1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 20 // command-line option -verify-machineinstrs, or by defining the environment 21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 22 // the verifier errors. 23 //===----------------------------------------------------------------------===// 24 25 #include "LiveRangeCalc.h" 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/DepthFirstIterator.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetOperations.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/EHPersonalities.h" 37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 38 #include "llvm/CodeGen/LiveInterval.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/PseudoSourceValue.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetOpcodes.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 124 RV.push_back(Reg); 125 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 126 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 127 RV.push_back(*SubRegs); 128 } 129 130 struct BBInfo { 131 // Is this MBB reachable from the MF entry point? 132 bool reachable = false; 133 134 // Vregs that must be live in because they are used without being 135 // defined. Map value is the user. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsPassed if it belongs there. Return true if 160 // anything changed. 161 bool addPassed(unsigned Reg) { 162 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 163 return false; 164 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 165 return false; 166 return vregsPassed.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addPassed(const RegSet &RS) { 171 bool changed = false; 172 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 173 if (addPassed(*I)) 174 changed = true; 175 return changed; 176 } 177 178 // Add register to vregsRequired if it belongs there. Return true if 179 // anything changed. 180 bool addRequired(unsigned Reg) { 181 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 182 return false; 183 if (regsLiveOut.count(Reg)) 184 return false; 185 return vregsRequired.insert(Reg).second; 186 } 187 188 // Same for a full set. 189 bool addRequired(const RegSet &RS) { 190 bool changed = false; 191 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 192 if (addRequired(*I)) 193 changed = true; 194 return changed; 195 } 196 197 // Same for a full map. 198 bool addRequired(const RegMap &RM) { 199 bool changed = false; 200 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 201 if (addRequired(I->first)) 202 changed = true; 203 return changed; 204 } 205 206 // Live-out registers are either in regsLiveOut or vregsPassed. 207 bool isLiveOut(unsigned Reg) const { 208 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 209 } 210 }; 211 212 // Extra register info per MBB. 213 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 214 215 bool isReserved(unsigned Reg) { 216 return Reg < regsReserved.size() && regsReserved.test(Reg); 217 } 218 219 bool isAllocatable(unsigned Reg) const { 220 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 221 !regsReserved.test(Reg); 222 } 223 224 // Analysis information if available 225 LiveVariables *LiveVars; 226 LiveIntervals *LiveInts; 227 LiveStacks *LiveStks; 228 SlotIndexes *Indexes; 229 230 void visitMachineFunctionBefore(); 231 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 232 void visitMachineBundleBefore(const MachineInstr *MI); 233 void visitMachineInstrBefore(const MachineInstr *MI); 234 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 235 void visitMachineInstrAfter(const MachineInstr *MI); 236 void visitMachineBundleAfter(const MachineInstr *MI); 237 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 238 void visitMachineFunctionAfter(); 239 240 void report(const char *msg, const MachineFunction *MF); 241 void report(const char *msg, const MachineBasicBlock *MBB); 242 void report(const char *msg, const MachineInstr *MI); 243 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 244 LLT MOVRegType = LLT{}); 245 246 void report_context(const LiveInterval &LI) const; 247 void report_context(const LiveRange &LR, unsigned VRegUnit, 248 LaneBitmask LaneMask) const; 249 void report_context(const LiveRange::Segment &S) const; 250 void report_context(const VNInfo &VNI) const; 251 void report_context(SlotIndex Pos) const; 252 void report_context(MCPhysReg PhysReg) const; 253 void report_context_liverange(const LiveRange &LR) const; 254 void report_context_lanemask(LaneBitmask LaneMask) const; 255 void report_context_vreg(unsigned VReg) const; 256 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 257 258 void verifyInlineAsm(const MachineInstr *MI); 259 260 void checkLiveness(const MachineOperand *MO, unsigned MONum); 261 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 262 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 263 LaneBitmask LaneMask = LaneBitmask::getNone()); 264 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 265 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 266 bool SubRangeCheck = false, 267 LaneBitmask LaneMask = LaneBitmask::getNone()); 268 269 void markReachable(const MachineBasicBlock *MBB); 270 void calcRegsPassed(); 271 void checkPHIOps(const MachineBasicBlock &MBB); 272 273 void calcRegsRequired(); 274 void verifyLiveVariables(); 275 void verifyLiveIntervals(); 276 void verifyLiveInterval(const LiveInterval&); 277 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 278 LaneBitmask); 279 void verifyLiveRangeSegment(const LiveRange&, 280 const LiveRange::const_iterator I, unsigned, 281 LaneBitmask); 282 void verifyLiveRange(const LiveRange&, unsigned, 283 LaneBitmask LaneMask = LaneBitmask::getNone()); 284 285 void verifyStackFrame(); 286 287 void verifySlotIndexes() const; 288 void verifyProperties(const MachineFunction &MF); 289 }; 290 291 struct MachineVerifierPass : public MachineFunctionPass { 292 static char ID; // Pass ID, replacement for typeid 293 294 const std::string Banner; 295 296 MachineVerifierPass(std::string banner = std::string()) 297 : MachineFunctionPass(ID), Banner(std::move(banner)) { 298 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 299 } 300 301 void getAnalysisUsage(AnalysisUsage &AU) const override { 302 AU.setPreservesAll(); 303 MachineFunctionPass::getAnalysisUsage(AU); 304 } 305 306 bool runOnMachineFunction(MachineFunction &MF) override { 307 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 308 if (FoundErrors) 309 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 310 return false; 311 } 312 }; 313 314 } // end anonymous namespace 315 316 char MachineVerifierPass::ID = 0; 317 318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 319 "Verify generated machine code", false, false) 320 321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 322 return new MachineVerifierPass(Banner); 323 } 324 325 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 326 const { 327 MachineFunction &MF = const_cast<MachineFunction&>(*this); 328 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 329 if (AbortOnErrors && FoundErrors) 330 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 331 return FoundErrors == 0; 332 } 333 334 void MachineVerifier::verifySlotIndexes() const { 335 if (Indexes == nullptr) 336 return; 337 338 // Ensure the IdxMBB list is sorted by slot indexes. 339 SlotIndex Last; 340 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 341 E = Indexes->MBBIndexEnd(); I != E; ++I) { 342 assert(!Last.isValid() || I->first > Last); 343 Last = I->first; 344 } 345 } 346 347 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 348 // If a pass has introduced virtual registers without clearing the 349 // NoVRegs property (or set it without allocating the vregs) 350 // then report an error. 351 if (MF.getProperties().hasProperty( 352 MachineFunctionProperties::Property::NoVRegs) && 353 MRI->getNumVirtRegs()) 354 report("Function has NoVRegs property but there are VReg operands", &MF); 355 } 356 357 unsigned MachineVerifier::verify(MachineFunction &MF) { 358 foundErrors = 0; 359 360 this->MF = &MF; 361 TM = &MF.getTarget(); 362 TII = MF.getSubtarget().getInstrInfo(); 363 TRI = MF.getSubtarget().getRegisterInfo(); 364 MRI = &MF.getRegInfo(); 365 366 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 367 MachineFunctionProperties::Property::FailedISel); 368 369 // If we're mid-GlobalISel and we already triggered the fallback path then 370 // it's expected that the MIR is somewhat broken but that's ok since we'll 371 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 372 if (isFunctionFailedISel) 373 return foundErrors; 374 375 isFunctionRegBankSelected = 376 !isFunctionFailedISel && 377 MF.getProperties().hasProperty( 378 MachineFunctionProperties::Property::RegBankSelected); 379 isFunctionSelected = !isFunctionFailedISel && 380 MF.getProperties().hasProperty( 381 MachineFunctionProperties::Property::Selected); 382 LiveVars = nullptr; 383 LiveInts = nullptr; 384 LiveStks = nullptr; 385 Indexes = nullptr; 386 if (PASS) { 387 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 388 // We don't want to verify LiveVariables if LiveIntervals is available. 389 if (!LiveInts) 390 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 391 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 392 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 393 } 394 395 verifySlotIndexes(); 396 397 verifyProperties(MF); 398 399 visitMachineFunctionBefore(); 400 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 401 MFI!=MFE; ++MFI) { 402 visitMachineBasicBlockBefore(&*MFI); 403 // Keep track of the current bundle header. 404 const MachineInstr *CurBundle = nullptr; 405 // Do we expect the next instruction to be part of the same bundle? 406 bool InBundle = false; 407 408 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 409 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 410 if (MBBI->getParent() != &*MFI) { 411 report("Bad instruction parent pointer", &*MFI); 412 errs() << "Instruction: " << *MBBI; 413 continue; 414 } 415 416 // Check for consistent bundle flags. 417 if (InBundle && !MBBI->isBundledWithPred()) 418 report("Missing BundledPred flag, " 419 "BundledSucc was set on predecessor", 420 &*MBBI); 421 if (!InBundle && MBBI->isBundledWithPred()) 422 report("BundledPred flag is set, " 423 "but BundledSucc not set on predecessor", 424 &*MBBI); 425 426 // Is this a bundle header? 427 if (!MBBI->isInsideBundle()) { 428 if (CurBundle) 429 visitMachineBundleAfter(CurBundle); 430 CurBundle = &*MBBI; 431 visitMachineBundleBefore(CurBundle); 432 } else if (!CurBundle) 433 report("No bundle header", &*MBBI); 434 visitMachineInstrBefore(&*MBBI); 435 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 436 const MachineInstr &MI = *MBBI; 437 const MachineOperand &Op = MI.getOperand(I); 438 if (Op.getParent() != &MI) { 439 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 440 // functions when replacing operands of a MachineInstr. 441 report("Instruction has operand with wrong parent set", &MI); 442 } 443 444 visitMachineOperand(&Op, I); 445 } 446 447 visitMachineInstrAfter(&*MBBI); 448 449 // Was this the last bundled instruction? 450 InBundle = MBBI->isBundledWithSucc(); 451 } 452 if (CurBundle) 453 visitMachineBundleAfter(CurBundle); 454 if (InBundle) 455 report("BundledSucc flag set on last instruction in block", &MFI->back()); 456 visitMachineBasicBlockAfter(&*MFI); 457 } 458 visitMachineFunctionAfter(); 459 460 // Clean up. 461 regsLive.clear(); 462 regsDefined.clear(); 463 regsDead.clear(); 464 regsKilled.clear(); 465 regMasks.clear(); 466 MBBInfoMap.clear(); 467 468 return foundErrors; 469 } 470 471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 472 assert(MF); 473 errs() << '\n'; 474 if (!foundErrors++) { 475 if (Banner) 476 errs() << "# " << Banner << '\n'; 477 if (LiveInts != nullptr) 478 LiveInts->print(errs()); 479 else 480 MF->print(errs(), Indexes); 481 } 482 errs() << "*** Bad machine code: " << msg << " ***\n" 483 << "- function: " << MF->getName() << "\n"; 484 } 485 486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 487 assert(MBB); 488 report(msg, MBB->getParent()); 489 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 490 << MBB->getName() << " (" << (const void *)MBB << ')'; 491 if (Indexes) 492 errs() << " [" << Indexes->getMBBStartIdx(MBB) 493 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 494 errs() << '\n'; 495 } 496 497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 498 assert(MI); 499 report(msg, MI->getParent()); 500 errs() << "- instruction: "; 501 if (Indexes && Indexes->hasIndex(*MI)) 502 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 503 MI->print(errs(), /*SkipOpers=*/true); 504 } 505 506 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 507 unsigned MONum, LLT MOVRegType) { 508 assert(MO); 509 report(msg, MO->getParent()); 510 errs() << "- operand " << MONum << ": "; 511 MO->print(errs(), MOVRegType, TRI); 512 errs() << "\n"; 513 } 514 515 void MachineVerifier::report_context(SlotIndex Pos) const { 516 errs() << "- at: " << Pos << '\n'; 517 } 518 519 void MachineVerifier::report_context(const LiveInterval &LI) const { 520 errs() << "- interval: " << LI << '\n'; 521 } 522 523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 524 LaneBitmask LaneMask) const { 525 report_context_liverange(LR); 526 report_context_vreg_regunit(VRegUnit); 527 if (LaneMask.any()) 528 report_context_lanemask(LaneMask); 529 } 530 531 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 532 errs() << "- segment: " << S << '\n'; 533 } 534 535 void MachineVerifier::report_context(const VNInfo &VNI) const { 536 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 537 } 538 539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 540 errs() << "- liverange: " << LR << '\n'; 541 } 542 543 void MachineVerifier::report_context(MCPhysReg PReg) const { 544 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 545 } 546 547 void MachineVerifier::report_context_vreg(unsigned VReg) const { 548 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 549 } 550 551 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 552 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 553 report_context_vreg(VRegOrUnit); 554 } else { 555 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 556 } 557 } 558 559 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 560 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 561 } 562 563 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 564 BBInfo &MInfo = MBBInfoMap[MBB]; 565 if (!MInfo.reachable) { 566 MInfo.reachable = true; 567 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 568 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 569 markReachable(*SuI); 570 } 571 } 572 573 void MachineVerifier::visitMachineFunctionBefore() { 574 lastIndex = SlotIndex(); 575 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 576 : TRI->getReservedRegs(*MF); 577 578 if (!MF->empty()) 579 markReachable(&MF->front()); 580 581 // Build a set of the basic blocks in the function. 582 FunctionBlocks.clear(); 583 for (const auto &MBB : *MF) { 584 FunctionBlocks.insert(&MBB); 585 BBInfo &MInfo = MBBInfoMap[&MBB]; 586 587 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 588 if (MInfo.Preds.size() != MBB.pred_size()) 589 report("MBB has duplicate entries in its predecessor list.", &MBB); 590 591 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 592 if (MInfo.Succs.size() != MBB.succ_size()) 593 report("MBB has duplicate entries in its successor list.", &MBB); 594 } 595 596 // Check that the register use lists are sane. 597 MRI->verifyUseLists(); 598 599 if (!MF->empty()) 600 verifyStackFrame(); 601 } 602 603 // Does iterator point to a and b as the first two elements? 604 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 605 const MachineBasicBlock *a, const MachineBasicBlock *b) { 606 if (*i == a) 607 return *++i == b; 608 if (*i == b) 609 return *++i == a; 610 return false; 611 } 612 613 void 614 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 615 FirstTerminator = nullptr; 616 FirstNonPHI = nullptr; 617 618 if (!MF->getProperties().hasProperty( 619 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 620 // If this block has allocatable physical registers live-in, check that 621 // it is an entry block or landing pad. 622 for (const auto &LI : MBB->liveins()) { 623 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 624 MBB->getIterator() != MBB->getParent()->begin()) { 625 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 626 report_context(LI.PhysReg); 627 } 628 } 629 } 630 631 // Count the number of landing pad successors. 632 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 633 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 634 E = MBB->succ_end(); I != E; ++I) { 635 if ((*I)->isEHPad()) 636 LandingPadSuccs.insert(*I); 637 if (!FunctionBlocks.count(*I)) 638 report("MBB has successor that isn't part of the function.", MBB); 639 if (!MBBInfoMap[*I].Preds.count(MBB)) { 640 report("Inconsistent CFG", MBB); 641 errs() << "MBB is not in the predecessor list of the successor " 642 << printMBBReference(*(*I)) << ".\n"; 643 } 644 } 645 646 // Check the predecessor list. 647 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 648 E = MBB->pred_end(); I != E; ++I) { 649 if (!FunctionBlocks.count(*I)) 650 report("MBB has predecessor that isn't part of the function.", MBB); 651 if (!MBBInfoMap[*I].Succs.count(MBB)) { 652 report("Inconsistent CFG", MBB); 653 errs() << "MBB is not in the successor list of the predecessor " 654 << printMBBReference(*(*I)) << ".\n"; 655 } 656 } 657 658 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 659 const BasicBlock *BB = MBB->getBasicBlock(); 660 const Function &F = MF->getFunction(); 661 if (LandingPadSuccs.size() > 1 && 662 !(AsmInfo && 663 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 664 BB && isa<SwitchInst>(BB->getTerminator())) && 665 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 666 report("MBB has more than one landing pad successor", MBB); 667 668 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 669 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 670 SmallVector<MachineOperand, 4> Cond; 671 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 672 Cond)) { 673 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 674 // check whether its answers match up with reality. 675 if (!TBB && !FBB) { 676 // Block falls through to its successor. 677 MachineFunction::const_iterator MBBI = MBB->getIterator(); 678 ++MBBI; 679 if (MBBI == MF->end()) { 680 // It's possible that the block legitimately ends with a noreturn 681 // call or an unreachable, in which case it won't actually fall 682 // out the bottom of the function. 683 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 684 // It's possible that the block legitimately ends with a noreturn 685 // call or an unreachable, in which case it won't actually fall 686 // out of the block. 687 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 688 report("MBB exits via unconditional fall-through but doesn't have " 689 "exactly one CFG successor!", MBB); 690 } else if (!MBB->isSuccessor(&*MBBI)) { 691 report("MBB exits via unconditional fall-through but its successor " 692 "differs from its CFG successor!", MBB); 693 } 694 if (!MBB->empty() && MBB->back().isBarrier() && 695 !TII->isPredicated(MBB->back())) { 696 report("MBB exits via unconditional fall-through but ends with a " 697 "barrier instruction!", MBB); 698 } 699 if (!Cond.empty()) { 700 report("MBB exits via unconditional fall-through but has a condition!", 701 MBB); 702 } 703 } else if (TBB && !FBB && Cond.empty()) { 704 // Block unconditionally branches somewhere. 705 // If the block has exactly one successor, that happens to be a 706 // landingpad, accept it as valid control flow. 707 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 708 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 709 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 710 report("MBB exits via unconditional branch but doesn't have " 711 "exactly one CFG successor!", MBB); 712 } else if (!MBB->isSuccessor(TBB)) { 713 report("MBB exits via unconditional branch but the CFG " 714 "successor doesn't match the actual successor!", MBB); 715 } 716 if (MBB->empty()) { 717 report("MBB exits via unconditional branch but doesn't contain " 718 "any instructions!", MBB); 719 } else if (!MBB->back().isBarrier()) { 720 report("MBB exits via unconditional branch but doesn't end with a " 721 "barrier instruction!", MBB); 722 } else if (!MBB->back().isTerminator()) { 723 report("MBB exits via unconditional branch but the branch isn't a " 724 "terminator instruction!", MBB); 725 } 726 } else if (TBB && !FBB && !Cond.empty()) { 727 // Block conditionally branches somewhere, otherwise falls through. 728 MachineFunction::const_iterator MBBI = MBB->getIterator(); 729 ++MBBI; 730 if (MBBI == MF->end()) { 731 report("MBB conditionally falls through out of function!", MBB); 732 } else if (MBB->succ_size() == 1) { 733 // A conditional branch with only one successor is weird, but allowed. 734 if (&*MBBI != TBB) 735 report("MBB exits via conditional branch/fall-through but only has " 736 "one CFG successor!", MBB); 737 else if (TBB != *MBB->succ_begin()) 738 report("MBB exits via conditional branch/fall-through but the CFG " 739 "successor don't match the actual successor!", MBB); 740 } else if (MBB->succ_size() != 2) { 741 report("MBB exits via conditional branch/fall-through but doesn't have " 742 "exactly two CFG successors!", MBB); 743 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 744 report("MBB exits via conditional branch/fall-through but the CFG " 745 "successors don't match the actual successors!", MBB); 746 } 747 if (MBB->empty()) { 748 report("MBB exits via conditional branch/fall-through but doesn't " 749 "contain any instructions!", MBB); 750 } else if (MBB->back().isBarrier()) { 751 report("MBB exits via conditional branch/fall-through but ends with a " 752 "barrier instruction!", MBB); 753 } else if (!MBB->back().isTerminator()) { 754 report("MBB exits via conditional branch/fall-through but the branch " 755 "isn't a terminator instruction!", MBB); 756 } 757 } else if (TBB && FBB) { 758 // Block conditionally branches somewhere, otherwise branches 759 // somewhere else. 760 if (MBB->succ_size() == 1) { 761 // A conditional branch with only one successor is weird, but allowed. 762 if (FBB != TBB) 763 report("MBB exits via conditional branch/branch through but only has " 764 "one CFG successor!", MBB); 765 else if (TBB != *MBB->succ_begin()) 766 report("MBB exits via conditional branch/branch through but the CFG " 767 "successor don't match the actual successor!", MBB); 768 } else if (MBB->succ_size() != 2) { 769 report("MBB exits via conditional branch/branch but doesn't have " 770 "exactly two CFG successors!", MBB); 771 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 772 report("MBB exits via conditional branch/branch but the CFG " 773 "successors don't match the actual successors!", MBB); 774 } 775 if (MBB->empty()) { 776 report("MBB exits via conditional branch/branch but doesn't " 777 "contain any instructions!", MBB); 778 } else if (!MBB->back().isBarrier()) { 779 report("MBB exits via conditional branch/branch but doesn't end with a " 780 "barrier instruction!", MBB); 781 } else if (!MBB->back().isTerminator()) { 782 report("MBB exits via conditional branch/branch but the branch " 783 "isn't a terminator instruction!", MBB); 784 } 785 if (Cond.empty()) { 786 report("MBB exits via conditional branch/branch but there's no " 787 "condition!", MBB); 788 } 789 } else { 790 report("AnalyzeBranch returned invalid data!", MBB); 791 } 792 } 793 794 regsLive.clear(); 795 if (MRI->tracksLiveness()) { 796 for (const auto &LI : MBB->liveins()) { 797 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 798 report("MBB live-in list contains non-physical register", MBB); 799 continue; 800 } 801 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 802 SubRegs.isValid(); ++SubRegs) 803 regsLive.insert(*SubRegs); 804 } 805 } 806 807 const MachineFrameInfo &MFI = MF->getFrameInfo(); 808 BitVector PR = MFI.getPristineRegs(*MF); 809 for (unsigned I : PR.set_bits()) { 810 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 811 SubRegs.isValid(); ++SubRegs) 812 regsLive.insert(*SubRegs); 813 } 814 815 regsKilled.clear(); 816 regsDefined.clear(); 817 818 if (Indexes) 819 lastIndex = Indexes->getMBBStartIdx(MBB); 820 } 821 822 // This function gets called for all bundle headers, including normal 823 // stand-alone unbundled instructions. 824 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 825 if (Indexes && Indexes->hasIndex(*MI)) { 826 SlotIndex idx = Indexes->getInstructionIndex(*MI); 827 if (!(idx > lastIndex)) { 828 report("Instruction index out of order", MI); 829 errs() << "Last instruction was at " << lastIndex << '\n'; 830 } 831 lastIndex = idx; 832 } 833 834 // Ensure non-terminators don't follow terminators. 835 // Ignore predicated terminators formed by if conversion. 836 // FIXME: If conversion shouldn't need to violate this rule. 837 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 838 if (!FirstTerminator) 839 FirstTerminator = MI; 840 } else if (FirstTerminator) { 841 report("Non-terminator instruction after the first terminator", MI); 842 errs() << "First terminator was:\t" << *FirstTerminator; 843 } 844 } 845 846 // The operands on an INLINEASM instruction must follow a template. 847 // Verify that the flag operands make sense. 848 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 849 // The first two operands on INLINEASM are the asm string and global flags. 850 if (MI->getNumOperands() < 2) { 851 report("Too few operands on inline asm", MI); 852 return; 853 } 854 if (!MI->getOperand(0).isSymbol()) 855 report("Asm string must be an external symbol", MI); 856 if (!MI->getOperand(1).isImm()) 857 report("Asm flags must be an immediate", MI); 858 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 859 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 860 // and Extra_IsConvergent = 32. 861 if (!isUInt<6>(MI->getOperand(1).getImm())) 862 report("Unknown asm flags", &MI->getOperand(1), 1); 863 864 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 865 866 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 867 unsigned NumOps; 868 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 869 const MachineOperand &MO = MI->getOperand(OpNo); 870 // There may be implicit ops after the fixed operands. 871 if (!MO.isImm()) 872 break; 873 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 874 } 875 876 if (OpNo > MI->getNumOperands()) 877 report("Missing operands in last group", MI); 878 879 // An optional MDNode follows the groups. 880 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 881 ++OpNo; 882 883 // All trailing operands must be implicit registers. 884 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 885 const MachineOperand &MO = MI->getOperand(OpNo); 886 if (!MO.isReg() || !MO.isImplicit()) 887 report("Expected implicit register after groups", &MO, OpNo); 888 } 889 } 890 891 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 892 const MCInstrDesc &MCID = MI->getDesc(); 893 if (MI->getNumOperands() < MCID.getNumOperands()) { 894 report("Too few operands", MI); 895 errs() << MCID.getNumOperands() << " operands expected, but " 896 << MI->getNumOperands() << " given.\n"; 897 } 898 899 if (MI->isPHI()) { 900 if (MF->getProperties().hasProperty( 901 MachineFunctionProperties::Property::NoPHIs)) 902 report("Found PHI instruction with NoPHIs property set", MI); 903 904 if (FirstNonPHI) 905 report("Found PHI instruction after non-PHI", MI); 906 } else if (FirstNonPHI == nullptr) 907 FirstNonPHI = MI; 908 909 // Check the tied operands. 910 if (MI->isInlineAsm()) 911 verifyInlineAsm(MI); 912 913 // Check the MachineMemOperands for basic consistency. 914 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 915 E = MI->memoperands_end(); 916 I != E; ++I) { 917 if ((*I)->isLoad() && !MI->mayLoad()) 918 report("Missing mayLoad flag", MI); 919 if ((*I)->isStore() && !MI->mayStore()) 920 report("Missing mayStore flag", MI); 921 } 922 923 // Debug values must not have a slot index. 924 // Other instructions must have one, unless they are inside a bundle. 925 if (LiveInts) { 926 bool mapped = !LiveInts->isNotInMIMap(*MI); 927 if (MI->isDebugInstr()) { 928 if (mapped) 929 report("Debug instruction has a slot index", MI); 930 } else if (MI->isInsideBundle()) { 931 if (mapped) 932 report("Instruction inside bundle has a slot index", MI); 933 } else { 934 if (!mapped) 935 report("Missing slot index", MI); 936 } 937 } 938 939 if (isPreISelGenericOpcode(MCID.getOpcode())) { 940 if (isFunctionSelected) 941 report("Unexpected generic instruction in a Selected function", MI); 942 943 unsigned NumOps = MI->getNumOperands(); 944 945 // Check types. 946 SmallVector<LLT, 4> Types; 947 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 948 I != E; ++I) { 949 if (!MCID.OpInfo[I].isGenericType()) 950 continue; 951 // Generic instructions specify type equality constraints between some of 952 // their operands. Make sure these are consistent. 953 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 954 Types.resize(std::max(TypeIdx + 1, Types.size())); 955 956 const MachineOperand *MO = &MI->getOperand(I); 957 LLT OpTy = MRI->getType(MO->getReg()); 958 // Don't report a type mismatch if there is no actual mismatch, only a 959 // type missing, to reduce noise: 960 if (OpTy.isValid()) { 961 // Only the first valid type for a type index will be printed: don't 962 // overwrite it later so it's always clear which type was expected: 963 if (!Types[TypeIdx].isValid()) 964 Types[TypeIdx] = OpTy; 965 else if (Types[TypeIdx] != OpTy) 966 report("Type mismatch in generic instruction", MO, I, OpTy); 967 } else { 968 // Generic instructions must have types attached to their operands. 969 report("Generic instruction is missing a virtual register type", MO, I); 970 } 971 } 972 973 // Generic opcodes must not have physical register operands. 974 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 975 const MachineOperand *MO = &MI->getOperand(I); 976 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) 977 report("Generic instruction cannot have physical register", MO, I); 978 } 979 980 // Avoid out of bounds in checks below. This was already reported earlier. 981 if (MI->getNumOperands() < MCID.getNumOperands()) 982 return; 983 } 984 985 StringRef ErrorInfo; 986 if (!TII->verifyInstruction(*MI, ErrorInfo)) 987 report(ErrorInfo.data(), MI); 988 989 // Verify properties of various specific instruction types 990 switch(MI->getOpcode()) { 991 default: 992 break; 993 case TargetOpcode::G_CONSTANT: 994 case TargetOpcode::G_FCONSTANT: { 995 if (MI->getNumOperands() < MCID.getNumOperands()) 996 break; 997 998 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 999 if (DstTy.isVector()) 1000 report("Instruction cannot use a vector result type", MI); 1001 break; 1002 } 1003 case TargetOpcode::G_LOAD: 1004 case TargetOpcode::G_STORE: 1005 // Generic loads and stores must have a single MachineMemOperand 1006 // describing that access. 1007 if (!MI->hasOneMemOperand()) 1008 report("Generic instruction accessing memory must have one mem operand", 1009 MI); 1010 break; 1011 case TargetOpcode::G_PHI: { 1012 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1013 if (!DstTy.isValid() || 1014 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 1015 [this, &DstTy](const MachineOperand &MO) { 1016 if (!MO.isReg()) 1017 return true; 1018 LLT Ty = MRI->getType(MO.getReg()); 1019 if (!Ty.isValid() || (Ty != DstTy)) 1020 return false; 1021 return true; 1022 })) 1023 report("Generic Instruction G_PHI has operands with incompatible/missing " 1024 "types", 1025 MI); 1026 break; 1027 } 1028 case TargetOpcode::G_BITCAST: { 1029 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1030 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1031 if (!DstTy.isValid() || !SrcTy.isValid()) 1032 break; 1033 1034 if (SrcTy.isPointer() != DstTy.isPointer()) 1035 report("bitcast cannot convert between pointers and other types", MI); 1036 1037 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1038 report("bitcast sizes must match", MI); 1039 break; 1040 } 1041 case TargetOpcode::G_SEXT: 1042 case TargetOpcode::G_ZEXT: 1043 case TargetOpcode::G_ANYEXT: 1044 case TargetOpcode::G_TRUNC: 1045 case TargetOpcode::G_FPEXT: 1046 case TargetOpcode::G_FPTRUNC: { 1047 // Number of operands and presense of types is already checked (and 1048 // reported in case of any issues), so no need to report them again. As 1049 // we're trying to report as many issues as possible at once, however, the 1050 // instructions aren't guaranteed to have the right number of operands or 1051 // types attached to them at this point 1052 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1053 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1054 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1055 if (!DstTy.isValid() || !SrcTy.isValid()) 1056 break; 1057 1058 LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy; 1059 LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy; 1060 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1061 report("Generic extend/truncate can not operate on pointers", MI); 1062 1063 if (DstTy.isVector() != SrcTy.isVector()) { 1064 report("Generic extend/truncate must be all-vector or all-scalar", MI); 1065 // Generally we try to report as many issues as possible at once, but in 1066 // this case it's not clear what should we be comparing the size of the 1067 // scalar with: the size of the whole vector or its lane. Instead of 1068 // making an arbitrary choice and emitting not so helpful message, let's 1069 // avoid the extra noise and stop here. 1070 break; 1071 } 1072 if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()) 1073 report("Generic vector extend/truncate must preserve number of lanes", 1074 MI); 1075 unsigned DstSize = DstElTy.getSizeInBits(); 1076 unsigned SrcSize = SrcElTy.getSizeInBits(); 1077 switch (MI->getOpcode()) { 1078 default: 1079 if (DstSize <= SrcSize) 1080 report("Generic extend has destination type no larger than source", MI); 1081 break; 1082 case TargetOpcode::G_TRUNC: 1083 case TargetOpcode::G_FPTRUNC: 1084 if (DstSize >= SrcSize) 1085 report("Generic truncate has destination type no smaller than source", 1086 MI); 1087 break; 1088 } 1089 break; 1090 } 1091 case TargetOpcode::G_MERGE_VALUES: { 1092 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1093 // e.g. s2N = MERGE sN, sN 1094 // Merging multiple scalars into a vector is not allowed, should use 1095 // G_BUILD_VECTOR for that. 1096 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1097 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1098 if (DstTy.isVector() || SrcTy.isVector()) 1099 report("G_MERGE_VALUES cannot operate on vectors", MI); 1100 break; 1101 } 1102 case TargetOpcode::G_UNMERGE_VALUES: { 1103 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1104 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1105 // For now G_UNMERGE can split vectors. 1106 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1107 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1108 report("G_UNMERGE_VALUES destination types do not match", MI); 1109 } 1110 if (SrcTy.getSizeInBits() != 1111 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1112 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1113 MI); 1114 } 1115 break; 1116 } 1117 case TargetOpcode::G_BUILD_VECTOR: { 1118 // Source types must be scalars, dest type a vector. Total size of scalars 1119 // must match the dest vector size. 1120 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1121 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1122 if (!DstTy.isVector() || SrcEltTy.isVector()) 1123 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1124 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1125 if (MRI->getType(MI->getOperand(1).getReg()) != 1126 MRI->getType(MI->getOperand(i).getReg())) 1127 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1128 } 1129 if (DstTy.getSizeInBits() != 1130 SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1)) 1131 report("G_BUILD_VECTOR src operands total size don't match dest " 1132 "size.", 1133 MI); 1134 break; 1135 } 1136 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1137 // Source types must be scalars, dest type a vector. Scalar types must be 1138 // larger than the dest vector elt type, as this is a truncating operation. 1139 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1140 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1141 if (!DstTy.isVector() || SrcEltTy.isVector()) 1142 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1143 MI); 1144 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1145 if (MRI->getType(MI->getOperand(1).getReg()) != 1146 MRI->getType(MI->getOperand(i).getReg())) 1147 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1148 MI); 1149 } 1150 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1151 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1152 "dest elt type", 1153 MI); 1154 break; 1155 } 1156 case TargetOpcode::G_CONCAT_VECTORS: { 1157 // Source types should be vectors, and total size should match the dest 1158 // vector size. 1159 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1160 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1161 if (!DstTy.isVector() || !SrcTy.isVector()) 1162 report("G_CONCAT_VECTOR requires vector source and destination operands", 1163 MI); 1164 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1165 if (MRI->getType(MI->getOperand(1).getReg()) != 1166 MRI->getType(MI->getOperand(i).getReg())) 1167 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1168 } 1169 if (DstTy.getNumElements() != 1170 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1171 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1172 break; 1173 } 1174 case TargetOpcode::COPY: { 1175 if (foundErrors) 1176 break; 1177 const MachineOperand &DstOp = MI->getOperand(0); 1178 const MachineOperand &SrcOp = MI->getOperand(1); 1179 LLT DstTy = MRI->getType(DstOp.getReg()); 1180 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1181 if (SrcTy.isValid() && DstTy.isValid()) { 1182 // If both types are valid, check that the types are the same. 1183 if (SrcTy != DstTy) { 1184 report("Copy Instruction is illegal with mismatching types", MI); 1185 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1186 } 1187 } 1188 if (SrcTy.isValid() || DstTy.isValid()) { 1189 // If one of them have valid types, let's just check they have the same 1190 // size. 1191 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1192 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1193 assert(SrcSize && "Expecting size here"); 1194 assert(DstSize && "Expecting size here"); 1195 if (SrcSize != DstSize) 1196 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1197 report("Copy Instruction is illegal with mismatching sizes", MI); 1198 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1199 << "\n"; 1200 } 1201 } 1202 break; 1203 } 1204 case TargetOpcode::G_ICMP: 1205 case TargetOpcode::G_FCMP: { 1206 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1207 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1208 1209 if ((DstTy.isVector() != SrcTy.isVector()) || 1210 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1211 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1212 1213 break; 1214 } 1215 case TargetOpcode::STATEPOINT: 1216 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1217 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1218 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1219 report("meta operands to STATEPOINT not constant!", MI); 1220 break; 1221 1222 auto VerifyStackMapConstant = [&](unsigned Offset) { 1223 if (!MI->getOperand(Offset).isImm() || 1224 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1225 !MI->getOperand(Offset + 1).isImm()) 1226 report("stack map constant to STATEPOINT not well formed!", MI); 1227 }; 1228 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1229 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1230 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1231 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1232 1233 // TODO: verify we have properly encoded deopt arguments 1234 }; 1235 } 1236 1237 void 1238 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1239 const MachineInstr *MI = MO->getParent(); 1240 const MCInstrDesc &MCID = MI->getDesc(); 1241 unsigned NumDefs = MCID.getNumDefs(); 1242 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1243 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1244 1245 // The first MCID.NumDefs operands must be explicit register defines 1246 if (MONum < NumDefs) { 1247 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1248 if (!MO->isReg()) 1249 report("Explicit definition must be a register", MO, MONum); 1250 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1251 report("Explicit definition marked as use", MO, MONum); 1252 else if (MO->isImplicit()) 1253 report("Explicit definition marked as implicit", MO, MONum); 1254 } else if (MONum < MCID.getNumOperands()) { 1255 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1256 // Don't check if it's the last operand in a variadic instruction. See, 1257 // e.g., LDM_RET in the arm back end. 1258 if (MO->isReg() && 1259 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1260 if (MO->isDef() && !MCOI.isOptionalDef()) 1261 report("Explicit operand marked as def", MO, MONum); 1262 if (MO->isImplicit()) 1263 report("Explicit operand marked as implicit", MO, MONum); 1264 } 1265 1266 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1267 if (TiedTo != -1) { 1268 if (!MO->isReg()) 1269 report("Tied use must be a register", MO, MONum); 1270 else if (!MO->isTied()) 1271 report("Operand should be tied", MO, MONum); 1272 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1273 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1274 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1275 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1276 if (!MOTied.isReg()) 1277 report("Tied counterpart must be a register", &MOTied, TiedTo); 1278 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1279 MO->getReg() != MOTied.getReg()) 1280 report("Tied physical registers must match.", &MOTied, TiedTo); 1281 } 1282 } else if (MO->isReg() && MO->isTied()) 1283 report("Explicit operand should not be tied", MO, MONum); 1284 } else { 1285 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1286 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1287 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1288 } 1289 1290 switch (MO->getType()) { 1291 case MachineOperand::MO_Register: { 1292 const unsigned Reg = MO->getReg(); 1293 if (!Reg) 1294 return; 1295 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1296 checkLiveness(MO, MONum); 1297 1298 // Verify the consistency of tied operands. 1299 if (MO->isTied()) { 1300 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1301 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1302 if (!OtherMO.isReg()) 1303 report("Must be tied to a register", MO, MONum); 1304 if (!OtherMO.isTied()) 1305 report("Missing tie flags on tied operand", MO, MONum); 1306 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1307 report("Inconsistent tie links", MO, MONum); 1308 if (MONum < MCID.getNumDefs()) { 1309 if (OtherIdx < MCID.getNumOperands()) { 1310 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1311 report("Explicit def tied to explicit use without tie constraint", 1312 MO, MONum); 1313 } else { 1314 if (!OtherMO.isImplicit()) 1315 report("Explicit def should be tied to implicit use", MO, MONum); 1316 } 1317 } 1318 } 1319 1320 // Verify two-address constraints after leaving SSA form. 1321 unsigned DefIdx; 1322 if (!MRI->isSSA() && MO->isUse() && 1323 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1324 Reg != MI->getOperand(DefIdx).getReg()) 1325 report("Two-address instruction operands must be identical", MO, MONum); 1326 1327 // Check register classes. 1328 unsigned SubIdx = MO->getSubReg(); 1329 1330 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1331 if (SubIdx) { 1332 report("Illegal subregister index for physical register", MO, MONum); 1333 return; 1334 } 1335 if (MONum < MCID.getNumOperands()) { 1336 if (const TargetRegisterClass *DRC = 1337 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1338 if (!DRC->contains(Reg)) { 1339 report("Illegal physical register for instruction", MO, MONum); 1340 errs() << printReg(Reg, TRI) << " is not a " 1341 << TRI->getRegClassName(DRC) << " register.\n"; 1342 } 1343 } 1344 } 1345 if (MO->isRenamable()) { 1346 if (MRI->isReserved(Reg)) { 1347 report("isRenamable set on reserved register", MO, MONum); 1348 return; 1349 } 1350 } 1351 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1352 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1353 return; 1354 } 1355 } else { 1356 // Virtual register. 1357 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1358 if (!RC) { 1359 // This is a generic virtual register. 1360 1361 // If we're post-Select, we can't have gvregs anymore. 1362 if (isFunctionSelected) { 1363 report("Generic virtual register invalid in a Selected function", 1364 MO, MONum); 1365 return; 1366 } 1367 1368 // The gvreg must have a type and it must not have a SubIdx. 1369 LLT Ty = MRI->getType(Reg); 1370 if (!Ty.isValid()) { 1371 report("Generic virtual register must have a valid type", MO, 1372 MONum); 1373 return; 1374 } 1375 1376 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1377 1378 // If we're post-RegBankSelect, the gvreg must have a bank. 1379 if (!RegBank && isFunctionRegBankSelected) { 1380 report("Generic virtual register must have a bank in a " 1381 "RegBankSelected function", 1382 MO, MONum); 1383 return; 1384 } 1385 1386 // Make sure the register fits into its register bank if any. 1387 if (RegBank && Ty.isValid() && 1388 RegBank->getSize() < Ty.getSizeInBits()) { 1389 report("Register bank is too small for virtual register", MO, 1390 MONum); 1391 errs() << "Register bank " << RegBank->getName() << " too small(" 1392 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1393 << "-bits\n"; 1394 return; 1395 } 1396 if (SubIdx) { 1397 report("Generic virtual register does not subregister index", MO, 1398 MONum); 1399 return; 1400 } 1401 1402 // If this is a target specific instruction and this operand 1403 // has register class constraint, the virtual register must 1404 // comply to it. 1405 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1406 MONum < MCID.getNumOperands() && 1407 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1408 report("Virtual register does not match instruction constraint", MO, 1409 MONum); 1410 errs() << "Expect register class " 1411 << TRI->getRegClassName( 1412 TII->getRegClass(MCID, MONum, TRI, *MF)) 1413 << " but got nothing\n"; 1414 return; 1415 } 1416 1417 break; 1418 } 1419 if (SubIdx) { 1420 const TargetRegisterClass *SRC = 1421 TRI->getSubClassWithSubReg(RC, SubIdx); 1422 if (!SRC) { 1423 report("Invalid subregister index for virtual register", MO, MONum); 1424 errs() << "Register class " << TRI->getRegClassName(RC) 1425 << " does not support subreg index " << SubIdx << "\n"; 1426 return; 1427 } 1428 if (RC != SRC) { 1429 report("Invalid register class for subregister index", MO, MONum); 1430 errs() << "Register class " << TRI->getRegClassName(RC) 1431 << " does not fully support subreg index " << SubIdx << "\n"; 1432 return; 1433 } 1434 } 1435 if (MONum < MCID.getNumOperands()) { 1436 if (const TargetRegisterClass *DRC = 1437 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1438 if (SubIdx) { 1439 const TargetRegisterClass *SuperRC = 1440 TRI->getLargestLegalSuperClass(RC, *MF); 1441 if (!SuperRC) { 1442 report("No largest legal super class exists.", MO, MONum); 1443 return; 1444 } 1445 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1446 if (!DRC) { 1447 report("No matching super-reg register class.", MO, MONum); 1448 return; 1449 } 1450 } 1451 if (!RC->hasSuperClassEq(DRC)) { 1452 report("Illegal virtual register for instruction", MO, MONum); 1453 errs() << "Expected a " << TRI->getRegClassName(DRC) 1454 << " register, but got a " << TRI->getRegClassName(RC) 1455 << " register\n"; 1456 } 1457 } 1458 } 1459 } 1460 break; 1461 } 1462 1463 case MachineOperand::MO_RegisterMask: 1464 regMasks.push_back(MO->getRegMask()); 1465 break; 1466 1467 case MachineOperand::MO_MachineBasicBlock: 1468 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1469 report("PHI operand is not in the CFG", MO, MONum); 1470 break; 1471 1472 case MachineOperand::MO_FrameIndex: 1473 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1474 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1475 int FI = MO->getIndex(); 1476 LiveInterval &LI = LiveStks->getInterval(FI); 1477 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1478 1479 bool stores = MI->mayStore(); 1480 bool loads = MI->mayLoad(); 1481 // For a memory-to-memory move, we need to check if the frame 1482 // index is used for storing or loading, by inspecting the 1483 // memory operands. 1484 if (stores && loads) { 1485 for (auto *MMO : MI->memoperands()) { 1486 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1487 if (PSV == nullptr) continue; 1488 const FixedStackPseudoSourceValue *Value = 1489 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1490 if (Value == nullptr) continue; 1491 if (Value->getFrameIndex() != FI) continue; 1492 1493 if (MMO->isStore()) 1494 loads = false; 1495 else 1496 stores = false; 1497 break; 1498 } 1499 if (loads == stores) 1500 report("Missing fixed stack memoperand.", MI); 1501 } 1502 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1503 report("Instruction loads from dead spill slot", MO, MONum); 1504 errs() << "Live stack: " << LI << '\n'; 1505 } 1506 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1507 report("Instruction stores to dead spill slot", MO, MONum); 1508 errs() << "Live stack: " << LI << '\n'; 1509 } 1510 } 1511 break; 1512 1513 default: 1514 break; 1515 } 1516 } 1517 1518 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1519 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1520 LaneBitmask LaneMask) { 1521 LiveQueryResult LRQ = LR.Query(UseIdx); 1522 // Check if we have a segment at the use, note however that we only need one 1523 // live subregister range, the others may be dead. 1524 if (!LRQ.valueIn() && LaneMask.none()) { 1525 report("No live segment at use", MO, MONum); 1526 report_context_liverange(LR); 1527 report_context_vreg_regunit(VRegOrUnit); 1528 report_context(UseIdx); 1529 } 1530 if (MO->isKill() && !LRQ.isKill()) { 1531 report("Live range continues after kill flag", MO, MONum); 1532 report_context_liverange(LR); 1533 report_context_vreg_regunit(VRegOrUnit); 1534 if (LaneMask.any()) 1535 report_context_lanemask(LaneMask); 1536 report_context(UseIdx); 1537 } 1538 } 1539 1540 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1541 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1542 bool SubRangeCheck, LaneBitmask LaneMask) { 1543 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1544 assert(VNI && "NULL valno is not allowed"); 1545 if (VNI->def != DefIdx) { 1546 report("Inconsistent valno->def", MO, MONum); 1547 report_context_liverange(LR); 1548 report_context_vreg_regunit(VRegOrUnit); 1549 if (LaneMask.any()) 1550 report_context_lanemask(LaneMask); 1551 report_context(*VNI); 1552 report_context(DefIdx); 1553 } 1554 } else { 1555 report("No live segment at def", MO, MONum); 1556 report_context_liverange(LR); 1557 report_context_vreg_regunit(VRegOrUnit); 1558 if (LaneMask.any()) 1559 report_context_lanemask(LaneMask); 1560 report_context(DefIdx); 1561 } 1562 // Check that, if the dead def flag is present, LiveInts agree. 1563 if (MO->isDead()) { 1564 LiveQueryResult LRQ = LR.Query(DefIdx); 1565 if (!LRQ.isDeadDef()) { 1566 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) && 1567 "Expecting a virtual register."); 1568 // A dead subreg def only tells us that the specific subreg is dead. There 1569 // could be other non-dead defs of other subregs, or we could have other 1570 // parts of the register being live through the instruction. So unless we 1571 // are checking liveness for a subrange it is ok for the live range to 1572 // continue, given that we have a dead def of a subregister. 1573 if (SubRangeCheck || MO->getSubReg() == 0) { 1574 report("Live range continues after dead def flag", MO, MONum); 1575 report_context_liverange(LR); 1576 report_context_vreg_regunit(VRegOrUnit); 1577 if (LaneMask.any()) 1578 report_context_lanemask(LaneMask); 1579 } 1580 } 1581 } 1582 } 1583 1584 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1585 const MachineInstr *MI = MO->getParent(); 1586 const unsigned Reg = MO->getReg(); 1587 1588 // Both use and def operands can read a register. 1589 if (MO->readsReg()) { 1590 if (MO->isKill()) 1591 addRegWithSubRegs(regsKilled, Reg); 1592 1593 // Check that LiveVars knows this kill. 1594 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1595 MO->isKill()) { 1596 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1597 if (!is_contained(VI.Kills, MI)) 1598 report("Kill missing from LiveVariables", MO, MONum); 1599 } 1600 1601 // Check LiveInts liveness and kill. 1602 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1603 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1604 // Check the cached regunit intervals. 1605 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1606 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1607 if (MRI->isReservedRegUnit(*Units)) 1608 continue; 1609 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1610 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1611 } 1612 } 1613 1614 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1615 if (LiveInts->hasInterval(Reg)) { 1616 // This is a virtual register interval. 1617 const LiveInterval &LI = LiveInts->getInterval(Reg); 1618 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1619 1620 if (LI.hasSubRanges() && !MO->isDef()) { 1621 unsigned SubRegIdx = MO->getSubReg(); 1622 LaneBitmask MOMask = SubRegIdx != 0 1623 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1624 : MRI->getMaxLaneMaskForVReg(Reg); 1625 LaneBitmask LiveInMask; 1626 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1627 if ((MOMask & SR.LaneMask).none()) 1628 continue; 1629 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1630 LiveQueryResult LRQ = SR.Query(UseIdx); 1631 if (LRQ.valueIn()) 1632 LiveInMask |= SR.LaneMask; 1633 } 1634 // At least parts of the register has to be live at the use. 1635 if ((LiveInMask & MOMask).none()) { 1636 report("No live subrange at use", MO, MONum); 1637 report_context(LI); 1638 report_context(UseIdx); 1639 } 1640 } 1641 } else { 1642 report("Virtual register has no live interval", MO, MONum); 1643 } 1644 } 1645 } 1646 1647 // Use of a dead register. 1648 if (!regsLive.count(Reg)) { 1649 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1650 // Reserved registers may be used even when 'dead'. 1651 bool Bad = !isReserved(Reg); 1652 // We are fine if just any subregister has a defined value. 1653 if (Bad) { 1654 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1655 ++SubRegs) { 1656 if (regsLive.count(*SubRegs)) { 1657 Bad = false; 1658 break; 1659 } 1660 } 1661 } 1662 // If there is an additional implicit-use of a super register we stop 1663 // here. By definition we are fine if the super register is not 1664 // (completely) dead, if the complete super register is dead we will 1665 // get a report for its operand. 1666 if (Bad) { 1667 for (const MachineOperand &MOP : MI->uses()) { 1668 if (!MOP.isReg() || !MOP.isImplicit()) 1669 continue; 1670 1671 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg())) 1672 continue; 1673 1674 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1675 ++SubRegs) { 1676 if (*SubRegs == Reg) { 1677 Bad = false; 1678 break; 1679 } 1680 } 1681 } 1682 } 1683 if (Bad) 1684 report("Using an undefined physical register", MO, MONum); 1685 } else if (MRI->def_empty(Reg)) { 1686 report("Reading virtual register without a def", MO, MONum); 1687 } else { 1688 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1689 // We don't know which virtual registers are live in, so only complain 1690 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1691 // must be live in. PHI instructions are handled separately. 1692 if (MInfo.regsKilled.count(Reg)) 1693 report("Using a killed virtual register", MO, MONum); 1694 else if (!MI->isPHI()) 1695 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1696 } 1697 } 1698 } 1699 1700 if (MO->isDef()) { 1701 // Register defined. 1702 // TODO: verify that earlyclobber ops are not used. 1703 if (MO->isDead()) 1704 addRegWithSubRegs(regsDead, Reg); 1705 else 1706 addRegWithSubRegs(regsDefined, Reg); 1707 1708 // Verify SSA form. 1709 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1710 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1711 report("Multiple virtual register defs in SSA form", MO, MONum); 1712 1713 // Check LiveInts for a live segment, but only for virtual registers. 1714 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1715 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1716 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1717 1718 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1719 if (LiveInts->hasInterval(Reg)) { 1720 const LiveInterval &LI = LiveInts->getInterval(Reg); 1721 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1722 1723 if (LI.hasSubRanges()) { 1724 unsigned SubRegIdx = MO->getSubReg(); 1725 LaneBitmask MOMask = SubRegIdx != 0 1726 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1727 : MRI->getMaxLaneMaskForVReg(Reg); 1728 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1729 if ((SR.LaneMask & MOMask).none()) 1730 continue; 1731 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 1732 } 1733 } 1734 } else { 1735 report("Virtual register has no Live interval", MO, MONum); 1736 } 1737 } 1738 } 1739 } 1740 } 1741 1742 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1743 1744 // This function gets called after visiting all instructions in a bundle. The 1745 // argument points to the bundle header. 1746 // Normal stand-alone instructions are also considered 'bundles', and this 1747 // function is called for all of them. 1748 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1749 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1750 set_union(MInfo.regsKilled, regsKilled); 1751 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1752 // Kill any masked registers. 1753 while (!regMasks.empty()) { 1754 const uint32_t *Mask = regMasks.pop_back_val(); 1755 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1756 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1757 MachineOperand::clobbersPhysReg(Mask, *I)) 1758 regsDead.push_back(*I); 1759 } 1760 set_subtract(regsLive, regsDead); regsDead.clear(); 1761 set_union(regsLive, regsDefined); regsDefined.clear(); 1762 } 1763 1764 void 1765 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1766 MBBInfoMap[MBB].regsLiveOut = regsLive; 1767 regsLive.clear(); 1768 1769 if (Indexes) { 1770 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1771 if (!(stop > lastIndex)) { 1772 report("Block ends before last instruction index", MBB); 1773 errs() << "Block ends at " << stop 1774 << " last instruction was at " << lastIndex << '\n'; 1775 } 1776 lastIndex = stop; 1777 } 1778 } 1779 1780 // Calculate the largest possible vregsPassed sets. These are the registers that 1781 // can pass through an MBB live, but may not be live every time. It is assumed 1782 // that all vregsPassed sets are empty before the call. 1783 void MachineVerifier::calcRegsPassed() { 1784 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1785 // have any vregsPassed. 1786 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1787 for (const auto &MBB : *MF) { 1788 BBInfo &MInfo = MBBInfoMap[&MBB]; 1789 if (!MInfo.reachable) 1790 continue; 1791 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1792 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1793 BBInfo &SInfo = MBBInfoMap[*SuI]; 1794 if (SInfo.addPassed(MInfo.regsLiveOut)) 1795 todo.insert(*SuI); 1796 } 1797 } 1798 1799 // Iteratively push vregsPassed to successors. This will converge to the same 1800 // final state regardless of DenseSet iteration order. 1801 while (!todo.empty()) { 1802 const MachineBasicBlock *MBB = *todo.begin(); 1803 todo.erase(MBB); 1804 BBInfo &MInfo = MBBInfoMap[MBB]; 1805 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1806 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1807 if (*SuI == MBB) 1808 continue; 1809 BBInfo &SInfo = MBBInfoMap[*SuI]; 1810 if (SInfo.addPassed(MInfo.vregsPassed)) 1811 todo.insert(*SuI); 1812 } 1813 } 1814 } 1815 1816 // Calculate the set of virtual registers that must be passed through each basic 1817 // block in order to satisfy the requirements of successor blocks. This is very 1818 // similar to calcRegsPassed, only backwards. 1819 void MachineVerifier::calcRegsRequired() { 1820 // First push live-in regs to predecessors' vregsRequired. 1821 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1822 for (const auto &MBB : *MF) { 1823 BBInfo &MInfo = MBBInfoMap[&MBB]; 1824 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1825 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1826 BBInfo &PInfo = MBBInfoMap[*PrI]; 1827 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1828 todo.insert(*PrI); 1829 } 1830 } 1831 1832 // Iteratively push vregsRequired to predecessors. This will converge to the 1833 // same final state regardless of DenseSet iteration order. 1834 while (!todo.empty()) { 1835 const MachineBasicBlock *MBB = *todo.begin(); 1836 todo.erase(MBB); 1837 BBInfo &MInfo = MBBInfoMap[MBB]; 1838 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1839 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1840 if (*PrI == MBB) 1841 continue; 1842 BBInfo &SInfo = MBBInfoMap[*PrI]; 1843 if (SInfo.addRequired(MInfo.vregsRequired)) 1844 todo.insert(*PrI); 1845 } 1846 } 1847 } 1848 1849 // Check PHI instructions at the beginning of MBB. It is assumed that 1850 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1851 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1852 BBInfo &MInfo = MBBInfoMap[&MBB]; 1853 1854 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1855 for (const MachineInstr &Phi : MBB) { 1856 if (!Phi.isPHI()) 1857 break; 1858 seen.clear(); 1859 1860 const MachineOperand &MODef = Phi.getOperand(0); 1861 if (!MODef.isReg() || !MODef.isDef()) { 1862 report("Expected first PHI operand to be a register def", &MODef, 0); 1863 continue; 1864 } 1865 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1866 MODef.isEarlyClobber() || MODef.isDebug()) 1867 report("Unexpected flag on PHI operand", &MODef, 0); 1868 unsigned DefReg = MODef.getReg(); 1869 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1870 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1871 1872 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1873 const MachineOperand &MO0 = Phi.getOperand(I); 1874 if (!MO0.isReg()) { 1875 report("Expected PHI operand to be a register", &MO0, I); 1876 continue; 1877 } 1878 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 1879 MO0.isDebug() || MO0.isTied()) 1880 report("Unexpected flag on PHI operand", &MO0, I); 1881 1882 const MachineOperand &MO1 = Phi.getOperand(I + 1); 1883 if (!MO1.isMBB()) { 1884 report("Expected PHI operand to be a basic block", &MO1, I + 1); 1885 continue; 1886 } 1887 1888 const MachineBasicBlock &Pre = *MO1.getMBB(); 1889 if (!Pre.isSuccessor(&MBB)) { 1890 report("PHI input is not a predecessor block", &MO1, I + 1); 1891 continue; 1892 } 1893 1894 if (MInfo.reachable) { 1895 seen.insert(&Pre); 1896 BBInfo &PrInfo = MBBInfoMap[&Pre]; 1897 if (!MO0.isUndef() && PrInfo.reachable && 1898 !PrInfo.isLiveOut(MO0.getReg())) 1899 report("PHI operand is not live-out from predecessor", &MO0, I); 1900 } 1901 } 1902 1903 // Did we see all predecessors? 1904 if (MInfo.reachable) { 1905 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1906 if (!seen.count(Pred)) { 1907 report("Missing PHI operand", &Phi); 1908 errs() << printMBBReference(*Pred) 1909 << " is a predecessor according to the CFG.\n"; 1910 } 1911 } 1912 } 1913 } 1914 } 1915 1916 void MachineVerifier::visitMachineFunctionAfter() { 1917 calcRegsPassed(); 1918 1919 for (const MachineBasicBlock &MBB : *MF) 1920 checkPHIOps(MBB); 1921 1922 // Now check liveness info if available 1923 calcRegsRequired(); 1924 1925 // Check for killed virtual registers that should be live out. 1926 for (const auto &MBB : *MF) { 1927 BBInfo &MInfo = MBBInfoMap[&MBB]; 1928 for (RegSet::iterator 1929 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1930 ++I) 1931 if (MInfo.regsKilled.count(*I)) { 1932 report("Virtual register killed in block, but needed live out.", &MBB); 1933 errs() << "Virtual register " << printReg(*I) 1934 << " is used after the block.\n"; 1935 } 1936 } 1937 1938 if (!MF->empty()) { 1939 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1940 for (RegSet::iterator 1941 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1942 ++I) { 1943 report("Virtual register defs don't dominate all uses.", MF); 1944 report_context_vreg(*I); 1945 } 1946 } 1947 1948 if (LiveVars) 1949 verifyLiveVariables(); 1950 if (LiveInts) 1951 verifyLiveIntervals(); 1952 } 1953 1954 void MachineVerifier::verifyLiveVariables() { 1955 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1956 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1957 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1958 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1959 for (const auto &MBB : *MF) { 1960 BBInfo &MInfo = MBBInfoMap[&MBB]; 1961 1962 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1963 if (MInfo.vregsRequired.count(Reg)) { 1964 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1965 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1966 errs() << "Virtual register " << printReg(Reg) 1967 << " must be live through the block.\n"; 1968 } 1969 } else { 1970 if (VI.AliveBlocks.test(MBB.getNumber())) { 1971 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1972 errs() << "Virtual register " << printReg(Reg) 1973 << " is not needed live through the block.\n"; 1974 } 1975 } 1976 } 1977 } 1978 } 1979 1980 void MachineVerifier::verifyLiveIntervals() { 1981 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1982 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1983 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1984 1985 // Spilling and splitting may leave unused registers around. Skip them. 1986 if (MRI->reg_nodbg_empty(Reg)) 1987 continue; 1988 1989 if (!LiveInts->hasInterval(Reg)) { 1990 report("Missing live interval for virtual register", MF); 1991 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 1992 continue; 1993 } 1994 1995 const LiveInterval &LI = LiveInts->getInterval(Reg); 1996 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1997 verifyLiveInterval(LI); 1998 } 1999 2000 // Verify all the cached regunit intervals. 2001 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2002 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2003 verifyLiveRange(*LR, i); 2004 } 2005 2006 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2007 const VNInfo *VNI, unsigned Reg, 2008 LaneBitmask LaneMask) { 2009 if (VNI->isUnused()) 2010 return; 2011 2012 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2013 2014 if (!DefVNI) { 2015 report("Value not live at VNInfo def and not marked unused", MF); 2016 report_context(LR, Reg, LaneMask); 2017 report_context(*VNI); 2018 return; 2019 } 2020 2021 if (DefVNI != VNI) { 2022 report("Live segment at def has different VNInfo", MF); 2023 report_context(LR, Reg, LaneMask); 2024 report_context(*VNI); 2025 return; 2026 } 2027 2028 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2029 if (!MBB) { 2030 report("Invalid VNInfo definition index", MF); 2031 report_context(LR, Reg, LaneMask); 2032 report_context(*VNI); 2033 return; 2034 } 2035 2036 if (VNI->isPHIDef()) { 2037 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2038 report("PHIDef VNInfo is not defined at MBB start", MBB); 2039 report_context(LR, Reg, LaneMask); 2040 report_context(*VNI); 2041 } 2042 return; 2043 } 2044 2045 // Non-PHI def. 2046 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2047 if (!MI) { 2048 report("No instruction at VNInfo def index", MBB); 2049 report_context(LR, Reg, LaneMask); 2050 report_context(*VNI); 2051 return; 2052 } 2053 2054 if (Reg != 0) { 2055 bool hasDef = false; 2056 bool isEarlyClobber = false; 2057 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2058 if (!MOI->isReg() || !MOI->isDef()) 2059 continue; 2060 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2061 if (MOI->getReg() != Reg) 2062 continue; 2063 } else { 2064 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 2065 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2066 continue; 2067 } 2068 if (LaneMask.any() && 2069 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2070 continue; 2071 hasDef = true; 2072 if (MOI->isEarlyClobber()) 2073 isEarlyClobber = true; 2074 } 2075 2076 if (!hasDef) { 2077 report("Defining instruction does not modify register", MI); 2078 report_context(LR, Reg, LaneMask); 2079 report_context(*VNI); 2080 } 2081 2082 // Early clobber defs begin at USE slots, but other defs must begin at 2083 // DEF slots. 2084 if (isEarlyClobber) { 2085 if (!VNI->def.isEarlyClobber()) { 2086 report("Early clobber def must be at an early-clobber slot", MBB); 2087 report_context(LR, Reg, LaneMask); 2088 report_context(*VNI); 2089 } 2090 } else if (!VNI->def.isRegister()) { 2091 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2092 report_context(LR, Reg, LaneMask); 2093 report_context(*VNI); 2094 } 2095 } 2096 } 2097 2098 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2099 const LiveRange::const_iterator I, 2100 unsigned Reg, LaneBitmask LaneMask) 2101 { 2102 const LiveRange::Segment &S = *I; 2103 const VNInfo *VNI = S.valno; 2104 assert(VNI && "Live segment has no valno"); 2105 2106 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2107 report("Foreign valno in live segment", MF); 2108 report_context(LR, Reg, LaneMask); 2109 report_context(S); 2110 report_context(*VNI); 2111 } 2112 2113 if (VNI->isUnused()) { 2114 report("Live segment valno is marked unused", MF); 2115 report_context(LR, Reg, LaneMask); 2116 report_context(S); 2117 } 2118 2119 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2120 if (!MBB) { 2121 report("Bad start of live segment, no basic block", MF); 2122 report_context(LR, Reg, LaneMask); 2123 report_context(S); 2124 return; 2125 } 2126 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2127 if (S.start != MBBStartIdx && S.start != VNI->def) { 2128 report("Live segment must begin at MBB entry or valno def", MBB); 2129 report_context(LR, Reg, LaneMask); 2130 report_context(S); 2131 } 2132 2133 const MachineBasicBlock *EndMBB = 2134 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2135 if (!EndMBB) { 2136 report("Bad end of live segment, no basic block", MF); 2137 report_context(LR, Reg, LaneMask); 2138 report_context(S); 2139 return; 2140 } 2141 2142 // No more checks for live-out segments. 2143 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2144 return; 2145 2146 // RegUnit intervals are allowed dead phis. 2147 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 2148 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2149 return; 2150 2151 // The live segment is ending inside EndMBB 2152 const MachineInstr *MI = 2153 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2154 if (!MI) { 2155 report("Live segment doesn't end at a valid instruction", EndMBB); 2156 report_context(LR, Reg, LaneMask); 2157 report_context(S); 2158 return; 2159 } 2160 2161 // The block slot must refer to a basic block boundary. 2162 if (S.end.isBlock()) { 2163 report("Live segment ends at B slot of an instruction", EndMBB); 2164 report_context(LR, Reg, LaneMask); 2165 report_context(S); 2166 } 2167 2168 if (S.end.isDead()) { 2169 // Segment ends on the dead slot. 2170 // That means there must be a dead def. 2171 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2172 report("Live segment ending at dead slot spans instructions", EndMBB); 2173 report_context(LR, Reg, LaneMask); 2174 report_context(S); 2175 } 2176 } 2177 2178 // A live segment can only end at an early-clobber slot if it is being 2179 // redefined by an early-clobber def. 2180 if (S.end.isEarlyClobber()) { 2181 if (I+1 == LR.end() || (I+1)->start != S.end) { 2182 report("Live segment ending at early clobber slot must be " 2183 "redefined by an EC def in the same instruction", EndMBB); 2184 report_context(LR, Reg, LaneMask); 2185 report_context(S); 2186 } 2187 } 2188 2189 // The following checks only apply to virtual registers. Physreg liveness 2190 // is too weird to check. 2191 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2192 // A live segment can end with either a redefinition, a kill flag on a 2193 // use, or a dead flag on a def. 2194 bool hasRead = false; 2195 bool hasSubRegDef = false; 2196 bool hasDeadDef = false; 2197 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2198 if (!MOI->isReg() || MOI->getReg() != Reg) 2199 continue; 2200 unsigned Sub = MOI->getSubReg(); 2201 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2202 : LaneBitmask::getAll(); 2203 if (MOI->isDef()) { 2204 if (Sub != 0) { 2205 hasSubRegDef = true; 2206 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2207 // mask for subregister defs. Read-undef defs will be handled by 2208 // readsReg below. 2209 SLM = ~SLM; 2210 } 2211 if (MOI->isDead()) 2212 hasDeadDef = true; 2213 } 2214 if (LaneMask.any() && (LaneMask & SLM).none()) 2215 continue; 2216 if (MOI->readsReg()) 2217 hasRead = true; 2218 } 2219 if (S.end.isDead()) { 2220 // Make sure that the corresponding machine operand for a "dead" live 2221 // range has the dead flag. We cannot perform this check for subregister 2222 // liveranges as partially dead values are allowed. 2223 if (LaneMask.none() && !hasDeadDef) { 2224 report("Instruction ending live segment on dead slot has no dead flag", 2225 MI); 2226 report_context(LR, Reg, LaneMask); 2227 report_context(S); 2228 } 2229 } else { 2230 if (!hasRead) { 2231 // When tracking subregister liveness, the main range must start new 2232 // values on partial register writes, even if there is no read. 2233 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2234 !hasSubRegDef) { 2235 report("Instruction ending live segment doesn't read the register", 2236 MI); 2237 report_context(LR, Reg, LaneMask); 2238 report_context(S); 2239 } 2240 } 2241 } 2242 } 2243 2244 // Now check all the basic blocks in this live segment. 2245 MachineFunction::const_iterator MFI = MBB->getIterator(); 2246 // Is this live segment the beginning of a non-PHIDef VN? 2247 if (S.start == VNI->def && !VNI->isPHIDef()) { 2248 // Not live-in to any blocks. 2249 if (MBB == EndMBB) 2250 return; 2251 // Skip this block. 2252 ++MFI; 2253 } 2254 2255 SmallVector<SlotIndex, 4> Undefs; 2256 if (LaneMask.any()) { 2257 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2258 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2259 } 2260 2261 while (true) { 2262 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2263 // We don't know how to track physregs into a landing pad. 2264 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2265 MFI->isEHPad()) { 2266 if (&*MFI == EndMBB) 2267 break; 2268 ++MFI; 2269 continue; 2270 } 2271 2272 // Is VNI a PHI-def in the current block? 2273 bool IsPHI = VNI->isPHIDef() && 2274 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2275 2276 // Check that VNI is live-out of all predecessors. 2277 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2278 PE = MFI->pred_end(); PI != PE; ++PI) { 2279 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2280 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2281 2282 // All predecessors must have a live-out value. However for a phi 2283 // instruction with subregister intervals 2284 // only one of the subregisters (not necessarily the current one) needs to 2285 // be defined. 2286 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2287 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2288 continue; 2289 report("Register not marked live out of predecessor", *PI); 2290 report_context(LR, Reg, LaneMask); 2291 report_context(*VNI); 2292 errs() << " live into " << printMBBReference(*MFI) << '@' 2293 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2294 << PEnd << '\n'; 2295 continue; 2296 } 2297 2298 // Only PHI-defs can take different predecessor values. 2299 if (!IsPHI && PVNI != VNI) { 2300 report("Different value live out of predecessor", *PI); 2301 report_context(LR, Reg, LaneMask); 2302 errs() << "Valno #" << PVNI->id << " live out of " 2303 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2304 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2305 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2306 } 2307 } 2308 if (&*MFI == EndMBB) 2309 break; 2310 ++MFI; 2311 } 2312 } 2313 2314 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2315 LaneBitmask LaneMask) { 2316 for (const VNInfo *VNI : LR.valnos) 2317 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2318 2319 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2320 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2321 } 2322 2323 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2324 unsigned Reg = LI.reg; 2325 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2326 verifyLiveRange(LI, Reg); 2327 2328 LaneBitmask Mask; 2329 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2330 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2331 if ((Mask & SR.LaneMask).any()) { 2332 report("Lane masks of sub ranges overlap in live interval", MF); 2333 report_context(LI); 2334 } 2335 if ((SR.LaneMask & ~MaxMask).any()) { 2336 report("Subrange lanemask is invalid", MF); 2337 report_context(LI); 2338 } 2339 if (SR.empty()) { 2340 report("Subrange must not be empty", MF); 2341 report_context(SR, LI.reg, SR.LaneMask); 2342 } 2343 Mask |= SR.LaneMask; 2344 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2345 if (!LI.covers(SR)) { 2346 report("A Subrange is not covered by the main range", MF); 2347 report_context(LI); 2348 } 2349 } 2350 2351 // Check the LI only has one connected component. 2352 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2353 unsigned NumComp = ConEQ.Classify(LI); 2354 if (NumComp > 1) { 2355 report("Multiple connected components in live interval", MF); 2356 report_context(LI); 2357 for (unsigned comp = 0; comp != NumComp; ++comp) { 2358 errs() << comp << ": valnos"; 2359 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2360 E = LI.vni_end(); I!=E; ++I) 2361 if (comp == ConEQ.getEqClass(*I)) 2362 errs() << ' ' << (*I)->id; 2363 errs() << '\n'; 2364 } 2365 } 2366 } 2367 2368 namespace { 2369 2370 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2371 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2372 // value is zero. 2373 // We use a bool plus an integer to capture the stack state. 2374 struct StackStateOfBB { 2375 StackStateOfBB() = default; 2376 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2377 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2378 ExitIsSetup(ExitSetup) {} 2379 2380 // Can be negative, which means we are setting up a frame. 2381 int EntryValue = 0; 2382 int ExitValue = 0; 2383 bool EntryIsSetup = false; 2384 bool ExitIsSetup = false; 2385 }; 2386 2387 } // end anonymous namespace 2388 2389 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2390 /// by a FrameDestroy <n>, stack adjustments are identical on all 2391 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2392 void MachineVerifier::verifyStackFrame() { 2393 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2394 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2395 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2396 return; 2397 2398 SmallVector<StackStateOfBB, 8> SPState; 2399 SPState.resize(MF->getNumBlockIDs()); 2400 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2401 2402 // Visit the MBBs in DFS order. 2403 for (df_ext_iterator<const MachineFunction *, 2404 df_iterator_default_set<const MachineBasicBlock *>> 2405 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2406 DFI != DFE; ++DFI) { 2407 const MachineBasicBlock *MBB = *DFI; 2408 2409 StackStateOfBB BBState; 2410 // Check the exit state of the DFS stack predecessor. 2411 if (DFI.getPathLength() >= 2) { 2412 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2413 assert(Reachable.count(StackPred) && 2414 "DFS stack predecessor is already visited.\n"); 2415 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2416 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2417 BBState.ExitValue = BBState.EntryValue; 2418 BBState.ExitIsSetup = BBState.EntryIsSetup; 2419 } 2420 2421 // Update stack state by checking contents of MBB. 2422 for (const auto &I : *MBB) { 2423 if (I.getOpcode() == FrameSetupOpcode) { 2424 if (BBState.ExitIsSetup) 2425 report("FrameSetup is after another FrameSetup", &I); 2426 BBState.ExitValue -= TII->getFrameTotalSize(I); 2427 BBState.ExitIsSetup = true; 2428 } 2429 2430 if (I.getOpcode() == FrameDestroyOpcode) { 2431 int Size = TII->getFrameTotalSize(I); 2432 if (!BBState.ExitIsSetup) 2433 report("FrameDestroy is not after a FrameSetup", &I); 2434 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2435 BBState.ExitValue; 2436 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2437 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2438 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2439 << AbsSPAdj << ">.\n"; 2440 } 2441 BBState.ExitValue += Size; 2442 BBState.ExitIsSetup = false; 2443 } 2444 } 2445 SPState[MBB->getNumber()] = BBState; 2446 2447 // Make sure the exit state of any predecessor is consistent with the entry 2448 // state. 2449 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2450 E = MBB->pred_end(); I != E; ++I) { 2451 if (Reachable.count(*I) && 2452 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2453 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2454 report("The exit stack state of a predecessor is inconsistent.", MBB); 2455 errs() << "Predecessor " << printMBBReference(*(*I)) 2456 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2457 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2458 << printMBBReference(*MBB) << " has entry state (" 2459 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2460 } 2461 } 2462 2463 // Make sure the entry state of any successor is consistent with the exit 2464 // state. 2465 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2466 E = MBB->succ_end(); I != E; ++I) { 2467 if (Reachable.count(*I) && 2468 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2469 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2470 report("The entry stack state of a successor is inconsistent.", MBB); 2471 errs() << "Successor " << printMBBReference(*(*I)) 2472 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2473 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2474 << printMBBReference(*MBB) << " has exit state (" 2475 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2476 } 2477 } 2478 2479 // Make sure a basic block with return ends with zero stack adjustment. 2480 if (!MBB->empty() && MBB->back().isReturn()) { 2481 if (BBState.ExitIsSetup) 2482 report("A return block ends with a FrameSetup.", MBB); 2483 if (BBState.ExitValue) 2484 report("A return block ends with a nonzero stack adjustment.", MBB); 2485 } 2486 } 2487 } 2488