1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/DepthFirstIterator.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetOperations.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/EHPersonalities.h" 37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 38 #include "llvm/CodeGen/LiveInterval.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/PseudoSourceValue.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetOpcodes.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstTerminator; 112 BlockSet FunctionBlocks; 113 114 BitVector regsReserved; 115 RegSet regsLive; 116 RegVector regsDefined, regsDead, regsKilled; 117 RegMaskVector regMasks; 118 119 SlotIndex lastIndex; 120 121 // Add Reg and any sub-registers to RV 122 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 123 RV.push_back(Reg); 124 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 125 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 126 RV.push_back(*SubRegs); 127 } 128 129 struct BBInfo { 130 // Is this MBB reachable from the MF entry point? 131 bool reachable = false; 132 133 // Vregs that must be live in because they are used without being 134 // defined. Map value is the user. 135 RegMap vregsLiveIn; 136 137 // Regs killed in MBB. They may be defined again, and will then be in both 138 // regsKilled and regsLiveOut. 139 RegSet regsKilled; 140 141 // Regs defined in MBB and live out. Note that vregs passing through may 142 // be live out without being mentioned here. 143 RegSet regsLiveOut; 144 145 // Vregs that pass through MBB untouched. This set is disjoint from 146 // regsKilled and regsLiveOut. 147 RegSet vregsPassed; 148 149 // Vregs that must pass through MBB because they are needed by a successor 150 // block. This set is disjoint from regsLiveOut. 151 RegSet vregsRequired; 152 153 // Set versions of block's predecessor and successor lists. 154 BlockSet Preds, Succs; 155 156 BBInfo() = default; 157 158 // Add register to vregsPassed if it belongs there. Return true if 159 // anything changed. 160 bool addPassed(unsigned Reg) { 161 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 162 return false; 163 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 164 return false; 165 return vregsPassed.insert(Reg).second; 166 } 167 168 // Same for a full set. 169 bool addPassed(const RegSet &RS) { 170 bool changed = false; 171 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 172 if (addPassed(*I)) 173 changed = true; 174 return changed; 175 } 176 177 // Add register to vregsRequired if it belongs there. Return true if 178 // anything changed. 179 bool addRequired(unsigned Reg) { 180 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 181 return false; 182 if (regsLiveOut.count(Reg)) 183 return false; 184 return vregsRequired.insert(Reg).second; 185 } 186 187 // Same for a full set. 188 bool addRequired(const RegSet &RS) { 189 bool changed = false; 190 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 191 if (addRequired(*I)) 192 changed = true; 193 return changed; 194 } 195 196 // Same for a full map. 197 bool addRequired(const RegMap &RM) { 198 bool changed = false; 199 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 200 if (addRequired(I->first)) 201 changed = true; 202 return changed; 203 } 204 205 // Live-out registers are either in regsLiveOut or vregsPassed. 206 bool isLiveOut(unsigned Reg) const { 207 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 208 } 209 }; 210 211 // Extra register info per MBB. 212 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 213 214 bool isReserved(unsigned Reg) { 215 return Reg < regsReserved.size() && regsReserved.test(Reg); 216 } 217 218 bool isAllocatable(unsigned Reg) const { 219 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 220 !regsReserved.test(Reg); 221 } 222 223 // Analysis information if available 224 LiveVariables *LiveVars; 225 LiveIntervals *LiveInts; 226 LiveStacks *LiveStks; 227 SlotIndexes *Indexes; 228 229 void visitMachineFunctionBefore(); 230 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 231 void visitMachineBundleBefore(const MachineInstr *MI); 232 void visitMachineInstrBefore(const MachineInstr *MI); 233 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 234 void visitMachineInstrAfter(const MachineInstr *MI); 235 void visitMachineBundleAfter(const MachineInstr *MI); 236 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 237 void visitMachineFunctionAfter(); 238 239 void report(const char *msg, const MachineFunction *MF); 240 void report(const char *msg, const MachineBasicBlock *MBB); 241 void report(const char *msg, const MachineInstr *MI); 242 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 243 LLT MOVRegType = LLT{}); 244 245 void report_context(const LiveInterval &LI) const; 246 void report_context(const LiveRange &LR, unsigned VRegUnit, 247 LaneBitmask LaneMask) const; 248 void report_context(const LiveRange::Segment &S) const; 249 void report_context(const VNInfo &VNI) const; 250 void report_context(SlotIndex Pos) const; 251 void report_context_liverange(const LiveRange &LR) const; 252 void report_context_lanemask(LaneBitmask LaneMask) const; 253 void report_context_vreg(unsigned VReg) const; 254 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 255 256 void verifyInlineAsm(const MachineInstr *MI); 257 258 void checkLiveness(const MachineOperand *MO, unsigned MONum); 259 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 260 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 261 LaneBitmask LaneMask = LaneBitmask::getNone()); 262 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 263 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 264 LaneBitmask LaneMask = LaneBitmask::getNone()); 265 266 void markReachable(const MachineBasicBlock *MBB); 267 void calcRegsPassed(); 268 void checkPHIOps(const MachineBasicBlock &MBB); 269 270 void calcRegsRequired(); 271 void verifyLiveVariables(); 272 void verifyLiveIntervals(); 273 void verifyLiveInterval(const LiveInterval&); 274 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 275 LaneBitmask); 276 void verifyLiveRangeSegment(const LiveRange&, 277 const LiveRange::const_iterator I, unsigned, 278 LaneBitmask); 279 void verifyLiveRange(const LiveRange&, unsigned, 280 LaneBitmask LaneMask = LaneBitmask::getNone()); 281 282 void verifyStackFrame(); 283 284 void verifySlotIndexes() const; 285 void verifyProperties(const MachineFunction &MF); 286 }; 287 288 struct MachineVerifierPass : public MachineFunctionPass { 289 static char ID; // Pass ID, replacement for typeid 290 291 const std::string Banner; 292 293 MachineVerifierPass(std::string banner = std::string()) 294 : MachineFunctionPass(ID), Banner(std::move(banner)) { 295 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 296 } 297 298 void getAnalysisUsage(AnalysisUsage &AU) const override { 299 AU.setPreservesAll(); 300 MachineFunctionPass::getAnalysisUsage(AU); 301 } 302 303 bool runOnMachineFunction(MachineFunction &MF) override { 304 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 305 if (FoundErrors) 306 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 307 return false; 308 } 309 }; 310 311 } // end anonymous namespace 312 313 char MachineVerifierPass::ID = 0; 314 315 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 316 "Verify generated machine code", false, false) 317 318 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 319 return new MachineVerifierPass(Banner); 320 } 321 322 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 323 const { 324 MachineFunction &MF = const_cast<MachineFunction&>(*this); 325 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 326 if (AbortOnErrors && FoundErrors) 327 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 328 return FoundErrors == 0; 329 } 330 331 void MachineVerifier::verifySlotIndexes() const { 332 if (Indexes == nullptr) 333 return; 334 335 // Ensure the IdxMBB list is sorted by slot indexes. 336 SlotIndex Last; 337 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 338 E = Indexes->MBBIndexEnd(); I != E; ++I) { 339 assert(!Last.isValid() || I->first > Last); 340 Last = I->first; 341 } 342 } 343 344 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 345 // If a pass has introduced virtual registers without clearing the 346 // NoVRegs property (or set it without allocating the vregs) 347 // then report an error. 348 if (MF.getProperties().hasProperty( 349 MachineFunctionProperties::Property::NoVRegs) && 350 MRI->getNumVirtRegs()) 351 report("Function has NoVRegs property but there are VReg operands", &MF); 352 } 353 354 unsigned MachineVerifier::verify(MachineFunction &MF) { 355 foundErrors = 0; 356 357 this->MF = &MF; 358 TM = &MF.getTarget(); 359 TII = MF.getSubtarget().getInstrInfo(); 360 TRI = MF.getSubtarget().getRegisterInfo(); 361 MRI = &MF.getRegInfo(); 362 363 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 364 MachineFunctionProperties::Property::FailedISel); 365 isFunctionRegBankSelected = 366 !isFunctionFailedISel && 367 MF.getProperties().hasProperty( 368 MachineFunctionProperties::Property::RegBankSelected); 369 isFunctionSelected = !isFunctionFailedISel && 370 MF.getProperties().hasProperty( 371 MachineFunctionProperties::Property::Selected); 372 LiveVars = nullptr; 373 LiveInts = nullptr; 374 LiveStks = nullptr; 375 Indexes = nullptr; 376 if (PASS) { 377 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 378 // We don't want to verify LiveVariables if LiveIntervals is available. 379 if (!LiveInts) 380 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 381 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 382 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 383 } 384 385 verifySlotIndexes(); 386 387 verifyProperties(MF); 388 389 visitMachineFunctionBefore(); 390 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 391 MFI!=MFE; ++MFI) { 392 visitMachineBasicBlockBefore(&*MFI); 393 // Keep track of the current bundle header. 394 const MachineInstr *CurBundle = nullptr; 395 // Do we expect the next instruction to be part of the same bundle? 396 bool InBundle = false; 397 398 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 399 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 400 if (MBBI->getParent() != &*MFI) { 401 report("Bad instruction parent pointer", &*MFI); 402 errs() << "Instruction: " << *MBBI; 403 continue; 404 } 405 406 // Check for consistent bundle flags. 407 if (InBundle && !MBBI->isBundledWithPred()) 408 report("Missing BundledPred flag, " 409 "BundledSucc was set on predecessor", 410 &*MBBI); 411 if (!InBundle && MBBI->isBundledWithPred()) 412 report("BundledPred flag is set, " 413 "but BundledSucc not set on predecessor", 414 &*MBBI); 415 416 // Is this a bundle header? 417 if (!MBBI->isInsideBundle()) { 418 if (CurBundle) 419 visitMachineBundleAfter(CurBundle); 420 CurBundle = &*MBBI; 421 visitMachineBundleBefore(CurBundle); 422 } else if (!CurBundle) 423 report("No bundle header", &*MBBI); 424 visitMachineInstrBefore(&*MBBI); 425 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 426 const MachineInstr &MI = *MBBI; 427 const MachineOperand &Op = MI.getOperand(I); 428 if (Op.getParent() != &MI) { 429 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 430 // functions when replacing operands of a MachineInstr. 431 report("Instruction has operand with wrong parent set", &MI); 432 } 433 434 visitMachineOperand(&Op, I); 435 } 436 437 visitMachineInstrAfter(&*MBBI); 438 439 // Was this the last bundled instruction? 440 InBundle = MBBI->isBundledWithSucc(); 441 } 442 if (CurBundle) 443 visitMachineBundleAfter(CurBundle); 444 if (InBundle) 445 report("BundledSucc flag set on last instruction in block", &MFI->back()); 446 visitMachineBasicBlockAfter(&*MFI); 447 } 448 visitMachineFunctionAfter(); 449 450 // Clean up. 451 regsLive.clear(); 452 regsDefined.clear(); 453 regsDead.clear(); 454 regsKilled.clear(); 455 regMasks.clear(); 456 MBBInfoMap.clear(); 457 458 return foundErrors; 459 } 460 461 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 462 assert(MF); 463 errs() << '\n'; 464 if (!foundErrors++) { 465 if (Banner) 466 errs() << "# " << Banner << '\n'; 467 if (LiveInts != nullptr) 468 LiveInts->print(errs()); 469 else 470 MF->print(errs(), Indexes); 471 } 472 errs() << "*** Bad machine code: " << msg << " ***\n" 473 << "- function: " << MF->getName() << "\n"; 474 } 475 476 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 477 assert(MBB); 478 report(msg, MBB->getParent()); 479 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 480 << MBB->getName() << " (" << (const void *)MBB << ')'; 481 if (Indexes) 482 errs() << " [" << Indexes->getMBBStartIdx(MBB) 483 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 484 errs() << '\n'; 485 } 486 487 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 488 assert(MI); 489 report(msg, MI->getParent()); 490 errs() << "- instruction: "; 491 if (Indexes && Indexes->hasIndex(*MI)) 492 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 493 MI->print(errs(), /*SkipOpers=*/true); 494 } 495 496 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 497 unsigned MONum, LLT MOVRegType) { 498 assert(MO); 499 report(msg, MO->getParent()); 500 errs() << "- operand " << MONum << ": "; 501 MO->print(errs(), MOVRegType, TRI); 502 errs() << "\n"; 503 } 504 505 void MachineVerifier::report_context(SlotIndex Pos) const { 506 errs() << "- at: " << Pos << '\n'; 507 } 508 509 void MachineVerifier::report_context(const LiveInterval &LI) const { 510 errs() << "- interval: " << LI << '\n'; 511 } 512 513 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 514 LaneBitmask LaneMask) const { 515 report_context_liverange(LR); 516 report_context_vreg_regunit(VRegUnit); 517 if (LaneMask.any()) 518 report_context_lanemask(LaneMask); 519 } 520 521 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 522 errs() << "- segment: " << S << '\n'; 523 } 524 525 void MachineVerifier::report_context(const VNInfo &VNI) const { 526 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 527 } 528 529 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 530 errs() << "- liverange: " << LR << '\n'; 531 } 532 533 void MachineVerifier::report_context_vreg(unsigned VReg) const { 534 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 535 } 536 537 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 538 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 539 report_context_vreg(VRegOrUnit); 540 } else { 541 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 542 } 543 } 544 545 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 546 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 547 } 548 549 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 550 BBInfo &MInfo = MBBInfoMap[MBB]; 551 if (!MInfo.reachable) { 552 MInfo.reachable = true; 553 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 554 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 555 markReachable(*SuI); 556 } 557 } 558 559 void MachineVerifier::visitMachineFunctionBefore() { 560 lastIndex = SlotIndex(); 561 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 562 : TRI->getReservedRegs(*MF); 563 564 if (!MF->empty()) 565 markReachable(&MF->front()); 566 567 // Build a set of the basic blocks in the function. 568 FunctionBlocks.clear(); 569 for (const auto &MBB : *MF) { 570 FunctionBlocks.insert(&MBB); 571 BBInfo &MInfo = MBBInfoMap[&MBB]; 572 573 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 574 if (MInfo.Preds.size() != MBB.pred_size()) 575 report("MBB has duplicate entries in its predecessor list.", &MBB); 576 577 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 578 if (MInfo.Succs.size() != MBB.succ_size()) 579 report("MBB has duplicate entries in its successor list.", &MBB); 580 } 581 582 // Check that the register use lists are sane. 583 MRI->verifyUseLists(); 584 585 if (!MF->empty()) 586 verifyStackFrame(); 587 } 588 589 // Does iterator point to a and b as the first two elements? 590 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 591 const MachineBasicBlock *a, const MachineBasicBlock *b) { 592 if (*i == a) 593 return *++i == b; 594 if (*i == b) 595 return *++i == a; 596 return false; 597 } 598 599 void 600 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 601 FirstTerminator = nullptr; 602 603 if (!MF->getProperties().hasProperty( 604 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 605 // If this block has allocatable physical registers live-in, check that 606 // it is an entry block or landing pad. 607 for (const auto &LI : MBB->liveins()) { 608 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 609 MBB->getIterator() != MBB->getParent()->begin()) { 610 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 611 } 612 } 613 } 614 615 // Count the number of landing pad successors. 616 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 617 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 618 E = MBB->succ_end(); I != E; ++I) { 619 if ((*I)->isEHPad()) 620 LandingPadSuccs.insert(*I); 621 if (!FunctionBlocks.count(*I)) 622 report("MBB has successor that isn't part of the function.", MBB); 623 if (!MBBInfoMap[*I].Preds.count(MBB)) { 624 report("Inconsistent CFG", MBB); 625 errs() << "MBB is not in the predecessor list of the successor " 626 << printMBBReference(*(*I)) << ".\n"; 627 } 628 } 629 630 // Check the predecessor list. 631 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 632 E = MBB->pred_end(); I != E; ++I) { 633 if (!FunctionBlocks.count(*I)) 634 report("MBB has predecessor that isn't part of the function.", MBB); 635 if (!MBBInfoMap[*I].Succs.count(MBB)) { 636 report("Inconsistent CFG", MBB); 637 errs() << "MBB is not in the successor list of the predecessor " 638 << printMBBReference(*(*I)) << ".\n"; 639 } 640 } 641 642 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 643 const BasicBlock *BB = MBB->getBasicBlock(); 644 const Function &F = MF->getFunction(); 645 if (LandingPadSuccs.size() > 1 && 646 !(AsmInfo && 647 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 648 BB && isa<SwitchInst>(BB->getTerminator())) && 649 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 650 report("MBB has more than one landing pad successor", MBB); 651 652 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 653 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 654 SmallVector<MachineOperand, 4> Cond; 655 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 656 Cond)) { 657 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 658 // check whether its answers match up with reality. 659 if (!TBB && !FBB) { 660 // Block falls through to its successor. 661 MachineFunction::const_iterator MBBI = MBB->getIterator(); 662 ++MBBI; 663 if (MBBI == MF->end()) { 664 // It's possible that the block legitimately ends with a noreturn 665 // call or an unreachable, in which case it won't actually fall 666 // out the bottom of the function. 667 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 668 // It's possible that the block legitimately ends with a noreturn 669 // call or an unreachable, in which case it won't actuall fall 670 // out of the block. 671 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 672 report("MBB exits via unconditional fall-through but doesn't have " 673 "exactly one CFG successor!", MBB); 674 } else if (!MBB->isSuccessor(&*MBBI)) { 675 report("MBB exits via unconditional fall-through but its successor " 676 "differs from its CFG successor!", MBB); 677 } 678 if (!MBB->empty() && MBB->back().isBarrier() && 679 !TII->isPredicated(MBB->back())) { 680 report("MBB exits via unconditional fall-through but ends with a " 681 "barrier instruction!", MBB); 682 } 683 if (!Cond.empty()) { 684 report("MBB exits via unconditional fall-through but has a condition!", 685 MBB); 686 } 687 } else if (TBB && !FBB && Cond.empty()) { 688 // Block unconditionally branches somewhere. 689 // If the block has exactly one successor, that happens to be a 690 // landingpad, accept it as valid control flow. 691 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 692 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 693 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 694 report("MBB exits via unconditional branch but doesn't have " 695 "exactly one CFG successor!", MBB); 696 } else if (!MBB->isSuccessor(TBB)) { 697 report("MBB exits via unconditional branch but the CFG " 698 "successor doesn't match the actual successor!", MBB); 699 } 700 if (MBB->empty()) { 701 report("MBB exits via unconditional branch but doesn't contain " 702 "any instructions!", MBB); 703 } else if (!MBB->back().isBarrier()) { 704 report("MBB exits via unconditional branch but doesn't end with a " 705 "barrier instruction!", MBB); 706 } else if (!MBB->back().isTerminator()) { 707 report("MBB exits via unconditional branch but the branch isn't a " 708 "terminator instruction!", MBB); 709 } 710 } else if (TBB && !FBB && !Cond.empty()) { 711 // Block conditionally branches somewhere, otherwise falls through. 712 MachineFunction::const_iterator MBBI = MBB->getIterator(); 713 ++MBBI; 714 if (MBBI == MF->end()) { 715 report("MBB conditionally falls through out of function!", MBB); 716 } else if (MBB->succ_size() == 1) { 717 // A conditional branch with only one successor is weird, but allowed. 718 if (&*MBBI != TBB) 719 report("MBB exits via conditional branch/fall-through but only has " 720 "one CFG successor!", MBB); 721 else if (TBB != *MBB->succ_begin()) 722 report("MBB exits via conditional branch/fall-through but the CFG " 723 "successor don't match the actual successor!", MBB); 724 } else if (MBB->succ_size() != 2) { 725 report("MBB exits via conditional branch/fall-through but doesn't have " 726 "exactly two CFG successors!", MBB); 727 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 728 report("MBB exits via conditional branch/fall-through but the CFG " 729 "successors don't match the actual successors!", MBB); 730 } 731 if (MBB->empty()) { 732 report("MBB exits via conditional branch/fall-through but doesn't " 733 "contain any instructions!", MBB); 734 } else if (MBB->back().isBarrier()) { 735 report("MBB exits via conditional branch/fall-through but ends with a " 736 "barrier instruction!", MBB); 737 } else if (!MBB->back().isTerminator()) { 738 report("MBB exits via conditional branch/fall-through but the branch " 739 "isn't a terminator instruction!", MBB); 740 } 741 } else if (TBB && FBB) { 742 // Block conditionally branches somewhere, otherwise branches 743 // somewhere else. 744 if (MBB->succ_size() == 1) { 745 // A conditional branch with only one successor is weird, but allowed. 746 if (FBB != TBB) 747 report("MBB exits via conditional branch/branch through but only has " 748 "one CFG successor!", MBB); 749 else if (TBB != *MBB->succ_begin()) 750 report("MBB exits via conditional branch/branch through but the CFG " 751 "successor don't match the actual successor!", MBB); 752 } else if (MBB->succ_size() != 2) { 753 report("MBB exits via conditional branch/branch but doesn't have " 754 "exactly two CFG successors!", MBB); 755 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 756 report("MBB exits via conditional branch/branch but the CFG " 757 "successors don't match the actual successors!", MBB); 758 } 759 if (MBB->empty()) { 760 report("MBB exits via conditional branch/branch but doesn't " 761 "contain any instructions!", MBB); 762 } else if (!MBB->back().isBarrier()) { 763 report("MBB exits via conditional branch/branch but doesn't end with a " 764 "barrier instruction!", MBB); 765 } else if (!MBB->back().isTerminator()) { 766 report("MBB exits via conditional branch/branch but the branch " 767 "isn't a terminator instruction!", MBB); 768 } 769 if (Cond.empty()) { 770 report("MBB exits via conditinal branch/branch but there's no " 771 "condition!", MBB); 772 } 773 } else { 774 report("AnalyzeBranch returned invalid data!", MBB); 775 } 776 } 777 778 regsLive.clear(); 779 if (MRI->tracksLiveness()) { 780 for (const auto &LI : MBB->liveins()) { 781 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 782 report("MBB live-in list contains non-physical register", MBB); 783 continue; 784 } 785 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 786 SubRegs.isValid(); ++SubRegs) 787 regsLive.insert(*SubRegs); 788 } 789 } 790 791 const MachineFrameInfo &MFI = MF->getFrameInfo(); 792 BitVector PR = MFI.getPristineRegs(*MF); 793 for (unsigned I : PR.set_bits()) { 794 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 795 SubRegs.isValid(); ++SubRegs) 796 regsLive.insert(*SubRegs); 797 } 798 799 regsKilled.clear(); 800 regsDefined.clear(); 801 802 if (Indexes) 803 lastIndex = Indexes->getMBBStartIdx(MBB); 804 } 805 806 // This function gets called for all bundle headers, including normal 807 // stand-alone unbundled instructions. 808 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 809 if (Indexes && Indexes->hasIndex(*MI)) { 810 SlotIndex idx = Indexes->getInstructionIndex(*MI); 811 if (!(idx > lastIndex)) { 812 report("Instruction index out of order", MI); 813 errs() << "Last instruction was at " << lastIndex << '\n'; 814 } 815 lastIndex = idx; 816 } 817 818 // Ensure non-terminators don't follow terminators. 819 // Ignore predicated terminators formed by if conversion. 820 // FIXME: If conversion shouldn't need to violate this rule. 821 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 822 if (!FirstTerminator) 823 FirstTerminator = MI; 824 } else if (FirstTerminator) { 825 report("Non-terminator instruction after the first terminator", MI); 826 errs() << "First terminator was:\t" << *FirstTerminator; 827 } 828 } 829 830 // The operands on an INLINEASM instruction must follow a template. 831 // Verify that the flag operands make sense. 832 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 833 // The first two operands on INLINEASM are the asm string and global flags. 834 if (MI->getNumOperands() < 2) { 835 report("Too few operands on inline asm", MI); 836 return; 837 } 838 if (!MI->getOperand(0).isSymbol()) 839 report("Asm string must be an external symbol", MI); 840 if (!MI->getOperand(1).isImm()) 841 report("Asm flags must be an immediate", MI); 842 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 843 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 844 // and Extra_IsConvergent = 32. 845 if (!isUInt<6>(MI->getOperand(1).getImm())) 846 report("Unknown asm flags", &MI->getOperand(1), 1); 847 848 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 849 850 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 851 unsigned NumOps; 852 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 853 const MachineOperand &MO = MI->getOperand(OpNo); 854 // There may be implicit ops after the fixed operands. 855 if (!MO.isImm()) 856 break; 857 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 858 } 859 860 if (OpNo > MI->getNumOperands()) 861 report("Missing operands in last group", MI); 862 863 // An optional MDNode follows the groups. 864 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 865 ++OpNo; 866 867 // All trailing operands must be implicit registers. 868 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 869 const MachineOperand &MO = MI->getOperand(OpNo); 870 if (!MO.isReg() || !MO.isImplicit()) 871 report("Expected implicit register after groups", &MO, OpNo); 872 } 873 } 874 875 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 876 const MCInstrDesc &MCID = MI->getDesc(); 877 if (MI->getNumOperands() < MCID.getNumOperands()) { 878 report("Too few operands", MI); 879 errs() << MCID.getNumOperands() << " operands expected, but " 880 << MI->getNumOperands() << " given.\n"; 881 } 882 883 if (MI->isPHI() && MF->getProperties().hasProperty( 884 MachineFunctionProperties::Property::NoPHIs)) 885 report("Found PHI instruction with NoPHIs property set", MI); 886 887 // Check the tied operands. 888 if (MI->isInlineAsm()) 889 verifyInlineAsm(MI); 890 891 // Check the MachineMemOperands for basic consistency. 892 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 893 E = MI->memoperands_end(); 894 I != E; ++I) { 895 if ((*I)->isLoad() && !MI->mayLoad()) 896 report("Missing mayLoad flag", MI); 897 if ((*I)->isStore() && !MI->mayStore()) 898 report("Missing mayStore flag", MI); 899 } 900 901 // Debug values must not have a slot index. 902 // Other instructions must have one, unless they are inside a bundle. 903 if (LiveInts) { 904 bool mapped = !LiveInts->isNotInMIMap(*MI); 905 if (MI->isDebugInstr()) { 906 if (mapped) 907 report("Debug instruction has a slot index", MI); 908 } else if (MI->isInsideBundle()) { 909 if (mapped) 910 report("Instruction inside bundle has a slot index", MI); 911 } else { 912 if (!mapped) 913 report("Missing slot index", MI); 914 } 915 } 916 917 if (isPreISelGenericOpcode(MCID.getOpcode())) { 918 if (isFunctionSelected) 919 report("Unexpected generic instruction in a Selected function", MI); 920 921 // Check types. 922 SmallVector<LLT, 4> Types; 923 for (unsigned I = 0; I < MCID.getNumOperands(); ++I) { 924 if (!MCID.OpInfo[I].isGenericType()) 925 continue; 926 // Generic instructions specify type equality constraints between some of 927 // their operands. Make sure these are consistent. 928 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 929 Types.resize(std::max(TypeIdx + 1, Types.size())); 930 931 const MachineOperand *MO = &MI->getOperand(I); 932 LLT OpTy = MRI->getType(MO->getReg()); 933 // Don't report a type mismatch if there is no actual mismatch, only a 934 // type missing, to reduce noise: 935 if (OpTy.isValid()) { 936 // Only the first valid type for a type index will be printed: don't 937 // overwrite it later so it's always clear which type was expected: 938 if (!Types[TypeIdx].isValid()) 939 Types[TypeIdx] = OpTy; 940 else if (Types[TypeIdx] != OpTy) 941 report("Type mismatch in generic instruction", MO, I, OpTy); 942 } else { 943 // Generic instructions must have types attached to their operands. 944 report("Generic instruction is missing a virtual register type", MO, I); 945 } 946 } 947 948 // Generic opcodes must not have physical register operands. 949 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 950 const MachineOperand *MO = &MI->getOperand(I); 951 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) 952 report("Generic instruction cannot have physical register", MO, I); 953 } 954 } 955 956 StringRef ErrorInfo; 957 if (!TII->verifyInstruction(*MI, ErrorInfo)) 958 report(ErrorInfo.data(), MI); 959 960 // Verify properties of various specific instruction types 961 switch(MI->getOpcode()) { 962 default: 963 break; 964 case TargetOpcode::G_LOAD: 965 case TargetOpcode::G_STORE: 966 // Generic loads and stores must have a single MachineMemOperand 967 // describing that access. 968 if (!MI->hasOneMemOperand()) 969 report("Generic instruction accessing memory must have one mem operand", 970 MI); 971 break; 972 case TargetOpcode::G_PHI: { 973 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 974 if (!DstTy.isValid() || 975 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 976 [this, &DstTy](const MachineOperand &MO) { 977 if (!MO.isReg()) 978 return true; 979 LLT Ty = MRI->getType(MO.getReg()); 980 if (!Ty.isValid() || (Ty != DstTy)) 981 return false; 982 return true; 983 })) 984 report("Generic Instruction G_PHI has operands with incompatible/missing " 985 "types", 986 MI); 987 break; 988 } 989 case TargetOpcode::G_SEXT: 990 case TargetOpcode::G_ZEXT: 991 case TargetOpcode::G_ANYEXT: 992 case TargetOpcode::G_TRUNC: 993 case TargetOpcode::G_FPEXT: 994 case TargetOpcode::G_FPTRUNC: { 995 // Number of operands and presense of types is already checked (and 996 // reported in case of any issues), so no need to report them again. As 997 // we're trying to report as many issues as possible at once, however, the 998 // instructions aren't guaranteed to have the right number of operands or 999 // types attached to them at this point 1000 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1001 if (MI->getNumOperands() < MCID.getNumOperands()) 1002 break; 1003 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1004 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1005 if (!DstTy.isValid() || !SrcTy.isValid()) 1006 break; 1007 1008 LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy; 1009 LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy; 1010 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1011 report("Generic extend/truncate can not operate on pointers", MI); 1012 1013 if (DstTy.isVector() != SrcTy.isVector()) { 1014 report("Generic extend/truncate must be all-vector or all-scalar", MI); 1015 // Generally we try to report as many issues as possible at once, but in 1016 // this case it's not clear what should we be comparing the size of the 1017 // scalar with: the size of the whole vector or its lane. Instead of 1018 // making an arbitrary choice and emitting not so helpful message, let's 1019 // avoid the extra noise and stop here. 1020 break; 1021 } 1022 if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()) 1023 report("Generic vector extend/truncate must preserve number of lanes", 1024 MI); 1025 unsigned DstSize = DstElTy.getSizeInBits(); 1026 unsigned SrcSize = SrcElTy.getSizeInBits(); 1027 switch (MI->getOpcode()) { 1028 default: 1029 if (DstSize <= SrcSize) 1030 report("Generic extend has destination type no larger than source", MI); 1031 break; 1032 case TargetOpcode::G_TRUNC: 1033 case TargetOpcode::G_FPTRUNC: 1034 if (DstSize >= SrcSize) 1035 report("Generic truncate has destination type no smaller than source", 1036 MI); 1037 break; 1038 } 1039 break; 1040 } 1041 case TargetOpcode::COPY: { 1042 if (foundErrors) 1043 break; 1044 const MachineOperand &DstOp = MI->getOperand(0); 1045 const MachineOperand &SrcOp = MI->getOperand(1); 1046 LLT DstTy = MRI->getType(DstOp.getReg()); 1047 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1048 if (SrcTy.isValid() && DstTy.isValid()) { 1049 // If both types are valid, check that the types are the same. 1050 if (SrcTy != DstTy) { 1051 report("Copy Instruction is illegal with mismatching types", MI); 1052 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1053 } 1054 } 1055 if (SrcTy.isValid() || DstTy.isValid()) { 1056 // If one of them have valid types, let's just check they have the same 1057 // size. 1058 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1059 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1060 assert(SrcSize && "Expecting size here"); 1061 assert(DstSize && "Expecting size here"); 1062 if (SrcSize != DstSize) 1063 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1064 report("Copy Instruction is illegal with mismatching sizes", MI); 1065 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1066 << "\n"; 1067 } 1068 } 1069 break; 1070 } 1071 case TargetOpcode::STATEPOINT: 1072 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1073 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1074 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1075 report("meta operands to STATEPOINT not constant!", MI); 1076 break; 1077 1078 auto VerifyStackMapConstant = [&](unsigned Offset) { 1079 if (!MI->getOperand(Offset).isImm() || 1080 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1081 !MI->getOperand(Offset + 1).isImm()) 1082 report("stack map constant to STATEPOINT not well formed!", MI); 1083 }; 1084 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1085 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1086 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1087 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1088 1089 // TODO: verify we have properly encoded deopt arguments 1090 }; 1091 } 1092 1093 void 1094 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1095 const MachineInstr *MI = MO->getParent(); 1096 const MCInstrDesc &MCID = MI->getDesc(); 1097 unsigned NumDefs = MCID.getNumDefs(); 1098 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1099 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1100 1101 // The first MCID.NumDefs operands must be explicit register defines 1102 if (MONum < NumDefs) { 1103 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1104 if (!MO->isReg()) 1105 report("Explicit definition must be a register", MO, MONum); 1106 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1107 report("Explicit definition marked as use", MO, MONum); 1108 else if (MO->isImplicit()) 1109 report("Explicit definition marked as implicit", MO, MONum); 1110 } else if (MONum < MCID.getNumOperands()) { 1111 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1112 // Don't check if it's the last operand in a variadic instruction. See, 1113 // e.g., LDM_RET in the arm back end. 1114 if (MO->isReg() && 1115 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1116 if (MO->isDef() && !MCOI.isOptionalDef()) 1117 report("Explicit operand marked as def", MO, MONum); 1118 if (MO->isImplicit()) 1119 report("Explicit operand marked as implicit", MO, MONum); 1120 } 1121 1122 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1123 if (TiedTo != -1) { 1124 if (!MO->isReg()) 1125 report("Tied use must be a register", MO, MONum); 1126 else if (!MO->isTied()) 1127 report("Operand should be tied", MO, MONum); 1128 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1129 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1130 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1131 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1132 if (!MOTied.isReg()) 1133 report("Tied counterpart must be a register", &MOTied, TiedTo); 1134 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1135 MO->getReg() != MOTied.getReg()) 1136 report("Tied physical registers must match.", &MOTied, TiedTo); 1137 } 1138 } else if (MO->isReg() && MO->isTied()) 1139 report("Explicit operand should not be tied", MO, MONum); 1140 } else { 1141 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1142 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1143 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1144 } 1145 1146 switch (MO->getType()) { 1147 case MachineOperand::MO_Register: { 1148 const unsigned Reg = MO->getReg(); 1149 if (!Reg) 1150 return; 1151 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1152 checkLiveness(MO, MONum); 1153 1154 // Verify the consistency of tied operands. 1155 if (MO->isTied()) { 1156 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1157 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1158 if (!OtherMO.isReg()) 1159 report("Must be tied to a register", MO, MONum); 1160 if (!OtherMO.isTied()) 1161 report("Missing tie flags on tied operand", MO, MONum); 1162 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1163 report("Inconsistent tie links", MO, MONum); 1164 if (MONum < MCID.getNumDefs()) { 1165 if (OtherIdx < MCID.getNumOperands()) { 1166 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1167 report("Explicit def tied to explicit use without tie constraint", 1168 MO, MONum); 1169 } else { 1170 if (!OtherMO.isImplicit()) 1171 report("Explicit def should be tied to implicit use", MO, MONum); 1172 } 1173 } 1174 } 1175 1176 // Verify two-address constraints after leaving SSA form. 1177 unsigned DefIdx; 1178 if (!MRI->isSSA() && MO->isUse() && 1179 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1180 Reg != MI->getOperand(DefIdx).getReg()) 1181 report("Two-address instruction operands must be identical", MO, MONum); 1182 1183 // Check register classes. 1184 unsigned SubIdx = MO->getSubReg(); 1185 1186 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1187 if (SubIdx) { 1188 report("Illegal subregister index for physical register", MO, MONum); 1189 return; 1190 } 1191 if (MONum < MCID.getNumOperands()) { 1192 if (const TargetRegisterClass *DRC = 1193 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1194 if (!DRC->contains(Reg)) { 1195 report("Illegal physical register for instruction", MO, MONum); 1196 errs() << printReg(Reg, TRI) << " is not a " 1197 << TRI->getRegClassName(DRC) << " register.\n"; 1198 } 1199 } 1200 } 1201 if (MO->isRenamable()) { 1202 if (MRI->isReserved(Reg)) { 1203 report("isRenamable set on reserved register", MO, MONum); 1204 return; 1205 } 1206 } 1207 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1208 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1209 return; 1210 } 1211 } else { 1212 // Virtual register. 1213 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1214 if (!RC) { 1215 // This is a generic virtual register. 1216 1217 // If we're post-Select, we can't have gvregs anymore. 1218 if (isFunctionSelected) { 1219 report("Generic virtual register invalid in a Selected function", 1220 MO, MONum); 1221 return; 1222 } 1223 1224 // The gvreg must have a type and it must not have a SubIdx. 1225 LLT Ty = MRI->getType(Reg); 1226 if (!Ty.isValid()) { 1227 report("Generic virtual register must have a valid type", MO, 1228 MONum); 1229 return; 1230 } 1231 1232 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1233 1234 // If we're post-RegBankSelect, the gvreg must have a bank. 1235 if (!RegBank && isFunctionRegBankSelected) { 1236 report("Generic virtual register must have a bank in a " 1237 "RegBankSelected function", 1238 MO, MONum); 1239 return; 1240 } 1241 1242 // Make sure the register fits into its register bank if any. 1243 if (RegBank && Ty.isValid() && 1244 RegBank->getSize() < Ty.getSizeInBits()) { 1245 report("Register bank is too small for virtual register", MO, 1246 MONum); 1247 errs() << "Register bank " << RegBank->getName() << " too small(" 1248 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1249 << "-bits\n"; 1250 return; 1251 } 1252 if (SubIdx) { 1253 report("Generic virtual register does not subregister index", MO, 1254 MONum); 1255 return; 1256 } 1257 1258 // If this is a target specific instruction and this operand 1259 // has register class constraint, the virtual register must 1260 // comply to it. 1261 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1262 MONum < MCID.getNumOperands() && 1263 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1264 report("Virtual register does not match instruction constraint", MO, 1265 MONum); 1266 errs() << "Expect register class " 1267 << TRI->getRegClassName( 1268 TII->getRegClass(MCID, MONum, TRI, *MF)) 1269 << " but got nothing\n"; 1270 return; 1271 } 1272 1273 break; 1274 } 1275 if (SubIdx) { 1276 const TargetRegisterClass *SRC = 1277 TRI->getSubClassWithSubReg(RC, SubIdx); 1278 if (!SRC) { 1279 report("Invalid subregister index for virtual register", MO, MONum); 1280 errs() << "Register class " << TRI->getRegClassName(RC) 1281 << " does not support subreg index " << SubIdx << "\n"; 1282 return; 1283 } 1284 if (RC != SRC) { 1285 report("Invalid register class for subregister index", MO, MONum); 1286 errs() << "Register class " << TRI->getRegClassName(RC) 1287 << " does not fully support subreg index " << SubIdx << "\n"; 1288 return; 1289 } 1290 } 1291 if (MONum < MCID.getNumOperands()) { 1292 if (const TargetRegisterClass *DRC = 1293 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1294 if (SubIdx) { 1295 const TargetRegisterClass *SuperRC = 1296 TRI->getLargestLegalSuperClass(RC, *MF); 1297 if (!SuperRC) { 1298 report("No largest legal super class exists.", MO, MONum); 1299 return; 1300 } 1301 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1302 if (!DRC) { 1303 report("No matching super-reg register class.", MO, MONum); 1304 return; 1305 } 1306 } 1307 if (!RC->hasSuperClassEq(DRC)) { 1308 report("Illegal virtual register for instruction", MO, MONum); 1309 errs() << "Expected a " << TRI->getRegClassName(DRC) 1310 << " register, but got a " << TRI->getRegClassName(RC) 1311 << " register\n"; 1312 } 1313 } 1314 } 1315 } 1316 break; 1317 } 1318 1319 case MachineOperand::MO_RegisterMask: 1320 regMasks.push_back(MO->getRegMask()); 1321 break; 1322 1323 case MachineOperand::MO_MachineBasicBlock: 1324 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1325 report("PHI operand is not in the CFG", MO, MONum); 1326 break; 1327 1328 case MachineOperand::MO_FrameIndex: 1329 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1330 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1331 int FI = MO->getIndex(); 1332 LiveInterval &LI = LiveStks->getInterval(FI); 1333 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1334 1335 bool stores = MI->mayStore(); 1336 bool loads = MI->mayLoad(); 1337 // For a memory-to-memory move, we need to check if the frame 1338 // index is used for storing or loading, by inspecting the 1339 // memory operands. 1340 if (stores && loads) { 1341 for (auto *MMO : MI->memoperands()) { 1342 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1343 if (PSV == nullptr) continue; 1344 const FixedStackPseudoSourceValue *Value = 1345 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1346 if (Value == nullptr) continue; 1347 if (Value->getFrameIndex() != FI) continue; 1348 1349 if (MMO->isStore()) 1350 loads = false; 1351 else 1352 stores = false; 1353 break; 1354 } 1355 if (loads == stores) 1356 report("Missing fixed stack memoperand.", MI); 1357 } 1358 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1359 report("Instruction loads from dead spill slot", MO, MONum); 1360 errs() << "Live stack: " << LI << '\n'; 1361 } 1362 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1363 report("Instruction stores to dead spill slot", MO, MONum); 1364 errs() << "Live stack: " << LI << '\n'; 1365 } 1366 } 1367 break; 1368 1369 default: 1370 break; 1371 } 1372 } 1373 1374 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1375 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1376 LaneBitmask LaneMask) { 1377 LiveQueryResult LRQ = LR.Query(UseIdx); 1378 // Check if we have a segment at the use, note however that we only need one 1379 // live subregister range, the others may be dead. 1380 if (!LRQ.valueIn() && LaneMask.none()) { 1381 report("No live segment at use", MO, MONum); 1382 report_context_liverange(LR); 1383 report_context_vreg_regunit(VRegOrUnit); 1384 report_context(UseIdx); 1385 } 1386 if (MO->isKill() && !LRQ.isKill()) { 1387 report("Live range continues after kill flag", MO, MONum); 1388 report_context_liverange(LR); 1389 report_context_vreg_regunit(VRegOrUnit); 1390 if (LaneMask.any()) 1391 report_context_lanemask(LaneMask); 1392 report_context(UseIdx); 1393 } 1394 } 1395 1396 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1397 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1398 LaneBitmask LaneMask) { 1399 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1400 assert(VNI && "NULL valno is not allowed"); 1401 if (VNI->def != DefIdx) { 1402 report("Inconsistent valno->def", MO, MONum); 1403 report_context_liverange(LR); 1404 report_context_vreg_regunit(VRegOrUnit); 1405 if (LaneMask.any()) 1406 report_context_lanemask(LaneMask); 1407 report_context(*VNI); 1408 report_context(DefIdx); 1409 } 1410 } else { 1411 report("No live segment at def", MO, MONum); 1412 report_context_liverange(LR); 1413 report_context_vreg_regunit(VRegOrUnit); 1414 if (LaneMask.any()) 1415 report_context_lanemask(LaneMask); 1416 report_context(DefIdx); 1417 } 1418 // Check that, if the dead def flag is present, LiveInts agree. 1419 if (MO->isDead()) { 1420 LiveQueryResult LRQ = LR.Query(DefIdx); 1421 if (!LRQ.isDeadDef()) { 1422 // In case of physregs we can have a non-dead definition on another 1423 // operand. 1424 bool otherDef = false; 1425 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1426 const MachineInstr &MI = *MO->getParent(); 1427 for (const MachineOperand &MO : MI.operands()) { 1428 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1429 continue; 1430 unsigned Reg = MO.getReg(); 1431 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1432 if (*Units == VRegOrUnit) { 1433 otherDef = true; 1434 break; 1435 } 1436 } 1437 } 1438 } 1439 1440 if (!otherDef) { 1441 report("Live range continues after dead def flag", MO, MONum); 1442 report_context_liverange(LR); 1443 report_context_vreg_regunit(VRegOrUnit); 1444 if (LaneMask.any()) 1445 report_context_lanemask(LaneMask); 1446 } 1447 } 1448 } 1449 } 1450 1451 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1452 const MachineInstr *MI = MO->getParent(); 1453 const unsigned Reg = MO->getReg(); 1454 1455 // Both use and def operands can read a register. 1456 if (MO->readsReg()) { 1457 if (MO->isKill()) 1458 addRegWithSubRegs(regsKilled, Reg); 1459 1460 // Check that LiveVars knows this kill. 1461 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1462 MO->isKill()) { 1463 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1464 if (!is_contained(VI.Kills, MI)) 1465 report("Kill missing from LiveVariables", MO, MONum); 1466 } 1467 1468 // Check LiveInts liveness and kill. 1469 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1470 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1471 // Check the cached regunit intervals. 1472 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1473 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1474 if (MRI->isReservedRegUnit(*Units)) 1475 continue; 1476 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1477 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1478 } 1479 } 1480 1481 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1482 if (LiveInts->hasInterval(Reg)) { 1483 // This is a virtual register interval. 1484 const LiveInterval &LI = LiveInts->getInterval(Reg); 1485 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1486 1487 if (LI.hasSubRanges() && !MO->isDef()) { 1488 unsigned SubRegIdx = MO->getSubReg(); 1489 LaneBitmask MOMask = SubRegIdx != 0 1490 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1491 : MRI->getMaxLaneMaskForVReg(Reg); 1492 LaneBitmask LiveInMask; 1493 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1494 if ((MOMask & SR.LaneMask).none()) 1495 continue; 1496 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1497 LiveQueryResult LRQ = SR.Query(UseIdx); 1498 if (LRQ.valueIn()) 1499 LiveInMask |= SR.LaneMask; 1500 } 1501 // At least parts of the register has to be live at the use. 1502 if ((LiveInMask & MOMask).none()) { 1503 report("No live subrange at use", MO, MONum); 1504 report_context(LI); 1505 report_context(UseIdx); 1506 } 1507 } 1508 } else { 1509 report("Virtual register has no live interval", MO, MONum); 1510 } 1511 } 1512 } 1513 1514 // Use of a dead register. 1515 if (!regsLive.count(Reg)) { 1516 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1517 // Reserved registers may be used even when 'dead'. 1518 bool Bad = !isReserved(Reg); 1519 // We are fine if just any subregister has a defined value. 1520 if (Bad) { 1521 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1522 ++SubRegs) { 1523 if (regsLive.count(*SubRegs)) { 1524 Bad = false; 1525 break; 1526 } 1527 } 1528 } 1529 // If there is an additional implicit-use of a super register we stop 1530 // here. By definition we are fine if the super register is not 1531 // (completely) dead, if the complete super register is dead we will 1532 // get a report for its operand. 1533 if (Bad) { 1534 for (const MachineOperand &MOP : MI->uses()) { 1535 if (!MOP.isReg()) 1536 continue; 1537 if (!MOP.isImplicit()) 1538 continue; 1539 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1540 ++SubRegs) { 1541 if (*SubRegs == Reg) { 1542 Bad = false; 1543 break; 1544 } 1545 } 1546 } 1547 } 1548 if (Bad) 1549 report("Using an undefined physical register", MO, MONum); 1550 } else if (MRI->def_empty(Reg)) { 1551 report("Reading virtual register without a def", MO, MONum); 1552 } else { 1553 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1554 // We don't know which virtual registers are live in, so only complain 1555 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1556 // must be live in. PHI instructions are handled separately. 1557 if (MInfo.regsKilled.count(Reg)) 1558 report("Using a killed virtual register", MO, MONum); 1559 else if (!MI->isPHI()) 1560 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1561 } 1562 } 1563 } 1564 1565 if (MO->isDef()) { 1566 // Register defined. 1567 // TODO: verify that earlyclobber ops are not used. 1568 if (MO->isDead()) 1569 addRegWithSubRegs(regsDead, Reg); 1570 else 1571 addRegWithSubRegs(regsDefined, Reg); 1572 1573 // Verify SSA form. 1574 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1575 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1576 report("Multiple virtual register defs in SSA form", MO, MONum); 1577 1578 // Check LiveInts for a live segment, but only for virtual registers. 1579 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1580 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1581 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1582 1583 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1584 if (LiveInts->hasInterval(Reg)) { 1585 const LiveInterval &LI = LiveInts->getInterval(Reg); 1586 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1587 1588 if (LI.hasSubRanges()) { 1589 unsigned SubRegIdx = MO->getSubReg(); 1590 LaneBitmask MOMask = SubRegIdx != 0 1591 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1592 : MRI->getMaxLaneMaskForVReg(Reg); 1593 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1594 if ((SR.LaneMask & MOMask).none()) 1595 continue; 1596 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1597 } 1598 } 1599 } else { 1600 report("Virtual register has no Live interval", MO, MONum); 1601 } 1602 } 1603 } 1604 } 1605 } 1606 1607 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1608 1609 // This function gets called after visiting all instructions in a bundle. The 1610 // argument points to the bundle header. 1611 // Normal stand-alone instructions are also considered 'bundles', and this 1612 // function is called for all of them. 1613 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1614 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1615 set_union(MInfo.regsKilled, regsKilled); 1616 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1617 // Kill any masked registers. 1618 while (!regMasks.empty()) { 1619 const uint32_t *Mask = regMasks.pop_back_val(); 1620 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1621 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1622 MachineOperand::clobbersPhysReg(Mask, *I)) 1623 regsDead.push_back(*I); 1624 } 1625 set_subtract(regsLive, regsDead); regsDead.clear(); 1626 set_union(regsLive, regsDefined); regsDefined.clear(); 1627 } 1628 1629 void 1630 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1631 MBBInfoMap[MBB].regsLiveOut = regsLive; 1632 regsLive.clear(); 1633 1634 if (Indexes) { 1635 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1636 if (!(stop > lastIndex)) { 1637 report("Block ends before last instruction index", MBB); 1638 errs() << "Block ends at " << stop 1639 << " last instruction was at " << lastIndex << '\n'; 1640 } 1641 lastIndex = stop; 1642 } 1643 } 1644 1645 // Calculate the largest possible vregsPassed sets. These are the registers that 1646 // can pass through an MBB live, but may not be live every time. It is assumed 1647 // that all vregsPassed sets are empty before the call. 1648 void MachineVerifier::calcRegsPassed() { 1649 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1650 // have any vregsPassed. 1651 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1652 for (const auto &MBB : *MF) { 1653 BBInfo &MInfo = MBBInfoMap[&MBB]; 1654 if (!MInfo.reachable) 1655 continue; 1656 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1657 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1658 BBInfo &SInfo = MBBInfoMap[*SuI]; 1659 if (SInfo.addPassed(MInfo.regsLiveOut)) 1660 todo.insert(*SuI); 1661 } 1662 } 1663 1664 // Iteratively push vregsPassed to successors. This will converge to the same 1665 // final state regardless of DenseSet iteration order. 1666 while (!todo.empty()) { 1667 const MachineBasicBlock *MBB = *todo.begin(); 1668 todo.erase(MBB); 1669 BBInfo &MInfo = MBBInfoMap[MBB]; 1670 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1671 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1672 if (*SuI == MBB) 1673 continue; 1674 BBInfo &SInfo = MBBInfoMap[*SuI]; 1675 if (SInfo.addPassed(MInfo.vregsPassed)) 1676 todo.insert(*SuI); 1677 } 1678 } 1679 } 1680 1681 // Calculate the set of virtual registers that must be passed through each basic 1682 // block in order to satisfy the requirements of successor blocks. This is very 1683 // similar to calcRegsPassed, only backwards. 1684 void MachineVerifier::calcRegsRequired() { 1685 // First push live-in regs to predecessors' vregsRequired. 1686 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1687 for (const auto &MBB : *MF) { 1688 BBInfo &MInfo = MBBInfoMap[&MBB]; 1689 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1690 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1691 BBInfo &PInfo = MBBInfoMap[*PrI]; 1692 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1693 todo.insert(*PrI); 1694 } 1695 } 1696 1697 // Iteratively push vregsRequired to predecessors. This will converge to the 1698 // same final state regardless of DenseSet iteration order. 1699 while (!todo.empty()) { 1700 const MachineBasicBlock *MBB = *todo.begin(); 1701 todo.erase(MBB); 1702 BBInfo &MInfo = MBBInfoMap[MBB]; 1703 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1704 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1705 if (*PrI == MBB) 1706 continue; 1707 BBInfo &SInfo = MBBInfoMap[*PrI]; 1708 if (SInfo.addRequired(MInfo.vregsRequired)) 1709 todo.insert(*PrI); 1710 } 1711 } 1712 } 1713 1714 // Check PHI instructions at the beginning of MBB. It is assumed that 1715 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1716 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1717 BBInfo &MInfo = MBBInfoMap[&MBB]; 1718 1719 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1720 for (const MachineInstr &Phi : MBB) { 1721 if (!Phi.isPHI()) 1722 break; 1723 seen.clear(); 1724 1725 const MachineOperand &MODef = Phi.getOperand(0); 1726 if (!MODef.isReg() || !MODef.isDef()) { 1727 report("Expected first PHI operand to be a register def", &MODef, 0); 1728 continue; 1729 } 1730 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1731 MODef.isEarlyClobber() || MODef.isDebug()) 1732 report("Unexpected flag on PHI operand", &MODef, 0); 1733 unsigned DefReg = MODef.getReg(); 1734 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1735 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1736 1737 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1738 const MachineOperand &MO0 = Phi.getOperand(I); 1739 if (!MO0.isReg()) { 1740 report("Expected PHI operand to be a register", &MO0, I); 1741 continue; 1742 } 1743 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 1744 MO0.isDebug() || MO0.isTied()) 1745 report("Unexpected flag on PHI operand", &MO0, I); 1746 1747 const MachineOperand &MO1 = Phi.getOperand(I + 1); 1748 if (!MO1.isMBB()) { 1749 report("Expected PHI operand to be a basic block", &MO1, I + 1); 1750 continue; 1751 } 1752 1753 const MachineBasicBlock &Pre = *MO1.getMBB(); 1754 if (!Pre.isSuccessor(&MBB)) { 1755 report("PHI input is not a predecessor block", &MO1, I + 1); 1756 continue; 1757 } 1758 1759 if (MInfo.reachable) { 1760 seen.insert(&Pre); 1761 BBInfo &PrInfo = MBBInfoMap[&Pre]; 1762 if (!MO0.isUndef() && PrInfo.reachable && 1763 !PrInfo.isLiveOut(MO0.getReg())) 1764 report("PHI operand is not live-out from predecessor", &MO0, I); 1765 } 1766 } 1767 1768 // Did we see all predecessors? 1769 if (MInfo.reachable) { 1770 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1771 if (!seen.count(Pred)) { 1772 report("Missing PHI operand", &Phi); 1773 errs() << printMBBReference(*Pred) 1774 << " is a predecessor according to the CFG.\n"; 1775 } 1776 } 1777 } 1778 } 1779 } 1780 1781 void MachineVerifier::visitMachineFunctionAfter() { 1782 calcRegsPassed(); 1783 1784 for (const MachineBasicBlock &MBB : *MF) 1785 checkPHIOps(MBB); 1786 1787 // Now check liveness info if available 1788 calcRegsRequired(); 1789 1790 // Check for killed virtual registers that should be live out. 1791 for (const auto &MBB : *MF) { 1792 BBInfo &MInfo = MBBInfoMap[&MBB]; 1793 for (RegSet::iterator 1794 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1795 ++I) 1796 if (MInfo.regsKilled.count(*I)) { 1797 report("Virtual register killed in block, but needed live out.", &MBB); 1798 errs() << "Virtual register " << printReg(*I) 1799 << " is used after the block.\n"; 1800 } 1801 } 1802 1803 if (!MF->empty()) { 1804 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1805 for (RegSet::iterator 1806 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1807 ++I) { 1808 report("Virtual register defs don't dominate all uses.", MF); 1809 report_context_vreg(*I); 1810 } 1811 } 1812 1813 if (LiveVars) 1814 verifyLiveVariables(); 1815 if (LiveInts) 1816 verifyLiveIntervals(); 1817 } 1818 1819 void MachineVerifier::verifyLiveVariables() { 1820 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1821 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1822 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1823 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1824 for (const auto &MBB : *MF) { 1825 BBInfo &MInfo = MBBInfoMap[&MBB]; 1826 1827 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1828 if (MInfo.vregsRequired.count(Reg)) { 1829 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1830 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1831 errs() << "Virtual register " << printReg(Reg) 1832 << " must be live through the block.\n"; 1833 } 1834 } else { 1835 if (VI.AliveBlocks.test(MBB.getNumber())) { 1836 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1837 errs() << "Virtual register " << printReg(Reg) 1838 << " is not needed live through the block.\n"; 1839 } 1840 } 1841 } 1842 } 1843 } 1844 1845 void MachineVerifier::verifyLiveIntervals() { 1846 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1847 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1848 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1849 1850 // Spilling and splitting may leave unused registers around. Skip them. 1851 if (MRI->reg_nodbg_empty(Reg)) 1852 continue; 1853 1854 if (!LiveInts->hasInterval(Reg)) { 1855 report("Missing live interval for virtual register", MF); 1856 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 1857 continue; 1858 } 1859 1860 const LiveInterval &LI = LiveInts->getInterval(Reg); 1861 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1862 verifyLiveInterval(LI); 1863 } 1864 1865 // Verify all the cached regunit intervals. 1866 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1867 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1868 verifyLiveRange(*LR, i); 1869 } 1870 1871 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1872 const VNInfo *VNI, unsigned Reg, 1873 LaneBitmask LaneMask) { 1874 if (VNI->isUnused()) 1875 return; 1876 1877 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1878 1879 if (!DefVNI) { 1880 report("Value not live at VNInfo def and not marked unused", MF); 1881 report_context(LR, Reg, LaneMask); 1882 report_context(*VNI); 1883 return; 1884 } 1885 1886 if (DefVNI != VNI) { 1887 report("Live segment at def has different VNInfo", MF); 1888 report_context(LR, Reg, LaneMask); 1889 report_context(*VNI); 1890 return; 1891 } 1892 1893 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1894 if (!MBB) { 1895 report("Invalid VNInfo definition index", MF); 1896 report_context(LR, Reg, LaneMask); 1897 report_context(*VNI); 1898 return; 1899 } 1900 1901 if (VNI->isPHIDef()) { 1902 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1903 report("PHIDef VNInfo is not defined at MBB start", MBB); 1904 report_context(LR, Reg, LaneMask); 1905 report_context(*VNI); 1906 } 1907 return; 1908 } 1909 1910 // Non-PHI def. 1911 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1912 if (!MI) { 1913 report("No instruction at VNInfo def index", MBB); 1914 report_context(LR, Reg, LaneMask); 1915 report_context(*VNI); 1916 return; 1917 } 1918 1919 if (Reg != 0) { 1920 bool hasDef = false; 1921 bool isEarlyClobber = false; 1922 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1923 if (!MOI->isReg() || !MOI->isDef()) 1924 continue; 1925 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1926 if (MOI->getReg() != Reg) 1927 continue; 1928 } else { 1929 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1930 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1931 continue; 1932 } 1933 if (LaneMask.any() && 1934 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 1935 continue; 1936 hasDef = true; 1937 if (MOI->isEarlyClobber()) 1938 isEarlyClobber = true; 1939 } 1940 1941 if (!hasDef) { 1942 report("Defining instruction does not modify register", MI); 1943 report_context(LR, Reg, LaneMask); 1944 report_context(*VNI); 1945 } 1946 1947 // Early clobber defs begin at USE slots, but other defs must begin at 1948 // DEF slots. 1949 if (isEarlyClobber) { 1950 if (!VNI->def.isEarlyClobber()) { 1951 report("Early clobber def must be at an early-clobber slot", MBB); 1952 report_context(LR, Reg, LaneMask); 1953 report_context(*VNI); 1954 } 1955 } else if (!VNI->def.isRegister()) { 1956 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1957 report_context(LR, Reg, LaneMask); 1958 report_context(*VNI); 1959 } 1960 } 1961 } 1962 1963 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1964 const LiveRange::const_iterator I, 1965 unsigned Reg, LaneBitmask LaneMask) 1966 { 1967 const LiveRange::Segment &S = *I; 1968 const VNInfo *VNI = S.valno; 1969 assert(VNI && "Live segment has no valno"); 1970 1971 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1972 report("Foreign valno in live segment", MF); 1973 report_context(LR, Reg, LaneMask); 1974 report_context(S); 1975 report_context(*VNI); 1976 } 1977 1978 if (VNI->isUnused()) { 1979 report("Live segment valno is marked unused", MF); 1980 report_context(LR, Reg, LaneMask); 1981 report_context(S); 1982 } 1983 1984 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1985 if (!MBB) { 1986 report("Bad start of live segment, no basic block", MF); 1987 report_context(LR, Reg, LaneMask); 1988 report_context(S); 1989 return; 1990 } 1991 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1992 if (S.start != MBBStartIdx && S.start != VNI->def) { 1993 report("Live segment must begin at MBB entry or valno def", MBB); 1994 report_context(LR, Reg, LaneMask); 1995 report_context(S); 1996 } 1997 1998 const MachineBasicBlock *EndMBB = 1999 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2000 if (!EndMBB) { 2001 report("Bad end of live segment, no basic block", MF); 2002 report_context(LR, Reg, LaneMask); 2003 report_context(S); 2004 return; 2005 } 2006 2007 // No more checks for live-out segments. 2008 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2009 return; 2010 2011 // RegUnit intervals are allowed dead phis. 2012 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 2013 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2014 return; 2015 2016 // The live segment is ending inside EndMBB 2017 const MachineInstr *MI = 2018 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2019 if (!MI) { 2020 report("Live segment doesn't end at a valid instruction", EndMBB); 2021 report_context(LR, Reg, LaneMask); 2022 report_context(S); 2023 return; 2024 } 2025 2026 // The block slot must refer to a basic block boundary. 2027 if (S.end.isBlock()) { 2028 report("Live segment ends at B slot of an instruction", EndMBB); 2029 report_context(LR, Reg, LaneMask); 2030 report_context(S); 2031 } 2032 2033 if (S.end.isDead()) { 2034 // Segment ends on the dead slot. 2035 // That means there must be a dead def. 2036 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2037 report("Live segment ending at dead slot spans instructions", EndMBB); 2038 report_context(LR, Reg, LaneMask); 2039 report_context(S); 2040 } 2041 } 2042 2043 // A live segment can only end at an early-clobber slot if it is being 2044 // redefined by an early-clobber def. 2045 if (S.end.isEarlyClobber()) { 2046 if (I+1 == LR.end() || (I+1)->start != S.end) { 2047 report("Live segment ending at early clobber slot must be " 2048 "redefined by an EC def in the same instruction", EndMBB); 2049 report_context(LR, Reg, LaneMask); 2050 report_context(S); 2051 } 2052 } 2053 2054 // The following checks only apply to virtual registers. Physreg liveness 2055 // is too weird to check. 2056 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2057 // A live segment can end with either a redefinition, a kill flag on a 2058 // use, or a dead flag on a def. 2059 bool hasRead = false; 2060 bool hasSubRegDef = false; 2061 bool hasDeadDef = false; 2062 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2063 if (!MOI->isReg() || MOI->getReg() != Reg) 2064 continue; 2065 unsigned Sub = MOI->getSubReg(); 2066 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2067 : LaneBitmask::getAll(); 2068 if (MOI->isDef()) { 2069 if (Sub != 0) { 2070 hasSubRegDef = true; 2071 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2072 // mask for subregister defs. Read-undef defs will be handled by 2073 // readsReg below. 2074 SLM = ~SLM; 2075 } 2076 if (MOI->isDead()) 2077 hasDeadDef = true; 2078 } 2079 if (LaneMask.any() && (LaneMask & SLM).none()) 2080 continue; 2081 if (MOI->readsReg()) 2082 hasRead = true; 2083 } 2084 if (S.end.isDead()) { 2085 // Make sure that the corresponding machine operand for a "dead" live 2086 // range has the dead flag. We cannot perform this check for subregister 2087 // liveranges as partially dead values are allowed. 2088 if (LaneMask.none() && !hasDeadDef) { 2089 report("Instruction ending live segment on dead slot has no dead flag", 2090 MI); 2091 report_context(LR, Reg, LaneMask); 2092 report_context(S); 2093 } 2094 } else { 2095 if (!hasRead) { 2096 // When tracking subregister liveness, the main range must start new 2097 // values on partial register writes, even if there is no read. 2098 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2099 !hasSubRegDef) { 2100 report("Instruction ending live segment doesn't read the register", 2101 MI); 2102 report_context(LR, Reg, LaneMask); 2103 report_context(S); 2104 } 2105 } 2106 } 2107 } 2108 2109 // Now check all the basic blocks in this live segment. 2110 MachineFunction::const_iterator MFI = MBB->getIterator(); 2111 // Is this live segment the beginning of a non-PHIDef VN? 2112 if (S.start == VNI->def && !VNI->isPHIDef()) { 2113 // Not live-in to any blocks. 2114 if (MBB == EndMBB) 2115 return; 2116 // Skip this block. 2117 ++MFI; 2118 } 2119 while (true) { 2120 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2121 // We don't know how to track physregs into a landing pad. 2122 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2123 MFI->isEHPad()) { 2124 if (&*MFI == EndMBB) 2125 break; 2126 ++MFI; 2127 continue; 2128 } 2129 2130 // Is VNI a PHI-def in the current block? 2131 bool IsPHI = VNI->isPHIDef() && 2132 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2133 2134 // Check that VNI is live-out of all predecessors. 2135 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2136 PE = MFI->pred_end(); PI != PE; ++PI) { 2137 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2138 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2139 2140 // All predecessors must have a live-out value. However for a phi 2141 // instruction with subregister intervals 2142 // only one of the subregisters (not necessarily the current one) needs to 2143 // be defined. 2144 if (!PVNI && (LaneMask.none() || !IsPHI) ) { 2145 report("Register not marked live out of predecessor", *PI); 2146 report_context(LR, Reg, LaneMask); 2147 report_context(*VNI); 2148 errs() << " live into " << printMBBReference(*MFI) << '@' 2149 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2150 << PEnd << '\n'; 2151 continue; 2152 } 2153 2154 // Only PHI-defs can take different predecessor values. 2155 if (!IsPHI && PVNI != VNI) { 2156 report("Different value live out of predecessor", *PI); 2157 report_context(LR, Reg, LaneMask); 2158 errs() << "Valno #" << PVNI->id << " live out of " 2159 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2160 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2161 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2162 } 2163 } 2164 if (&*MFI == EndMBB) 2165 break; 2166 ++MFI; 2167 } 2168 } 2169 2170 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2171 LaneBitmask LaneMask) { 2172 for (const VNInfo *VNI : LR.valnos) 2173 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2174 2175 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2176 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2177 } 2178 2179 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2180 unsigned Reg = LI.reg; 2181 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2182 verifyLiveRange(LI, Reg); 2183 2184 LaneBitmask Mask; 2185 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2186 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2187 if ((Mask & SR.LaneMask).any()) { 2188 report("Lane masks of sub ranges overlap in live interval", MF); 2189 report_context(LI); 2190 } 2191 if ((SR.LaneMask & ~MaxMask).any()) { 2192 report("Subrange lanemask is invalid", MF); 2193 report_context(LI); 2194 } 2195 if (SR.empty()) { 2196 report("Subrange must not be empty", MF); 2197 report_context(SR, LI.reg, SR.LaneMask); 2198 } 2199 Mask |= SR.LaneMask; 2200 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2201 if (!LI.covers(SR)) { 2202 report("A Subrange is not covered by the main range", MF); 2203 report_context(LI); 2204 } 2205 } 2206 2207 // Check the LI only has one connected component. 2208 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2209 unsigned NumComp = ConEQ.Classify(LI); 2210 if (NumComp > 1) { 2211 report("Multiple connected components in live interval", MF); 2212 report_context(LI); 2213 for (unsigned comp = 0; comp != NumComp; ++comp) { 2214 errs() << comp << ": valnos"; 2215 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2216 E = LI.vni_end(); I!=E; ++I) 2217 if (comp == ConEQ.getEqClass(*I)) 2218 errs() << ' ' << (*I)->id; 2219 errs() << '\n'; 2220 } 2221 } 2222 } 2223 2224 namespace { 2225 2226 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2227 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2228 // value is zero. 2229 // We use a bool plus an integer to capture the stack state. 2230 struct StackStateOfBB { 2231 StackStateOfBB() = default; 2232 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2233 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2234 ExitIsSetup(ExitSetup) {} 2235 2236 // Can be negative, which means we are setting up a frame. 2237 int EntryValue = 0; 2238 int ExitValue = 0; 2239 bool EntryIsSetup = false; 2240 bool ExitIsSetup = false; 2241 }; 2242 2243 } // end anonymous namespace 2244 2245 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2246 /// by a FrameDestroy <n>, stack adjustments are identical on all 2247 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2248 void MachineVerifier::verifyStackFrame() { 2249 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2250 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2251 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2252 return; 2253 2254 SmallVector<StackStateOfBB, 8> SPState; 2255 SPState.resize(MF->getNumBlockIDs()); 2256 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2257 2258 // Visit the MBBs in DFS order. 2259 for (df_ext_iterator<const MachineFunction *, 2260 df_iterator_default_set<const MachineBasicBlock *>> 2261 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2262 DFI != DFE; ++DFI) { 2263 const MachineBasicBlock *MBB = *DFI; 2264 2265 StackStateOfBB BBState; 2266 // Check the exit state of the DFS stack predecessor. 2267 if (DFI.getPathLength() >= 2) { 2268 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2269 assert(Reachable.count(StackPred) && 2270 "DFS stack predecessor is already visited.\n"); 2271 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2272 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2273 BBState.ExitValue = BBState.EntryValue; 2274 BBState.ExitIsSetup = BBState.EntryIsSetup; 2275 } 2276 2277 // Update stack state by checking contents of MBB. 2278 for (const auto &I : *MBB) { 2279 if (I.getOpcode() == FrameSetupOpcode) { 2280 if (BBState.ExitIsSetup) 2281 report("FrameSetup is after another FrameSetup", &I); 2282 BBState.ExitValue -= TII->getFrameTotalSize(I); 2283 BBState.ExitIsSetup = true; 2284 } 2285 2286 if (I.getOpcode() == FrameDestroyOpcode) { 2287 int Size = TII->getFrameTotalSize(I); 2288 if (!BBState.ExitIsSetup) 2289 report("FrameDestroy is not after a FrameSetup", &I); 2290 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2291 BBState.ExitValue; 2292 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2293 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2294 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2295 << AbsSPAdj << ">.\n"; 2296 } 2297 BBState.ExitValue += Size; 2298 BBState.ExitIsSetup = false; 2299 } 2300 } 2301 SPState[MBB->getNumber()] = BBState; 2302 2303 // Make sure the exit state of any predecessor is consistent with the entry 2304 // state. 2305 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2306 E = MBB->pred_end(); I != E; ++I) { 2307 if (Reachable.count(*I) && 2308 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2309 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2310 report("The exit stack state of a predecessor is inconsistent.", MBB); 2311 errs() << "Predecessor " << printMBBReference(*(*I)) 2312 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2313 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2314 << printMBBReference(*MBB) << " has entry state (" 2315 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2316 } 2317 } 2318 2319 // Make sure the entry state of any successor is consistent with the exit 2320 // state. 2321 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2322 E = MBB->succ_end(); I != E; ++I) { 2323 if (Reachable.count(*I) && 2324 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2325 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2326 report("The entry stack state of a successor is inconsistent.", MBB); 2327 errs() << "Successor " << printMBBReference(*(*I)) 2328 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2329 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2330 << printMBBReference(*MBB) << " has exit state (" 2331 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2332 } 2333 } 2334 2335 // Make sure a basic block with return ends with zero stack adjustment. 2336 if (!MBB->empty() && MBB->back().isReturn()) { 2337 if (BBState.ExitIsSetup) 2338 report("A return block ends with a FrameSetup.", MBB); 2339 if (BBState.ExitValue) 2340 report("A return block ends with a nonzero stack adjustment.", MBB); 2341 } 2342 } 2343 } 2344