1311 
1312   // The first MCID.NumDefs operands must be explicit register defines
1313   if (MONum < NumDefs) {
1314     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1315     if (!MO->isReg())
1316       report("Explicit definition must be a register", MO, MONum);
1317     else if (!MO->isDef() && !MCOI.isOptionalDef())
1318       report("Explicit definition marked as use", MO, MONum);
1319     else if (MO->isImplicit())
1320       report("Explicit definition marked as implicit", MO, MONum);
1321   } else if (MONum < MCID.getNumOperands()) {
1322     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1323     // Don't check if it's the last operand in a variadic instruction. See,
1324     // e.g., LDM_RET in the arm back end.
1325     if (MO->isReg() &&
1326         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1327       if (MO->isDef() && !MCOI.isOptionalDef())
1328         report("Explicit operand marked as def", MO, MONum);
1329       if (MO->isImplicit())
1330         report("Explicit operand marked as implicit", MO, MONum);
1331     }
1332 
1333     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1334     if (TiedTo != -1) {
1335       if (!MO->isReg())
1336         report("Tied use must be a register", MO, MONum);
1337       else if (!MO->isTied())
1338         report("Operand should be tied", MO, MONum);
1339       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1340         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1341       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1342         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1343         if (!MOTied.isReg())
1344           report("Tied counterpart must be a register", &MOTied, TiedTo);
1345         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1346                  MO->getReg() != MOTied.getReg())
1347           report("Tied physical registers must match.", &MOTied, TiedTo);
1348       }
1349     } else if (MO->isReg() && MO->isTied())
1350       report("Explicit operand should not be tied", MO, MONum);
1351   } else {
1352     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1353     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1354       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1355   }
1356 
1357   switch (MO->getType()) {
1358   case MachineOperand::MO_Register: {
1359     const unsigned Reg = MO->getReg();
1360     if (!Reg)
1361       return;
1362     if (MRI->tracksLiveness() && !MI->isDebugValue())
1363       checkLiveness(MO, MONum);
1364 
1365     // Verify the consistency of tied operands.
1366     if (MO->isTied()) {
1367       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1368       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1369       if (!OtherMO.isReg())
1370         report("Must be tied to a register", MO, MONum);
1371       if (!OtherMO.isTied())
1372         report("Missing tie flags on tied operand", MO, MONum);
1373       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1374         report("Inconsistent tie links", MO, MONum);
1375       if (MONum < MCID.getNumDefs()) {
1376         if (OtherIdx < MCID.getNumOperands()) {
1377           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1378             report("Explicit def tied to explicit use without tie constraint",
1379                    MO, MONum);
1380         } else {
1381           if (!OtherMO.isImplicit())
1382             report("Explicit def should be tied to implicit use", MO, MONum);
1383         }
1384       }
1385     }
1386 
1387     // Verify two-address constraints after leaving SSA form.
1388     unsigned DefIdx;
1389     if (!MRI->isSSA() && MO->isUse() &&
1390         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1391         Reg != MI->getOperand(DefIdx).getReg())
1392       report("Two-address instruction operands must be identical", MO, MONum);
1393 
1394     // Check register classes.
1395     unsigned SubIdx = MO->getSubReg();
1396 
1397     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1398       if (SubIdx) {
1399         report("Illegal subregister index for physical register", MO, MONum);
1400         return;
1401       }
1402       if (MONum < MCID.getNumOperands()) {
1403         if (const TargetRegisterClass *DRC =
1404               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1405           if (!DRC->contains(Reg)) {
1406             report("Illegal physical register for instruction", MO, MONum);
1407             errs() << printReg(Reg, TRI) << " is not a "
1408                    << TRI->getRegClassName(DRC) << " register.\n";
1409           }
1410         }
1411       }
1412       if (MO->isRenamable()) {
1413         if (MRI->isReserved(Reg)) {
1414           report("isRenamable set on reserved register", MO, MONum);
1415           return;
1416         }
1417       }
1418       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1419         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1420         return;
1421       }
1422     } else {
1423       // Virtual register.
1424       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1425       if (!RC) {
1426         // This is a generic virtual register.
1427 
1428         // If we're post-Select, we can't have gvregs anymore.
1429         if (isFunctionSelected) {
1430           report("Generic virtual register invalid in a Selected function",
1431                  MO, MONum);
1432           return;
1433         }
1434 
1435         // The gvreg must have a type and it must not have a SubIdx.
1436         LLT Ty = MRI->getType(Reg);
1437         if (!Ty.isValid()) {
1438           report("Generic virtual register must have a valid type", MO,
1439                  MONum);
1440           return;
1441         }
1442 
1443         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1444 
1445         // If we're post-RegBankSelect, the gvreg must have a bank.
1446         if (!RegBank && isFunctionRegBankSelected) {
1447           report("Generic virtual register must have a bank in a "
1448                  "RegBankSelected function",
1449                  MO, MONum);
1450           return;
1451         }
1452 
1453         // Make sure the register fits into its register bank if any.
1454         if (RegBank && Ty.isValid() &&
1455             RegBank->getSize() < Ty.getSizeInBits()) {
1456           report("Register bank is too small for virtual register", MO,
1457                  MONum);
1458           errs() << "Register bank " << RegBank->getName() << " too small("
1459                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1460                  << "-bits\n";
1461           return;
1462         }
1463         if (SubIdx)  {
1464           report("Generic virtual register does not subregister index", MO,
1465                  MONum);
1466           return;
1467         }
1468 
1469         // If this is a target specific instruction and this operand
1470         // has register class constraint, the virtual register must
1471         // comply to it.
1472         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1473             MONum < MCID.getNumOperands() &&
1474             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1475           report("Virtual register does not match instruction constraint", MO,
1476                  MONum);
1477           errs() << "Expect register class "
1478                  << TRI->getRegClassName(
1479                         TII->getRegClass(MCID, MONum, TRI, *MF))
1480                  << " but got nothing\n";
1481           return;
1482         }
1483 
1484         break;
1485       }
1486       if (SubIdx) {
1487         const TargetRegisterClass *SRC =
1488           TRI->getSubClassWithSubReg(RC, SubIdx);
1489         if (!SRC) {
1490           report("Invalid subregister index for virtual register", MO, MONum);
1491           errs() << "Register class " << TRI->getRegClassName(RC)
1492               << " does not support subreg index " << SubIdx << "\n";
1493           return;
1494         }
1495         if (RC != SRC) {
1496           report("Invalid register class for subregister index", MO, MONum);
1497           errs() << "Register class " << TRI->getRegClassName(RC)
1498               << " does not fully support subreg index " << SubIdx << "\n";
1499           return;
1500         }
1501       }
1502       if (MONum < MCID.getNumOperands()) {
1503         if (const TargetRegisterClass *DRC =
1504               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1505           if (SubIdx) {
1506             const TargetRegisterClass *SuperRC =
1507                 TRI->getLargestLegalSuperClass(RC, *MF);
1508             if (!SuperRC) {
1509               report("No largest legal super class exists.", MO, MONum);
1510               return;
1511             }
1512             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1513             if (!DRC) {
1514               report("No matching super-reg register class.", MO, MONum);
1515               return;
1516             }
1517           }
1518           if (!RC->hasSuperClassEq(DRC)) {
1519             report("Illegal virtual register for instruction", MO, MONum);
1520             errs() << "Expected a " << TRI->getRegClassName(DRC)
1521                 << " register, but got a " << TRI->getRegClassName(RC)
1522                 << " register\n";
1523           }
1524         }
1525       }
1526     }
1527     break;
1528   }
1529 
1530   case MachineOperand::MO_RegisterMask:
1531     regMasks.push_back(MO->getRegMask());
1532     break;
1533 
1534   case MachineOperand::MO_MachineBasicBlock:
1535     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1536       report("PHI operand is not in the CFG", MO, MONum);
1537     break;
1538 
1539   case MachineOperand::MO_FrameIndex:
1540     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1541         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1542       int FI = MO->getIndex();
1543       LiveInterval &LI = LiveStks->getInterval(FI);
1544       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1545 
1546       bool stores = MI->mayStore();
1547       bool loads = MI->mayLoad();
1548       // For a memory-to-memory move, we need to check if the frame
1549       // index is used for storing or loading, by inspecting the
1550       // memory operands.
1551       if (stores && loads) {
1552         for (auto *MMO : MI->memoperands()) {
1553           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1554           if (PSV == nullptr) continue;
1555           const FixedStackPseudoSourceValue *Value =
1556             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1557           if (Value == nullptr) continue;
1558           if (Value->getFrameIndex() != FI) continue;
1559 
1560           if (MMO->isStore())
1561             loads = false;
1562           else
1563             stores = false;
1564           break;
1565         }
1566         if (loads == stores)
1567           report("Missing fixed stack memoperand.", MI);
1568       }
1569       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1570         report("Instruction loads from dead spill slot", MO, MONum);
1571         errs() << "Live stack: " << LI << '\n';
1572       }
1573       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1574         report("Instruction stores to dead spill slot", MO, MONum);
1575         errs() << "Live stack: " << LI << '\n';
1576       }
1577     }
1578     break;
1579 
1580   default:
1581     break;
1582   }
1583 }
1584 
1585 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1586     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1587     LaneBitmask LaneMask) {
1588   LiveQueryResult LRQ = LR.Query(UseIdx);
1589   // Check if we have a segment at the use, note however that we only need one
1590   // live subregister range, the others may be dead.
1591   if (!LRQ.valueIn() && LaneMask.none()) {
1592     report("No live segment at use", MO, MONum);
1593     report_context_liverange(LR);
1594     report_context_vreg_regunit(VRegOrUnit);
1595     report_context(UseIdx);
1596   }
1597   if (MO->isKill() && !LRQ.isKill()) {
1598     report("Live range continues after kill flag", MO, MONum);
1599     report_context_liverange(LR);
1600     report_context_vreg_regunit(VRegOrUnit);
1601     if (LaneMask.any())
1602       report_context_lanemask(LaneMask);
1603     report_context(UseIdx);
1604   }
1605 }
1606 
1607 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1608     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1609     bool SubRangeCheck, LaneBitmask LaneMask) {
1610   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1611     assert(VNI && "NULL valno is not allowed");
1612     if (VNI->def != DefIdx) {
1613       report("Inconsistent valno->def", MO, MONum);
1614       report_context_liverange(LR);
1615       report_context_vreg_regunit(VRegOrUnit);
1616       if (LaneMask.any())
1617         report_context_lanemask(LaneMask);
1618       report_context(*VNI);
1619       report_context(DefIdx);
1620     }
1621   } else {
1622     report("No live segment at def", MO, MONum);
1623     report_context_liverange(LR);
1624     report_context_vreg_regunit(VRegOrUnit);
1625     if (LaneMask.any())
1626       report_context_lanemask(LaneMask);
1627     report_context(DefIdx);
1628   }
1629   // Check that, if the dead def flag is present, LiveInts agree.
1630   if (MO->isDead()) {
1631     LiveQueryResult LRQ = LR.Query(DefIdx);
1632     if (!LRQ.isDeadDef()) {
1633       assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1634              "Expecting a virtual register.");
1635       // A dead subreg def only tells us that the specific subreg is dead. There
1636       // could be other non-dead defs of other subregs, or we could have other
1637       // parts of the register being live through the instruction. So unless we
1638       // are checking liveness for a subrange it is ok for the live range to
1639       // continue, given that we have a dead def of a subregister.
1640       if (SubRangeCheck || MO->getSubReg() == 0) {
1641         report("Live range continues after dead def flag", MO, MONum);
1642         report_context_liverange(LR);
1643         report_context_vreg_regunit(VRegOrUnit);
1644         if (LaneMask.any())
1645           report_context_lanemask(LaneMask);
1646       }
1647     }
1648   }
1649 }
1650 
1651 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1652   const MachineInstr *MI = MO->getParent();
1653   const unsigned Reg = MO->getReg();
1654 
1655   // Both use and def operands can read a register.
1656   if (MO->readsReg()) {
1657     if (MO->isKill())
1658       addRegWithSubRegs(regsKilled, Reg);
1659 
1660     // Check that LiveVars knows this kill.
1661     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1662         MO->isKill()) {
1663       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1664       if (!is_contained(VI.Kills, MI))
1665         report("Kill missing from LiveVariables", MO, MONum);
1666     }
1667 
1668     // Check LiveInts liveness and kill.
1669     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1670       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1671       // Check the cached regunit intervals.
1672       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1673         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1674           if (MRI->isReservedRegUnit(*Units))
1675             continue;
1676           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1677             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1678         }
1679       }
1680 
1681       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1682         if (LiveInts->hasInterval(Reg)) {
1683           // This is a virtual register interval.
1684           const LiveInterval &LI = LiveInts->getInterval(Reg);
1685           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1686 
1687           if (LI.hasSubRanges() && !MO->isDef()) {
1688             unsigned SubRegIdx = MO->getSubReg();
1689             LaneBitmask MOMask = SubRegIdx != 0
1690                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1691                                : MRI->getMaxLaneMaskForVReg(Reg);
1692             LaneBitmask LiveInMask;
1693             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1694               if ((MOMask & SR.LaneMask).none())
1695                 continue;
1696               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1697               LiveQueryResult LRQ = SR.Query(UseIdx);
1698               if (LRQ.valueIn())
1699                 LiveInMask |= SR.LaneMask;
1700             }
1701             // At least parts of the register has to be live at the use.
1702             if ((LiveInMask & MOMask).none()) {
1703               report("No live subrange at use", MO, MONum);
1704               report_context(LI);
1705               report_context(UseIdx);
1706             }
1707           }
1708         } else {
1709           report("Virtual register has no live interval", MO, MONum);
1710         }
1711       }
1712     }
1713 
1714     // Use of a dead register.
1715     if (!regsLive.count(Reg)) {
1716       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1717         // Reserved registers may be used even when 'dead'.
1718         bool Bad = !isReserved(Reg);
1719         // We are fine if just any subregister has a defined value.
1720         if (Bad) {
1721           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1722                ++SubRegs) {
1723             if (regsLive.count(*SubRegs)) {
1724               Bad = false;
1725               break;
1726             }
1727           }
1728         }
1729         // If there is an additional implicit-use of a super register we stop
1730         // here. By definition we are fine if the super register is not
1731         // (completely) dead, if the complete super register is dead we will
1732         // get a report for its operand.
1733         if (Bad) {
1734           for (const MachineOperand &MOP : MI->uses()) {
1735             if (!MOP.isReg() || !MOP.isImplicit())
1736               continue;
1737 
1738             if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1739               continue;
1740 
1741             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1742                  ++SubRegs) {
1743               if (*SubRegs == Reg) {
1744                 Bad = false;
1745                 break;
1746               }
1747             }
1748           }
1749         }
1750         if (Bad)
1751           report("Using an undefined physical register", MO, MONum);
1752       } else if (MRI->def_empty(Reg)) {
1753         report("Reading virtual register without a def", MO, MONum);
1754       } else {
1755         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1756         // We don't know which virtual registers are live in, so only complain
1757         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1758         // must be live in. PHI instructions are handled separately.
1759         if (MInfo.regsKilled.count(Reg))
1760           report("Using a killed virtual register", MO, MONum);
1761         else if (!MI->isPHI())
1762           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1763       }
1764     }
1765   }
1766 
1767   if (MO->isDef()) {
1768     // Register defined.
1769     // TODO: verify that earlyclobber ops are not used.
1770     if (MO->isDead())
1771       addRegWithSubRegs(regsDead, Reg);
1772     else
1773       addRegWithSubRegs(regsDefined, Reg);
1774 
1775     // Verify SSA form.
1776     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1777         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1778       report("Multiple virtual register defs in SSA form", MO, MONum);
1779 
1780     // Check LiveInts for a live segment, but only for virtual registers.
1781     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1782       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1783       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1784 
1785       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1786         if (LiveInts->hasInterval(Reg)) {
1787           const LiveInterval &LI = LiveInts->getInterval(Reg);
1788           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1789 
1790           if (LI.hasSubRanges()) {
1791             unsigned SubRegIdx = MO->getSubReg();
1792             LaneBitmask MOMask = SubRegIdx != 0
1793               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1794               : MRI->getMaxLaneMaskForVReg(Reg);
1795             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1796               if ((SR.LaneMask & MOMask).none())
1797                 continue;
1798               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1799             }
1800           }
1801         } else {
1802           report("Virtual register has no Live interval", MO, MONum);
1803         }
1804       }
1805     }
1806   }
1807 }
1808 
1809 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1810 
1811 // This function gets called after visiting all instructions in a bundle. The
1812 // argument points to the bundle header.
1813 // Normal stand-alone instructions are also considered 'bundles', and this
1814 // function is called for all of them.
1815 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1816   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1817   set_union(MInfo.regsKilled, regsKilled);
1818   set_subtract(regsLive, regsKilled); regsKilled.clear();
1819   // Kill any masked registers.
1820   while (!regMasks.empty()) {
1821     const uint32_t *Mask = regMasks.pop_back_val();
1822     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1823       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1824           MachineOperand::clobbersPhysReg(Mask, *I))
1825         regsDead.push_back(*I);
1826   }
1827   set_subtract(regsLive, regsDead);   regsDead.clear();
1828   set_union(regsLive, regsDefined);   regsDefined.clear();
1829 }
1830 
1831 void
1832 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1833   MBBInfoMap[MBB].regsLiveOut = regsLive;
1834   regsLive.clear();
1835 
1836   if (Indexes) {
1837     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1838     if (!(stop > lastIndex)) {
1839       report("Block ends before last instruction index", MBB);
1840       errs() << "Block ends at " << stop
1841           << " last instruction was at " << lastIndex << '\n';
1842     }
1843     lastIndex = stop;
1844   }
1845 }
1846 
1847 // Calculate the largest possible vregsPassed sets. These are the registers that
1848 // can pass through an MBB live, but may not be live every time. It is assumed
1849 // that all vregsPassed sets are empty before the call.
1850 void MachineVerifier::calcRegsPassed() {
1851   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1852   // have any vregsPassed.
1853   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1854   for (const auto &MBB : *MF) {
1855     BBInfo &MInfo = MBBInfoMap[&MBB];
1856     if (!MInfo.reachable)
1857       continue;
1858     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1859            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1860       BBInfo &SInfo = MBBInfoMap[*SuI];
1861       if (SInfo.addPassed(MInfo.regsLiveOut))
1862         todo.insert(*SuI);
1863     }
1864   }
1865 
1866   // Iteratively push vregsPassed to successors. This will converge to the same
1867   // final state regardless of DenseSet iteration order.
1868   while (!todo.empty()) {
1869     const MachineBasicBlock *MBB = *todo.begin();
1870     todo.erase(MBB);
1871     BBInfo &MInfo = MBBInfoMap[MBB];
1872     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1873            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1874       if (*SuI == MBB)
1875         continue;
1876       BBInfo &SInfo = MBBInfoMap[*SuI];
1877       if (SInfo.addPassed(MInfo.vregsPassed))
1878         todo.insert(*SuI);
1879     }
1880   }
1881 }
1882 
1883 // Calculate the set of virtual registers that must be passed through each basic
1884 // block in order to satisfy the requirements of successor blocks. This is very
1885 // similar to calcRegsPassed, only backwards.
1886 void MachineVerifier::calcRegsRequired() {
1887   // First push live-in regs to predecessors' vregsRequired.
1888   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1889   for (const auto &MBB : *MF) {
1890     BBInfo &MInfo = MBBInfoMap[&MBB];
1891     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1892            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1893       BBInfo &PInfo = MBBInfoMap[*PrI];
1894       if (PInfo.addRequired(MInfo.vregsLiveIn))
1895         todo.insert(*PrI);
1896     }
1897   }
1898 
1899   // Iteratively push vregsRequired to predecessors. This will converge to the
1900   // same final state regardless of DenseSet iteration order.
1901   while (!todo.empty()) {
1902     const MachineBasicBlock *MBB = *todo.begin();
1903     todo.erase(MBB);
1904     BBInfo &MInfo = MBBInfoMap[MBB];
1905     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1906            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1907       if (*PrI == MBB)
1908         continue;
1909       BBInfo &SInfo = MBBInfoMap[*PrI];
1910       if (SInfo.addRequired(MInfo.vregsRequired))
1911         todo.insert(*PrI);
1912     }
1913   }
1914 }
1915 
1916 // Check PHI instructions at the beginning of MBB. It is assumed that
1917 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1918 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1919   BBInfo &MInfo = MBBInfoMap[&MBB];
1920 
1921   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1922   for (const MachineInstr &Phi : MBB) {
1923     if (!Phi.isPHI())
1924       break;
1925     seen.clear();
1926 
1927     const MachineOperand &MODef = Phi.getOperand(0);
1928     if (!MODef.isReg() || !MODef.isDef()) {
1929       report("Expected first PHI operand to be a register def", &MODef, 0);
1930       continue;
1931     }
1932     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1933         MODef.isEarlyClobber() || MODef.isDebug())
1934       report("Unexpected flag on PHI operand", &MODef, 0);
1935     unsigned DefReg = MODef.getReg();
1936     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1937       report("Expected first PHI operand to be a virtual register", &MODef, 0);
1938 
1939     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1940       const MachineOperand &MO0 = Phi.getOperand(I);
1941       if (!MO0.isReg()) {
1942         report("Expected PHI operand to be a register", &MO0, I);
1943         continue;
1944       }
1945       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1946           MO0.isDebug() || MO0.isTied())
1947         report("Unexpected flag on PHI operand", &MO0, I);
1948 
1949       const MachineOperand &MO1 = Phi.getOperand(I + 1);
1950       if (!MO1.isMBB()) {
1951         report("Expected PHI operand to be a basic block", &MO1, I + 1);
1952         continue;
1953       }
1954 
1955       const MachineBasicBlock &Pre = *MO1.getMBB();
1956       if (!Pre.isSuccessor(&MBB)) {
1957         report("PHI input is not a predecessor block", &MO1, I + 1);
1958         continue;
1959       }
1960 
1961       if (MInfo.reachable) {
1962         seen.insert(&Pre);
1963         BBInfo &PrInfo = MBBInfoMap[&Pre];
1964         if (!MO0.isUndef() && PrInfo.reachable &&
1965             !PrInfo.isLiveOut(MO0.getReg()))
1966           report("PHI operand is not live-out from predecessor", &MO0, I);
1967       }
1968     }
1969 
1970     // Did we see all predecessors?
1971     if (MInfo.reachable) {
1972       for (MachineBasicBlock *Pred : MBB.predecessors()) {
1973         if (!seen.count(Pred)) {
1974           report("Missing PHI operand", &Phi);
1975           errs() << printMBBReference(*Pred)
1976                  << " is a predecessor according to the CFG.\n";
1977         }
1978       }
1979     }
1980   }
1981 }
1982 
1983 void MachineVerifier::visitMachineFunctionAfter() {
1984   calcRegsPassed();
1985 
1986   for (const MachineBasicBlock &MBB : *MF)
1987     checkPHIOps(MBB);
1988 
1989   // Now check liveness info if available
1990   calcRegsRequired();
1991 
1992   // Check for killed virtual registers that should be live out.
1993   for (const auto &MBB : *MF) {
1994     BBInfo &MInfo = MBBInfoMap[&MBB];
1995     for (RegSet::iterator
1996          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1997          ++I)
1998       if (MInfo.regsKilled.count(*I)) {
1999         report("Virtual register killed in block, but needed live out.", &MBB);
2000         errs() << "Virtual register " << printReg(*I)
2001                << " is used after the block.\n";
2002       }
2003   }
2004 
2005   if (!MF->empty()) {
2006     BBInfo &MInfo = MBBInfoMap[&MF->front()];
2007     for (RegSet::iterator
2008          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
2009          ++I) {
2010       report("Virtual register defs don't dominate all uses.", MF);
2011       report_context_vreg(*I);
2012     }
2013   }
2014 
2015   if (LiveVars)
2016     verifyLiveVariables();
2017   if (LiveInts)
2018     verifyLiveIntervals();
2019 }
2020 
2021 void MachineVerifier::verifyLiveVariables() {
2022   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2023   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2024     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
2025     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2026     for (const auto &MBB : *MF) {
2027       BBInfo &MInfo = MBBInfoMap[&MBB];
2028 
2029       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2030       if (MInfo.vregsRequired.count(Reg)) {
2031         if (!VI.AliveBlocks.test(MBB.getNumber())) {
2032           report("LiveVariables: Block missing from AliveBlocks", &MBB);
2033           errs() << "Virtual register " << printReg(Reg)
2034                  << " must be live through the block.\n";
2035         }
2036       } else {
2037         if (VI.AliveBlocks.test(MBB.getNumber())) {
2038           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2039           errs() << "Virtual register " << printReg(Reg)
2040                  << " is not needed live through the block.\n";
2041         }
2042       }
2043     }
2044   }
2045 }
2046 
2047 void MachineVerifier::verifyLiveIntervals() {
2048   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2049   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
2050     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
2051 
2052     // Spilling and splitting may leave unused registers around. Skip them.
2053     if (MRI->reg_nodbg_empty(Reg))
2054       continue;
2055 
2056     if (!LiveInts->hasInterval(Reg)) {
2057       report("Missing live interval for virtual register", MF);
2058       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2059       continue;
2060     }
2061 
2062     const LiveInterval &LI = LiveInts->getInterval(Reg);
2063     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2064     verifyLiveInterval(LI);
2065   }
2066 
2067   // Verify all the cached regunit intervals.
2068   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2069     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2070       verifyLiveRange(*LR, i);
2071 }
2072 
2073 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2074                                            const VNInfo *VNI, unsigned Reg,
2075                                            LaneBitmask LaneMask) {
2076   if (VNI->isUnused())
2077     return;
2078 
2079   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2080 
2081   if (!DefVNI) {
2082     report("Value not live at VNInfo def and not marked unused", MF);
2083     report_context(LR, Reg, LaneMask);
2084     report_context(*VNI);
2085     return;
2086   }
2087 
2088   if (DefVNI != VNI) {
2089     report("Live segment at def has different VNInfo", MF);
2090     report_context(LR, Reg, LaneMask);
2091     report_context(*VNI);
2092     return;
2093   }
2094 
2095   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2096   if (!MBB) {
2097     report("Invalid VNInfo definition index", MF);
2098     report_context(LR, Reg, LaneMask);
2099     report_context(*VNI);
2100     return;
2101   }
2102 
2103   if (VNI->isPHIDef()) {
2104     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2105       report("PHIDef VNInfo is not defined at MBB start", MBB);
2106       report_context(LR, Reg, LaneMask);
2107       report_context(*VNI);
2108     }
2109     return;
2110   }
2111 
2112   // Non-PHI def.
2113   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2114   if (!MI) {
2115     report("No instruction at VNInfo def index", MBB);
2116     report_context(LR, Reg, LaneMask);
2117     report_context(*VNI);
2118     return;
2119   }
2120 
2121   if (Reg != 0) {
2122     bool hasDef = false;
2123     bool isEarlyClobber = false;
2124     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2125       if (!MOI->isReg() || !MOI->isDef())
2126         continue;
2127       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2128         if (MOI->getReg() != Reg)
2129           continue;
2130       } else {
2131         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2132             !TRI->hasRegUnit(MOI->getReg(), Reg))
2133           continue;
2134       }
2135       if (LaneMask.any() &&
2136           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2137         continue;
2138       hasDef = true;
2139       if (MOI->isEarlyClobber())
2140         isEarlyClobber = true;
2141     }
2142 
2143     if (!hasDef) {
2144       report("Defining instruction does not modify register", MI);
2145       report_context(LR, Reg, LaneMask);
2146       report_context(*VNI);
2147     }
2148 
2149     // Early clobber defs begin at USE slots, but other defs must begin at
2150     // DEF slots.
2151     if (isEarlyClobber) {
2152       if (!VNI->def.isEarlyClobber()) {
2153         report("Early clobber def must be at an early-clobber slot", MBB);
2154         report_context(LR, Reg, LaneMask);
2155         report_context(*VNI);
2156       }
2157     } else if (!VNI->def.isRegister()) {
2158       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2159       report_context(LR, Reg, LaneMask);
2160       report_context(*VNI);
2161     }
2162   }
2163 }
2164 
2165 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2166                                              const LiveRange::const_iterator I,
2167                                              unsigned Reg, LaneBitmask LaneMask)
2168 {
2169   const LiveRange::Segment &S = *I;
2170   const VNInfo *VNI = S.valno;
2171   assert(VNI && "Live segment has no valno");
2172 
2173   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2174     report("Foreign valno in live segment", MF);
2175     report_context(LR, Reg, LaneMask);
2176     report_context(S);
2177     report_context(*VNI);
2178   }
2179 
2180   if (VNI->isUnused()) {
2181     report("Live segment valno is marked unused", MF);
2182     report_context(LR, Reg, LaneMask);
2183     report_context(S);
2184   }
2185 
2186   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2187   if (!MBB) {
2188     report("Bad start of live segment, no basic block", MF);
2189     report_context(LR, Reg, LaneMask);
2190     report_context(S);
2191     return;
2192   }
2193   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2194   if (S.start != MBBStartIdx && S.start != VNI->def) {
2195     report("Live segment must begin at MBB entry or valno def", MBB);
2196     report_context(LR, Reg, LaneMask);
2197     report_context(S);
2198   }
2199 
2200   const MachineBasicBlock *EndMBB =
2201     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2202   if (!EndMBB) {
2203     report("Bad end of live segment, no basic block", MF);
2204     report_context(LR, Reg, LaneMask);
2205     report_context(S);
2206     return;
2207   }
2208 
2209   // No more checks for live-out segments.
2210   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2211     return;
2212 
2213   // RegUnit intervals are allowed dead phis.
2214   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2215       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2216     return;
2217 
2218   // The live segment is ending inside EndMBB
2219   const MachineInstr *MI =
2220     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2221   if (!MI) {
2222     report("Live segment doesn't end at a valid instruction", EndMBB);
2223     report_context(LR, Reg, LaneMask);
2224     report_context(S);
2225     return;
2226   }
2227 
2228   // The block slot must refer to a basic block boundary.
2229   if (S.end.isBlock()) {
2230     report("Live segment ends at B slot of an instruction", EndMBB);
2231     report_context(LR, Reg, LaneMask);
2232     report_context(S);
2233   }
2234 
2235   if (S.end.isDead()) {
2236     // Segment ends on the dead slot.
2237     // That means there must be a dead def.
2238     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2239       report("Live segment ending at dead slot spans instructions", EndMBB);
2240       report_context(LR, Reg, LaneMask);
2241       report_context(S);
2242     }
2243   }
2244 
2245   // A live segment can only end at an early-clobber slot if it is being
2246   // redefined by an early-clobber def.
2247   if (S.end.isEarlyClobber()) {
2248     if (I+1 == LR.end() || (I+1)->start != S.end) {
2249       report("Live segment ending at early clobber slot must be "
2250              "redefined by an EC def in the same instruction", EndMBB);
2251       report_context(LR, Reg, LaneMask);
2252       report_context(S);
2253     }
2254   }
2255 
2256   // The following checks only apply to virtual registers. Physreg liveness
2257   // is too weird to check.
2258   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2259     // A live segment can end with either a redefinition, a kill flag on a
2260     // use, or a dead flag on a def.
2261     bool hasRead = false;
2262     bool hasSubRegDef = false;
2263     bool hasDeadDef = false;
2264     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2265       if (!MOI->isReg() || MOI->getReg() != Reg)
2266         continue;
2267       unsigned Sub = MOI->getSubReg();
2268       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2269                                  : LaneBitmask::getAll();
2270       if (MOI->isDef()) {
2271         if (Sub != 0) {
2272           hasSubRegDef = true;
2273           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2274           // mask for subregister defs. Read-undef defs will be handled by
2275           // readsReg below.
2276           SLM = ~SLM;
2277         }
2278         if (MOI->isDead())
2279           hasDeadDef = true;
2280       }
2281       if (LaneMask.any() && (LaneMask & SLM).none())
2282         continue;
2283       if (MOI->readsReg())
2284         hasRead = true;
2285     }
2286     if (S.end.isDead()) {
2287       // Make sure that the corresponding machine operand for a "dead" live
2288       // range has the dead flag. We cannot perform this check for subregister
2289       // liveranges as partially dead values are allowed.
2290       if (LaneMask.none() && !hasDeadDef) {
2291         report("Instruction ending live segment on dead slot has no dead flag",
2292                MI);
2293         report_context(LR, Reg, LaneMask);
2294         report_context(S);
2295       }
2296     } else {
2297       if (!hasRead) {
2298         // When tracking subregister liveness, the main range must start new
2299         // values on partial register writes, even if there is no read.
2300         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2301             !hasSubRegDef) {
2302           report("Instruction ending live segment doesn't read the register",
2303                  MI);
2304           report_context(LR, Reg, LaneMask);
2305           report_context(S);
2306         }
2307       }
2308     }
2309   }
2310 
2311   // Now check all the basic blocks in this live segment.
2312   MachineFunction::const_iterator MFI = MBB->getIterator();
2313   // Is this live segment the beginning of a non-PHIDef VN?
2314   if (S.start == VNI->def && !VNI->isPHIDef()) {
2315     // Not live-in to any blocks.
2316     if (MBB == EndMBB)
2317       return;
2318     // Skip this block.
2319     ++MFI;
2320   }
2321 
2322   SmallVector<SlotIndex, 4> Undefs;
2323   if (LaneMask.any()) {
2324     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2325     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2326   }
2327 
2328   while (true) {
2329     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2330     // We don't know how to track physregs into a landing pad.
2331     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2332         MFI->isEHPad()) {
2333       if (&*MFI == EndMBB)
2334         break;
2335       ++MFI;
2336       continue;
2337     }
2338 
2339     // Is VNI a PHI-def in the current block?
2340     bool IsPHI = VNI->isPHIDef() &&
2341       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2342 
2343     // Check that VNI is live-out of all predecessors.
2344     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2345          PE = MFI->pred_end(); PI != PE; ++PI) {
2346       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2347       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2348 
2349       // All predecessors must have a live-out value. However for a phi
2350       // instruction with subregister intervals
2351       // only one of the subregisters (not necessarily the current one) needs to
2352       // be defined.
2353       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2354         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2355           continue;
2356         report("Register not marked live out of predecessor", *PI);
2357         report_context(LR, Reg, LaneMask);
2358         report_context(*VNI);
2359         errs() << " live into " << printMBBReference(*MFI) << '@'
2360                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2361                << PEnd << '\n';
2362         continue;
2363       }
2364 
2365       // Only PHI-defs can take different predecessor values.
2366       if (!IsPHI && PVNI != VNI) {
2367         report("Different value live out of predecessor", *PI);
2368         report_context(LR, Reg, LaneMask);
2369         errs() << "Valno #" << PVNI->id << " live out of "
2370                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2371                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2372                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2373       }
2374     }
2375     if (&*MFI == EndMBB)
2376       break;
2377     ++MFI;
2378   }
2379 }
2380 
2381 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2382                                       LaneBitmask LaneMask) {
2383   for (const VNInfo *VNI : LR.valnos)
2384     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2385 
2386   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2387     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2388 }
2389 
2390 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2391   unsigned Reg = LI.reg;
2392   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2393   verifyLiveRange(LI, Reg);
2394 
2395   LaneBitmask Mask;
2396   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2397   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2398     if ((Mask & SR.LaneMask).any()) {
2399       report("Lane masks of sub ranges overlap in live interval", MF);
2400       report_context(LI);
2401     }
2402     if ((SR.LaneMask & ~MaxMask).any()) {
2403       report("Subrange lanemask is invalid", MF);
2404       report_context(LI);
2405     }
2406     if (SR.empty()) {
2407       report("Subrange must not be empty", MF);
2408       report_context(SR, LI.reg, SR.LaneMask);
2409     }
2410     Mask |= SR.LaneMask;
2411     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2412     if (!LI.covers(SR)) {
2413       report("A Subrange is not covered by the main range", MF);
2414       report_context(LI);
2415     }
2416   }
2417 
2418   // Check the LI only has one connected component.
2419   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2420   unsigned NumComp = ConEQ.Classify(LI);
2421   if (NumComp > 1) {
2422     report("Multiple connected components in live interval", MF);
2423     report_context(LI);
2424     for (unsigned comp = 0; comp != NumComp; ++comp) {
2425       errs() << comp << ": valnos";
2426       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2427            E = LI.vni_end(); I!=E; ++I)
2428         if (comp == ConEQ.getEqClass(*I))
2429           errs() << ' ' << (*I)->id;
2430       errs() << '\n';
2431     }
2432   }
2433 }
2434 
2435 namespace {
2436 
2437   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2438   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2439   // value is zero.
2440   // We use a bool plus an integer to capture the stack state.
2441   struct StackStateOfBB {
2442     StackStateOfBB() = default;
2443     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2444       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2445       ExitIsSetup(ExitSetup) {}
2446 
2447     // Can be negative, which means we are setting up a frame.
2448     int EntryValue = 0;
2449     int ExitValue = 0;
2450     bool EntryIsSetup = false;
2451     bool ExitIsSetup = false;
2452   };
2453 
2454 } // end anonymous namespace
2455 
2456 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2457 /// by a FrameDestroy <n>, stack adjustments are identical on all
2458 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2459 void MachineVerifier::verifyStackFrame() {
2460   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2461   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2462   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2463     return;
2464 
2465   SmallVector<StackStateOfBB, 8> SPState;
2466   SPState.resize(MF->getNumBlockIDs());
2467   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2468 
2469   // Visit the MBBs in DFS order.
2470   for (df_ext_iterator<const MachineFunction *,
2471                        df_iterator_default_set<const MachineBasicBlock *>>
2472        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2473        DFI != DFE; ++DFI) {
2474     const MachineBasicBlock *MBB = *DFI;
2475 
2476     StackStateOfBB BBState;
2477     // Check the exit state of the DFS stack predecessor.
2478     if (DFI.getPathLength() >= 2) {
2479       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2480       assert(Reachable.count(StackPred) &&
2481              "DFS stack predecessor is already visited.\n");
2482       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2483       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2484       BBState.ExitValue = BBState.EntryValue;
2485       BBState.ExitIsSetup = BBState.EntryIsSetup;
2486     }
2487 
2488     // Update stack state by checking contents of MBB.
2489     for (const auto &I : *MBB) {
2490       if (I.getOpcode() == FrameSetupOpcode) {
2491         if (BBState.ExitIsSetup)
2492           report("FrameSetup is after another FrameSetup", &I);
2493         BBState.ExitValue -= TII->getFrameTotalSize(I);
2494         BBState.ExitIsSetup = true;
2495       }
2496 
2497       if (I.getOpcode() == FrameDestroyOpcode) {
2498         int Size = TII->getFrameTotalSize(I);
2499         if (!BBState.ExitIsSetup)
2500           report("FrameDestroy is not after a FrameSetup", &I);
2501         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2502                                                BBState.ExitValue;
2503         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2504           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2505           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2506               << AbsSPAdj << ">.\n";
2507         }
2508         BBState.ExitValue += Size;
2509         BBState.ExitIsSetup = false;
2510       }
2511     }
2512     SPState[MBB->getNumber()] = BBState;
2513 
2514     // Make sure the exit state of any predecessor is consistent with the entry
2515     // state.
2516     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2517          E = MBB->pred_end(); I != E; ++I) {
2518       if (Reachable.count(*I) &&
2519           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2520            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2521         report("The exit stack state of a predecessor is inconsistent.", MBB);
2522         errs() << "Predecessor " << printMBBReference(*(*I))
2523                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2524                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2525                << printMBBReference(*MBB) << " has entry state ("
2526                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2527       }
2528     }
2529 
2530     // Make sure the entry state of any successor is consistent with the exit
2531     // state.
2532     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2533          E = MBB->succ_end(); I != E; ++I) {
2534       if (Reachable.count(*I) &&
2535           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2536            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2537         report("The entry stack state of a successor is inconsistent.", MBB);
2538         errs() << "Successor " << printMBBReference(*(*I))
2539                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2540                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2541                << printMBBReference(*MBB) << " has exit state ("
2542                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2543       }
2544     }
2545 
2546     // Make sure a basic block with return ends with zero stack adjustment.
2547     if (!MBB->empty() && MBB->back().isReturn()) {
2548       if (BBState.ExitIsSetup)
2549         report("A return block ends with a FrameSetup.", MBB);
2550       if (BBState.ExitValue)
2551         report("A return block ends with a nonzero stack adjustment.", MBB);
2552     }
2553   }
2554 }
2555