1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 20 // command-line option -verify-machineinstrs, or by defining the environment 21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 22 // the verifier errors. 23 //===----------------------------------------------------------------------===// 24 25 #include "LiveRangeCalc.h" 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/DepthFirstIterator.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetOperations.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/EHPersonalities.h" 37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 38 #include "llvm/CodeGen/LiveInterval.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/PseudoSourceValue.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetOpcodes.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 126 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 127 RV.push_back(*SubRegs); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsPassed if it belongs there. Return true if 160 // anything changed. 161 bool addPassed(unsigned Reg) { 162 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 163 return false; 164 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 165 return false; 166 return vregsPassed.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addPassed(const RegSet &RS) { 171 bool changed = false; 172 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 173 if (addPassed(*I)) 174 changed = true; 175 return changed; 176 } 177 178 // Add register to vregsRequired if it belongs there. Return true if 179 // anything changed. 180 bool addRequired(unsigned Reg) { 181 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 182 return false; 183 if (regsLiveOut.count(Reg)) 184 return false; 185 return vregsRequired.insert(Reg).second; 186 } 187 188 // Same for a full set. 189 bool addRequired(const RegSet &RS) { 190 bool changed = false; 191 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 192 if (addRequired(*I)) 193 changed = true; 194 return changed; 195 } 196 197 // Same for a full map. 198 bool addRequired(const RegMap &RM) { 199 bool changed = false; 200 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 201 if (addRequired(I->first)) 202 changed = true; 203 return changed; 204 } 205 206 // Live-out registers are either in regsLiveOut or vregsPassed. 207 bool isLiveOut(unsigned Reg) const { 208 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 209 } 210 }; 211 212 // Extra register info per MBB. 213 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 214 215 bool isReserved(unsigned Reg) { 216 return Reg < regsReserved.size() && regsReserved.test(Reg); 217 } 218 219 bool isAllocatable(unsigned Reg) const { 220 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 221 !regsReserved.test(Reg); 222 } 223 224 // Analysis information if available 225 LiveVariables *LiveVars; 226 LiveIntervals *LiveInts; 227 LiveStacks *LiveStks; 228 SlotIndexes *Indexes; 229 230 void visitMachineFunctionBefore(); 231 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 232 void visitMachineBundleBefore(const MachineInstr *MI); 233 void visitMachineInstrBefore(const MachineInstr *MI); 234 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 235 void visitMachineInstrAfter(const MachineInstr *MI); 236 void visitMachineBundleAfter(const MachineInstr *MI); 237 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 238 void visitMachineFunctionAfter(); 239 240 void report(const char *msg, const MachineFunction *MF); 241 void report(const char *msg, const MachineBasicBlock *MBB); 242 void report(const char *msg, const MachineInstr *MI); 243 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 244 LLT MOVRegType = LLT{}); 245 246 void report_context(const LiveInterval &LI) const; 247 void report_context(const LiveRange &LR, unsigned VRegUnit, 248 LaneBitmask LaneMask) const; 249 void report_context(const LiveRange::Segment &S) const; 250 void report_context(const VNInfo &VNI) const; 251 void report_context(SlotIndex Pos) const; 252 void report_context(MCPhysReg PhysReg) const; 253 void report_context_liverange(const LiveRange &LR) const; 254 void report_context_lanemask(LaneBitmask LaneMask) const; 255 void report_context_vreg(unsigned VReg) const; 256 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 257 258 void verifyInlineAsm(const MachineInstr *MI); 259 260 void checkLiveness(const MachineOperand *MO, unsigned MONum); 261 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 262 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 263 LaneBitmask LaneMask = LaneBitmask::getNone()); 264 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 265 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 266 bool SubRangeCheck = false, 267 LaneBitmask LaneMask = LaneBitmask::getNone()); 268 269 void markReachable(const MachineBasicBlock *MBB); 270 void calcRegsPassed(); 271 void checkPHIOps(const MachineBasicBlock &MBB); 272 273 void calcRegsRequired(); 274 void verifyLiveVariables(); 275 void verifyLiveIntervals(); 276 void verifyLiveInterval(const LiveInterval&); 277 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 278 LaneBitmask); 279 void verifyLiveRangeSegment(const LiveRange&, 280 const LiveRange::const_iterator I, unsigned, 281 LaneBitmask); 282 void verifyLiveRange(const LiveRange&, unsigned, 283 LaneBitmask LaneMask = LaneBitmask::getNone()); 284 285 void verifyStackFrame(); 286 287 void verifySlotIndexes() const; 288 void verifyProperties(const MachineFunction &MF); 289 }; 290 291 struct MachineVerifierPass : public MachineFunctionPass { 292 static char ID; // Pass ID, replacement for typeid 293 294 const std::string Banner; 295 296 MachineVerifierPass(std::string banner = std::string()) 297 : MachineFunctionPass(ID), Banner(std::move(banner)) { 298 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 299 } 300 301 void getAnalysisUsage(AnalysisUsage &AU) const override { 302 AU.setPreservesAll(); 303 MachineFunctionPass::getAnalysisUsage(AU); 304 } 305 306 bool runOnMachineFunction(MachineFunction &MF) override { 307 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 308 if (FoundErrors) 309 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 310 return false; 311 } 312 }; 313 314 } // end anonymous namespace 315 316 char MachineVerifierPass::ID = 0; 317 318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 319 "Verify generated machine code", false, false) 320 321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 322 return new MachineVerifierPass(Banner); 323 } 324 325 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 326 const { 327 MachineFunction &MF = const_cast<MachineFunction&>(*this); 328 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 329 if (AbortOnErrors && FoundErrors) 330 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 331 return FoundErrors == 0; 332 } 333 334 void MachineVerifier::verifySlotIndexes() const { 335 if (Indexes == nullptr) 336 return; 337 338 // Ensure the IdxMBB list is sorted by slot indexes. 339 SlotIndex Last; 340 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 341 E = Indexes->MBBIndexEnd(); I != E; ++I) { 342 assert(!Last.isValid() || I->first > Last); 343 Last = I->first; 344 } 345 } 346 347 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 348 // If a pass has introduced virtual registers without clearing the 349 // NoVRegs property (or set it without allocating the vregs) 350 // then report an error. 351 if (MF.getProperties().hasProperty( 352 MachineFunctionProperties::Property::NoVRegs) && 353 MRI->getNumVirtRegs()) 354 report("Function has NoVRegs property but there are VReg operands", &MF); 355 } 356 357 unsigned MachineVerifier::verify(MachineFunction &MF) { 358 foundErrors = 0; 359 360 this->MF = &MF; 361 TM = &MF.getTarget(); 362 TII = MF.getSubtarget().getInstrInfo(); 363 TRI = MF.getSubtarget().getRegisterInfo(); 364 MRI = &MF.getRegInfo(); 365 366 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 367 MachineFunctionProperties::Property::FailedISel); 368 369 // If we're mid-GlobalISel and we already triggered the fallback path then 370 // it's expected that the MIR is somewhat broken but that's ok since we'll 371 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 372 if (isFunctionFailedISel) 373 return foundErrors; 374 375 isFunctionRegBankSelected = 376 !isFunctionFailedISel && 377 MF.getProperties().hasProperty( 378 MachineFunctionProperties::Property::RegBankSelected); 379 isFunctionSelected = !isFunctionFailedISel && 380 MF.getProperties().hasProperty( 381 MachineFunctionProperties::Property::Selected); 382 LiveVars = nullptr; 383 LiveInts = nullptr; 384 LiveStks = nullptr; 385 Indexes = nullptr; 386 if (PASS) { 387 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 388 // We don't want to verify LiveVariables if LiveIntervals is available. 389 if (!LiveInts) 390 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 391 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 392 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 393 } 394 395 verifySlotIndexes(); 396 397 verifyProperties(MF); 398 399 visitMachineFunctionBefore(); 400 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 401 MFI!=MFE; ++MFI) { 402 visitMachineBasicBlockBefore(&*MFI); 403 // Keep track of the current bundle header. 404 const MachineInstr *CurBundle = nullptr; 405 // Do we expect the next instruction to be part of the same bundle? 406 bool InBundle = false; 407 408 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 409 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 410 if (MBBI->getParent() != &*MFI) { 411 report("Bad instruction parent pointer", &*MFI); 412 errs() << "Instruction: " << *MBBI; 413 continue; 414 } 415 416 // Check for consistent bundle flags. 417 if (InBundle && !MBBI->isBundledWithPred()) 418 report("Missing BundledPred flag, " 419 "BundledSucc was set on predecessor", 420 &*MBBI); 421 if (!InBundle && MBBI->isBundledWithPred()) 422 report("BundledPred flag is set, " 423 "but BundledSucc not set on predecessor", 424 &*MBBI); 425 426 // Is this a bundle header? 427 if (!MBBI->isInsideBundle()) { 428 if (CurBundle) 429 visitMachineBundleAfter(CurBundle); 430 CurBundle = &*MBBI; 431 visitMachineBundleBefore(CurBundle); 432 } else if (!CurBundle) 433 report("No bundle header", &*MBBI); 434 visitMachineInstrBefore(&*MBBI); 435 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 436 const MachineInstr &MI = *MBBI; 437 const MachineOperand &Op = MI.getOperand(I); 438 if (Op.getParent() != &MI) { 439 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 440 // functions when replacing operands of a MachineInstr. 441 report("Instruction has operand with wrong parent set", &MI); 442 } 443 444 visitMachineOperand(&Op, I); 445 } 446 447 visitMachineInstrAfter(&*MBBI); 448 449 // Was this the last bundled instruction? 450 InBundle = MBBI->isBundledWithSucc(); 451 } 452 if (CurBundle) 453 visitMachineBundleAfter(CurBundle); 454 if (InBundle) 455 report("BundledSucc flag set on last instruction in block", &MFI->back()); 456 visitMachineBasicBlockAfter(&*MFI); 457 } 458 visitMachineFunctionAfter(); 459 460 // Clean up. 461 regsLive.clear(); 462 regsDefined.clear(); 463 regsDead.clear(); 464 regsKilled.clear(); 465 regMasks.clear(); 466 MBBInfoMap.clear(); 467 468 return foundErrors; 469 } 470 471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 472 assert(MF); 473 errs() << '\n'; 474 if (!foundErrors++) { 475 if (Banner) 476 errs() << "# " << Banner << '\n'; 477 if (LiveInts != nullptr) 478 LiveInts->print(errs()); 479 else 480 MF->print(errs(), Indexes); 481 } 482 errs() << "*** Bad machine code: " << msg << " ***\n" 483 << "- function: " << MF->getName() << "\n"; 484 } 485 486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 487 assert(MBB); 488 report(msg, MBB->getParent()); 489 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 490 << MBB->getName() << " (" << (const void *)MBB << ')'; 491 if (Indexes) 492 errs() << " [" << Indexes->getMBBStartIdx(MBB) 493 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 494 errs() << '\n'; 495 } 496 497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 498 assert(MI); 499 report(msg, MI->getParent()); 500 errs() << "- instruction: "; 501 if (Indexes && Indexes->hasIndex(*MI)) 502 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 503 MI->print(errs(), /*SkipOpers=*/true); 504 } 505 506 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 507 unsigned MONum, LLT MOVRegType) { 508 assert(MO); 509 report(msg, MO->getParent()); 510 errs() << "- operand " << MONum << ": "; 511 MO->print(errs(), MOVRegType, TRI); 512 errs() << "\n"; 513 } 514 515 void MachineVerifier::report_context(SlotIndex Pos) const { 516 errs() << "- at: " << Pos << '\n'; 517 } 518 519 void MachineVerifier::report_context(const LiveInterval &LI) const { 520 errs() << "- interval: " << LI << '\n'; 521 } 522 523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 524 LaneBitmask LaneMask) const { 525 report_context_liverange(LR); 526 report_context_vreg_regunit(VRegUnit); 527 if (LaneMask.any()) 528 report_context_lanemask(LaneMask); 529 } 530 531 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 532 errs() << "- segment: " << S << '\n'; 533 } 534 535 void MachineVerifier::report_context(const VNInfo &VNI) const { 536 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 537 } 538 539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 540 errs() << "- liverange: " << LR << '\n'; 541 } 542 543 void MachineVerifier::report_context(MCPhysReg PReg) const { 544 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 545 } 546 547 void MachineVerifier::report_context_vreg(unsigned VReg) const { 548 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 549 } 550 551 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 552 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 553 report_context_vreg(VRegOrUnit); 554 } else { 555 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 556 } 557 } 558 559 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 560 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 561 } 562 563 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 564 BBInfo &MInfo = MBBInfoMap[MBB]; 565 if (!MInfo.reachable) { 566 MInfo.reachable = true; 567 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 568 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 569 markReachable(*SuI); 570 } 571 } 572 573 void MachineVerifier::visitMachineFunctionBefore() { 574 lastIndex = SlotIndex(); 575 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 576 : TRI->getReservedRegs(*MF); 577 578 if (!MF->empty()) 579 markReachable(&MF->front()); 580 581 // Build a set of the basic blocks in the function. 582 FunctionBlocks.clear(); 583 for (const auto &MBB : *MF) { 584 FunctionBlocks.insert(&MBB); 585 BBInfo &MInfo = MBBInfoMap[&MBB]; 586 587 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 588 if (MInfo.Preds.size() != MBB.pred_size()) 589 report("MBB has duplicate entries in its predecessor list.", &MBB); 590 591 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 592 if (MInfo.Succs.size() != MBB.succ_size()) 593 report("MBB has duplicate entries in its successor list.", &MBB); 594 } 595 596 // Check that the register use lists are sane. 597 MRI->verifyUseLists(); 598 599 if (!MF->empty()) 600 verifyStackFrame(); 601 } 602 603 // Does iterator point to a and b as the first two elements? 604 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 605 const MachineBasicBlock *a, const MachineBasicBlock *b) { 606 if (*i == a) 607 return *++i == b; 608 if (*i == b) 609 return *++i == a; 610 return false; 611 } 612 613 void 614 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 615 FirstTerminator = nullptr; 616 FirstNonPHI = nullptr; 617 618 if (!MF->getProperties().hasProperty( 619 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 620 // If this block has allocatable physical registers live-in, check that 621 // it is an entry block or landing pad. 622 for (const auto &LI : MBB->liveins()) { 623 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 624 MBB->getIterator() != MBB->getParent()->begin()) { 625 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 626 report_context(LI.PhysReg); 627 } 628 } 629 } 630 631 // Count the number of landing pad successors. 632 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 633 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 634 E = MBB->succ_end(); I != E; ++I) { 635 if ((*I)->isEHPad()) 636 LandingPadSuccs.insert(*I); 637 if (!FunctionBlocks.count(*I)) 638 report("MBB has successor that isn't part of the function.", MBB); 639 if (!MBBInfoMap[*I].Preds.count(MBB)) { 640 report("Inconsistent CFG", MBB); 641 errs() << "MBB is not in the predecessor list of the successor " 642 << printMBBReference(*(*I)) << ".\n"; 643 } 644 } 645 646 // Check the predecessor list. 647 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 648 E = MBB->pred_end(); I != E; ++I) { 649 if (!FunctionBlocks.count(*I)) 650 report("MBB has predecessor that isn't part of the function.", MBB); 651 if (!MBBInfoMap[*I].Succs.count(MBB)) { 652 report("Inconsistent CFG", MBB); 653 errs() << "MBB is not in the successor list of the predecessor " 654 << printMBBReference(*(*I)) << ".\n"; 655 } 656 } 657 658 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 659 const BasicBlock *BB = MBB->getBasicBlock(); 660 const Function &F = MF->getFunction(); 661 if (LandingPadSuccs.size() > 1 && 662 !(AsmInfo && 663 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 664 BB && isa<SwitchInst>(BB->getTerminator())) && 665 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 666 report("MBB has more than one landing pad successor", MBB); 667 668 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 669 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 670 SmallVector<MachineOperand, 4> Cond; 671 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 672 Cond)) { 673 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 674 // check whether its answers match up with reality. 675 if (!TBB && !FBB) { 676 // Block falls through to its successor. 677 MachineFunction::const_iterator MBBI = MBB->getIterator(); 678 ++MBBI; 679 if (MBBI == MF->end()) { 680 // It's possible that the block legitimately ends with a noreturn 681 // call or an unreachable, in which case it won't actually fall 682 // out the bottom of the function. 683 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 684 // It's possible that the block legitimately ends with a noreturn 685 // call or an unreachable, in which case it won't actually fall 686 // out of the block. 687 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 688 report("MBB exits via unconditional fall-through but doesn't have " 689 "exactly one CFG successor!", MBB); 690 } else if (!MBB->isSuccessor(&*MBBI)) { 691 report("MBB exits via unconditional fall-through but its successor " 692 "differs from its CFG successor!", MBB); 693 } 694 if (!MBB->empty() && MBB->back().isBarrier() && 695 !TII->isPredicated(MBB->back())) { 696 report("MBB exits via unconditional fall-through but ends with a " 697 "barrier instruction!", MBB); 698 } 699 if (!Cond.empty()) { 700 report("MBB exits via unconditional fall-through but has a condition!", 701 MBB); 702 } 703 } else if (TBB && !FBB && Cond.empty()) { 704 // Block unconditionally branches somewhere. 705 // If the block has exactly one successor, that happens to be a 706 // landingpad, accept it as valid control flow. 707 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 708 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 709 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 710 report("MBB exits via unconditional branch but doesn't have " 711 "exactly one CFG successor!", MBB); 712 } else if (!MBB->isSuccessor(TBB)) { 713 report("MBB exits via unconditional branch but the CFG " 714 "successor doesn't match the actual successor!", MBB); 715 } 716 if (MBB->empty()) { 717 report("MBB exits via unconditional branch but doesn't contain " 718 "any instructions!", MBB); 719 } else if (!MBB->back().isBarrier()) { 720 report("MBB exits via unconditional branch but doesn't end with a " 721 "barrier instruction!", MBB); 722 } else if (!MBB->back().isTerminator()) { 723 report("MBB exits via unconditional branch but the branch isn't a " 724 "terminator instruction!", MBB); 725 } 726 } else if (TBB && !FBB && !Cond.empty()) { 727 // Block conditionally branches somewhere, otherwise falls through. 728 MachineFunction::const_iterator MBBI = MBB->getIterator(); 729 ++MBBI; 730 if (MBBI == MF->end()) { 731 report("MBB conditionally falls through out of function!", MBB); 732 } else if (MBB->succ_size() == 1) { 733 // A conditional branch with only one successor is weird, but allowed. 734 if (&*MBBI != TBB) 735 report("MBB exits via conditional branch/fall-through but only has " 736 "one CFG successor!", MBB); 737 else if (TBB != *MBB->succ_begin()) 738 report("MBB exits via conditional branch/fall-through but the CFG " 739 "successor don't match the actual successor!", MBB); 740 } else if (MBB->succ_size() != 2) { 741 report("MBB exits via conditional branch/fall-through but doesn't have " 742 "exactly two CFG successors!", MBB); 743 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 744 report("MBB exits via conditional branch/fall-through but the CFG " 745 "successors don't match the actual successors!", MBB); 746 } 747 if (MBB->empty()) { 748 report("MBB exits via conditional branch/fall-through but doesn't " 749 "contain any instructions!", MBB); 750 } else if (MBB->back().isBarrier()) { 751 report("MBB exits via conditional branch/fall-through but ends with a " 752 "barrier instruction!", MBB); 753 } else if (!MBB->back().isTerminator()) { 754 report("MBB exits via conditional branch/fall-through but the branch " 755 "isn't a terminator instruction!", MBB); 756 } 757 } else if (TBB && FBB) { 758 // Block conditionally branches somewhere, otherwise branches 759 // somewhere else. 760 if (MBB->succ_size() == 1) { 761 // A conditional branch with only one successor is weird, but allowed. 762 if (FBB != TBB) 763 report("MBB exits via conditional branch/branch through but only has " 764 "one CFG successor!", MBB); 765 else if (TBB != *MBB->succ_begin()) 766 report("MBB exits via conditional branch/branch through but the CFG " 767 "successor don't match the actual successor!", MBB); 768 } else if (MBB->succ_size() != 2) { 769 report("MBB exits via conditional branch/branch but doesn't have " 770 "exactly two CFG successors!", MBB); 771 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 772 report("MBB exits via conditional branch/branch but the CFG " 773 "successors don't match the actual successors!", MBB); 774 } 775 if (MBB->empty()) { 776 report("MBB exits via conditional branch/branch but doesn't " 777 "contain any instructions!", MBB); 778 } else if (!MBB->back().isBarrier()) { 779 report("MBB exits via conditional branch/branch but doesn't end with a " 780 "barrier instruction!", MBB); 781 } else if (!MBB->back().isTerminator()) { 782 report("MBB exits via conditional branch/branch but the branch " 783 "isn't a terminator instruction!", MBB); 784 } 785 if (Cond.empty()) { 786 report("MBB exits via conditional branch/branch but there's no " 787 "condition!", MBB); 788 } 789 } else { 790 report("AnalyzeBranch returned invalid data!", MBB); 791 } 792 } 793 794 regsLive.clear(); 795 if (MRI->tracksLiveness()) { 796 for (const auto &LI : MBB->liveins()) { 797 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 798 report("MBB live-in list contains non-physical register", MBB); 799 continue; 800 } 801 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 802 SubRegs.isValid(); ++SubRegs) 803 regsLive.insert(*SubRegs); 804 } 805 } 806 807 const MachineFrameInfo &MFI = MF->getFrameInfo(); 808 BitVector PR = MFI.getPristineRegs(*MF); 809 for (unsigned I : PR.set_bits()) { 810 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 811 SubRegs.isValid(); ++SubRegs) 812 regsLive.insert(*SubRegs); 813 } 814 815 regsKilled.clear(); 816 regsDefined.clear(); 817 818 if (Indexes) 819 lastIndex = Indexes->getMBBStartIdx(MBB); 820 } 821 822 // This function gets called for all bundle headers, including normal 823 // stand-alone unbundled instructions. 824 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 825 if (Indexes && Indexes->hasIndex(*MI)) { 826 SlotIndex idx = Indexes->getInstructionIndex(*MI); 827 if (!(idx > lastIndex)) { 828 report("Instruction index out of order", MI); 829 errs() << "Last instruction was at " << lastIndex << '\n'; 830 } 831 lastIndex = idx; 832 } 833 834 // Ensure non-terminators don't follow terminators. 835 // Ignore predicated terminators formed by if conversion. 836 // FIXME: If conversion shouldn't need to violate this rule. 837 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 838 if (!FirstTerminator) 839 FirstTerminator = MI; 840 } else if (FirstTerminator) { 841 report("Non-terminator instruction after the first terminator", MI); 842 errs() << "First terminator was:\t" << *FirstTerminator; 843 } 844 } 845 846 // The operands on an INLINEASM instruction must follow a template. 847 // Verify that the flag operands make sense. 848 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 849 // The first two operands on INLINEASM are the asm string and global flags. 850 if (MI->getNumOperands() < 2) { 851 report("Too few operands on inline asm", MI); 852 return; 853 } 854 if (!MI->getOperand(0).isSymbol()) 855 report("Asm string must be an external symbol", MI); 856 if (!MI->getOperand(1).isImm()) 857 report("Asm flags must be an immediate", MI); 858 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 859 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 860 // and Extra_IsConvergent = 32. 861 if (!isUInt<6>(MI->getOperand(1).getImm())) 862 report("Unknown asm flags", &MI->getOperand(1), 1); 863 864 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 865 866 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 867 unsigned NumOps; 868 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 869 const MachineOperand &MO = MI->getOperand(OpNo); 870 // There may be implicit ops after the fixed operands. 871 if (!MO.isImm()) 872 break; 873 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 874 } 875 876 if (OpNo > MI->getNumOperands()) 877 report("Missing operands in last group", MI); 878 879 // An optional MDNode follows the groups. 880 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 881 ++OpNo; 882 883 // All trailing operands must be implicit registers. 884 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 885 const MachineOperand &MO = MI->getOperand(OpNo); 886 if (!MO.isReg() || !MO.isImplicit()) 887 report("Expected implicit register after groups", &MO, OpNo); 888 } 889 } 890 891 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 892 const MCInstrDesc &MCID = MI->getDesc(); 893 if (MI->getNumOperands() < MCID.getNumOperands()) { 894 report("Too few operands", MI); 895 errs() << MCID.getNumOperands() << " operands expected, but " 896 << MI->getNumOperands() << " given.\n"; 897 } 898 899 if (MI->isPHI()) { 900 if (MF->getProperties().hasProperty( 901 MachineFunctionProperties::Property::NoPHIs)) 902 report("Found PHI instruction with NoPHIs property set", MI); 903 904 if (FirstNonPHI) 905 report("Found PHI instruction after non-PHI", MI); 906 } else if (FirstNonPHI == nullptr) 907 FirstNonPHI = MI; 908 909 // Check the tied operands. 910 if (MI->isInlineAsm()) 911 verifyInlineAsm(MI); 912 913 // Check the MachineMemOperands for basic consistency. 914 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 915 E = MI->memoperands_end(); 916 I != E; ++I) { 917 if ((*I)->isLoad() && !MI->mayLoad()) 918 report("Missing mayLoad flag", MI); 919 if ((*I)->isStore() && !MI->mayStore()) 920 report("Missing mayStore flag", MI); 921 } 922 923 // Debug values must not have a slot index. 924 // Other instructions must have one, unless they are inside a bundle. 925 if (LiveInts) { 926 bool mapped = !LiveInts->isNotInMIMap(*MI); 927 if (MI->isDebugInstr()) { 928 if (mapped) 929 report("Debug instruction has a slot index", MI); 930 } else if (MI->isInsideBundle()) { 931 if (mapped) 932 report("Instruction inside bundle has a slot index", MI); 933 } else { 934 if (!mapped) 935 report("Missing slot index", MI); 936 } 937 } 938 939 if (isPreISelGenericOpcode(MCID.getOpcode())) { 940 if (isFunctionSelected) 941 report("Unexpected generic instruction in a Selected function", MI); 942 943 unsigned NumOps = MI->getNumOperands(); 944 945 // Check types. 946 SmallVector<LLT, 4> Types; 947 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 948 I != E; ++I) { 949 if (!MCID.OpInfo[I].isGenericType()) 950 continue; 951 // Generic instructions specify type equality constraints between some of 952 // their operands. Make sure these are consistent. 953 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 954 Types.resize(std::max(TypeIdx + 1, Types.size())); 955 956 const MachineOperand *MO = &MI->getOperand(I); 957 LLT OpTy = MRI->getType(MO->getReg()); 958 // Don't report a type mismatch if there is no actual mismatch, only a 959 // type missing, to reduce noise: 960 if (OpTy.isValid()) { 961 // Only the first valid type for a type index will be printed: don't 962 // overwrite it later so it's always clear which type was expected: 963 if (!Types[TypeIdx].isValid()) 964 Types[TypeIdx] = OpTy; 965 else if (Types[TypeIdx] != OpTy) 966 report("Type mismatch in generic instruction", MO, I, OpTy); 967 } else { 968 // Generic instructions must have types attached to their operands. 969 report("Generic instruction is missing a virtual register type", MO, I); 970 } 971 } 972 973 // Generic opcodes must not have physical register operands. 974 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 975 const MachineOperand *MO = &MI->getOperand(I); 976 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) 977 report("Generic instruction cannot have physical register", MO, I); 978 } 979 980 // Avoid out of bounds in checks below. This was already reported earlier. 981 if (MI->getNumOperands() < MCID.getNumOperands()) 982 return; 983 } 984 985 StringRef ErrorInfo; 986 if (!TII->verifyInstruction(*MI, ErrorInfo)) 987 report(ErrorInfo.data(), MI); 988 989 // Verify properties of various specific instruction types 990 switch(MI->getOpcode()) { 991 default: 992 break; 993 case TargetOpcode::G_CONSTANT: 994 case TargetOpcode::G_FCONSTANT: { 995 if (MI->getNumOperands() < MCID.getNumOperands()) 996 break; 997 998 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 999 if (DstTy.isVector()) 1000 report("Instruction cannot use a vector result type", MI); 1001 break; 1002 } 1003 case TargetOpcode::G_LOAD: 1004 case TargetOpcode::G_STORE: 1005 case TargetOpcode::G_ZEXTLOAD: 1006 case TargetOpcode::G_SEXTLOAD: { 1007 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1008 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1009 if (!PtrTy.isPointer()) 1010 report("Generic memory instruction must access a pointer", MI); 1011 1012 // Generic loads and stores must have a single MachineMemOperand 1013 // describing that access. 1014 if (!MI->hasOneMemOperand()) { 1015 report("Generic instruction accessing memory must have one mem operand", 1016 MI); 1017 } else { 1018 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1019 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1020 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1021 if (MMO.getSize() * 8 >= ValTy.getSizeInBits()) 1022 report("Generic extload must have a narrower memory type", MI); 1023 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1024 if (MMO.getSize() > (ValTy.getSizeInBits() + 7) / 8) 1025 report("load memory size cannot exceed result size", MI); 1026 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1027 if ((ValTy.getSizeInBits() + 7) / 8 < MMO.getSize()) 1028 report("store memory size cannot exceed value size", MI); 1029 } 1030 } 1031 1032 break; 1033 } 1034 case TargetOpcode::G_PHI: { 1035 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1036 if (!DstTy.isValid() || 1037 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1038 [this, &DstTy](const MachineOperand &MO) { 1039 if (!MO.isReg()) 1040 return true; 1041 LLT Ty = MRI->getType(MO.getReg()); 1042 if (!Ty.isValid() || (Ty != DstTy)) 1043 return false; 1044 return true; 1045 })) 1046 report("Generic Instruction G_PHI has operands with incompatible/missing " 1047 "types", 1048 MI); 1049 break; 1050 } 1051 case TargetOpcode::G_BITCAST: { 1052 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1053 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1054 if (!DstTy.isValid() || !SrcTy.isValid()) 1055 break; 1056 1057 if (SrcTy.isPointer() != DstTy.isPointer()) 1058 report("bitcast cannot convert between pointers and other types", MI); 1059 1060 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1061 report("bitcast sizes must match", MI); 1062 break; 1063 } 1064 case TargetOpcode::G_INTTOPTR: 1065 case TargetOpcode::G_PTRTOINT: 1066 case TargetOpcode::G_ADDRSPACE_CAST: { 1067 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1068 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1069 if (!DstTy.isValid() || !SrcTy.isValid()) 1070 break; 1071 1072 if (DstTy.isVector() != SrcTy.isVector()) 1073 report("pointer casts must be all-vector or all-scalar", MI); 1074 else { 1075 if (DstTy.isVector() ) { 1076 if (DstTy.getNumElements() != SrcTy.getNumElements()) { 1077 report("pointer casts must preserve number of elements", MI); 1078 break; 1079 } 1080 } 1081 } 1082 1083 DstTy = DstTy.getScalarType(); 1084 SrcTy = SrcTy.getScalarType(); 1085 1086 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1087 if (!DstTy.isPointer()) 1088 report("inttoptr result type must be a pointer", MI); 1089 if (SrcTy.isPointer()) 1090 report("inttoptr source type must not be a pointer", MI); 1091 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1092 if (!SrcTy.isPointer()) 1093 report("ptrtoint source type must be a pointer", MI); 1094 if (DstTy.isPointer()) 1095 report("ptrtoint result type must not be a pointer", MI); 1096 } else { 1097 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1098 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1099 report("addrspacecast types must be pointers", MI); 1100 else { 1101 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1102 report("addrspacecast must convert different address spaces", MI); 1103 } 1104 } 1105 1106 break; 1107 } 1108 case TargetOpcode::G_SEXT: 1109 case TargetOpcode::G_ZEXT: 1110 case TargetOpcode::G_ANYEXT: 1111 case TargetOpcode::G_TRUNC: 1112 case TargetOpcode::G_FPEXT: 1113 case TargetOpcode::G_FPTRUNC: { 1114 // Number of operands and presense of types is already checked (and 1115 // reported in case of any issues), so no need to report them again. As 1116 // we're trying to report as many issues as possible at once, however, the 1117 // instructions aren't guaranteed to have the right number of operands or 1118 // types attached to them at this point 1119 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1120 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1121 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1122 if (!DstTy.isValid() || !SrcTy.isValid()) 1123 break; 1124 1125 LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy; 1126 LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy; 1127 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1128 report("Generic extend/truncate can not operate on pointers", MI); 1129 1130 if (DstTy.isVector() != SrcTy.isVector()) { 1131 report("Generic extend/truncate must be all-vector or all-scalar", MI); 1132 // Generally we try to report as many issues as possible at once, but in 1133 // this case it's not clear what should we be comparing the size of the 1134 // scalar with: the size of the whole vector or its lane. Instead of 1135 // making an arbitrary choice and emitting not so helpful message, let's 1136 // avoid the extra noise and stop here. 1137 break; 1138 } 1139 if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()) 1140 report("Generic vector extend/truncate must preserve number of lanes", 1141 MI); 1142 unsigned DstSize = DstElTy.getSizeInBits(); 1143 unsigned SrcSize = SrcElTy.getSizeInBits(); 1144 switch (MI->getOpcode()) { 1145 default: 1146 if (DstSize <= SrcSize) 1147 report("Generic extend has destination type no larger than source", MI); 1148 break; 1149 case TargetOpcode::G_TRUNC: 1150 case TargetOpcode::G_FPTRUNC: 1151 if (DstSize >= SrcSize) 1152 report("Generic truncate has destination type no smaller than source", 1153 MI); 1154 break; 1155 } 1156 break; 1157 } 1158 case TargetOpcode::G_MERGE_VALUES: { 1159 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1160 // e.g. s2N = MERGE sN, sN 1161 // Merging multiple scalars into a vector is not allowed, should use 1162 // G_BUILD_VECTOR for that. 1163 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1164 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1165 if (DstTy.isVector() || SrcTy.isVector()) 1166 report("G_MERGE_VALUES cannot operate on vectors", MI); 1167 break; 1168 } 1169 case TargetOpcode::G_UNMERGE_VALUES: { 1170 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1171 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1172 // For now G_UNMERGE can split vectors. 1173 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1174 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1175 report("G_UNMERGE_VALUES destination types do not match", MI); 1176 } 1177 if (SrcTy.getSizeInBits() != 1178 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1179 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1180 MI); 1181 } 1182 break; 1183 } 1184 case TargetOpcode::G_BUILD_VECTOR: { 1185 // Source types must be scalars, dest type a vector. Total size of scalars 1186 // must match the dest vector size. 1187 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1188 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1189 if (!DstTy.isVector() || SrcEltTy.isVector()) 1190 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1191 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1192 if (MRI->getType(MI->getOperand(1).getReg()) != 1193 MRI->getType(MI->getOperand(i).getReg())) 1194 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1195 } 1196 if (DstTy.getSizeInBits() != 1197 SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1)) 1198 report("G_BUILD_VECTOR src operands total size don't match dest " 1199 "size.", 1200 MI); 1201 break; 1202 } 1203 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1204 // Source types must be scalars, dest type a vector. Scalar types must be 1205 // larger than the dest vector elt type, as this is a truncating operation. 1206 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1207 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1208 if (!DstTy.isVector() || SrcEltTy.isVector()) 1209 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1210 MI); 1211 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1212 if (MRI->getType(MI->getOperand(1).getReg()) != 1213 MRI->getType(MI->getOperand(i).getReg())) 1214 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1215 MI); 1216 } 1217 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1218 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1219 "dest elt type", 1220 MI); 1221 break; 1222 } 1223 case TargetOpcode::G_CONCAT_VECTORS: { 1224 // Source types should be vectors, and total size should match the dest 1225 // vector size. 1226 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1227 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1228 if (!DstTy.isVector() || !SrcTy.isVector()) 1229 report("G_CONCAT_VECTOR requires vector source and destination operands", 1230 MI); 1231 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1232 if (MRI->getType(MI->getOperand(1).getReg()) != 1233 MRI->getType(MI->getOperand(i).getReg())) 1234 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1235 } 1236 if (DstTy.getNumElements() != 1237 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1238 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1239 break; 1240 } 1241 case TargetOpcode::COPY: { 1242 if (foundErrors) 1243 break; 1244 const MachineOperand &DstOp = MI->getOperand(0); 1245 const MachineOperand &SrcOp = MI->getOperand(1); 1246 LLT DstTy = MRI->getType(DstOp.getReg()); 1247 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1248 if (SrcTy.isValid() && DstTy.isValid()) { 1249 // If both types are valid, check that the types are the same. 1250 if (SrcTy != DstTy) { 1251 report("Copy Instruction is illegal with mismatching types", MI); 1252 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1253 } 1254 } 1255 if (SrcTy.isValid() || DstTy.isValid()) { 1256 // If one of them have valid types, let's just check they have the same 1257 // size. 1258 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1259 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1260 assert(SrcSize && "Expecting size here"); 1261 assert(DstSize && "Expecting size here"); 1262 if (SrcSize != DstSize) 1263 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1264 report("Copy Instruction is illegal with mismatching sizes", MI); 1265 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1266 << "\n"; 1267 } 1268 } 1269 break; 1270 } 1271 case TargetOpcode::G_ICMP: 1272 case TargetOpcode::G_FCMP: { 1273 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1274 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1275 1276 if ((DstTy.isVector() != SrcTy.isVector()) || 1277 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1278 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1279 1280 break; 1281 } 1282 case TargetOpcode::STATEPOINT: 1283 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1284 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1285 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1286 report("meta operands to STATEPOINT not constant!", MI); 1287 break; 1288 1289 auto VerifyStackMapConstant = [&](unsigned Offset) { 1290 if (!MI->getOperand(Offset).isImm() || 1291 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1292 !MI->getOperand(Offset + 1).isImm()) 1293 report("stack map constant to STATEPOINT not well formed!", MI); 1294 }; 1295 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1296 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1297 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1298 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1299 1300 // TODO: verify we have properly encoded deopt arguments 1301 }; 1302 } 1303 1304 void 1305 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1306 const MachineInstr *MI = MO->getParent(); 1307 const MCInstrDesc &MCID = MI->getDesc(); 1308 unsigned NumDefs = MCID.getNumDefs(); 1309 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1310 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1311 1312 // The first MCID.NumDefs operands must be explicit register defines 1313 if (MONum < NumDefs) { 1314 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1315 if (!MO->isReg()) 1316 report("Explicit definition must be a register", MO, MONum); 1317 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1318 report("Explicit definition marked as use", MO, MONum); 1319 else if (MO->isImplicit()) 1320 report("Explicit definition marked as implicit", MO, MONum); 1321 } else if (MONum < MCID.getNumOperands()) { 1322 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1323 // Don't check if it's the last operand in a variadic instruction. See, 1324 // e.g., LDM_RET in the arm back end. 1325 if (MO->isReg() && 1326 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1327 if (MO->isDef() && !MCOI.isOptionalDef()) 1328 report("Explicit operand marked as def", MO, MONum); 1329 if (MO->isImplicit()) 1330 report("Explicit operand marked as implicit", MO, MONum); 1331 } 1332 1333 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1334 if (TiedTo != -1) { 1335 if (!MO->isReg()) 1336 report("Tied use must be a register", MO, MONum); 1337 else if (!MO->isTied()) 1338 report("Operand should be tied", MO, MONum); 1339 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1340 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1341 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1342 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1343 if (!MOTied.isReg()) 1344 report("Tied counterpart must be a register", &MOTied, TiedTo); 1345 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1346 MO->getReg() != MOTied.getReg()) 1347 report("Tied physical registers must match.", &MOTied, TiedTo); 1348 } 1349 } else if (MO->isReg() && MO->isTied()) 1350 report("Explicit operand should not be tied", MO, MONum); 1351 } else { 1352 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1353 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1354 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1355 } 1356 1357 switch (MO->getType()) { 1358 case MachineOperand::MO_Register: { 1359 const unsigned Reg = MO->getReg(); 1360 if (!Reg) 1361 return; 1362 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1363 checkLiveness(MO, MONum); 1364 1365 // Verify the consistency of tied operands. 1366 if (MO->isTied()) { 1367 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1368 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1369 if (!OtherMO.isReg()) 1370 report("Must be tied to a register", MO, MONum); 1371 if (!OtherMO.isTied()) 1372 report("Missing tie flags on tied operand", MO, MONum); 1373 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1374 report("Inconsistent tie links", MO, MONum); 1375 if (MONum < MCID.getNumDefs()) { 1376 if (OtherIdx < MCID.getNumOperands()) { 1377 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1378 report("Explicit def tied to explicit use without tie constraint", 1379 MO, MONum); 1380 } else { 1381 if (!OtherMO.isImplicit()) 1382 report("Explicit def should be tied to implicit use", MO, MONum); 1383 } 1384 } 1385 } 1386 1387 // Verify two-address constraints after leaving SSA form. 1388 unsigned DefIdx; 1389 if (!MRI->isSSA() && MO->isUse() && 1390 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1391 Reg != MI->getOperand(DefIdx).getReg()) 1392 report("Two-address instruction operands must be identical", MO, MONum); 1393 1394 // Check register classes. 1395 unsigned SubIdx = MO->getSubReg(); 1396 1397 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1398 if (SubIdx) { 1399 report("Illegal subregister index for physical register", MO, MONum); 1400 return; 1401 } 1402 if (MONum < MCID.getNumOperands()) { 1403 if (const TargetRegisterClass *DRC = 1404 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1405 if (!DRC->contains(Reg)) { 1406 report("Illegal physical register for instruction", MO, MONum); 1407 errs() << printReg(Reg, TRI) << " is not a " 1408 << TRI->getRegClassName(DRC) << " register.\n"; 1409 } 1410 } 1411 } 1412 if (MO->isRenamable()) { 1413 if (MRI->isReserved(Reg)) { 1414 report("isRenamable set on reserved register", MO, MONum); 1415 return; 1416 } 1417 } 1418 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1419 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1420 return; 1421 } 1422 } else { 1423 // Virtual register. 1424 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1425 if (!RC) { 1426 // This is a generic virtual register. 1427 1428 // If we're post-Select, we can't have gvregs anymore. 1429 if (isFunctionSelected) { 1430 report("Generic virtual register invalid in a Selected function", 1431 MO, MONum); 1432 return; 1433 } 1434 1435 // The gvreg must have a type and it must not have a SubIdx. 1436 LLT Ty = MRI->getType(Reg); 1437 if (!Ty.isValid()) { 1438 report("Generic virtual register must have a valid type", MO, 1439 MONum); 1440 return; 1441 } 1442 1443 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1444 1445 // If we're post-RegBankSelect, the gvreg must have a bank. 1446 if (!RegBank && isFunctionRegBankSelected) { 1447 report("Generic virtual register must have a bank in a " 1448 "RegBankSelected function", 1449 MO, MONum); 1450 return; 1451 } 1452 1453 // Make sure the register fits into its register bank if any. 1454 if (RegBank && Ty.isValid() && 1455 RegBank->getSize() < Ty.getSizeInBits()) { 1456 report("Register bank is too small for virtual register", MO, 1457 MONum); 1458 errs() << "Register bank " << RegBank->getName() << " too small(" 1459 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1460 << "-bits\n"; 1461 return; 1462 } 1463 if (SubIdx) { 1464 report("Generic virtual register does not subregister index", MO, 1465 MONum); 1466 return; 1467 } 1468 1469 // If this is a target specific instruction and this operand 1470 // has register class constraint, the virtual register must 1471 // comply to it. 1472 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1473 MONum < MCID.getNumOperands() && 1474 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1475 report("Virtual register does not match instruction constraint", MO, 1476 MONum); 1477 errs() << "Expect register class " 1478 << TRI->getRegClassName( 1479 TII->getRegClass(MCID, MONum, TRI, *MF)) 1480 << " but got nothing\n"; 1481 return; 1482 } 1483 1484 break; 1485 } 1486 if (SubIdx) { 1487 const TargetRegisterClass *SRC = 1488 TRI->getSubClassWithSubReg(RC, SubIdx); 1489 if (!SRC) { 1490 report("Invalid subregister index for virtual register", MO, MONum); 1491 errs() << "Register class " << TRI->getRegClassName(RC) 1492 << " does not support subreg index " << SubIdx << "\n"; 1493 return; 1494 } 1495 if (RC != SRC) { 1496 report("Invalid register class for subregister index", MO, MONum); 1497 errs() << "Register class " << TRI->getRegClassName(RC) 1498 << " does not fully support subreg index " << SubIdx << "\n"; 1499 return; 1500 } 1501 } 1502 if (MONum < MCID.getNumOperands()) { 1503 if (const TargetRegisterClass *DRC = 1504 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1505 if (SubIdx) { 1506 const TargetRegisterClass *SuperRC = 1507 TRI->getLargestLegalSuperClass(RC, *MF); 1508 if (!SuperRC) { 1509 report("No largest legal super class exists.", MO, MONum); 1510 return; 1511 } 1512 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1513 if (!DRC) { 1514 report("No matching super-reg register class.", MO, MONum); 1515 return; 1516 } 1517 } 1518 if (!RC->hasSuperClassEq(DRC)) { 1519 report("Illegal virtual register for instruction", MO, MONum); 1520 errs() << "Expected a " << TRI->getRegClassName(DRC) 1521 << " register, but got a " << TRI->getRegClassName(RC) 1522 << " register\n"; 1523 } 1524 } 1525 } 1526 } 1527 break; 1528 } 1529 1530 case MachineOperand::MO_RegisterMask: 1531 regMasks.push_back(MO->getRegMask()); 1532 break; 1533 1534 case MachineOperand::MO_MachineBasicBlock: 1535 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1536 report("PHI operand is not in the CFG", MO, MONum); 1537 break; 1538 1539 case MachineOperand::MO_FrameIndex: 1540 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1541 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1542 int FI = MO->getIndex(); 1543 LiveInterval &LI = LiveStks->getInterval(FI); 1544 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1545 1546 bool stores = MI->mayStore(); 1547 bool loads = MI->mayLoad(); 1548 // For a memory-to-memory move, we need to check if the frame 1549 // index is used for storing or loading, by inspecting the 1550 // memory operands. 1551 if (stores && loads) { 1552 for (auto *MMO : MI->memoperands()) { 1553 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1554 if (PSV == nullptr) continue; 1555 const FixedStackPseudoSourceValue *Value = 1556 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1557 if (Value == nullptr) continue; 1558 if (Value->getFrameIndex() != FI) continue; 1559 1560 if (MMO->isStore()) 1561 loads = false; 1562 else 1563 stores = false; 1564 break; 1565 } 1566 if (loads == stores) 1567 report("Missing fixed stack memoperand.", MI); 1568 } 1569 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1570 report("Instruction loads from dead spill slot", MO, MONum); 1571 errs() << "Live stack: " << LI << '\n'; 1572 } 1573 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1574 report("Instruction stores to dead spill slot", MO, MONum); 1575 errs() << "Live stack: " << LI << '\n'; 1576 } 1577 } 1578 break; 1579 1580 default: 1581 break; 1582 } 1583 } 1584 1585 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1586 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1587 LaneBitmask LaneMask) { 1588 LiveQueryResult LRQ = LR.Query(UseIdx); 1589 // Check if we have a segment at the use, note however that we only need one 1590 // live subregister range, the others may be dead. 1591 if (!LRQ.valueIn() && LaneMask.none()) { 1592 report("No live segment at use", MO, MONum); 1593 report_context_liverange(LR); 1594 report_context_vreg_regunit(VRegOrUnit); 1595 report_context(UseIdx); 1596 } 1597 if (MO->isKill() && !LRQ.isKill()) { 1598 report("Live range continues after kill flag", MO, MONum); 1599 report_context_liverange(LR); 1600 report_context_vreg_regunit(VRegOrUnit); 1601 if (LaneMask.any()) 1602 report_context_lanemask(LaneMask); 1603 report_context(UseIdx); 1604 } 1605 } 1606 1607 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1608 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1609 bool SubRangeCheck, LaneBitmask LaneMask) { 1610 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1611 assert(VNI && "NULL valno is not allowed"); 1612 if (VNI->def != DefIdx) { 1613 report("Inconsistent valno->def", MO, MONum); 1614 report_context_liverange(LR); 1615 report_context_vreg_regunit(VRegOrUnit); 1616 if (LaneMask.any()) 1617 report_context_lanemask(LaneMask); 1618 report_context(*VNI); 1619 report_context(DefIdx); 1620 } 1621 } else { 1622 report("No live segment at def", MO, MONum); 1623 report_context_liverange(LR); 1624 report_context_vreg_regunit(VRegOrUnit); 1625 if (LaneMask.any()) 1626 report_context_lanemask(LaneMask); 1627 report_context(DefIdx); 1628 } 1629 // Check that, if the dead def flag is present, LiveInts agree. 1630 if (MO->isDead()) { 1631 LiveQueryResult LRQ = LR.Query(DefIdx); 1632 if (!LRQ.isDeadDef()) { 1633 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) && 1634 "Expecting a virtual register."); 1635 // A dead subreg def only tells us that the specific subreg is dead. There 1636 // could be other non-dead defs of other subregs, or we could have other 1637 // parts of the register being live through the instruction. So unless we 1638 // are checking liveness for a subrange it is ok for the live range to 1639 // continue, given that we have a dead def of a subregister. 1640 if (SubRangeCheck || MO->getSubReg() == 0) { 1641 report("Live range continues after dead def flag", MO, MONum); 1642 report_context_liverange(LR); 1643 report_context_vreg_regunit(VRegOrUnit); 1644 if (LaneMask.any()) 1645 report_context_lanemask(LaneMask); 1646 } 1647 } 1648 } 1649 } 1650 1651 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1652 const MachineInstr *MI = MO->getParent(); 1653 const unsigned Reg = MO->getReg(); 1654 1655 // Both use and def operands can read a register. 1656 if (MO->readsReg()) { 1657 if (MO->isKill()) 1658 addRegWithSubRegs(regsKilled, Reg); 1659 1660 // Check that LiveVars knows this kill. 1661 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1662 MO->isKill()) { 1663 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1664 if (!is_contained(VI.Kills, MI)) 1665 report("Kill missing from LiveVariables", MO, MONum); 1666 } 1667 1668 // Check LiveInts liveness and kill. 1669 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1670 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1671 // Check the cached regunit intervals. 1672 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1673 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1674 if (MRI->isReservedRegUnit(*Units)) 1675 continue; 1676 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1677 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1678 } 1679 } 1680 1681 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1682 if (LiveInts->hasInterval(Reg)) { 1683 // This is a virtual register interval. 1684 const LiveInterval &LI = LiveInts->getInterval(Reg); 1685 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1686 1687 if (LI.hasSubRanges() && !MO->isDef()) { 1688 unsigned SubRegIdx = MO->getSubReg(); 1689 LaneBitmask MOMask = SubRegIdx != 0 1690 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1691 : MRI->getMaxLaneMaskForVReg(Reg); 1692 LaneBitmask LiveInMask; 1693 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1694 if ((MOMask & SR.LaneMask).none()) 1695 continue; 1696 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1697 LiveQueryResult LRQ = SR.Query(UseIdx); 1698 if (LRQ.valueIn()) 1699 LiveInMask |= SR.LaneMask; 1700 } 1701 // At least parts of the register has to be live at the use. 1702 if ((LiveInMask & MOMask).none()) { 1703 report("No live subrange at use", MO, MONum); 1704 report_context(LI); 1705 report_context(UseIdx); 1706 } 1707 } 1708 } else { 1709 report("Virtual register has no live interval", MO, MONum); 1710 } 1711 } 1712 } 1713 1714 // Use of a dead register. 1715 if (!regsLive.count(Reg)) { 1716 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1717 // Reserved registers may be used even when 'dead'. 1718 bool Bad = !isReserved(Reg); 1719 // We are fine if just any subregister has a defined value. 1720 if (Bad) { 1721 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1722 ++SubRegs) { 1723 if (regsLive.count(*SubRegs)) { 1724 Bad = false; 1725 break; 1726 } 1727 } 1728 } 1729 // If there is an additional implicit-use of a super register we stop 1730 // here. By definition we are fine if the super register is not 1731 // (completely) dead, if the complete super register is dead we will 1732 // get a report for its operand. 1733 if (Bad) { 1734 for (const MachineOperand &MOP : MI->uses()) { 1735 if (!MOP.isReg() || !MOP.isImplicit()) 1736 continue; 1737 1738 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg())) 1739 continue; 1740 1741 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1742 ++SubRegs) { 1743 if (*SubRegs == Reg) { 1744 Bad = false; 1745 break; 1746 } 1747 } 1748 } 1749 } 1750 if (Bad) 1751 report("Using an undefined physical register", MO, MONum); 1752 } else if (MRI->def_empty(Reg)) { 1753 report("Reading virtual register without a def", MO, MONum); 1754 } else { 1755 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1756 // We don't know which virtual registers are live in, so only complain 1757 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1758 // must be live in. PHI instructions are handled separately. 1759 if (MInfo.regsKilled.count(Reg)) 1760 report("Using a killed virtual register", MO, MONum); 1761 else if (!MI->isPHI()) 1762 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1763 } 1764 } 1765 } 1766 1767 if (MO->isDef()) { 1768 // Register defined. 1769 // TODO: verify that earlyclobber ops are not used. 1770 if (MO->isDead()) 1771 addRegWithSubRegs(regsDead, Reg); 1772 else 1773 addRegWithSubRegs(regsDefined, Reg); 1774 1775 // Verify SSA form. 1776 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1777 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1778 report("Multiple virtual register defs in SSA form", MO, MONum); 1779 1780 // Check LiveInts for a live segment, but only for virtual registers. 1781 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1782 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1783 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1784 1785 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1786 if (LiveInts->hasInterval(Reg)) { 1787 const LiveInterval &LI = LiveInts->getInterval(Reg); 1788 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1789 1790 if (LI.hasSubRanges()) { 1791 unsigned SubRegIdx = MO->getSubReg(); 1792 LaneBitmask MOMask = SubRegIdx != 0 1793 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1794 : MRI->getMaxLaneMaskForVReg(Reg); 1795 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1796 if ((SR.LaneMask & MOMask).none()) 1797 continue; 1798 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 1799 } 1800 } 1801 } else { 1802 report("Virtual register has no Live interval", MO, MONum); 1803 } 1804 } 1805 } 1806 } 1807 } 1808 1809 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1810 1811 // This function gets called after visiting all instructions in a bundle. The 1812 // argument points to the bundle header. 1813 // Normal stand-alone instructions are also considered 'bundles', and this 1814 // function is called for all of them. 1815 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1816 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1817 set_union(MInfo.regsKilled, regsKilled); 1818 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1819 // Kill any masked registers. 1820 while (!regMasks.empty()) { 1821 const uint32_t *Mask = regMasks.pop_back_val(); 1822 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1823 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1824 MachineOperand::clobbersPhysReg(Mask, *I)) 1825 regsDead.push_back(*I); 1826 } 1827 set_subtract(regsLive, regsDead); regsDead.clear(); 1828 set_union(regsLive, regsDefined); regsDefined.clear(); 1829 } 1830 1831 void 1832 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1833 MBBInfoMap[MBB].regsLiveOut = regsLive; 1834 regsLive.clear(); 1835 1836 if (Indexes) { 1837 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1838 if (!(stop > lastIndex)) { 1839 report("Block ends before last instruction index", MBB); 1840 errs() << "Block ends at " << stop 1841 << " last instruction was at " << lastIndex << '\n'; 1842 } 1843 lastIndex = stop; 1844 } 1845 } 1846 1847 // Calculate the largest possible vregsPassed sets. These are the registers that 1848 // can pass through an MBB live, but may not be live every time. It is assumed 1849 // that all vregsPassed sets are empty before the call. 1850 void MachineVerifier::calcRegsPassed() { 1851 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1852 // have any vregsPassed. 1853 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1854 for (const auto &MBB : *MF) { 1855 BBInfo &MInfo = MBBInfoMap[&MBB]; 1856 if (!MInfo.reachable) 1857 continue; 1858 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1859 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1860 BBInfo &SInfo = MBBInfoMap[*SuI]; 1861 if (SInfo.addPassed(MInfo.regsLiveOut)) 1862 todo.insert(*SuI); 1863 } 1864 } 1865 1866 // Iteratively push vregsPassed to successors. This will converge to the same 1867 // final state regardless of DenseSet iteration order. 1868 while (!todo.empty()) { 1869 const MachineBasicBlock *MBB = *todo.begin(); 1870 todo.erase(MBB); 1871 BBInfo &MInfo = MBBInfoMap[MBB]; 1872 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1873 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1874 if (*SuI == MBB) 1875 continue; 1876 BBInfo &SInfo = MBBInfoMap[*SuI]; 1877 if (SInfo.addPassed(MInfo.vregsPassed)) 1878 todo.insert(*SuI); 1879 } 1880 } 1881 } 1882 1883 // Calculate the set of virtual registers that must be passed through each basic 1884 // block in order to satisfy the requirements of successor blocks. This is very 1885 // similar to calcRegsPassed, only backwards. 1886 void MachineVerifier::calcRegsRequired() { 1887 // First push live-in regs to predecessors' vregsRequired. 1888 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1889 for (const auto &MBB : *MF) { 1890 BBInfo &MInfo = MBBInfoMap[&MBB]; 1891 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1892 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1893 BBInfo &PInfo = MBBInfoMap[*PrI]; 1894 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1895 todo.insert(*PrI); 1896 } 1897 } 1898 1899 // Iteratively push vregsRequired to predecessors. This will converge to the 1900 // same final state regardless of DenseSet iteration order. 1901 while (!todo.empty()) { 1902 const MachineBasicBlock *MBB = *todo.begin(); 1903 todo.erase(MBB); 1904 BBInfo &MInfo = MBBInfoMap[MBB]; 1905 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1906 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1907 if (*PrI == MBB) 1908 continue; 1909 BBInfo &SInfo = MBBInfoMap[*PrI]; 1910 if (SInfo.addRequired(MInfo.vregsRequired)) 1911 todo.insert(*PrI); 1912 } 1913 } 1914 } 1915 1916 // Check PHI instructions at the beginning of MBB. It is assumed that 1917 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1918 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1919 BBInfo &MInfo = MBBInfoMap[&MBB]; 1920 1921 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1922 for (const MachineInstr &Phi : MBB) { 1923 if (!Phi.isPHI()) 1924 break; 1925 seen.clear(); 1926 1927 const MachineOperand &MODef = Phi.getOperand(0); 1928 if (!MODef.isReg() || !MODef.isDef()) { 1929 report("Expected first PHI operand to be a register def", &MODef, 0); 1930 continue; 1931 } 1932 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1933 MODef.isEarlyClobber() || MODef.isDebug()) 1934 report("Unexpected flag on PHI operand", &MODef, 0); 1935 unsigned DefReg = MODef.getReg(); 1936 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1937 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1938 1939 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1940 const MachineOperand &MO0 = Phi.getOperand(I); 1941 if (!MO0.isReg()) { 1942 report("Expected PHI operand to be a register", &MO0, I); 1943 continue; 1944 } 1945 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 1946 MO0.isDebug() || MO0.isTied()) 1947 report("Unexpected flag on PHI operand", &MO0, I); 1948 1949 const MachineOperand &MO1 = Phi.getOperand(I + 1); 1950 if (!MO1.isMBB()) { 1951 report("Expected PHI operand to be a basic block", &MO1, I + 1); 1952 continue; 1953 } 1954 1955 const MachineBasicBlock &Pre = *MO1.getMBB(); 1956 if (!Pre.isSuccessor(&MBB)) { 1957 report("PHI input is not a predecessor block", &MO1, I + 1); 1958 continue; 1959 } 1960 1961 if (MInfo.reachable) { 1962 seen.insert(&Pre); 1963 BBInfo &PrInfo = MBBInfoMap[&Pre]; 1964 if (!MO0.isUndef() && PrInfo.reachable && 1965 !PrInfo.isLiveOut(MO0.getReg())) 1966 report("PHI operand is not live-out from predecessor", &MO0, I); 1967 } 1968 } 1969 1970 // Did we see all predecessors? 1971 if (MInfo.reachable) { 1972 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1973 if (!seen.count(Pred)) { 1974 report("Missing PHI operand", &Phi); 1975 errs() << printMBBReference(*Pred) 1976 << " is a predecessor according to the CFG.\n"; 1977 } 1978 } 1979 } 1980 } 1981 } 1982 1983 void MachineVerifier::visitMachineFunctionAfter() { 1984 calcRegsPassed(); 1985 1986 for (const MachineBasicBlock &MBB : *MF) 1987 checkPHIOps(MBB); 1988 1989 // Now check liveness info if available 1990 calcRegsRequired(); 1991 1992 // Check for killed virtual registers that should be live out. 1993 for (const auto &MBB : *MF) { 1994 BBInfo &MInfo = MBBInfoMap[&MBB]; 1995 for (RegSet::iterator 1996 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1997 ++I) 1998 if (MInfo.regsKilled.count(*I)) { 1999 report("Virtual register killed in block, but needed live out.", &MBB); 2000 errs() << "Virtual register " << printReg(*I) 2001 << " is used after the block.\n"; 2002 } 2003 } 2004 2005 if (!MF->empty()) { 2006 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2007 for (RegSet::iterator 2008 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 2009 ++I) { 2010 report("Virtual register defs don't dominate all uses.", MF); 2011 report_context_vreg(*I); 2012 } 2013 } 2014 2015 if (LiveVars) 2016 verifyLiveVariables(); 2017 if (LiveInts) 2018 verifyLiveIntervals(); 2019 } 2020 2021 void MachineVerifier::verifyLiveVariables() { 2022 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2023 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2024 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 2025 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2026 for (const auto &MBB : *MF) { 2027 BBInfo &MInfo = MBBInfoMap[&MBB]; 2028 2029 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2030 if (MInfo.vregsRequired.count(Reg)) { 2031 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2032 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2033 errs() << "Virtual register " << printReg(Reg) 2034 << " must be live through the block.\n"; 2035 } 2036 } else { 2037 if (VI.AliveBlocks.test(MBB.getNumber())) { 2038 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2039 errs() << "Virtual register " << printReg(Reg) 2040 << " is not needed live through the block.\n"; 2041 } 2042 } 2043 } 2044 } 2045 } 2046 2047 void MachineVerifier::verifyLiveIntervals() { 2048 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2049 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 2050 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 2051 2052 // Spilling and splitting may leave unused registers around. Skip them. 2053 if (MRI->reg_nodbg_empty(Reg)) 2054 continue; 2055 2056 if (!LiveInts->hasInterval(Reg)) { 2057 report("Missing live interval for virtual register", MF); 2058 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2059 continue; 2060 } 2061 2062 const LiveInterval &LI = LiveInts->getInterval(Reg); 2063 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 2064 verifyLiveInterval(LI); 2065 } 2066 2067 // Verify all the cached regunit intervals. 2068 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2069 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2070 verifyLiveRange(*LR, i); 2071 } 2072 2073 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2074 const VNInfo *VNI, unsigned Reg, 2075 LaneBitmask LaneMask) { 2076 if (VNI->isUnused()) 2077 return; 2078 2079 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2080 2081 if (!DefVNI) { 2082 report("Value not live at VNInfo def and not marked unused", MF); 2083 report_context(LR, Reg, LaneMask); 2084 report_context(*VNI); 2085 return; 2086 } 2087 2088 if (DefVNI != VNI) { 2089 report("Live segment at def has different VNInfo", MF); 2090 report_context(LR, Reg, LaneMask); 2091 report_context(*VNI); 2092 return; 2093 } 2094 2095 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2096 if (!MBB) { 2097 report("Invalid VNInfo definition index", MF); 2098 report_context(LR, Reg, LaneMask); 2099 report_context(*VNI); 2100 return; 2101 } 2102 2103 if (VNI->isPHIDef()) { 2104 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2105 report("PHIDef VNInfo is not defined at MBB start", MBB); 2106 report_context(LR, Reg, LaneMask); 2107 report_context(*VNI); 2108 } 2109 return; 2110 } 2111 2112 // Non-PHI def. 2113 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2114 if (!MI) { 2115 report("No instruction at VNInfo def index", MBB); 2116 report_context(LR, Reg, LaneMask); 2117 report_context(*VNI); 2118 return; 2119 } 2120 2121 if (Reg != 0) { 2122 bool hasDef = false; 2123 bool isEarlyClobber = false; 2124 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2125 if (!MOI->isReg() || !MOI->isDef()) 2126 continue; 2127 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2128 if (MOI->getReg() != Reg) 2129 continue; 2130 } else { 2131 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 2132 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2133 continue; 2134 } 2135 if (LaneMask.any() && 2136 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2137 continue; 2138 hasDef = true; 2139 if (MOI->isEarlyClobber()) 2140 isEarlyClobber = true; 2141 } 2142 2143 if (!hasDef) { 2144 report("Defining instruction does not modify register", MI); 2145 report_context(LR, Reg, LaneMask); 2146 report_context(*VNI); 2147 } 2148 2149 // Early clobber defs begin at USE slots, but other defs must begin at 2150 // DEF slots. 2151 if (isEarlyClobber) { 2152 if (!VNI->def.isEarlyClobber()) { 2153 report("Early clobber def must be at an early-clobber slot", MBB); 2154 report_context(LR, Reg, LaneMask); 2155 report_context(*VNI); 2156 } 2157 } else if (!VNI->def.isRegister()) { 2158 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2159 report_context(LR, Reg, LaneMask); 2160 report_context(*VNI); 2161 } 2162 } 2163 } 2164 2165 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2166 const LiveRange::const_iterator I, 2167 unsigned Reg, LaneBitmask LaneMask) 2168 { 2169 const LiveRange::Segment &S = *I; 2170 const VNInfo *VNI = S.valno; 2171 assert(VNI && "Live segment has no valno"); 2172 2173 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2174 report("Foreign valno in live segment", MF); 2175 report_context(LR, Reg, LaneMask); 2176 report_context(S); 2177 report_context(*VNI); 2178 } 2179 2180 if (VNI->isUnused()) { 2181 report("Live segment valno is marked unused", MF); 2182 report_context(LR, Reg, LaneMask); 2183 report_context(S); 2184 } 2185 2186 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2187 if (!MBB) { 2188 report("Bad start of live segment, no basic block", MF); 2189 report_context(LR, Reg, LaneMask); 2190 report_context(S); 2191 return; 2192 } 2193 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2194 if (S.start != MBBStartIdx && S.start != VNI->def) { 2195 report("Live segment must begin at MBB entry or valno def", MBB); 2196 report_context(LR, Reg, LaneMask); 2197 report_context(S); 2198 } 2199 2200 const MachineBasicBlock *EndMBB = 2201 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2202 if (!EndMBB) { 2203 report("Bad end of live segment, no basic block", MF); 2204 report_context(LR, Reg, LaneMask); 2205 report_context(S); 2206 return; 2207 } 2208 2209 // No more checks for live-out segments. 2210 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2211 return; 2212 2213 // RegUnit intervals are allowed dead phis. 2214 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 2215 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2216 return; 2217 2218 // The live segment is ending inside EndMBB 2219 const MachineInstr *MI = 2220 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2221 if (!MI) { 2222 report("Live segment doesn't end at a valid instruction", EndMBB); 2223 report_context(LR, Reg, LaneMask); 2224 report_context(S); 2225 return; 2226 } 2227 2228 // The block slot must refer to a basic block boundary. 2229 if (S.end.isBlock()) { 2230 report("Live segment ends at B slot of an instruction", EndMBB); 2231 report_context(LR, Reg, LaneMask); 2232 report_context(S); 2233 } 2234 2235 if (S.end.isDead()) { 2236 // Segment ends on the dead slot. 2237 // That means there must be a dead def. 2238 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2239 report("Live segment ending at dead slot spans instructions", EndMBB); 2240 report_context(LR, Reg, LaneMask); 2241 report_context(S); 2242 } 2243 } 2244 2245 // A live segment can only end at an early-clobber slot if it is being 2246 // redefined by an early-clobber def. 2247 if (S.end.isEarlyClobber()) { 2248 if (I+1 == LR.end() || (I+1)->start != S.end) { 2249 report("Live segment ending at early clobber slot must be " 2250 "redefined by an EC def in the same instruction", EndMBB); 2251 report_context(LR, Reg, LaneMask); 2252 report_context(S); 2253 } 2254 } 2255 2256 // The following checks only apply to virtual registers. Physreg liveness 2257 // is too weird to check. 2258 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2259 // A live segment can end with either a redefinition, a kill flag on a 2260 // use, or a dead flag on a def. 2261 bool hasRead = false; 2262 bool hasSubRegDef = false; 2263 bool hasDeadDef = false; 2264 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2265 if (!MOI->isReg() || MOI->getReg() != Reg) 2266 continue; 2267 unsigned Sub = MOI->getSubReg(); 2268 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2269 : LaneBitmask::getAll(); 2270 if (MOI->isDef()) { 2271 if (Sub != 0) { 2272 hasSubRegDef = true; 2273 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2274 // mask for subregister defs. Read-undef defs will be handled by 2275 // readsReg below. 2276 SLM = ~SLM; 2277 } 2278 if (MOI->isDead()) 2279 hasDeadDef = true; 2280 } 2281 if (LaneMask.any() && (LaneMask & SLM).none()) 2282 continue; 2283 if (MOI->readsReg()) 2284 hasRead = true; 2285 } 2286 if (S.end.isDead()) { 2287 // Make sure that the corresponding machine operand for a "dead" live 2288 // range has the dead flag. We cannot perform this check for subregister 2289 // liveranges as partially dead values are allowed. 2290 if (LaneMask.none() && !hasDeadDef) { 2291 report("Instruction ending live segment on dead slot has no dead flag", 2292 MI); 2293 report_context(LR, Reg, LaneMask); 2294 report_context(S); 2295 } 2296 } else { 2297 if (!hasRead) { 2298 // When tracking subregister liveness, the main range must start new 2299 // values on partial register writes, even if there is no read. 2300 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2301 !hasSubRegDef) { 2302 report("Instruction ending live segment doesn't read the register", 2303 MI); 2304 report_context(LR, Reg, LaneMask); 2305 report_context(S); 2306 } 2307 } 2308 } 2309 } 2310 2311 // Now check all the basic blocks in this live segment. 2312 MachineFunction::const_iterator MFI = MBB->getIterator(); 2313 // Is this live segment the beginning of a non-PHIDef VN? 2314 if (S.start == VNI->def && !VNI->isPHIDef()) { 2315 // Not live-in to any blocks. 2316 if (MBB == EndMBB) 2317 return; 2318 // Skip this block. 2319 ++MFI; 2320 } 2321 2322 SmallVector<SlotIndex, 4> Undefs; 2323 if (LaneMask.any()) { 2324 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2325 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2326 } 2327 2328 while (true) { 2329 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2330 // We don't know how to track physregs into a landing pad. 2331 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2332 MFI->isEHPad()) { 2333 if (&*MFI == EndMBB) 2334 break; 2335 ++MFI; 2336 continue; 2337 } 2338 2339 // Is VNI a PHI-def in the current block? 2340 bool IsPHI = VNI->isPHIDef() && 2341 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2342 2343 // Check that VNI is live-out of all predecessors. 2344 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2345 PE = MFI->pred_end(); PI != PE; ++PI) { 2346 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2347 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2348 2349 // All predecessors must have a live-out value. However for a phi 2350 // instruction with subregister intervals 2351 // only one of the subregisters (not necessarily the current one) needs to 2352 // be defined. 2353 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2354 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2355 continue; 2356 report("Register not marked live out of predecessor", *PI); 2357 report_context(LR, Reg, LaneMask); 2358 report_context(*VNI); 2359 errs() << " live into " << printMBBReference(*MFI) << '@' 2360 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2361 << PEnd << '\n'; 2362 continue; 2363 } 2364 2365 // Only PHI-defs can take different predecessor values. 2366 if (!IsPHI && PVNI != VNI) { 2367 report("Different value live out of predecessor", *PI); 2368 report_context(LR, Reg, LaneMask); 2369 errs() << "Valno #" << PVNI->id << " live out of " 2370 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2371 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2372 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2373 } 2374 } 2375 if (&*MFI == EndMBB) 2376 break; 2377 ++MFI; 2378 } 2379 } 2380 2381 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2382 LaneBitmask LaneMask) { 2383 for (const VNInfo *VNI : LR.valnos) 2384 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2385 2386 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2387 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2388 } 2389 2390 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2391 unsigned Reg = LI.reg; 2392 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2393 verifyLiveRange(LI, Reg); 2394 2395 LaneBitmask Mask; 2396 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2397 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2398 if ((Mask & SR.LaneMask).any()) { 2399 report("Lane masks of sub ranges overlap in live interval", MF); 2400 report_context(LI); 2401 } 2402 if ((SR.LaneMask & ~MaxMask).any()) { 2403 report("Subrange lanemask is invalid", MF); 2404 report_context(LI); 2405 } 2406 if (SR.empty()) { 2407 report("Subrange must not be empty", MF); 2408 report_context(SR, LI.reg, SR.LaneMask); 2409 } 2410 Mask |= SR.LaneMask; 2411 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2412 if (!LI.covers(SR)) { 2413 report("A Subrange is not covered by the main range", MF); 2414 report_context(LI); 2415 } 2416 } 2417 2418 // Check the LI only has one connected component. 2419 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2420 unsigned NumComp = ConEQ.Classify(LI); 2421 if (NumComp > 1) { 2422 report("Multiple connected components in live interval", MF); 2423 report_context(LI); 2424 for (unsigned comp = 0; comp != NumComp; ++comp) { 2425 errs() << comp << ": valnos"; 2426 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2427 E = LI.vni_end(); I!=E; ++I) 2428 if (comp == ConEQ.getEqClass(*I)) 2429 errs() << ' ' << (*I)->id; 2430 errs() << '\n'; 2431 } 2432 } 2433 } 2434 2435 namespace { 2436 2437 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2438 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2439 // value is zero. 2440 // We use a bool plus an integer to capture the stack state. 2441 struct StackStateOfBB { 2442 StackStateOfBB() = default; 2443 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2444 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2445 ExitIsSetup(ExitSetup) {} 2446 2447 // Can be negative, which means we are setting up a frame. 2448 int EntryValue = 0; 2449 int ExitValue = 0; 2450 bool EntryIsSetup = false; 2451 bool ExitIsSetup = false; 2452 }; 2453 2454 } // end anonymous namespace 2455 2456 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2457 /// by a FrameDestroy <n>, stack adjustments are identical on all 2458 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2459 void MachineVerifier::verifyStackFrame() { 2460 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2461 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2462 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2463 return; 2464 2465 SmallVector<StackStateOfBB, 8> SPState; 2466 SPState.resize(MF->getNumBlockIDs()); 2467 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2468 2469 // Visit the MBBs in DFS order. 2470 for (df_ext_iterator<const MachineFunction *, 2471 df_iterator_default_set<const MachineBasicBlock *>> 2472 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2473 DFI != DFE; ++DFI) { 2474 const MachineBasicBlock *MBB = *DFI; 2475 2476 StackStateOfBB BBState; 2477 // Check the exit state of the DFS stack predecessor. 2478 if (DFI.getPathLength() >= 2) { 2479 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2480 assert(Reachable.count(StackPred) && 2481 "DFS stack predecessor is already visited.\n"); 2482 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2483 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2484 BBState.ExitValue = BBState.EntryValue; 2485 BBState.ExitIsSetup = BBState.EntryIsSetup; 2486 } 2487 2488 // Update stack state by checking contents of MBB. 2489 for (const auto &I : *MBB) { 2490 if (I.getOpcode() == FrameSetupOpcode) { 2491 if (BBState.ExitIsSetup) 2492 report("FrameSetup is after another FrameSetup", &I); 2493 BBState.ExitValue -= TII->getFrameTotalSize(I); 2494 BBState.ExitIsSetup = true; 2495 } 2496 2497 if (I.getOpcode() == FrameDestroyOpcode) { 2498 int Size = TII->getFrameTotalSize(I); 2499 if (!BBState.ExitIsSetup) 2500 report("FrameDestroy is not after a FrameSetup", &I); 2501 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2502 BBState.ExitValue; 2503 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2504 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2505 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2506 << AbsSPAdj << ">.\n"; 2507 } 2508 BBState.ExitValue += Size; 2509 BBState.ExitIsSetup = false; 2510 } 2511 } 2512 SPState[MBB->getNumber()] = BBState; 2513 2514 // Make sure the exit state of any predecessor is consistent with the entry 2515 // state. 2516 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2517 E = MBB->pred_end(); I != E; ++I) { 2518 if (Reachable.count(*I) && 2519 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2520 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2521 report("The exit stack state of a predecessor is inconsistent.", MBB); 2522 errs() << "Predecessor " << printMBBReference(*(*I)) 2523 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2524 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2525 << printMBBReference(*MBB) << " has entry state (" 2526 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2527 } 2528 } 2529 2530 // Make sure the entry state of any successor is consistent with the exit 2531 // state. 2532 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2533 E = MBB->succ_end(); I != E; ++I) { 2534 if (Reachable.count(*I) && 2535 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2536 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2537 report("The entry stack state of a successor is inconsistent.", MBB); 2538 errs() << "Successor " << printMBBReference(*(*I)) 2539 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2540 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2541 << printMBBReference(*MBB) << " has exit state (" 2542 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2543 } 2544 } 2545 2546 // Make sure a basic block with return ends with zero stack adjustment. 2547 if (!MBB->empty() && MBB->back().isReturn()) { 2548 if (BBState.ExitIsSetup) 2549 report("A return block ends with a FrameSetup.", MBB); 2550 if (BBState.ExitValue) 2551 report("A return block ends with a nonzero stack adjustment.", MBB); 2552 } 2553 } 2554 } 2555