1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "LiveRangeCalc.h" 27 #include "llvm/ADT/BitVector.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/DenseSet.h" 30 #include "llvm/ADT/DepthFirstIterator.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SetOperations.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/Twine.h" 37 #include "llvm/Analysis/EHPersonalities.h" 38 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 39 #include "llvm/CodeGen/LiveInterval.h" 40 #include "llvm/CodeGen/LiveIntervals.h" 41 #include "llvm/CodeGen/LiveStacks.h" 42 #include "llvm/CodeGen/LiveVariables.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/PseudoSourceValue.h" 53 #include "llvm/CodeGen/SlotIndexes.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetOpcodes.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/InlineAsm.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/MC/LaneBitmask.h" 64 #include "llvm/MC/MCAsmInfo.h" 65 #include "llvm/MC/MCInstrDesc.h" 66 #include "llvm/MC/MCRegisterInfo.h" 67 #include "llvm/MC/MCTargetOptions.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/LowLevelTypeImpl.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 83 using namespace llvm; 84 85 namespace { 86 87 struct MachineVerifier { 88 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 89 90 unsigned verify(MachineFunction &MF); 91 92 Pass *const PASS; 93 const char *Banner; 94 const MachineFunction *MF; 95 const TargetMachine *TM; 96 const TargetInstrInfo *TII; 97 const TargetRegisterInfo *TRI; 98 const MachineRegisterInfo *MRI; 99 100 unsigned foundErrors; 101 102 // Avoid querying the MachineFunctionProperties for each operand. 103 bool isFunctionRegBankSelected; 104 bool isFunctionSelected; 105 106 using RegVector = SmallVector<unsigned, 16>; 107 using RegMaskVector = SmallVector<const uint32_t *, 4>; 108 using RegSet = DenseSet<unsigned>; 109 using RegMap = DenseMap<unsigned, const MachineInstr *>; 110 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 111 112 const MachineInstr *FirstNonPHI; 113 const MachineInstr *FirstTerminator; 114 BlockSet FunctionBlocks; 115 116 BitVector regsReserved; 117 RegSet regsLive; 118 RegVector regsDefined, regsDead, regsKilled; 119 RegMaskVector regMasks; 120 121 SlotIndex lastIndex; 122 123 // Add Reg and any sub-registers to RV 124 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 125 RV.push_back(Reg); 126 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 127 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 128 RV.push_back(*SubRegs); 129 } 130 131 struct BBInfo { 132 // Is this MBB reachable from the MF entry point? 133 bool reachable = false; 134 135 // Vregs that must be live in because they are used without being 136 // defined. Map value is the user. 137 RegMap vregsLiveIn; 138 139 // Regs killed in MBB. They may be defined again, and will then be in both 140 // regsKilled and regsLiveOut. 141 RegSet regsKilled; 142 143 // Regs defined in MBB and live out. Note that vregs passing through may 144 // be live out without being mentioned here. 145 RegSet regsLiveOut; 146 147 // Vregs that pass through MBB untouched. This set is disjoint from 148 // regsKilled and regsLiveOut. 149 RegSet vregsPassed; 150 151 // Vregs that must pass through MBB because they are needed by a successor 152 // block. This set is disjoint from regsLiveOut. 153 RegSet vregsRequired; 154 155 // Set versions of block's predecessor and successor lists. 156 BlockSet Preds, Succs; 157 158 BBInfo() = default; 159 160 // Add register to vregsPassed if it belongs there. Return true if 161 // anything changed. 162 bool addPassed(unsigned Reg) { 163 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 164 return false; 165 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 166 return false; 167 return vregsPassed.insert(Reg).second; 168 } 169 170 // Same for a full set. 171 bool addPassed(const RegSet &RS) { 172 bool changed = false; 173 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 174 if (addPassed(*I)) 175 changed = true; 176 return changed; 177 } 178 179 // Add register to vregsRequired if it belongs there. Return true if 180 // anything changed. 181 bool addRequired(unsigned Reg) { 182 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 183 return false; 184 if (regsLiveOut.count(Reg)) 185 return false; 186 return vregsRequired.insert(Reg).second; 187 } 188 189 // Same for a full set. 190 bool addRequired(const RegSet &RS) { 191 bool changed = false; 192 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 193 if (addRequired(*I)) 194 changed = true; 195 return changed; 196 } 197 198 // Same for a full map. 199 bool addRequired(const RegMap &RM) { 200 bool changed = false; 201 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 202 if (addRequired(I->first)) 203 changed = true; 204 return changed; 205 } 206 207 // Live-out registers are either in regsLiveOut or vregsPassed. 208 bool isLiveOut(unsigned Reg) const { 209 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 210 } 211 }; 212 213 // Extra register info per MBB. 214 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 215 216 bool isReserved(unsigned Reg) { 217 return Reg < regsReserved.size() && regsReserved.test(Reg); 218 } 219 220 bool isAllocatable(unsigned Reg) const { 221 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 222 !regsReserved.test(Reg); 223 } 224 225 // Analysis information if available 226 LiveVariables *LiveVars; 227 LiveIntervals *LiveInts; 228 LiveStacks *LiveStks; 229 SlotIndexes *Indexes; 230 231 void visitMachineFunctionBefore(); 232 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 233 void visitMachineBundleBefore(const MachineInstr *MI); 234 void visitMachineInstrBefore(const MachineInstr *MI); 235 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 236 void visitMachineInstrAfter(const MachineInstr *MI); 237 void visitMachineBundleAfter(const MachineInstr *MI); 238 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 239 void visitMachineFunctionAfter(); 240 241 void report(const char *msg, const MachineFunction *MF); 242 void report(const char *msg, const MachineBasicBlock *MBB); 243 void report(const char *msg, const MachineInstr *MI); 244 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 245 LLT MOVRegType = LLT{}); 246 247 void report_context(const LiveInterval &LI) const; 248 void report_context(const LiveRange &LR, unsigned VRegUnit, 249 LaneBitmask LaneMask) const; 250 void report_context(const LiveRange::Segment &S) const; 251 void report_context(const VNInfo &VNI) const; 252 void report_context(SlotIndex Pos) const; 253 void report_context(MCPhysReg PhysReg) const; 254 void report_context_liverange(const LiveRange &LR) const; 255 void report_context_lanemask(LaneBitmask LaneMask) const; 256 void report_context_vreg(unsigned VReg) const; 257 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 258 259 void verifyInlineAsm(const MachineInstr *MI); 260 261 void checkLiveness(const MachineOperand *MO, unsigned MONum); 262 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 263 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 264 LaneBitmask LaneMask = LaneBitmask::getNone()); 265 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 266 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 267 bool SubRangeCheck = false, 268 LaneBitmask LaneMask = LaneBitmask::getNone()); 269 270 void markReachable(const MachineBasicBlock *MBB); 271 void calcRegsPassed(); 272 void checkPHIOps(const MachineBasicBlock &MBB); 273 274 void calcRegsRequired(); 275 void verifyLiveVariables(); 276 void verifyLiveIntervals(); 277 void verifyLiveInterval(const LiveInterval&); 278 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 279 LaneBitmask); 280 void verifyLiveRangeSegment(const LiveRange&, 281 const LiveRange::const_iterator I, unsigned, 282 LaneBitmask); 283 void verifyLiveRange(const LiveRange&, unsigned, 284 LaneBitmask LaneMask = LaneBitmask::getNone()); 285 286 void verifyStackFrame(); 287 288 void verifySlotIndexes() const; 289 void verifyProperties(const MachineFunction &MF); 290 }; 291 292 struct MachineVerifierPass : public MachineFunctionPass { 293 static char ID; // Pass ID, replacement for typeid 294 295 const std::string Banner; 296 297 MachineVerifierPass(std::string banner = std::string()) 298 : MachineFunctionPass(ID), Banner(std::move(banner)) { 299 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 300 } 301 302 void getAnalysisUsage(AnalysisUsage &AU) const override { 303 AU.setPreservesAll(); 304 MachineFunctionPass::getAnalysisUsage(AU); 305 } 306 307 bool runOnMachineFunction(MachineFunction &MF) override { 308 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 309 if (FoundErrors) 310 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 311 return false; 312 } 313 }; 314 315 } // end anonymous namespace 316 317 char MachineVerifierPass::ID = 0; 318 319 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 320 "Verify generated machine code", false, false) 321 322 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 323 return new MachineVerifierPass(Banner); 324 } 325 326 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 327 const { 328 MachineFunction &MF = const_cast<MachineFunction&>(*this); 329 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 330 if (AbortOnErrors && FoundErrors) 331 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 332 return FoundErrors == 0; 333 } 334 335 void MachineVerifier::verifySlotIndexes() const { 336 if (Indexes == nullptr) 337 return; 338 339 // Ensure the IdxMBB list is sorted by slot indexes. 340 SlotIndex Last; 341 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 342 E = Indexes->MBBIndexEnd(); I != E; ++I) { 343 assert(!Last.isValid() || I->first > Last); 344 Last = I->first; 345 } 346 } 347 348 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 349 // If a pass has introduced virtual registers without clearing the 350 // NoVRegs property (or set it without allocating the vregs) 351 // then report an error. 352 if (MF.getProperties().hasProperty( 353 MachineFunctionProperties::Property::NoVRegs) && 354 MRI->getNumVirtRegs()) 355 report("Function has NoVRegs property but there are VReg operands", &MF); 356 } 357 358 unsigned MachineVerifier::verify(MachineFunction &MF) { 359 foundErrors = 0; 360 361 this->MF = &MF; 362 TM = &MF.getTarget(); 363 TII = MF.getSubtarget().getInstrInfo(); 364 TRI = MF.getSubtarget().getRegisterInfo(); 365 MRI = &MF.getRegInfo(); 366 367 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 368 MachineFunctionProperties::Property::FailedISel); 369 370 // If we're mid-GlobalISel and we already triggered the fallback path then 371 // it's expected that the MIR is somewhat broken but that's ok since we'll 372 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 373 if (isFunctionFailedISel) 374 return foundErrors; 375 376 isFunctionRegBankSelected = 377 !isFunctionFailedISel && 378 MF.getProperties().hasProperty( 379 MachineFunctionProperties::Property::RegBankSelected); 380 isFunctionSelected = !isFunctionFailedISel && 381 MF.getProperties().hasProperty( 382 MachineFunctionProperties::Property::Selected); 383 LiveVars = nullptr; 384 LiveInts = nullptr; 385 LiveStks = nullptr; 386 Indexes = nullptr; 387 if (PASS) { 388 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 389 // We don't want to verify LiveVariables if LiveIntervals is available. 390 if (!LiveInts) 391 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 392 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 393 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 394 } 395 396 verifySlotIndexes(); 397 398 verifyProperties(MF); 399 400 visitMachineFunctionBefore(); 401 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 402 MFI!=MFE; ++MFI) { 403 visitMachineBasicBlockBefore(&*MFI); 404 // Keep track of the current bundle header. 405 const MachineInstr *CurBundle = nullptr; 406 // Do we expect the next instruction to be part of the same bundle? 407 bool InBundle = false; 408 409 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 410 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 411 if (MBBI->getParent() != &*MFI) { 412 report("Bad instruction parent pointer", &*MFI); 413 errs() << "Instruction: " << *MBBI; 414 continue; 415 } 416 417 // Check for consistent bundle flags. 418 if (InBundle && !MBBI->isBundledWithPred()) 419 report("Missing BundledPred flag, " 420 "BundledSucc was set on predecessor", 421 &*MBBI); 422 if (!InBundle && MBBI->isBundledWithPred()) 423 report("BundledPred flag is set, " 424 "but BundledSucc not set on predecessor", 425 &*MBBI); 426 427 // Is this a bundle header? 428 if (!MBBI->isInsideBundle()) { 429 if (CurBundle) 430 visitMachineBundleAfter(CurBundle); 431 CurBundle = &*MBBI; 432 visitMachineBundleBefore(CurBundle); 433 } else if (!CurBundle) 434 report("No bundle header", &*MBBI); 435 visitMachineInstrBefore(&*MBBI); 436 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 437 const MachineInstr &MI = *MBBI; 438 const MachineOperand &Op = MI.getOperand(I); 439 if (Op.getParent() != &MI) { 440 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 441 // functions when replacing operands of a MachineInstr. 442 report("Instruction has operand with wrong parent set", &MI); 443 } 444 445 visitMachineOperand(&Op, I); 446 } 447 448 visitMachineInstrAfter(&*MBBI); 449 450 // Was this the last bundled instruction? 451 InBundle = MBBI->isBundledWithSucc(); 452 } 453 if (CurBundle) 454 visitMachineBundleAfter(CurBundle); 455 if (InBundle) 456 report("BundledSucc flag set on last instruction in block", &MFI->back()); 457 visitMachineBasicBlockAfter(&*MFI); 458 } 459 visitMachineFunctionAfter(); 460 461 // Clean up. 462 regsLive.clear(); 463 regsDefined.clear(); 464 regsDead.clear(); 465 regsKilled.clear(); 466 regMasks.clear(); 467 MBBInfoMap.clear(); 468 469 return foundErrors; 470 } 471 472 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 473 assert(MF); 474 errs() << '\n'; 475 if (!foundErrors++) { 476 if (Banner) 477 errs() << "# " << Banner << '\n'; 478 if (LiveInts != nullptr) 479 LiveInts->print(errs()); 480 else 481 MF->print(errs(), Indexes); 482 } 483 errs() << "*** Bad machine code: " << msg << " ***\n" 484 << "- function: " << MF->getName() << "\n"; 485 } 486 487 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 488 assert(MBB); 489 report(msg, MBB->getParent()); 490 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 491 << MBB->getName() << " (" << (const void *)MBB << ')'; 492 if (Indexes) 493 errs() << " [" << Indexes->getMBBStartIdx(MBB) 494 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 495 errs() << '\n'; 496 } 497 498 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 499 assert(MI); 500 report(msg, MI->getParent()); 501 errs() << "- instruction: "; 502 if (Indexes && Indexes->hasIndex(*MI)) 503 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 504 MI->print(errs(), /*SkipOpers=*/true); 505 } 506 507 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 508 unsigned MONum, LLT MOVRegType) { 509 assert(MO); 510 report(msg, MO->getParent()); 511 errs() << "- operand " << MONum << ": "; 512 MO->print(errs(), MOVRegType, TRI); 513 errs() << "\n"; 514 } 515 516 void MachineVerifier::report_context(SlotIndex Pos) const { 517 errs() << "- at: " << Pos << '\n'; 518 } 519 520 void MachineVerifier::report_context(const LiveInterval &LI) const { 521 errs() << "- interval: " << LI << '\n'; 522 } 523 524 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 525 LaneBitmask LaneMask) const { 526 report_context_liverange(LR); 527 report_context_vreg_regunit(VRegUnit); 528 if (LaneMask.any()) 529 report_context_lanemask(LaneMask); 530 } 531 532 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 533 errs() << "- segment: " << S << '\n'; 534 } 535 536 void MachineVerifier::report_context(const VNInfo &VNI) const { 537 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 538 } 539 540 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 541 errs() << "- liverange: " << LR << '\n'; 542 } 543 544 void MachineVerifier::report_context(MCPhysReg PReg) const { 545 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 546 } 547 548 void MachineVerifier::report_context_vreg(unsigned VReg) const { 549 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 550 } 551 552 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 553 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 554 report_context_vreg(VRegOrUnit); 555 } else { 556 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 557 } 558 } 559 560 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 561 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 562 } 563 564 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 565 BBInfo &MInfo = MBBInfoMap[MBB]; 566 if (!MInfo.reachable) { 567 MInfo.reachable = true; 568 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 569 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 570 markReachable(*SuI); 571 } 572 } 573 574 void MachineVerifier::visitMachineFunctionBefore() { 575 lastIndex = SlotIndex(); 576 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 577 : TRI->getReservedRegs(*MF); 578 579 if (!MF->empty()) 580 markReachable(&MF->front()); 581 582 // Build a set of the basic blocks in the function. 583 FunctionBlocks.clear(); 584 for (const auto &MBB : *MF) { 585 FunctionBlocks.insert(&MBB); 586 BBInfo &MInfo = MBBInfoMap[&MBB]; 587 588 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 589 if (MInfo.Preds.size() != MBB.pred_size()) 590 report("MBB has duplicate entries in its predecessor list.", &MBB); 591 592 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 593 if (MInfo.Succs.size() != MBB.succ_size()) 594 report("MBB has duplicate entries in its successor list.", &MBB); 595 } 596 597 // Check that the register use lists are sane. 598 MRI->verifyUseLists(); 599 600 if (!MF->empty()) 601 verifyStackFrame(); 602 } 603 604 // Does iterator point to a and b as the first two elements? 605 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 606 const MachineBasicBlock *a, const MachineBasicBlock *b) { 607 if (*i == a) 608 return *++i == b; 609 if (*i == b) 610 return *++i == a; 611 return false; 612 } 613 614 void 615 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 616 FirstTerminator = nullptr; 617 FirstNonPHI = nullptr; 618 619 if (!MF->getProperties().hasProperty( 620 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 621 // If this block has allocatable physical registers live-in, check that 622 // it is an entry block or landing pad. 623 for (const auto &LI : MBB->liveins()) { 624 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 625 MBB->getIterator() != MBB->getParent()->begin()) { 626 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 627 report_context(LI.PhysReg); 628 } 629 } 630 } 631 632 // Count the number of landing pad successors. 633 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 634 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 635 E = MBB->succ_end(); I != E; ++I) { 636 if ((*I)->isEHPad()) 637 LandingPadSuccs.insert(*I); 638 if (!FunctionBlocks.count(*I)) 639 report("MBB has successor that isn't part of the function.", MBB); 640 if (!MBBInfoMap[*I].Preds.count(MBB)) { 641 report("Inconsistent CFG", MBB); 642 errs() << "MBB is not in the predecessor list of the successor " 643 << printMBBReference(*(*I)) << ".\n"; 644 } 645 } 646 647 // Check the predecessor list. 648 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 649 E = MBB->pred_end(); I != E; ++I) { 650 if (!FunctionBlocks.count(*I)) 651 report("MBB has predecessor that isn't part of the function.", MBB); 652 if (!MBBInfoMap[*I].Succs.count(MBB)) { 653 report("Inconsistent CFG", MBB); 654 errs() << "MBB is not in the successor list of the predecessor " 655 << printMBBReference(*(*I)) << ".\n"; 656 } 657 } 658 659 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 660 const BasicBlock *BB = MBB->getBasicBlock(); 661 const Function &F = MF->getFunction(); 662 if (LandingPadSuccs.size() > 1 && 663 !(AsmInfo && 664 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 665 BB && isa<SwitchInst>(BB->getTerminator())) && 666 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 667 report("MBB has more than one landing pad successor", MBB); 668 669 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 670 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 671 SmallVector<MachineOperand, 4> Cond; 672 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 673 Cond)) { 674 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 675 // check whether its answers match up with reality. 676 if (!TBB && !FBB) { 677 // Block falls through to its successor. 678 MachineFunction::const_iterator MBBI = MBB->getIterator(); 679 ++MBBI; 680 if (MBBI == MF->end()) { 681 // It's possible that the block legitimately ends with a noreturn 682 // call or an unreachable, in which case it won't actually fall 683 // out the bottom of the function. 684 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 685 // It's possible that the block legitimately ends with a noreturn 686 // call or an unreachable, in which case it won't actually fall 687 // out of the block. 688 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 689 report("MBB exits via unconditional fall-through but doesn't have " 690 "exactly one CFG successor!", MBB); 691 } else if (!MBB->isSuccessor(&*MBBI)) { 692 report("MBB exits via unconditional fall-through but its successor " 693 "differs from its CFG successor!", MBB); 694 } 695 if (!MBB->empty() && MBB->back().isBarrier() && 696 !TII->isPredicated(MBB->back())) { 697 report("MBB exits via unconditional fall-through but ends with a " 698 "barrier instruction!", MBB); 699 } 700 if (!Cond.empty()) { 701 report("MBB exits via unconditional fall-through but has a condition!", 702 MBB); 703 } 704 } else if (TBB && !FBB && Cond.empty()) { 705 // Block unconditionally branches somewhere. 706 // If the block has exactly one successor, that happens to be a 707 // landingpad, accept it as valid control flow. 708 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 709 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 710 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 711 report("MBB exits via unconditional branch but doesn't have " 712 "exactly one CFG successor!", MBB); 713 } else if (!MBB->isSuccessor(TBB)) { 714 report("MBB exits via unconditional branch but the CFG " 715 "successor doesn't match the actual successor!", MBB); 716 } 717 if (MBB->empty()) { 718 report("MBB exits via unconditional branch but doesn't contain " 719 "any instructions!", MBB); 720 } else if (!MBB->back().isBarrier()) { 721 report("MBB exits via unconditional branch but doesn't end with a " 722 "barrier instruction!", MBB); 723 } else if (!MBB->back().isTerminator()) { 724 report("MBB exits via unconditional branch but the branch isn't a " 725 "terminator instruction!", MBB); 726 } 727 } else if (TBB && !FBB && !Cond.empty()) { 728 // Block conditionally branches somewhere, otherwise falls through. 729 MachineFunction::const_iterator MBBI = MBB->getIterator(); 730 ++MBBI; 731 if (MBBI == MF->end()) { 732 report("MBB conditionally falls through out of function!", MBB); 733 } else if (MBB->succ_size() == 1) { 734 // A conditional branch with only one successor is weird, but allowed. 735 if (&*MBBI != TBB) 736 report("MBB exits via conditional branch/fall-through but only has " 737 "one CFG successor!", MBB); 738 else if (TBB != *MBB->succ_begin()) 739 report("MBB exits via conditional branch/fall-through but the CFG " 740 "successor don't match the actual successor!", MBB); 741 } else if (MBB->succ_size() != 2) { 742 report("MBB exits via conditional branch/fall-through but doesn't have " 743 "exactly two CFG successors!", MBB); 744 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 745 report("MBB exits via conditional branch/fall-through but the CFG " 746 "successors don't match the actual successors!", MBB); 747 } 748 if (MBB->empty()) { 749 report("MBB exits via conditional branch/fall-through but doesn't " 750 "contain any instructions!", MBB); 751 } else if (MBB->back().isBarrier()) { 752 report("MBB exits via conditional branch/fall-through but ends with a " 753 "barrier instruction!", MBB); 754 } else if (!MBB->back().isTerminator()) { 755 report("MBB exits via conditional branch/fall-through but the branch " 756 "isn't a terminator instruction!", MBB); 757 } 758 } else if (TBB && FBB) { 759 // Block conditionally branches somewhere, otherwise branches 760 // somewhere else. 761 if (MBB->succ_size() == 1) { 762 // A conditional branch with only one successor is weird, but allowed. 763 if (FBB != TBB) 764 report("MBB exits via conditional branch/branch through but only has " 765 "one CFG successor!", MBB); 766 else if (TBB != *MBB->succ_begin()) 767 report("MBB exits via conditional branch/branch through but the CFG " 768 "successor don't match the actual successor!", MBB); 769 } else if (MBB->succ_size() != 2) { 770 report("MBB exits via conditional branch/branch but doesn't have " 771 "exactly two CFG successors!", MBB); 772 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 773 report("MBB exits via conditional branch/branch but the CFG " 774 "successors don't match the actual successors!", MBB); 775 } 776 if (MBB->empty()) { 777 report("MBB exits via conditional branch/branch but doesn't " 778 "contain any instructions!", MBB); 779 } else if (!MBB->back().isBarrier()) { 780 report("MBB exits via conditional branch/branch but doesn't end with a " 781 "barrier instruction!", MBB); 782 } else if (!MBB->back().isTerminator()) { 783 report("MBB exits via conditional branch/branch but the branch " 784 "isn't a terminator instruction!", MBB); 785 } 786 if (Cond.empty()) { 787 report("MBB exits via conditional branch/branch but there's no " 788 "condition!", MBB); 789 } 790 } else { 791 report("AnalyzeBranch returned invalid data!", MBB); 792 } 793 } 794 795 regsLive.clear(); 796 if (MRI->tracksLiveness()) { 797 for (const auto &LI : MBB->liveins()) { 798 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 799 report("MBB live-in list contains non-physical register", MBB); 800 continue; 801 } 802 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 803 SubRegs.isValid(); ++SubRegs) 804 regsLive.insert(*SubRegs); 805 } 806 } 807 808 const MachineFrameInfo &MFI = MF->getFrameInfo(); 809 BitVector PR = MFI.getPristineRegs(*MF); 810 for (unsigned I : PR.set_bits()) { 811 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 812 SubRegs.isValid(); ++SubRegs) 813 regsLive.insert(*SubRegs); 814 } 815 816 regsKilled.clear(); 817 regsDefined.clear(); 818 819 if (Indexes) 820 lastIndex = Indexes->getMBBStartIdx(MBB); 821 } 822 823 // This function gets called for all bundle headers, including normal 824 // stand-alone unbundled instructions. 825 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 826 if (Indexes && Indexes->hasIndex(*MI)) { 827 SlotIndex idx = Indexes->getInstructionIndex(*MI); 828 if (!(idx > lastIndex)) { 829 report("Instruction index out of order", MI); 830 errs() << "Last instruction was at " << lastIndex << '\n'; 831 } 832 lastIndex = idx; 833 } 834 835 // Ensure non-terminators don't follow terminators. 836 // Ignore predicated terminators formed by if conversion. 837 // FIXME: If conversion shouldn't need to violate this rule. 838 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 839 if (!FirstTerminator) 840 FirstTerminator = MI; 841 } else if (FirstTerminator) { 842 report("Non-terminator instruction after the first terminator", MI); 843 errs() << "First terminator was:\t" << *FirstTerminator; 844 } 845 } 846 847 // The operands on an INLINEASM instruction must follow a template. 848 // Verify that the flag operands make sense. 849 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 850 // The first two operands on INLINEASM are the asm string and global flags. 851 if (MI->getNumOperands() < 2) { 852 report("Too few operands on inline asm", MI); 853 return; 854 } 855 if (!MI->getOperand(0).isSymbol()) 856 report("Asm string must be an external symbol", MI); 857 if (!MI->getOperand(1).isImm()) 858 report("Asm flags must be an immediate", MI); 859 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 860 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 861 // and Extra_IsConvergent = 32. 862 if (!isUInt<6>(MI->getOperand(1).getImm())) 863 report("Unknown asm flags", &MI->getOperand(1), 1); 864 865 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 866 867 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 868 unsigned NumOps; 869 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 870 const MachineOperand &MO = MI->getOperand(OpNo); 871 // There may be implicit ops after the fixed operands. 872 if (!MO.isImm()) 873 break; 874 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 875 } 876 877 if (OpNo > MI->getNumOperands()) 878 report("Missing operands in last group", MI); 879 880 // An optional MDNode follows the groups. 881 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 882 ++OpNo; 883 884 // All trailing operands must be implicit registers. 885 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 886 const MachineOperand &MO = MI->getOperand(OpNo); 887 if (!MO.isReg() || !MO.isImplicit()) 888 report("Expected implicit register after groups", &MO, OpNo); 889 } 890 } 891 892 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 893 const MCInstrDesc &MCID = MI->getDesc(); 894 if (MI->getNumOperands() < MCID.getNumOperands()) { 895 report("Too few operands", MI); 896 errs() << MCID.getNumOperands() << " operands expected, but " 897 << MI->getNumOperands() << " given.\n"; 898 } 899 900 if (MI->isPHI()) { 901 if (MF->getProperties().hasProperty( 902 MachineFunctionProperties::Property::NoPHIs)) 903 report("Found PHI instruction with NoPHIs property set", MI); 904 905 if (FirstNonPHI) 906 report("Found PHI instruction after non-PHI", MI); 907 } else if (FirstNonPHI == nullptr) 908 FirstNonPHI = MI; 909 910 // Check the tied operands. 911 if (MI->isInlineAsm()) 912 verifyInlineAsm(MI); 913 914 // Check the MachineMemOperands for basic consistency. 915 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 916 E = MI->memoperands_end(); 917 I != E; ++I) { 918 if ((*I)->isLoad() && !MI->mayLoad()) 919 report("Missing mayLoad flag", MI); 920 if ((*I)->isStore() && !MI->mayStore()) 921 report("Missing mayStore flag", MI); 922 } 923 924 // Debug values must not have a slot index. 925 // Other instructions must have one, unless they are inside a bundle. 926 if (LiveInts) { 927 bool mapped = !LiveInts->isNotInMIMap(*MI); 928 if (MI->isDebugInstr()) { 929 if (mapped) 930 report("Debug instruction has a slot index", MI); 931 } else if (MI->isInsideBundle()) { 932 if (mapped) 933 report("Instruction inside bundle has a slot index", MI); 934 } else { 935 if (!mapped) 936 report("Missing slot index", MI); 937 } 938 } 939 940 if (isPreISelGenericOpcode(MCID.getOpcode())) { 941 if (isFunctionSelected) 942 report("Unexpected generic instruction in a Selected function", MI); 943 944 // Check types. 945 SmallVector<LLT, 4> Types; 946 for (unsigned I = 0; I < MCID.getNumOperands(); ++I) { 947 if (!MCID.OpInfo[I].isGenericType()) 948 continue; 949 // Generic instructions specify type equality constraints between some of 950 // their operands. Make sure these are consistent. 951 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 952 Types.resize(std::max(TypeIdx + 1, Types.size())); 953 954 const MachineOperand *MO = &MI->getOperand(I); 955 LLT OpTy = MRI->getType(MO->getReg()); 956 // Don't report a type mismatch if there is no actual mismatch, only a 957 // type missing, to reduce noise: 958 if (OpTy.isValid()) { 959 // Only the first valid type for a type index will be printed: don't 960 // overwrite it later so it's always clear which type was expected: 961 if (!Types[TypeIdx].isValid()) 962 Types[TypeIdx] = OpTy; 963 else if (Types[TypeIdx] != OpTy) 964 report("Type mismatch in generic instruction", MO, I, OpTy); 965 } else { 966 // Generic instructions must have types attached to their operands. 967 report("Generic instruction is missing a virtual register type", MO, I); 968 } 969 } 970 971 // Generic opcodes must not have physical register operands. 972 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 973 const MachineOperand *MO = &MI->getOperand(I); 974 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) 975 report("Generic instruction cannot have physical register", MO, I); 976 } 977 } 978 979 StringRef ErrorInfo; 980 if (!TII->verifyInstruction(*MI, ErrorInfo)) 981 report(ErrorInfo.data(), MI); 982 983 // Verify properties of various specific instruction types 984 switch(MI->getOpcode()) { 985 default: 986 break; 987 case TargetOpcode::G_LOAD: 988 case TargetOpcode::G_STORE: 989 case TargetOpcode::G_ZEXTLOAD: 990 case TargetOpcode::G_SEXTLOAD: 991 // Generic loads and stores must have a single MachineMemOperand 992 // describing that access. 993 if (!MI->hasOneMemOperand()) { 994 report("Generic instruction accessing memory must have one mem operand", 995 MI); 996 } else { 997 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 998 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 999 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1000 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1001 if (MMO.getSize() * 8 >= DstTy.getSizeInBits()) { 1002 report("Generic extload must have a narrower memory type", MI); 1003 } 1004 } 1005 } 1006 1007 break; 1008 case TargetOpcode::G_PHI: { 1009 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1010 if (!DstTy.isValid() || 1011 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1012 [this, &DstTy](const MachineOperand &MO) { 1013 if (!MO.isReg()) 1014 return true; 1015 LLT Ty = MRI->getType(MO.getReg()); 1016 if (!Ty.isValid() || (Ty != DstTy)) 1017 return false; 1018 return true; 1019 })) 1020 report("Generic Instruction G_PHI has operands with incompatible/missing " 1021 "types", 1022 MI); 1023 break; 1024 } 1025 case TargetOpcode::G_BITCAST: { 1026 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1027 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1028 if (!DstTy.isValid() || !SrcTy.isValid()) 1029 break; 1030 1031 if (SrcTy.isPointer() != DstTy.isPointer()) 1032 report("bitcast cannot convert between pointers and other types", MI); 1033 1034 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1035 report("bitcast sizes must match", MI); 1036 break; 1037 } 1038 case TargetOpcode::G_SEXT: 1039 case TargetOpcode::G_ZEXT: 1040 case TargetOpcode::G_ANYEXT: 1041 case TargetOpcode::G_TRUNC: 1042 case TargetOpcode::G_FPEXT: 1043 case TargetOpcode::G_FPTRUNC: { 1044 // Number of operands and presense of types is already checked (and 1045 // reported in case of any issues), so no need to report them again. As 1046 // we're trying to report as many issues as possible at once, however, the 1047 // instructions aren't guaranteed to have the right number of operands or 1048 // types attached to them at this point 1049 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1050 if (MI->getNumOperands() < MCID.getNumOperands()) 1051 break; 1052 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1053 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1054 if (!DstTy.isValid() || !SrcTy.isValid()) 1055 break; 1056 1057 LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy; 1058 LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy; 1059 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1060 report("Generic extend/truncate can not operate on pointers", MI); 1061 1062 if (DstTy.isVector() != SrcTy.isVector()) { 1063 report("Generic extend/truncate must be all-vector or all-scalar", MI); 1064 // Generally we try to report as many issues as possible at once, but in 1065 // this case it's not clear what should we be comparing the size of the 1066 // scalar with: the size of the whole vector or its lane. Instead of 1067 // making an arbitrary choice and emitting not so helpful message, let's 1068 // avoid the extra noise and stop here. 1069 break; 1070 } 1071 if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()) 1072 report("Generic vector extend/truncate must preserve number of lanes", 1073 MI); 1074 unsigned DstSize = DstElTy.getSizeInBits(); 1075 unsigned SrcSize = SrcElTy.getSizeInBits(); 1076 switch (MI->getOpcode()) { 1077 default: 1078 if (DstSize <= SrcSize) 1079 report("Generic extend has destination type no larger than source", MI); 1080 break; 1081 case TargetOpcode::G_TRUNC: 1082 case TargetOpcode::G_FPTRUNC: 1083 if (DstSize >= SrcSize) 1084 report("Generic truncate has destination type no smaller than source", 1085 MI); 1086 break; 1087 } 1088 break; 1089 } 1090 case TargetOpcode::G_MERGE_VALUES: { 1091 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1092 // e.g. s2N = MERGE sN, sN 1093 // Merging multiple scalars into a vector is not allowed, should use 1094 // G_BUILD_VECTOR for that. 1095 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1096 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1097 if (DstTy.isVector() || SrcTy.isVector()) 1098 report("G_MERGE_VALUES cannot operate on vectors", MI); 1099 break; 1100 } 1101 case TargetOpcode::G_UNMERGE_VALUES: { 1102 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1103 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1104 // For now G_UNMERGE can split vectors. 1105 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1106 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1107 report("G_UNMERGE_VALUES destination types do not match", MI); 1108 } 1109 if (SrcTy.getSizeInBits() != 1110 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1111 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1112 MI); 1113 } 1114 break; 1115 } 1116 case TargetOpcode::G_BUILD_VECTOR: { 1117 // Source types must be scalars, dest type a vector. Total size of scalars 1118 // must match the dest vector size. 1119 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1120 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1121 if (!DstTy.isVector() || SrcEltTy.isVector()) 1122 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1123 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1124 if (MRI->getType(MI->getOperand(1).getReg()) != 1125 MRI->getType(MI->getOperand(i).getReg())) 1126 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1127 } 1128 if (DstTy.getSizeInBits() != 1129 SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1)) 1130 report("G_BUILD_VECTOR src operands total size don't match dest " 1131 "size.", 1132 MI); 1133 break; 1134 } 1135 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1136 // Source types must be scalars, dest type a vector. Scalar types must be 1137 // larger than the dest vector elt type, as this is a truncating operation. 1138 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1139 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1140 if (!DstTy.isVector() || SrcEltTy.isVector()) 1141 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1142 MI); 1143 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1144 if (MRI->getType(MI->getOperand(1).getReg()) != 1145 MRI->getType(MI->getOperand(i).getReg())) 1146 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1147 MI); 1148 } 1149 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1150 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1151 "dest elt type", 1152 MI); 1153 break; 1154 } 1155 case TargetOpcode::G_CONCAT_VECTORS: { 1156 // Source types should be vectors, and total size should match the dest 1157 // vector size. 1158 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1159 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1160 if (!DstTy.isVector() || !SrcTy.isVector()) 1161 report("G_CONCAT_VECTOR requires vector source and destination operands", 1162 MI); 1163 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1164 if (MRI->getType(MI->getOperand(1).getReg()) != 1165 MRI->getType(MI->getOperand(i).getReg())) 1166 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1167 } 1168 if (DstTy.getNumElements() != 1169 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1170 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1171 break; 1172 } 1173 case TargetOpcode::COPY: { 1174 if (foundErrors) 1175 break; 1176 const MachineOperand &DstOp = MI->getOperand(0); 1177 const MachineOperand &SrcOp = MI->getOperand(1); 1178 LLT DstTy = MRI->getType(DstOp.getReg()); 1179 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1180 if (SrcTy.isValid() && DstTy.isValid()) { 1181 // If both types are valid, check that the types are the same. 1182 if (SrcTy != DstTy) { 1183 report("Copy Instruction is illegal with mismatching types", MI); 1184 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1185 } 1186 } 1187 if (SrcTy.isValid() || DstTy.isValid()) { 1188 // If one of them have valid types, let's just check they have the same 1189 // size. 1190 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1191 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1192 assert(SrcSize && "Expecting size here"); 1193 assert(DstSize && "Expecting size here"); 1194 if (SrcSize != DstSize) 1195 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1196 report("Copy Instruction is illegal with mismatching sizes", MI); 1197 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1198 << "\n"; 1199 } 1200 } 1201 break; 1202 } 1203 case TargetOpcode::G_ICMP: 1204 case TargetOpcode::G_FCMP: { 1205 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1206 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1207 1208 if ((DstTy.isVector() != SrcTy.isVector()) || 1209 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1210 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1211 1212 break; 1213 } 1214 case TargetOpcode::STATEPOINT: 1215 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1216 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1217 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1218 report("meta operands to STATEPOINT not constant!", MI); 1219 break; 1220 1221 auto VerifyStackMapConstant = [&](unsigned Offset) { 1222 if (!MI->getOperand(Offset).isImm() || 1223 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1224 !MI->getOperand(Offset + 1).isImm()) 1225 report("stack map constant to STATEPOINT not well formed!", MI); 1226 }; 1227 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1228 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1229 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1230 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1231 1232 // TODO: verify we have properly encoded deopt arguments 1233 }; 1234 } 1235 1236 void 1237 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1238 const MachineInstr *MI = MO->getParent(); 1239 const MCInstrDesc &MCID = MI->getDesc(); 1240 unsigned NumDefs = MCID.getNumDefs(); 1241 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1242 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1243 1244 // The first MCID.NumDefs operands must be explicit register defines 1245 if (MONum < NumDefs) { 1246 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1247 if (!MO->isReg()) 1248 report("Explicit definition must be a register", MO, MONum); 1249 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1250 report("Explicit definition marked as use", MO, MONum); 1251 else if (MO->isImplicit()) 1252 report("Explicit definition marked as implicit", MO, MONum); 1253 } else if (MONum < MCID.getNumOperands()) { 1254 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1255 // Don't check if it's the last operand in a variadic instruction. See, 1256 // e.g., LDM_RET in the arm back end. 1257 if (MO->isReg() && 1258 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1259 if (MO->isDef() && !MCOI.isOptionalDef()) 1260 report("Explicit operand marked as def", MO, MONum); 1261 if (MO->isImplicit()) 1262 report("Explicit operand marked as implicit", MO, MONum); 1263 } 1264 1265 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1266 if (TiedTo != -1) { 1267 if (!MO->isReg()) 1268 report("Tied use must be a register", MO, MONum); 1269 else if (!MO->isTied()) 1270 report("Operand should be tied", MO, MONum); 1271 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1272 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1273 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1274 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1275 if (!MOTied.isReg()) 1276 report("Tied counterpart must be a register", &MOTied, TiedTo); 1277 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1278 MO->getReg() != MOTied.getReg()) 1279 report("Tied physical registers must match.", &MOTied, TiedTo); 1280 } 1281 } else if (MO->isReg() && MO->isTied()) 1282 report("Explicit operand should not be tied", MO, MONum); 1283 } else { 1284 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1285 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1286 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1287 } 1288 1289 switch (MO->getType()) { 1290 case MachineOperand::MO_Register: { 1291 const unsigned Reg = MO->getReg(); 1292 if (!Reg) 1293 return; 1294 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1295 checkLiveness(MO, MONum); 1296 1297 // Verify the consistency of tied operands. 1298 if (MO->isTied()) { 1299 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1300 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1301 if (!OtherMO.isReg()) 1302 report("Must be tied to a register", MO, MONum); 1303 if (!OtherMO.isTied()) 1304 report("Missing tie flags on tied operand", MO, MONum); 1305 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1306 report("Inconsistent tie links", MO, MONum); 1307 if (MONum < MCID.getNumDefs()) { 1308 if (OtherIdx < MCID.getNumOperands()) { 1309 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1310 report("Explicit def tied to explicit use without tie constraint", 1311 MO, MONum); 1312 } else { 1313 if (!OtherMO.isImplicit()) 1314 report("Explicit def should be tied to implicit use", MO, MONum); 1315 } 1316 } 1317 } 1318 1319 // Verify two-address constraints after leaving SSA form. 1320 unsigned DefIdx; 1321 if (!MRI->isSSA() && MO->isUse() && 1322 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1323 Reg != MI->getOperand(DefIdx).getReg()) 1324 report("Two-address instruction operands must be identical", MO, MONum); 1325 1326 // Check register classes. 1327 unsigned SubIdx = MO->getSubReg(); 1328 1329 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1330 if (SubIdx) { 1331 report("Illegal subregister index for physical register", MO, MONum); 1332 return; 1333 } 1334 if (MONum < MCID.getNumOperands()) { 1335 if (const TargetRegisterClass *DRC = 1336 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1337 if (!DRC->contains(Reg)) { 1338 report("Illegal physical register for instruction", MO, MONum); 1339 errs() << printReg(Reg, TRI) << " is not a " 1340 << TRI->getRegClassName(DRC) << " register.\n"; 1341 } 1342 } 1343 } 1344 if (MO->isRenamable()) { 1345 if (MRI->isReserved(Reg)) { 1346 report("isRenamable set on reserved register", MO, MONum); 1347 return; 1348 } 1349 } 1350 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1351 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1352 return; 1353 } 1354 } else { 1355 // Virtual register. 1356 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1357 if (!RC) { 1358 // This is a generic virtual register. 1359 1360 // If we're post-Select, we can't have gvregs anymore. 1361 if (isFunctionSelected) { 1362 report("Generic virtual register invalid in a Selected function", 1363 MO, MONum); 1364 return; 1365 } 1366 1367 // The gvreg must have a type and it must not have a SubIdx. 1368 LLT Ty = MRI->getType(Reg); 1369 if (!Ty.isValid()) { 1370 report("Generic virtual register must have a valid type", MO, 1371 MONum); 1372 return; 1373 } 1374 1375 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1376 1377 // If we're post-RegBankSelect, the gvreg must have a bank. 1378 if (!RegBank && isFunctionRegBankSelected) { 1379 report("Generic virtual register must have a bank in a " 1380 "RegBankSelected function", 1381 MO, MONum); 1382 return; 1383 } 1384 1385 // Make sure the register fits into its register bank if any. 1386 if (RegBank && Ty.isValid() && 1387 RegBank->getSize() < Ty.getSizeInBits()) { 1388 report("Register bank is too small for virtual register", MO, 1389 MONum); 1390 errs() << "Register bank " << RegBank->getName() << " too small(" 1391 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1392 << "-bits\n"; 1393 return; 1394 } 1395 if (SubIdx) { 1396 report("Generic virtual register does not subregister index", MO, 1397 MONum); 1398 return; 1399 } 1400 1401 // If this is a target specific instruction and this operand 1402 // has register class constraint, the virtual register must 1403 // comply to it. 1404 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1405 MONum < MCID.getNumOperands() && 1406 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1407 report("Virtual register does not match instruction constraint", MO, 1408 MONum); 1409 errs() << "Expect register class " 1410 << TRI->getRegClassName( 1411 TII->getRegClass(MCID, MONum, TRI, *MF)) 1412 << " but got nothing\n"; 1413 return; 1414 } 1415 1416 break; 1417 } 1418 if (SubIdx) { 1419 const TargetRegisterClass *SRC = 1420 TRI->getSubClassWithSubReg(RC, SubIdx); 1421 if (!SRC) { 1422 report("Invalid subregister index for virtual register", MO, MONum); 1423 errs() << "Register class " << TRI->getRegClassName(RC) 1424 << " does not support subreg index " << SubIdx << "\n"; 1425 return; 1426 } 1427 if (RC != SRC) { 1428 report("Invalid register class for subregister index", MO, MONum); 1429 errs() << "Register class " << TRI->getRegClassName(RC) 1430 << " does not fully support subreg index " << SubIdx << "\n"; 1431 return; 1432 } 1433 } 1434 if (MONum < MCID.getNumOperands()) { 1435 if (const TargetRegisterClass *DRC = 1436 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1437 if (SubIdx) { 1438 const TargetRegisterClass *SuperRC = 1439 TRI->getLargestLegalSuperClass(RC, *MF); 1440 if (!SuperRC) { 1441 report("No largest legal super class exists.", MO, MONum); 1442 return; 1443 } 1444 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1445 if (!DRC) { 1446 report("No matching super-reg register class.", MO, MONum); 1447 return; 1448 } 1449 } 1450 if (!RC->hasSuperClassEq(DRC)) { 1451 report("Illegal virtual register for instruction", MO, MONum); 1452 errs() << "Expected a " << TRI->getRegClassName(DRC) 1453 << " register, but got a " << TRI->getRegClassName(RC) 1454 << " register\n"; 1455 } 1456 } 1457 } 1458 } 1459 break; 1460 } 1461 1462 case MachineOperand::MO_RegisterMask: 1463 regMasks.push_back(MO->getRegMask()); 1464 break; 1465 1466 case MachineOperand::MO_MachineBasicBlock: 1467 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1468 report("PHI operand is not in the CFG", MO, MONum); 1469 break; 1470 1471 case MachineOperand::MO_FrameIndex: 1472 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1473 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1474 int FI = MO->getIndex(); 1475 LiveInterval &LI = LiveStks->getInterval(FI); 1476 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1477 1478 bool stores = MI->mayStore(); 1479 bool loads = MI->mayLoad(); 1480 // For a memory-to-memory move, we need to check if the frame 1481 // index is used for storing or loading, by inspecting the 1482 // memory operands. 1483 if (stores && loads) { 1484 for (auto *MMO : MI->memoperands()) { 1485 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1486 if (PSV == nullptr) continue; 1487 const FixedStackPseudoSourceValue *Value = 1488 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1489 if (Value == nullptr) continue; 1490 if (Value->getFrameIndex() != FI) continue; 1491 1492 if (MMO->isStore()) 1493 loads = false; 1494 else 1495 stores = false; 1496 break; 1497 } 1498 if (loads == stores) 1499 report("Missing fixed stack memoperand.", MI); 1500 } 1501 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1502 report("Instruction loads from dead spill slot", MO, MONum); 1503 errs() << "Live stack: " << LI << '\n'; 1504 } 1505 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1506 report("Instruction stores to dead spill slot", MO, MONum); 1507 errs() << "Live stack: " << LI << '\n'; 1508 } 1509 } 1510 break; 1511 1512 default: 1513 break; 1514 } 1515 } 1516 1517 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1518 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1519 LaneBitmask LaneMask) { 1520 LiveQueryResult LRQ = LR.Query(UseIdx); 1521 // Check if we have a segment at the use, note however that we only need one 1522 // live subregister range, the others may be dead. 1523 if (!LRQ.valueIn() && LaneMask.none()) { 1524 report("No live segment at use", MO, MONum); 1525 report_context_liverange(LR); 1526 report_context_vreg_regunit(VRegOrUnit); 1527 report_context(UseIdx); 1528 } 1529 if (MO->isKill() && !LRQ.isKill()) { 1530 report("Live range continues after kill flag", MO, MONum); 1531 report_context_liverange(LR); 1532 report_context_vreg_regunit(VRegOrUnit); 1533 if (LaneMask.any()) 1534 report_context_lanemask(LaneMask); 1535 report_context(UseIdx); 1536 } 1537 } 1538 1539 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1540 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1541 bool SubRangeCheck, LaneBitmask LaneMask) { 1542 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1543 assert(VNI && "NULL valno is not allowed"); 1544 if (VNI->def != DefIdx) { 1545 report("Inconsistent valno->def", MO, MONum); 1546 report_context_liverange(LR); 1547 report_context_vreg_regunit(VRegOrUnit); 1548 if (LaneMask.any()) 1549 report_context_lanemask(LaneMask); 1550 report_context(*VNI); 1551 report_context(DefIdx); 1552 } 1553 } else { 1554 report("No live segment at def", MO, MONum); 1555 report_context_liverange(LR); 1556 report_context_vreg_regunit(VRegOrUnit); 1557 if (LaneMask.any()) 1558 report_context_lanemask(LaneMask); 1559 report_context(DefIdx); 1560 } 1561 // Check that, if the dead def flag is present, LiveInts agree. 1562 if (MO->isDead()) { 1563 LiveQueryResult LRQ = LR.Query(DefIdx); 1564 if (!LRQ.isDeadDef()) { 1565 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) && 1566 "Expecting a virtual register."); 1567 // A dead subreg def only tells us that the specific subreg is dead. There 1568 // could be other non-dead defs of other subregs, or we could have other 1569 // parts of the register being live through the instruction. So unless we 1570 // are checking liveness for a subrange it is ok for the live range to 1571 // continue, given that we have a dead def of a subregister. 1572 if (SubRangeCheck || MO->getSubReg() == 0) { 1573 report("Live range continues after dead def flag", MO, MONum); 1574 report_context_liverange(LR); 1575 report_context_vreg_regunit(VRegOrUnit); 1576 if (LaneMask.any()) 1577 report_context_lanemask(LaneMask); 1578 } 1579 } 1580 } 1581 } 1582 1583 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1584 const MachineInstr *MI = MO->getParent(); 1585 const unsigned Reg = MO->getReg(); 1586 1587 // Both use and def operands can read a register. 1588 if (MO->readsReg()) { 1589 if (MO->isKill()) 1590 addRegWithSubRegs(regsKilled, Reg); 1591 1592 // Check that LiveVars knows this kill. 1593 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1594 MO->isKill()) { 1595 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1596 if (!is_contained(VI.Kills, MI)) 1597 report("Kill missing from LiveVariables", MO, MONum); 1598 } 1599 1600 // Check LiveInts liveness and kill. 1601 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1602 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1603 // Check the cached regunit intervals. 1604 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1605 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1606 if (MRI->isReservedRegUnit(*Units)) 1607 continue; 1608 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1609 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1610 } 1611 } 1612 1613 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1614 if (LiveInts->hasInterval(Reg)) { 1615 // This is a virtual register interval. 1616 const LiveInterval &LI = LiveInts->getInterval(Reg); 1617 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1618 1619 if (LI.hasSubRanges() && !MO->isDef()) { 1620 unsigned SubRegIdx = MO->getSubReg(); 1621 LaneBitmask MOMask = SubRegIdx != 0 1622 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1623 : MRI->getMaxLaneMaskForVReg(Reg); 1624 LaneBitmask LiveInMask; 1625 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1626 if ((MOMask & SR.LaneMask).none()) 1627 continue; 1628 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1629 LiveQueryResult LRQ = SR.Query(UseIdx); 1630 if (LRQ.valueIn()) 1631 LiveInMask |= SR.LaneMask; 1632 } 1633 // At least parts of the register has to be live at the use. 1634 if ((LiveInMask & MOMask).none()) { 1635 report("No live subrange at use", MO, MONum); 1636 report_context(LI); 1637 report_context(UseIdx); 1638 } 1639 } 1640 } else { 1641 report("Virtual register has no live interval", MO, MONum); 1642 } 1643 } 1644 } 1645 1646 // Use of a dead register. 1647 if (!regsLive.count(Reg)) { 1648 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1649 // Reserved registers may be used even when 'dead'. 1650 bool Bad = !isReserved(Reg); 1651 // We are fine if just any subregister has a defined value. 1652 if (Bad) { 1653 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1654 ++SubRegs) { 1655 if (regsLive.count(*SubRegs)) { 1656 Bad = false; 1657 break; 1658 } 1659 } 1660 } 1661 // If there is an additional implicit-use of a super register we stop 1662 // here. By definition we are fine if the super register is not 1663 // (completely) dead, if the complete super register is dead we will 1664 // get a report for its operand. 1665 if (Bad) { 1666 for (const MachineOperand &MOP : MI->uses()) { 1667 if (!MOP.isReg() || !MOP.isImplicit()) 1668 continue; 1669 1670 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg())) 1671 continue; 1672 1673 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1674 ++SubRegs) { 1675 if (*SubRegs == Reg) { 1676 Bad = false; 1677 break; 1678 } 1679 } 1680 } 1681 } 1682 if (Bad) 1683 report("Using an undefined physical register", MO, MONum); 1684 } else if (MRI->def_empty(Reg)) { 1685 report("Reading virtual register without a def", MO, MONum); 1686 } else { 1687 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1688 // We don't know which virtual registers are live in, so only complain 1689 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1690 // must be live in. PHI instructions are handled separately. 1691 if (MInfo.regsKilled.count(Reg)) 1692 report("Using a killed virtual register", MO, MONum); 1693 else if (!MI->isPHI()) 1694 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1695 } 1696 } 1697 } 1698 1699 if (MO->isDef()) { 1700 // Register defined. 1701 // TODO: verify that earlyclobber ops are not used. 1702 if (MO->isDead()) 1703 addRegWithSubRegs(regsDead, Reg); 1704 else 1705 addRegWithSubRegs(regsDefined, Reg); 1706 1707 // Verify SSA form. 1708 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1709 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1710 report("Multiple virtual register defs in SSA form", MO, MONum); 1711 1712 // Check LiveInts for a live segment, but only for virtual registers. 1713 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1714 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1715 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1716 1717 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1718 if (LiveInts->hasInterval(Reg)) { 1719 const LiveInterval &LI = LiveInts->getInterval(Reg); 1720 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1721 1722 if (LI.hasSubRanges()) { 1723 unsigned SubRegIdx = MO->getSubReg(); 1724 LaneBitmask MOMask = SubRegIdx != 0 1725 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1726 : MRI->getMaxLaneMaskForVReg(Reg); 1727 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1728 if ((SR.LaneMask & MOMask).none()) 1729 continue; 1730 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 1731 } 1732 } 1733 } else { 1734 report("Virtual register has no Live interval", MO, MONum); 1735 } 1736 } 1737 } 1738 } 1739 } 1740 1741 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1742 1743 // This function gets called after visiting all instructions in a bundle. The 1744 // argument points to the bundle header. 1745 // Normal stand-alone instructions are also considered 'bundles', and this 1746 // function is called for all of them. 1747 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1748 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1749 set_union(MInfo.regsKilled, regsKilled); 1750 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1751 // Kill any masked registers. 1752 while (!regMasks.empty()) { 1753 const uint32_t *Mask = regMasks.pop_back_val(); 1754 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1755 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1756 MachineOperand::clobbersPhysReg(Mask, *I)) 1757 regsDead.push_back(*I); 1758 } 1759 set_subtract(regsLive, regsDead); regsDead.clear(); 1760 set_union(regsLive, regsDefined); regsDefined.clear(); 1761 } 1762 1763 void 1764 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1765 MBBInfoMap[MBB].regsLiveOut = regsLive; 1766 regsLive.clear(); 1767 1768 if (Indexes) { 1769 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1770 if (!(stop > lastIndex)) { 1771 report("Block ends before last instruction index", MBB); 1772 errs() << "Block ends at " << stop 1773 << " last instruction was at " << lastIndex << '\n'; 1774 } 1775 lastIndex = stop; 1776 } 1777 } 1778 1779 // Calculate the largest possible vregsPassed sets. These are the registers that 1780 // can pass through an MBB live, but may not be live every time. It is assumed 1781 // that all vregsPassed sets are empty before the call. 1782 void MachineVerifier::calcRegsPassed() { 1783 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1784 // have any vregsPassed. 1785 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1786 for (const auto &MBB : *MF) { 1787 BBInfo &MInfo = MBBInfoMap[&MBB]; 1788 if (!MInfo.reachable) 1789 continue; 1790 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1791 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1792 BBInfo &SInfo = MBBInfoMap[*SuI]; 1793 if (SInfo.addPassed(MInfo.regsLiveOut)) 1794 todo.insert(*SuI); 1795 } 1796 } 1797 1798 // Iteratively push vregsPassed to successors. This will converge to the same 1799 // final state regardless of DenseSet iteration order. 1800 while (!todo.empty()) { 1801 const MachineBasicBlock *MBB = *todo.begin(); 1802 todo.erase(MBB); 1803 BBInfo &MInfo = MBBInfoMap[MBB]; 1804 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1805 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1806 if (*SuI == MBB) 1807 continue; 1808 BBInfo &SInfo = MBBInfoMap[*SuI]; 1809 if (SInfo.addPassed(MInfo.vregsPassed)) 1810 todo.insert(*SuI); 1811 } 1812 } 1813 } 1814 1815 // Calculate the set of virtual registers that must be passed through each basic 1816 // block in order to satisfy the requirements of successor blocks. This is very 1817 // similar to calcRegsPassed, only backwards. 1818 void MachineVerifier::calcRegsRequired() { 1819 // First push live-in regs to predecessors' vregsRequired. 1820 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1821 for (const auto &MBB : *MF) { 1822 BBInfo &MInfo = MBBInfoMap[&MBB]; 1823 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1824 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1825 BBInfo &PInfo = MBBInfoMap[*PrI]; 1826 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1827 todo.insert(*PrI); 1828 } 1829 } 1830 1831 // Iteratively push vregsRequired to predecessors. This will converge to the 1832 // same final state regardless of DenseSet iteration order. 1833 while (!todo.empty()) { 1834 const MachineBasicBlock *MBB = *todo.begin(); 1835 todo.erase(MBB); 1836 BBInfo &MInfo = MBBInfoMap[MBB]; 1837 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1838 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1839 if (*PrI == MBB) 1840 continue; 1841 BBInfo &SInfo = MBBInfoMap[*PrI]; 1842 if (SInfo.addRequired(MInfo.vregsRequired)) 1843 todo.insert(*PrI); 1844 } 1845 } 1846 } 1847 1848 // Check PHI instructions at the beginning of MBB. It is assumed that 1849 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1850 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1851 BBInfo &MInfo = MBBInfoMap[&MBB]; 1852 1853 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1854 for (const MachineInstr &Phi : MBB) { 1855 if (!Phi.isPHI()) 1856 break; 1857 seen.clear(); 1858 1859 const MachineOperand &MODef = Phi.getOperand(0); 1860 if (!MODef.isReg() || !MODef.isDef()) { 1861 report("Expected first PHI operand to be a register def", &MODef, 0); 1862 continue; 1863 } 1864 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1865 MODef.isEarlyClobber() || MODef.isDebug()) 1866 report("Unexpected flag on PHI operand", &MODef, 0); 1867 unsigned DefReg = MODef.getReg(); 1868 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1869 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1870 1871 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1872 const MachineOperand &MO0 = Phi.getOperand(I); 1873 if (!MO0.isReg()) { 1874 report("Expected PHI operand to be a register", &MO0, I); 1875 continue; 1876 } 1877 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 1878 MO0.isDebug() || MO0.isTied()) 1879 report("Unexpected flag on PHI operand", &MO0, I); 1880 1881 const MachineOperand &MO1 = Phi.getOperand(I + 1); 1882 if (!MO1.isMBB()) { 1883 report("Expected PHI operand to be a basic block", &MO1, I + 1); 1884 continue; 1885 } 1886 1887 const MachineBasicBlock &Pre = *MO1.getMBB(); 1888 if (!Pre.isSuccessor(&MBB)) { 1889 report("PHI input is not a predecessor block", &MO1, I + 1); 1890 continue; 1891 } 1892 1893 if (MInfo.reachable) { 1894 seen.insert(&Pre); 1895 BBInfo &PrInfo = MBBInfoMap[&Pre]; 1896 if (!MO0.isUndef() && PrInfo.reachable && 1897 !PrInfo.isLiveOut(MO0.getReg())) 1898 report("PHI operand is not live-out from predecessor", &MO0, I); 1899 } 1900 } 1901 1902 // Did we see all predecessors? 1903 if (MInfo.reachable) { 1904 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1905 if (!seen.count(Pred)) { 1906 report("Missing PHI operand", &Phi); 1907 errs() << printMBBReference(*Pred) 1908 << " is a predecessor according to the CFG.\n"; 1909 } 1910 } 1911 } 1912 } 1913 } 1914 1915 void MachineVerifier::visitMachineFunctionAfter() { 1916 calcRegsPassed(); 1917 1918 for (const MachineBasicBlock &MBB : *MF) 1919 checkPHIOps(MBB); 1920 1921 // Now check liveness info if available 1922 calcRegsRequired(); 1923 1924 // Check for killed virtual registers that should be live out. 1925 for (const auto &MBB : *MF) { 1926 BBInfo &MInfo = MBBInfoMap[&MBB]; 1927 for (RegSet::iterator 1928 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1929 ++I) 1930 if (MInfo.regsKilled.count(*I)) { 1931 report("Virtual register killed in block, but needed live out.", &MBB); 1932 errs() << "Virtual register " << printReg(*I) 1933 << " is used after the block.\n"; 1934 } 1935 } 1936 1937 if (!MF->empty()) { 1938 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1939 for (RegSet::iterator 1940 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1941 ++I) { 1942 report("Virtual register defs don't dominate all uses.", MF); 1943 report_context_vreg(*I); 1944 } 1945 } 1946 1947 if (LiveVars) 1948 verifyLiveVariables(); 1949 if (LiveInts) 1950 verifyLiveIntervals(); 1951 } 1952 1953 void MachineVerifier::verifyLiveVariables() { 1954 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1955 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1956 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1957 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1958 for (const auto &MBB : *MF) { 1959 BBInfo &MInfo = MBBInfoMap[&MBB]; 1960 1961 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1962 if (MInfo.vregsRequired.count(Reg)) { 1963 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1964 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1965 errs() << "Virtual register " << printReg(Reg) 1966 << " must be live through the block.\n"; 1967 } 1968 } else { 1969 if (VI.AliveBlocks.test(MBB.getNumber())) { 1970 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1971 errs() << "Virtual register " << printReg(Reg) 1972 << " is not needed live through the block.\n"; 1973 } 1974 } 1975 } 1976 } 1977 } 1978 1979 void MachineVerifier::verifyLiveIntervals() { 1980 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1981 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1982 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1983 1984 // Spilling and splitting may leave unused registers around. Skip them. 1985 if (MRI->reg_nodbg_empty(Reg)) 1986 continue; 1987 1988 if (!LiveInts->hasInterval(Reg)) { 1989 report("Missing live interval for virtual register", MF); 1990 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 1991 continue; 1992 } 1993 1994 const LiveInterval &LI = LiveInts->getInterval(Reg); 1995 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1996 verifyLiveInterval(LI); 1997 } 1998 1999 // Verify all the cached regunit intervals. 2000 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2001 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2002 verifyLiveRange(*LR, i); 2003 } 2004 2005 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2006 const VNInfo *VNI, unsigned Reg, 2007 LaneBitmask LaneMask) { 2008 if (VNI->isUnused()) 2009 return; 2010 2011 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2012 2013 if (!DefVNI) { 2014 report("Value not live at VNInfo def and not marked unused", MF); 2015 report_context(LR, Reg, LaneMask); 2016 report_context(*VNI); 2017 return; 2018 } 2019 2020 if (DefVNI != VNI) { 2021 report("Live segment at def has different VNInfo", MF); 2022 report_context(LR, Reg, LaneMask); 2023 report_context(*VNI); 2024 return; 2025 } 2026 2027 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2028 if (!MBB) { 2029 report("Invalid VNInfo definition index", MF); 2030 report_context(LR, Reg, LaneMask); 2031 report_context(*VNI); 2032 return; 2033 } 2034 2035 if (VNI->isPHIDef()) { 2036 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2037 report("PHIDef VNInfo is not defined at MBB start", MBB); 2038 report_context(LR, Reg, LaneMask); 2039 report_context(*VNI); 2040 } 2041 return; 2042 } 2043 2044 // Non-PHI def. 2045 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2046 if (!MI) { 2047 report("No instruction at VNInfo def index", MBB); 2048 report_context(LR, Reg, LaneMask); 2049 report_context(*VNI); 2050 return; 2051 } 2052 2053 if (Reg != 0) { 2054 bool hasDef = false; 2055 bool isEarlyClobber = false; 2056 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2057 if (!MOI->isReg() || !MOI->isDef()) 2058 continue; 2059 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2060 if (MOI->getReg() != Reg) 2061 continue; 2062 } else { 2063 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 2064 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2065 continue; 2066 } 2067 if (LaneMask.any() && 2068 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2069 continue; 2070 hasDef = true; 2071 if (MOI->isEarlyClobber()) 2072 isEarlyClobber = true; 2073 } 2074 2075 if (!hasDef) { 2076 report("Defining instruction does not modify register", MI); 2077 report_context(LR, Reg, LaneMask); 2078 report_context(*VNI); 2079 } 2080 2081 // Early clobber defs begin at USE slots, but other defs must begin at 2082 // DEF slots. 2083 if (isEarlyClobber) { 2084 if (!VNI->def.isEarlyClobber()) { 2085 report("Early clobber def must be at an early-clobber slot", MBB); 2086 report_context(LR, Reg, LaneMask); 2087 report_context(*VNI); 2088 } 2089 } else if (!VNI->def.isRegister()) { 2090 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2091 report_context(LR, Reg, LaneMask); 2092 report_context(*VNI); 2093 } 2094 } 2095 } 2096 2097 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2098 const LiveRange::const_iterator I, 2099 unsigned Reg, LaneBitmask LaneMask) 2100 { 2101 const LiveRange::Segment &S = *I; 2102 const VNInfo *VNI = S.valno; 2103 assert(VNI && "Live segment has no valno"); 2104 2105 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2106 report("Foreign valno in live segment", MF); 2107 report_context(LR, Reg, LaneMask); 2108 report_context(S); 2109 report_context(*VNI); 2110 } 2111 2112 if (VNI->isUnused()) { 2113 report("Live segment valno is marked unused", MF); 2114 report_context(LR, Reg, LaneMask); 2115 report_context(S); 2116 } 2117 2118 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2119 if (!MBB) { 2120 report("Bad start of live segment, no basic block", MF); 2121 report_context(LR, Reg, LaneMask); 2122 report_context(S); 2123 return; 2124 } 2125 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2126 if (S.start != MBBStartIdx && S.start != VNI->def) { 2127 report("Live segment must begin at MBB entry or valno def", MBB); 2128 report_context(LR, Reg, LaneMask); 2129 report_context(S); 2130 } 2131 2132 const MachineBasicBlock *EndMBB = 2133 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2134 if (!EndMBB) { 2135 report("Bad end of live segment, no basic block", MF); 2136 report_context(LR, Reg, LaneMask); 2137 report_context(S); 2138 return; 2139 } 2140 2141 // No more checks for live-out segments. 2142 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2143 return; 2144 2145 // RegUnit intervals are allowed dead phis. 2146 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 2147 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2148 return; 2149 2150 // The live segment is ending inside EndMBB 2151 const MachineInstr *MI = 2152 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2153 if (!MI) { 2154 report("Live segment doesn't end at a valid instruction", EndMBB); 2155 report_context(LR, Reg, LaneMask); 2156 report_context(S); 2157 return; 2158 } 2159 2160 // The block slot must refer to a basic block boundary. 2161 if (S.end.isBlock()) { 2162 report("Live segment ends at B slot of an instruction", EndMBB); 2163 report_context(LR, Reg, LaneMask); 2164 report_context(S); 2165 } 2166 2167 if (S.end.isDead()) { 2168 // Segment ends on the dead slot. 2169 // That means there must be a dead def. 2170 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2171 report("Live segment ending at dead slot spans instructions", EndMBB); 2172 report_context(LR, Reg, LaneMask); 2173 report_context(S); 2174 } 2175 } 2176 2177 // A live segment can only end at an early-clobber slot if it is being 2178 // redefined by an early-clobber def. 2179 if (S.end.isEarlyClobber()) { 2180 if (I+1 == LR.end() || (I+1)->start != S.end) { 2181 report("Live segment ending at early clobber slot must be " 2182 "redefined by an EC def in the same instruction", EndMBB); 2183 report_context(LR, Reg, LaneMask); 2184 report_context(S); 2185 } 2186 } 2187 2188 // The following checks only apply to virtual registers. Physreg liveness 2189 // is too weird to check. 2190 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2191 // A live segment can end with either a redefinition, a kill flag on a 2192 // use, or a dead flag on a def. 2193 bool hasRead = false; 2194 bool hasSubRegDef = false; 2195 bool hasDeadDef = false; 2196 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2197 if (!MOI->isReg() || MOI->getReg() != Reg) 2198 continue; 2199 unsigned Sub = MOI->getSubReg(); 2200 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2201 : LaneBitmask::getAll(); 2202 if (MOI->isDef()) { 2203 if (Sub != 0) { 2204 hasSubRegDef = true; 2205 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2206 // mask for subregister defs. Read-undef defs will be handled by 2207 // readsReg below. 2208 SLM = ~SLM; 2209 } 2210 if (MOI->isDead()) 2211 hasDeadDef = true; 2212 } 2213 if (LaneMask.any() && (LaneMask & SLM).none()) 2214 continue; 2215 if (MOI->readsReg()) 2216 hasRead = true; 2217 } 2218 if (S.end.isDead()) { 2219 // Make sure that the corresponding machine operand for a "dead" live 2220 // range has the dead flag. We cannot perform this check for subregister 2221 // liveranges as partially dead values are allowed. 2222 if (LaneMask.none() && !hasDeadDef) { 2223 report("Instruction ending live segment on dead slot has no dead flag", 2224 MI); 2225 report_context(LR, Reg, LaneMask); 2226 report_context(S); 2227 } 2228 } else { 2229 if (!hasRead) { 2230 // When tracking subregister liveness, the main range must start new 2231 // values on partial register writes, even if there is no read. 2232 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2233 !hasSubRegDef) { 2234 report("Instruction ending live segment doesn't read the register", 2235 MI); 2236 report_context(LR, Reg, LaneMask); 2237 report_context(S); 2238 } 2239 } 2240 } 2241 } 2242 2243 // Now check all the basic blocks in this live segment. 2244 MachineFunction::const_iterator MFI = MBB->getIterator(); 2245 // Is this live segment the beginning of a non-PHIDef VN? 2246 if (S.start == VNI->def && !VNI->isPHIDef()) { 2247 // Not live-in to any blocks. 2248 if (MBB == EndMBB) 2249 return; 2250 // Skip this block. 2251 ++MFI; 2252 } 2253 2254 SmallVector<SlotIndex, 4> Undefs; 2255 if (LaneMask.any()) { 2256 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2257 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2258 } 2259 2260 while (true) { 2261 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2262 // We don't know how to track physregs into a landing pad. 2263 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2264 MFI->isEHPad()) { 2265 if (&*MFI == EndMBB) 2266 break; 2267 ++MFI; 2268 continue; 2269 } 2270 2271 // Is VNI a PHI-def in the current block? 2272 bool IsPHI = VNI->isPHIDef() && 2273 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2274 2275 // Check that VNI is live-out of all predecessors. 2276 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2277 PE = MFI->pred_end(); PI != PE; ++PI) { 2278 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2279 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2280 2281 // All predecessors must have a live-out value. However for a phi 2282 // instruction with subregister intervals 2283 // only one of the subregisters (not necessarily the current one) needs to 2284 // be defined. 2285 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2286 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2287 continue; 2288 report("Register not marked live out of predecessor", *PI); 2289 report_context(LR, Reg, LaneMask); 2290 report_context(*VNI); 2291 errs() << " live into " << printMBBReference(*MFI) << '@' 2292 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2293 << PEnd << '\n'; 2294 continue; 2295 } 2296 2297 // Only PHI-defs can take different predecessor values. 2298 if (!IsPHI && PVNI != VNI) { 2299 report("Different value live out of predecessor", *PI); 2300 report_context(LR, Reg, LaneMask); 2301 errs() << "Valno #" << PVNI->id << " live out of " 2302 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2303 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2304 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2305 } 2306 } 2307 if (&*MFI == EndMBB) 2308 break; 2309 ++MFI; 2310 } 2311 } 2312 2313 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2314 LaneBitmask LaneMask) { 2315 for (const VNInfo *VNI : LR.valnos) 2316 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2317 2318 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2319 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2320 } 2321 2322 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2323 unsigned Reg = LI.reg; 2324 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2325 verifyLiveRange(LI, Reg); 2326 2327 LaneBitmask Mask; 2328 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2329 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2330 if ((Mask & SR.LaneMask).any()) { 2331 report("Lane masks of sub ranges overlap in live interval", MF); 2332 report_context(LI); 2333 } 2334 if ((SR.LaneMask & ~MaxMask).any()) { 2335 report("Subrange lanemask is invalid", MF); 2336 report_context(LI); 2337 } 2338 if (SR.empty()) { 2339 report("Subrange must not be empty", MF); 2340 report_context(SR, LI.reg, SR.LaneMask); 2341 } 2342 Mask |= SR.LaneMask; 2343 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2344 if (!LI.covers(SR)) { 2345 report("A Subrange is not covered by the main range", MF); 2346 report_context(LI); 2347 } 2348 } 2349 2350 // Check the LI only has one connected component. 2351 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2352 unsigned NumComp = ConEQ.Classify(LI); 2353 if (NumComp > 1) { 2354 report("Multiple connected components in live interval", MF); 2355 report_context(LI); 2356 for (unsigned comp = 0; comp != NumComp; ++comp) { 2357 errs() << comp << ": valnos"; 2358 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2359 E = LI.vni_end(); I!=E; ++I) 2360 if (comp == ConEQ.getEqClass(*I)) 2361 errs() << ' ' << (*I)->id; 2362 errs() << '\n'; 2363 } 2364 } 2365 } 2366 2367 namespace { 2368 2369 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2370 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2371 // value is zero. 2372 // We use a bool plus an integer to capture the stack state. 2373 struct StackStateOfBB { 2374 StackStateOfBB() = default; 2375 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2376 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2377 ExitIsSetup(ExitSetup) {} 2378 2379 // Can be negative, which means we are setting up a frame. 2380 int EntryValue = 0; 2381 int ExitValue = 0; 2382 bool EntryIsSetup = false; 2383 bool ExitIsSetup = false; 2384 }; 2385 2386 } // end anonymous namespace 2387 2388 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2389 /// by a FrameDestroy <n>, stack adjustments are identical on all 2390 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2391 void MachineVerifier::verifyStackFrame() { 2392 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2393 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2394 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2395 return; 2396 2397 SmallVector<StackStateOfBB, 8> SPState; 2398 SPState.resize(MF->getNumBlockIDs()); 2399 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2400 2401 // Visit the MBBs in DFS order. 2402 for (df_ext_iterator<const MachineFunction *, 2403 df_iterator_default_set<const MachineBasicBlock *>> 2404 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2405 DFI != DFE; ++DFI) { 2406 const MachineBasicBlock *MBB = *DFI; 2407 2408 StackStateOfBB BBState; 2409 // Check the exit state of the DFS stack predecessor. 2410 if (DFI.getPathLength() >= 2) { 2411 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2412 assert(Reachable.count(StackPred) && 2413 "DFS stack predecessor is already visited.\n"); 2414 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2415 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2416 BBState.ExitValue = BBState.EntryValue; 2417 BBState.ExitIsSetup = BBState.EntryIsSetup; 2418 } 2419 2420 // Update stack state by checking contents of MBB. 2421 for (const auto &I : *MBB) { 2422 if (I.getOpcode() == FrameSetupOpcode) { 2423 if (BBState.ExitIsSetup) 2424 report("FrameSetup is after another FrameSetup", &I); 2425 BBState.ExitValue -= TII->getFrameTotalSize(I); 2426 BBState.ExitIsSetup = true; 2427 } 2428 2429 if (I.getOpcode() == FrameDestroyOpcode) { 2430 int Size = TII->getFrameTotalSize(I); 2431 if (!BBState.ExitIsSetup) 2432 report("FrameDestroy is not after a FrameSetup", &I); 2433 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2434 BBState.ExitValue; 2435 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2436 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2437 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2438 << AbsSPAdj << ">.\n"; 2439 } 2440 BBState.ExitValue += Size; 2441 BBState.ExitIsSetup = false; 2442 } 2443 } 2444 SPState[MBB->getNumber()] = BBState; 2445 2446 // Make sure the exit state of any predecessor is consistent with the entry 2447 // state. 2448 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2449 E = MBB->pred_end(); I != E; ++I) { 2450 if (Reachable.count(*I) && 2451 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2452 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2453 report("The exit stack state of a predecessor is inconsistent.", MBB); 2454 errs() << "Predecessor " << printMBBReference(*(*I)) 2455 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2456 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2457 << printMBBReference(*MBB) << " has entry state (" 2458 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2459 } 2460 } 2461 2462 // Make sure the entry state of any successor is consistent with the exit 2463 // state. 2464 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2465 E = MBB->succ_end(); I != E; ++I) { 2466 if (Reachable.count(*I) && 2467 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2468 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2469 report("The entry stack state of a successor is inconsistent.", MBB); 2470 errs() << "Successor " << printMBBReference(*(*I)) 2471 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2472 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2473 << printMBBReference(*MBB) << " has exit state (" 2474 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2475 } 2476 } 2477 2478 // Make sure a basic block with return ends with zero stack adjustment. 2479 if (!MBB->empty() && MBB->back().isReturn()) { 2480 if (BBState.ExitIsSetup) 2481 report("A return block ends with a FrameSetup.", MBB); 2482 if (BBState.ExitValue) 2483 report("A return block ends with a nonzero stack adjustment.", MBB); 2484 } 2485 } 2486 } 2487