xref: /llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision a7cd83bc88b0a8cbd07b3dbe078e11a0a4e9e442)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
24 
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (TargetRegisterInfo::isPhysicalRegister(Reg))
126         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127           RV.push_back(*SubRegs);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsPassed if it belongs there. Return true if
160       // anything changed.
161       bool addPassed(unsigned Reg) {
162         if (!TargetRegisterInfo::isVirtualRegister(Reg))
163           return false;
164         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165           return false;
166         return vregsPassed.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addPassed(const RegSet &RS) {
171         bool changed = false;
172         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173           if (addPassed(*I))
174             changed = true;
175         return changed;
176       }
177 
178       // Add register to vregsRequired if it belongs there. Return true if
179       // anything changed.
180       bool addRequired(unsigned Reg) {
181         if (!TargetRegisterInfo::isVirtualRegister(Reg))
182           return false;
183         if (regsLiveOut.count(Reg))
184           return false;
185         return vregsRequired.insert(Reg).second;
186       }
187 
188       // Same for a full set.
189       bool addRequired(const RegSet &RS) {
190         bool changed = false;
191         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192           if (addRequired(*I))
193             changed = true;
194         return changed;
195       }
196 
197       // Same for a full map.
198       bool addRequired(const RegMap &RM) {
199         bool changed = false;
200         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201           if (addRequired(I->first))
202             changed = true;
203         return changed;
204       }
205 
206       // Live-out registers are either in regsLiveOut or vregsPassed.
207       bool isLiveOut(unsigned Reg) const {
208         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
209       }
210     };
211 
212     // Extra register info per MBB.
213     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
214 
215     bool isReserved(unsigned Reg) {
216       return Reg < regsReserved.size() && regsReserved.test(Reg);
217     }
218 
219     bool isAllocatable(unsigned Reg) const {
220       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221         !regsReserved.test(Reg);
222     }
223 
224     // Analysis information if available
225     LiveVariables *LiveVars;
226     LiveIntervals *LiveInts;
227     LiveStacks *LiveStks;
228     SlotIndexes *Indexes;
229 
230     void visitMachineFunctionBefore();
231     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232     void visitMachineBundleBefore(const MachineInstr *MI);
233     void visitMachineInstrBefore(const MachineInstr *MI);
234     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
235     void visitMachineInstrAfter(const MachineInstr *MI);
236     void visitMachineBundleAfter(const MachineInstr *MI);
237     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
238     void visitMachineFunctionAfter();
239 
240     void report(const char *msg, const MachineFunction *MF);
241     void report(const char *msg, const MachineBasicBlock *MBB);
242     void report(const char *msg, const MachineInstr *MI);
243     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
244                 LLT MOVRegType = LLT{});
245 
246     void report_context(const LiveInterval &LI) const;
247     void report_context(const LiveRange &LR, unsigned VRegUnit,
248                         LaneBitmask LaneMask) const;
249     void report_context(const LiveRange::Segment &S) const;
250     void report_context(const VNInfo &VNI) const;
251     void report_context(SlotIndex Pos) const;
252     void report_context(MCPhysReg PhysReg) const;
253     void report_context_liverange(const LiveRange &LR) const;
254     void report_context_lanemask(LaneBitmask LaneMask) const;
255     void report_context_vreg(unsigned VReg) const;
256     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
257 
258     void verifyInlineAsm(const MachineInstr *MI);
259 
260     void checkLiveness(const MachineOperand *MO, unsigned MONum);
261     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
262                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
263                             LaneBitmask LaneMask = LaneBitmask::getNone());
264     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
265                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                             bool SubRangeCheck = false,
267                             LaneBitmask LaneMask = LaneBitmask::getNone());
268 
269     void markReachable(const MachineBasicBlock *MBB);
270     void calcRegsPassed();
271     void checkPHIOps(const MachineBasicBlock &MBB);
272 
273     void calcRegsRequired();
274     void verifyLiveVariables();
275     void verifyLiveIntervals();
276     void verifyLiveInterval(const LiveInterval&);
277     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
278                               LaneBitmask);
279     void verifyLiveRangeSegment(const LiveRange&,
280                                 const LiveRange::const_iterator I, unsigned,
281                                 LaneBitmask);
282     void verifyLiveRange(const LiveRange&, unsigned,
283                          LaneBitmask LaneMask = LaneBitmask::getNone());
284 
285     void verifyStackFrame();
286 
287     void verifySlotIndexes() const;
288     void verifyProperties(const MachineFunction &MF);
289   };
290 
291   struct MachineVerifierPass : public MachineFunctionPass {
292     static char ID; // Pass ID, replacement for typeid
293 
294     const std::string Banner;
295 
296     MachineVerifierPass(std::string banner = std::string())
297       : MachineFunctionPass(ID), Banner(std::move(banner)) {
298         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
299       }
300 
301     void getAnalysisUsage(AnalysisUsage &AU) const override {
302       AU.setPreservesAll();
303       MachineFunctionPass::getAnalysisUsage(AU);
304     }
305 
306     bool runOnMachineFunction(MachineFunction &MF) override {
307       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
308       if (FoundErrors)
309         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
310       return false;
311     }
312   };
313 
314 } // end anonymous namespace
315 
316 char MachineVerifierPass::ID = 0;
317 
318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
319                 "Verify generated machine code", false, false)
320 
321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
322   return new MachineVerifierPass(Banner);
323 }
324 
325 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
326     const {
327   MachineFunction &MF = const_cast<MachineFunction&>(*this);
328   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
329   if (AbortOnErrors && FoundErrors)
330     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
331   return FoundErrors == 0;
332 }
333 
334 void MachineVerifier::verifySlotIndexes() const {
335   if (Indexes == nullptr)
336     return;
337 
338   // Ensure the IdxMBB list is sorted by slot indexes.
339   SlotIndex Last;
340   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
341        E = Indexes->MBBIndexEnd(); I != E; ++I) {
342     assert(!Last.isValid() || I->first > Last);
343     Last = I->first;
344   }
345 }
346 
347 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
348   // If a pass has introduced virtual registers without clearing the
349   // NoVRegs property (or set it without allocating the vregs)
350   // then report an error.
351   if (MF.getProperties().hasProperty(
352           MachineFunctionProperties::Property::NoVRegs) &&
353       MRI->getNumVirtRegs())
354     report("Function has NoVRegs property but there are VReg operands", &MF);
355 }
356 
357 unsigned MachineVerifier::verify(MachineFunction &MF) {
358   foundErrors = 0;
359 
360   this->MF = &MF;
361   TM = &MF.getTarget();
362   TII = MF.getSubtarget().getInstrInfo();
363   TRI = MF.getSubtarget().getRegisterInfo();
364   MRI = &MF.getRegInfo();
365 
366   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
367       MachineFunctionProperties::Property::FailedISel);
368 
369   // If we're mid-GlobalISel and we already triggered the fallback path then
370   // it's expected that the MIR is somewhat broken but that's ok since we'll
371   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
372   if (isFunctionFailedISel)
373     return foundErrors;
374 
375   isFunctionRegBankSelected =
376       !isFunctionFailedISel &&
377       MF.getProperties().hasProperty(
378           MachineFunctionProperties::Property::RegBankSelected);
379   isFunctionSelected = !isFunctionFailedISel &&
380                        MF.getProperties().hasProperty(
381                            MachineFunctionProperties::Property::Selected);
382   LiveVars = nullptr;
383   LiveInts = nullptr;
384   LiveStks = nullptr;
385   Indexes = nullptr;
386   if (PASS) {
387     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
388     // We don't want to verify LiveVariables if LiveIntervals is available.
389     if (!LiveInts)
390       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
391     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
392     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
393   }
394 
395   verifySlotIndexes();
396 
397   verifyProperties(MF);
398 
399   visitMachineFunctionBefore();
400   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
401        MFI!=MFE; ++MFI) {
402     visitMachineBasicBlockBefore(&*MFI);
403     // Keep track of the current bundle header.
404     const MachineInstr *CurBundle = nullptr;
405     // Do we expect the next instruction to be part of the same bundle?
406     bool InBundle = false;
407 
408     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
409            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
410       if (MBBI->getParent() != &*MFI) {
411         report("Bad instruction parent pointer", &*MFI);
412         errs() << "Instruction: " << *MBBI;
413         continue;
414       }
415 
416       // Check for consistent bundle flags.
417       if (InBundle && !MBBI->isBundledWithPred())
418         report("Missing BundledPred flag, "
419                "BundledSucc was set on predecessor",
420                &*MBBI);
421       if (!InBundle && MBBI->isBundledWithPred())
422         report("BundledPred flag is set, "
423                "but BundledSucc not set on predecessor",
424                &*MBBI);
425 
426       // Is this a bundle header?
427       if (!MBBI->isInsideBundle()) {
428         if (CurBundle)
429           visitMachineBundleAfter(CurBundle);
430         CurBundle = &*MBBI;
431         visitMachineBundleBefore(CurBundle);
432       } else if (!CurBundle)
433         report("No bundle header", &*MBBI);
434       visitMachineInstrBefore(&*MBBI);
435       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
436         const MachineInstr &MI = *MBBI;
437         const MachineOperand &Op = MI.getOperand(I);
438         if (Op.getParent() != &MI) {
439           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
440           // functions when replacing operands of a MachineInstr.
441           report("Instruction has operand with wrong parent set", &MI);
442         }
443 
444         visitMachineOperand(&Op, I);
445       }
446 
447       visitMachineInstrAfter(&*MBBI);
448 
449       // Was this the last bundled instruction?
450       InBundle = MBBI->isBundledWithSucc();
451     }
452     if (CurBundle)
453       visitMachineBundleAfter(CurBundle);
454     if (InBundle)
455       report("BundledSucc flag set on last instruction in block", &MFI->back());
456     visitMachineBasicBlockAfter(&*MFI);
457   }
458   visitMachineFunctionAfter();
459 
460   // Clean up.
461   regsLive.clear();
462   regsDefined.clear();
463   regsDead.clear();
464   regsKilled.clear();
465   regMasks.clear();
466   MBBInfoMap.clear();
467 
468   return foundErrors;
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
472   assert(MF);
473   errs() << '\n';
474   if (!foundErrors++) {
475     if (Banner)
476       errs() << "# " << Banner << '\n';
477     if (LiveInts != nullptr)
478       LiveInts->print(errs());
479     else
480       MF->print(errs(), Indexes);
481   }
482   errs() << "*** Bad machine code: " << msg << " ***\n"
483       << "- function:    " << MF->getName() << "\n";
484 }
485 
486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
487   assert(MBB);
488   report(msg, MBB->getParent());
489   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
490          << MBB->getName() << " (" << (const void *)MBB << ')';
491   if (Indexes)
492     errs() << " [" << Indexes->getMBBStartIdx(MBB)
493         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
494   errs() << '\n';
495 }
496 
497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
498   assert(MI);
499   report(msg, MI->getParent());
500   errs() << "- instruction: ";
501   if (Indexes && Indexes->hasIndex(*MI))
502     errs() << Indexes->getInstructionIndex(*MI) << '\t';
503   MI->print(errs(), /*SkipOpers=*/true);
504 }
505 
506 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
507                              unsigned MONum, LLT MOVRegType) {
508   assert(MO);
509   report(msg, MO->getParent());
510   errs() << "- operand " << MONum << ":   ";
511   MO->print(errs(), MOVRegType, TRI);
512   errs() << "\n";
513 }
514 
515 void MachineVerifier::report_context(SlotIndex Pos) const {
516   errs() << "- at:          " << Pos << '\n';
517 }
518 
519 void MachineVerifier::report_context(const LiveInterval &LI) const {
520   errs() << "- interval:    " << LI << '\n';
521 }
522 
523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
524                                      LaneBitmask LaneMask) const {
525   report_context_liverange(LR);
526   report_context_vreg_regunit(VRegUnit);
527   if (LaneMask.any())
528     report_context_lanemask(LaneMask);
529 }
530 
531 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
532   errs() << "- segment:     " << S << '\n';
533 }
534 
535 void MachineVerifier::report_context(const VNInfo &VNI) const {
536   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
537 }
538 
539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
540   errs() << "- liverange:   " << LR << '\n';
541 }
542 
543 void MachineVerifier::report_context(MCPhysReg PReg) const {
544   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
545 }
546 
547 void MachineVerifier::report_context_vreg(unsigned VReg) const {
548   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
549 }
550 
551 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
552   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
553     report_context_vreg(VRegOrUnit);
554   } else {
555     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
556   }
557 }
558 
559 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
560   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
561 }
562 
563 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
564   BBInfo &MInfo = MBBInfoMap[MBB];
565   if (!MInfo.reachable) {
566     MInfo.reachable = true;
567     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
568            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
569       markReachable(*SuI);
570   }
571 }
572 
573 void MachineVerifier::visitMachineFunctionBefore() {
574   lastIndex = SlotIndex();
575   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
576                                            : TRI->getReservedRegs(*MF);
577 
578   if (!MF->empty())
579     markReachable(&MF->front());
580 
581   // Build a set of the basic blocks in the function.
582   FunctionBlocks.clear();
583   for (const auto &MBB : *MF) {
584     FunctionBlocks.insert(&MBB);
585     BBInfo &MInfo = MBBInfoMap[&MBB];
586 
587     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
588     if (MInfo.Preds.size() != MBB.pred_size())
589       report("MBB has duplicate entries in its predecessor list.", &MBB);
590 
591     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
592     if (MInfo.Succs.size() != MBB.succ_size())
593       report("MBB has duplicate entries in its successor list.", &MBB);
594   }
595 
596   // Check that the register use lists are sane.
597   MRI->verifyUseLists();
598 
599   if (!MF->empty())
600     verifyStackFrame();
601 }
602 
603 // Does iterator point to a and b as the first two elements?
604 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
605                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
606   if (*i == a)
607     return *++i == b;
608   if (*i == b)
609     return *++i == a;
610   return false;
611 }
612 
613 void
614 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
615   FirstTerminator = nullptr;
616   FirstNonPHI = nullptr;
617 
618   if (!MF->getProperties().hasProperty(
619       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
620     // If this block has allocatable physical registers live-in, check that
621     // it is an entry block or landing pad.
622     for (const auto &LI : MBB->liveins()) {
623       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
624           MBB->getIterator() != MBB->getParent()->begin()) {
625         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
626         report_context(LI.PhysReg);
627       }
628     }
629   }
630 
631   // Count the number of landing pad successors.
632   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
633   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
634        E = MBB->succ_end(); I != E; ++I) {
635     if ((*I)->isEHPad())
636       LandingPadSuccs.insert(*I);
637     if (!FunctionBlocks.count(*I))
638       report("MBB has successor that isn't part of the function.", MBB);
639     if (!MBBInfoMap[*I].Preds.count(MBB)) {
640       report("Inconsistent CFG", MBB);
641       errs() << "MBB is not in the predecessor list of the successor "
642              << printMBBReference(*(*I)) << ".\n";
643     }
644   }
645 
646   // Check the predecessor list.
647   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
648        E = MBB->pred_end(); I != E; ++I) {
649     if (!FunctionBlocks.count(*I))
650       report("MBB has predecessor that isn't part of the function.", MBB);
651     if (!MBBInfoMap[*I].Succs.count(MBB)) {
652       report("Inconsistent CFG", MBB);
653       errs() << "MBB is not in the successor list of the predecessor "
654              << printMBBReference(*(*I)) << ".\n";
655     }
656   }
657 
658   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
659   const BasicBlock *BB = MBB->getBasicBlock();
660   const Function &F = MF->getFunction();
661   if (LandingPadSuccs.size() > 1 &&
662       !(AsmInfo &&
663         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
664         BB && isa<SwitchInst>(BB->getTerminator())) &&
665       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
666     report("MBB has more than one landing pad successor", MBB);
667 
668   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
669   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
670   SmallVector<MachineOperand, 4> Cond;
671   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
672                           Cond)) {
673     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
674     // check whether its answers match up with reality.
675     if (!TBB && !FBB) {
676       // Block falls through to its successor.
677       MachineFunction::const_iterator MBBI = MBB->getIterator();
678       ++MBBI;
679       if (MBBI == MF->end()) {
680         // It's possible that the block legitimately ends with a noreturn
681         // call or an unreachable, in which case it won't actually fall
682         // out the bottom of the function.
683       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
684         // It's possible that the block legitimately ends with a noreturn
685         // call or an unreachable, in which case it won't actually fall
686         // out of the block.
687       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
688         report("MBB exits via unconditional fall-through but doesn't have "
689                "exactly one CFG successor!", MBB);
690       } else if (!MBB->isSuccessor(&*MBBI)) {
691         report("MBB exits via unconditional fall-through but its successor "
692                "differs from its CFG successor!", MBB);
693       }
694       if (!MBB->empty() && MBB->back().isBarrier() &&
695           !TII->isPredicated(MBB->back())) {
696         report("MBB exits via unconditional fall-through but ends with a "
697                "barrier instruction!", MBB);
698       }
699       if (!Cond.empty()) {
700         report("MBB exits via unconditional fall-through but has a condition!",
701                MBB);
702       }
703     } else if (TBB && !FBB && Cond.empty()) {
704       // Block unconditionally branches somewhere.
705       // If the block has exactly one successor, that happens to be a
706       // landingpad, accept it as valid control flow.
707       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
708           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
709            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
710         report("MBB exits via unconditional branch but doesn't have "
711                "exactly one CFG successor!", MBB);
712       } else if (!MBB->isSuccessor(TBB)) {
713         report("MBB exits via unconditional branch but the CFG "
714                "successor doesn't match the actual successor!", MBB);
715       }
716       if (MBB->empty()) {
717         report("MBB exits via unconditional branch but doesn't contain "
718                "any instructions!", MBB);
719       } else if (!MBB->back().isBarrier()) {
720         report("MBB exits via unconditional branch but doesn't end with a "
721                "barrier instruction!", MBB);
722       } else if (!MBB->back().isTerminator()) {
723         report("MBB exits via unconditional branch but the branch isn't a "
724                "terminator instruction!", MBB);
725       }
726     } else if (TBB && !FBB && !Cond.empty()) {
727       // Block conditionally branches somewhere, otherwise falls through.
728       MachineFunction::const_iterator MBBI = MBB->getIterator();
729       ++MBBI;
730       if (MBBI == MF->end()) {
731         report("MBB conditionally falls through out of function!", MBB);
732       } else if (MBB->succ_size() == 1) {
733         // A conditional branch with only one successor is weird, but allowed.
734         if (&*MBBI != TBB)
735           report("MBB exits via conditional branch/fall-through but only has "
736                  "one CFG successor!", MBB);
737         else if (TBB != *MBB->succ_begin())
738           report("MBB exits via conditional branch/fall-through but the CFG "
739                  "successor don't match the actual successor!", MBB);
740       } else if (MBB->succ_size() != 2) {
741         report("MBB exits via conditional branch/fall-through but doesn't have "
742                "exactly two CFG successors!", MBB);
743       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
744         report("MBB exits via conditional branch/fall-through but the CFG "
745                "successors don't match the actual successors!", MBB);
746       }
747       if (MBB->empty()) {
748         report("MBB exits via conditional branch/fall-through but doesn't "
749                "contain any instructions!", MBB);
750       } else if (MBB->back().isBarrier()) {
751         report("MBB exits via conditional branch/fall-through but ends with a "
752                "barrier instruction!", MBB);
753       } else if (!MBB->back().isTerminator()) {
754         report("MBB exits via conditional branch/fall-through but the branch "
755                "isn't a terminator instruction!", MBB);
756       }
757     } else if (TBB && FBB) {
758       // Block conditionally branches somewhere, otherwise branches
759       // somewhere else.
760       if (MBB->succ_size() == 1) {
761         // A conditional branch with only one successor is weird, but allowed.
762         if (FBB != TBB)
763           report("MBB exits via conditional branch/branch through but only has "
764                  "one CFG successor!", MBB);
765         else if (TBB != *MBB->succ_begin())
766           report("MBB exits via conditional branch/branch through but the CFG "
767                  "successor don't match the actual successor!", MBB);
768       } else if (MBB->succ_size() != 2) {
769         report("MBB exits via conditional branch/branch but doesn't have "
770                "exactly two CFG successors!", MBB);
771       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
772         report("MBB exits via conditional branch/branch but the CFG "
773                "successors don't match the actual successors!", MBB);
774       }
775       if (MBB->empty()) {
776         report("MBB exits via conditional branch/branch but doesn't "
777                "contain any instructions!", MBB);
778       } else if (!MBB->back().isBarrier()) {
779         report("MBB exits via conditional branch/branch but doesn't end with a "
780                "barrier instruction!", MBB);
781       } else if (!MBB->back().isTerminator()) {
782         report("MBB exits via conditional branch/branch but the branch "
783                "isn't a terminator instruction!", MBB);
784       }
785       if (Cond.empty()) {
786         report("MBB exits via conditional branch/branch but there's no "
787                "condition!", MBB);
788       }
789     } else {
790       report("AnalyzeBranch returned invalid data!", MBB);
791     }
792   }
793 
794   regsLive.clear();
795   if (MRI->tracksLiveness()) {
796     for (const auto &LI : MBB->liveins()) {
797       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
798         report("MBB live-in list contains non-physical register", MBB);
799         continue;
800       }
801       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
802            SubRegs.isValid(); ++SubRegs)
803         regsLive.insert(*SubRegs);
804     }
805   }
806 
807   const MachineFrameInfo &MFI = MF->getFrameInfo();
808   BitVector PR = MFI.getPristineRegs(*MF);
809   for (unsigned I : PR.set_bits()) {
810     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
811          SubRegs.isValid(); ++SubRegs)
812       regsLive.insert(*SubRegs);
813   }
814 
815   regsKilled.clear();
816   regsDefined.clear();
817 
818   if (Indexes)
819     lastIndex = Indexes->getMBBStartIdx(MBB);
820 }
821 
822 // This function gets called for all bundle headers, including normal
823 // stand-alone unbundled instructions.
824 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
825   if (Indexes && Indexes->hasIndex(*MI)) {
826     SlotIndex idx = Indexes->getInstructionIndex(*MI);
827     if (!(idx > lastIndex)) {
828       report("Instruction index out of order", MI);
829       errs() << "Last instruction was at " << lastIndex << '\n';
830     }
831     lastIndex = idx;
832   }
833 
834   // Ensure non-terminators don't follow terminators.
835   // Ignore predicated terminators formed by if conversion.
836   // FIXME: If conversion shouldn't need to violate this rule.
837   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
838     if (!FirstTerminator)
839       FirstTerminator = MI;
840   } else if (FirstTerminator) {
841     report("Non-terminator instruction after the first terminator", MI);
842     errs() << "First terminator was:\t" << *FirstTerminator;
843   }
844 }
845 
846 // The operands on an INLINEASM instruction must follow a template.
847 // Verify that the flag operands make sense.
848 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
849   // The first two operands on INLINEASM are the asm string and global flags.
850   if (MI->getNumOperands() < 2) {
851     report("Too few operands on inline asm", MI);
852     return;
853   }
854   if (!MI->getOperand(0).isSymbol())
855     report("Asm string must be an external symbol", MI);
856   if (!MI->getOperand(1).isImm())
857     report("Asm flags must be an immediate", MI);
858   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
859   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
860   // and Extra_IsConvergent = 32.
861   if (!isUInt<6>(MI->getOperand(1).getImm()))
862     report("Unknown asm flags", &MI->getOperand(1), 1);
863 
864   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
865 
866   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
867   unsigned NumOps;
868   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
869     const MachineOperand &MO = MI->getOperand(OpNo);
870     // There may be implicit ops after the fixed operands.
871     if (!MO.isImm())
872       break;
873     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
874   }
875 
876   if (OpNo > MI->getNumOperands())
877     report("Missing operands in last group", MI);
878 
879   // An optional MDNode follows the groups.
880   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
881     ++OpNo;
882 
883   // All trailing operands must be implicit registers.
884   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
885     const MachineOperand &MO = MI->getOperand(OpNo);
886     if (!MO.isReg() || !MO.isImplicit())
887       report("Expected implicit register after groups", &MO, OpNo);
888   }
889 }
890 
891 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
892   const MCInstrDesc &MCID = MI->getDesc();
893   if (MI->getNumOperands() < MCID.getNumOperands()) {
894     report("Too few operands", MI);
895     errs() << MCID.getNumOperands() << " operands expected, but "
896            << MI->getNumOperands() << " given.\n";
897   }
898 
899   if (MI->isPHI()) {
900     if (MF->getProperties().hasProperty(
901             MachineFunctionProperties::Property::NoPHIs))
902       report("Found PHI instruction with NoPHIs property set", MI);
903 
904     if (FirstNonPHI)
905       report("Found PHI instruction after non-PHI", MI);
906   } else if (FirstNonPHI == nullptr)
907     FirstNonPHI = MI;
908 
909   // Check the tied operands.
910   if (MI->isInlineAsm())
911     verifyInlineAsm(MI);
912 
913   // Check the MachineMemOperands for basic consistency.
914   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
915                                   E = MI->memoperands_end();
916        I != E; ++I) {
917     if ((*I)->isLoad() && !MI->mayLoad())
918       report("Missing mayLoad flag", MI);
919     if ((*I)->isStore() && !MI->mayStore())
920       report("Missing mayStore flag", MI);
921   }
922 
923   // Debug values must not have a slot index.
924   // Other instructions must have one, unless they are inside a bundle.
925   if (LiveInts) {
926     bool mapped = !LiveInts->isNotInMIMap(*MI);
927     if (MI->isDebugInstr()) {
928       if (mapped)
929         report("Debug instruction has a slot index", MI);
930     } else if (MI->isInsideBundle()) {
931       if (mapped)
932         report("Instruction inside bundle has a slot index", MI);
933     } else {
934       if (!mapped)
935         report("Missing slot index", MI);
936     }
937   }
938 
939   if (isPreISelGenericOpcode(MCID.getOpcode())) {
940     if (isFunctionSelected)
941       report("Unexpected generic instruction in a Selected function", MI);
942 
943     unsigned NumOps = MI->getNumOperands();
944 
945     // Check types.
946     SmallVector<LLT, 4> Types;
947     for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
948          I != E; ++I) {
949       if (!MCID.OpInfo[I].isGenericType())
950         continue;
951       // Generic instructions specify type equality constraints between some of
952       // their operands. Make sure these are consistent.
953       size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
954       Types.resize(std::max(TypeIdx + 1, Types.size()));
955 
956       const MachineOperand *MO = &MI->getOperand(I);
957       LLT OpTy = MRI->getType(MO->getReg());
958       // Don't report a type mismatch if there is no actual mismatch, only a
959       // type missing, to reduce noise:
960       if (OpTy.isValid()) {
961         // Only the first valid type for a type index will be printed: don't
962         // overwrite it later so it's always clear which type was expected:
963         if (!Types[TypeIdx].isValid())
964           Types[TypeIdx] = OpTy;
965         else if (Types[TypeIdx] != OpTy)
966           report("Type mismatch in generic instruction", MO, I, OpTy);
967       } else {
968         // Generic instructions must have types attached to their operands.
969         report("Generic instruction is missing a virtual register type", MO, I);
970       }
971     }
972 
973     // Generic opcodes must not have physical register operands.
974     for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
975       const MachineOperand *MO = &MI->getOperand(I);
976       if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
977         report("Generic instruction cannot have physical register", MO, I);
978     }
979 
980     // Avoid out of bounds in checks below. This was already reported earlier.
981     if (MI->getNumOperands() < MCID.getNumOperands())
982       return;
983   }
984 
985   StringRef ErrorInfo;
986   if (!TII->verifyInstruction(*MI, ErrorInfo))
987     report(ErrorInfo.data(), MI);
988 
989   // Verify properties of various specific instruction types
990   switch(MI->getOpcode()) {
991   default:
992     break;
993   case TargetOpcode::G_CONSTANT:
994   case TargetOpcode::G_FCONSTANT: {
995     if (MI->getNumOperands() < MCID.getNumOperands())
996       break;
997 
998     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
999     if (DstTy.isVector())
1000       report("Instruction cannot use a vector result type", MI);
1001     break;
1002   }
1003   case TargetOpcode::G_LOAD:
1004   case TargetOpcode::G_STORE:
1005     // Generic loads and stores must have a single MachineMemOperand
1006     // describing that access.
1007     if (!MI->hasOneMemOperand())
1008       report("Generic instruction accessing memory must have one mem operand",
1009              MI);
1010     break;
1011   case TargetOpcode::G_PHI: {
1012     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1013     if (!DstTy.isValid() ||
1014         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1015                      [this, &DstTy](const MachineOperand &MO) {
1016                        if (!MO.isReg())
1017                          return true;
1018                        LLT Ty = MRI->getType(MO.getReg());
1019                        if (!Ty.isValid() || (Ty != DstTy))
1020                          return false;
1021                        return true;
1022                      }))
1023       report("Generic Instruction G_PHI has operands with incompatible/missing "
1024              "types",
1025              MI);
1026     break;
1027   }
1028   case TargetOpcode::G_BITCAST: {
1029     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1030     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1031     if (!DstTy.isValid() || !SrcTy.isValid())
1032       break;
1033 
1034     if (SrcTy.isPointer() != DstTy.isPointer())
1035       report("bitcast cannot convert between pointers and other types", MI);
1036 
1037     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1038       report("bitcast sizes must match", MI);
1039     break;
1040   }
1041   case TargetOpcode::G_SEXT:
1042   case TargetOpcode::G_ZEXT:
1043   case TargetOpcode::G_ANYEXT:
1044   case TargetOpcode::G_TRUNC:
1045   case TargetOpcode::G_FPEXT:
1046   case TargetOpcode::G_FPTRUNC: {
1047     // Number of operands and presense of types is already checked (and
1048     // reported in case of any issues), so no need to report them again. As
1049     // we're trying to report as many issues as possible at once, however, the
1050     // instructions aren't guaranteed to have the right number of operands or
1051     // types attached to them at this point
1052     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1053     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1054     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1055     if (!DstTy.isValid() || !SrcTy.isValid())
1056       break;
1057 
1058     LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy;
1059     LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
1060     if (DstElTy.isPointer() || SrcElTy.isPointer())
1061       report("Generic extend/truncate can not operate on pointers", MI);
1062 
1063     if (DstTy.isVector() != SrcTy.isVector()) {
1064       report("Generic extend/truncate must be all-vector or all-scalar", MI);
1065       // Generally we try to report as many issues as possible at once, but in
1066       // this case it's not clear what should we be comparing the size of the
1067       // scalar with: the size of the whole vector or its lane. Instead of
1068       // making an arbitrary choice and emitting not so helpful message, let's
1069       // avoid the extra noise and stop here.
1070       break;
1071     }
1072     if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())
1073       report("Generic vector extend/truncate must preserve number of lanes",
1074              MI);
1075     unsigned DstSize = DstElTy.getSizeInBits();
1076     unsigned SrcSize = SrcElTy.getSizeInBits();
1077     switch (MI->getOpcode()) {
1078     default:
1079       if (DstSize <= SrcSize)
1080         report("Generic extend has destination type no larger than source", MI);
1081       break;
1082     case TargetOpcode::G_TRUNC:
1083     case TargetOpcode::G_FPTRUNC:
1084       if (DstSize >= SrcSize)
1085         report("Generic truncate has destination type no smaller than source",
1086                MI);
1087       break;
1088     }
1089     break;
1090   }
1091   case TargetOpcode::G_MERGE_VALUES: {
1092     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1093     // e.g. s2N = MERGE sN, sN
1094     // Merging multiple scalars into a vector is not allowed, should use
1095     // G_BUILD_VECTOR for that.
1096     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1097     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1098     if (DstTy.isVector() || SrcTy.isVector())
1099       report("G_MERGE_VALUES cannot operate on vectors", MI);
1100     break;
1101   }
1102   case TargetOpcode::G_UNMERGE_VALUES: {
1103     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1104     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1105     // For now G_UNMERGE can split vectors.
1106     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1107       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1108         report("G_UNMERGE_VALUES destination types do not match", MI);
1109     }
1110     if (SrcTy.getSizeInBits() !=
1111         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1112       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1113              MI);
1114     }
1115     break;
1116   }
1117   case TargetOpcode::G_BUILD_VECTOR: {
1118     // Source types must be scalars, dest type a vector. Total size of scalars
1119     // must match the dest vector size.
1120     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1121     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1122     if (!DstTy.isVector() || SrcEltTy.isVector())
1123       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1124     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1125       if (MRI->getType(MI->getOperand(1).getReg()) !=
1126           MRI->getType(MI->getOperand(i).getReg()))
1127         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1128     }
1129     if (DstTy.getSizeInBits() !=
1130         SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1))
1131       report("G_BUILD_VECTOR src operands total size don't match dest "
1132              "size.",
1133              MI);
1134     break;
1135   }
1136   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1137     // Source types must be scalars, dest type a vector. Scalar types must be
1138     // larger than the dest vector elt type, as this is a truncating operation.
1139     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1140     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1141     if (!DstTy.isVector() || SrcEltTy.isVector())
1142       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1143              MI);
1144     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1145       if (MRI->getType(MI->getOperand(1).getReg()) !=
1146           MRI->getType(MI->getOperand(i).getReg()))
1147         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1148                MI);
1149     }
1150     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1151       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1152              "dest elt type",
1153              MI);
1154     break;
1155   }
1156   case TargetOpcode::G_CONCAT_VECTORS: {
1157     // Source types should be vectors, and total size should match the dest
1158     // vector size.
1159     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1160     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1161     if (!DstTy.isVector() || !SrcTy.isVector())
1162       report("G_CONCAT_VECTOR requires vector source and destination operands",
1163              MI);
1164     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1165       if (MRI->getType(MI->getOperand(1).getReg()) !=
1166           MRI->getType(MI->getOperand(i).getReg()))
1167         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1168     }
1169     if (DstTy.getNumElements() !=
1170         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1171       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1172     break;
1173   }
1174   case TargetOpcode::COPY: {
1175     if (foundErrors)
1176       break;
1177     const MachineOperand &DstOp = MI->getOperand(0);
1178     const MachineOperand &SrcOp = MI->getOperand(1);
1179     LLT DstTy = MRI->getType(DstOp.getReg());
1180     LLT SrcTy = MRI->getType(SrcOp.getReg());
1181     if (SrcTy.isValid() && DstTy.isValid()) {
1182       // If both types are valid, check that the types are the same.
1183       if (SrcTy != DstTy) {
1184         report("Copy Instruction is illegal with mismatching types", MI);
1185         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1186       }
1187     }
1188     if (SrcTy.isValid() || DstTy.isValid()) {
1189       // If one of them have valid types, let's just check they have the same
1190       // size.
1191       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1192       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1193       assert(SrcSize && "Expecting size here");
1194       assert(DstSize && "Expecting size here");
1195       if (SrcSize != DstSize)
1196         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1197           report("Copy Instruction is illegal with mismatching sizes", MI);
1198           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1199                  << "\n";
1200         }
1201     }
1202     break;
1203   }
1204   case TargetOpcode::G_ICMP:
1205   case TargetOpcode::G_FCMP: {
1206     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1207     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1208 
1209     if ((DstTy.isVector() != SrcTy.isVector()) ||
1210         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1211       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1212 
1213     break;
1214   }
1215   case TargetOpcode::STATEPOINT:
1216     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1217         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1218         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1219       report("meta operands to STATEPOINT not constant!", MI);
1220     break;
1221 
1222     auto VerifyStackMapConstant = [&](unsigned Offset) {
1223       if (!MI->getOperand(Offset).isImm() ||
1224           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1225           !MI->getOperand(Offset + 1).isImm())
1226         report("stack map constant to STATEPOINT not well formed!", MI);
1227     };
1228     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1229     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1230     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1231     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1232 
1233     // TODO: verify we have properly encoded deopt arguments
1234   };
1235 }
1236 
1237 void
1238 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1239   const MachineInstr *MI = MO->getParent();
1240   const MCInstrDesc &MCID = MI->getDesc();
1241   unsigned NumDefs = MCID.getNumDefs();
1242   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1243     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1244 
1245   // The first MCID.NumDefs operands must be explicit register defines
1246   if (MONum < NumDefs) {
1247     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1248     if (!MO->isReg())
1249       report("Explicit definition must be a register", MO, MONum);
1250     else if (!MO->isDef() && !MCOI.isOptionalDef())
1251       report("Explicit definition marked as use", MO, MONum);
1252     else if (MO->isImplicit())
1253       report("Explicit definition marked as implicit", MO, MONum);
1254   } else if (MONum < MCID.getNumOperands()) {
1255     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1256     // Don't check if it's the last operand in a variadic instruction. See,
1257     // e.g., LDM_RET in the arm back end.
1258     if (MO->isReg() &&
1259         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1260       if (MO->isDef() && !MCOI.isOptionalDef())
1261         report("Explicit operand marked as def", MO, MONum);
1262       if (MO->isImplicit())
1263         report("Explicit operand marked as implicit", MO, MONum);
1264     }
1265 
1266     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1267     if (TiedTo != -1) {
1268       if (!MO->isReg())
1269         report("Tied use must be a register", MO, MONum);
1270       else if (!MO->isTied())
1271         report("Operand should be tied", MO, MONum);
1272       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1273         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1274       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1275         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1276         if (!MOTied.isReg())
1277           report("Tied counterpart must be a register", &MOTied, TiedTo);
1278         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1279                  MO->getReg() != MOTied.getReg())
1280           report("Tied physical registers must match.", &MOTied, TiedTo);
1281       }
1282     } else if (MO->isReg() && MO->isTied())
1283       report("Explicit operand should not be tied", MO, MONum);
1284   } else {
1285     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1286     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1287       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1288   }
1289 
1290   switch (MO->getType()) {
1291   case MachineOperand::MO_Register: {
1292     const unsigned Reg = MO->getReg();
1293     if (!Reg)
1294       return;
1295     if (MRI->tracksLiveness() && !MI->isDebugValue())
1296       checkLiveness(MO, MONum);
1297 
1298     // Verify the consistency of tied operands.
1299     if (MO->isTied()) {
1300       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1301       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1302       if (!OtherMO.isReg())
1303         report("Must be tied to a register", MO, MONum);
1304       if (!OtherMO.isTied())
1305         report("Missing tie flags on tied operand", MO, MONum);
1306       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1307         report("Inconsistent tie links", MO, MONum);
1308       if (MONum < MCID.getNumDefs()) {
1309         if (OtherIdx < MCID.getNumOperands()) {
1310           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1311             report("Explicit def tied to explicit use without tie constraint",
1312                    MO, MONum);
1313         } else {
1314           if (!OtherMO.isImplicit())
1315             report("Explicit def should be tied to implicit use", MO, MONum);
1316         }
1317       }
1318     }
1319 
1320     // Verify two-address constraints after leaving SSA form.
1321     unsigned DefIdx;
1322     if (!MRI->isSSA() && MO->isUse() &&
1323         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1324         Reg != MI->getOperand(DefIdx).getReg())
1325       report("Two-address instruction operands must be identical", MO, MONum);
1326 
1327     // Check register classes.
1328     unsigned SubIdx = MO->getSubReg();
1329 
1330     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1331       if (SubIdx) {
1332         report("Illegal subregister index for physical register", MO, MONum);
1333         return;
1334       }
1335       if (MONum < MCID.getNumOperands()) {
1336         if (const TargetRegisterClass *DRC =
1337               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1338           if (!DRC->contains(Reg)) {
1339             report("Illegal physical register for instruction", MO, MONum);
1340             errs() << printReg(Reg, TRI) << " is not a "
1341                    << TRI->getRegClassName(DRC) << " register.\n";
1342           }
1343         }
1344       }
1345       if (MO->isRenamable()) {
1346         if (MRI->isReserved(Reg)) {
1347           report("isRenamable set on reserved register", MO, MONum);
1348           return;
1349         }
1350       }
1351       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1352         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1353         return;
1354       }
1355     } else {
1356       // Virtual register.
1357       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1358       if (!RC) {
1359         // This is a generic virtual register.
1360 
1361         // If we're post-Select, we can't have gvregs anymore.
1362         if (isFunctionSelected) {
1363           report("Generic virtual register invalid in a Selected function",
1364                  MO, MONum);
1365           return;
1366         }
1367 
1368         // The gvreg must have a type and it must not have a SubIdx.
1369         LLT Ty = MRI->getType(Reg);
1370         if (!Ty.isValid()) {
1371           report("Generic virtual register must have a valid type", MO,
1372                  MONum);
1373           return;
1374         }
1375 
1376         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1377 
1378         // If we're post-RegBankSelect, the gvreg must have a bank.
1379         if (!RegBank && isFunctionRegBankSelected) {
1380           report("Generic virtual register must have a bank in a "
1381                  "RegBankSelected function",
1382                  MO, MONum);
1383           return;
1384         }
1385 
1386         // Make sure the register fits into its register bank if any.
1387         if (RegBank && Ty.isValid() &&
1388             RegBank->getSize() < Ty.getSizeInBits()) {
1389           report("Register bank is too small for virtual register", MO,
1390                  MONum);
1391           errs() << "Register bank " << RegBank->getName() << " too small("
1392                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1393                  << "-bits\n";
1394           return;
1395         }
1396         if (SubIdx)  {
1397           report("Generic virtual register does not subregister index", MO,
1398                  MONum);
1399           return;
1400         }
1401 
1402         // If this is a target specific instruction and this operand
1403         // has register class constraint, the virtual register must
1404         // comply to it.
1405         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1406             MONum < MCID.getNumOperands() &&
1407             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1408           report("Virtual register does not match instruction constraint", MO,
1409                  MONum);
1410           errs() << "Expect register class "
1411                  << TRI->getRegClassName(
1412                         TII->getRegClass(MCID, MONum, TRI, *MF))
1413                  << " but got nothing\n";
1414           return;
1415         }
1416 
1417         break;
1418       }
1419       if (SubIdx) {
1420         const TargetRegisterClass *SRC =
1421           TRI->getSubClassWithSubReg(RC, SubIdx);
1422         if (!SRC) {
1423           report("Invalid subregister index for virtual register", MO, MONum);
1424           errs() << "Register class " << TRI->getRegClassName(RC)
1425               << " does not support subreg index " << SubIdx << "\n";
1426           return;
1427         }
1428         if (RC != SRC) {
1429           report("Invalid register class for subregister index", MO, MONum);
1430           errs() << "Register class " << TRI->getRegClassName(RC)
1431               << " does not fully support subreg index " << SubIdx << "\n";
1432           return;
1433         }
1434       }
1435       if (MONum < MCID.getNumOperands()) {
1436         if (const TargetRegisterClass *DRC =
1437               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1438           if (SubIdx) {
1439             const TargetRegisterClass *SuperRC =
1440                 TRI->getLargestLegalSuperClass(RC, *MF);
1441             if (!SuperRC) {
1442               report("No largest legal super class exists.", MO, MONum);
1443               return;
1444             }
1445             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1446             if (!DRC) {
1447               report("No matching super-reg register class.", MO, MONum);
1448               return;
1449             }
1450           }
1451           if (!RC->hasSuperClassEq(DRC)) {
1452             report("Illegal virtual register for instruction", MO, MONum);
1453             errs() << "Expected a " << TRI->getRegClassName(DRC)
1454                 << " register, but got a " << TRI->getRegClassName(RC)
1455                 << " register\n";
1456           }
1457         }
1458       }
1459     }
1460     break;
1461   }
1462 
1463   case MachineOperand::MO_RegisterMask:
1464     regMasks.push_back(MO->getRegMask());
1465     break;
1466 
1467   case MachineOperand::MO_MachineBasicBlock:
1468     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1469       report("PHI operand is not in the CFG", MO, MONum);
1470     break;
1471 
1472   case MachineOperand::MO_FrameIndex:
1473     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1474         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1475       int FI = MO->getIndex();
1476       LiveInterval &LI = LiveStks->getInterval(FI);
1477       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1478 
1479       bool stores = MI->mayStore();
1480       bool loads = MI->mayLoad();
1481       // For a memory-to-memory move, we need to check if the frame
1482       // index is used for storing or loading, by inspecting the
1483       // memory operands.
1484       if (stores && loads) {
1485         for (auto *MMO : MI->memoperands()) {
1486           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1487           if (PSV == nullptr) continue;
1488           const FixedStackPseudoSourceValue *Value =
1489             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1490           if (Value == nullptr) continue;
1491           if (Value->getFrameIndex() != FI) continue;
1492 
1493           if (MMO->isStore())
1494             loads = false;
1495           else
1496             stores = false;
1497           break;
1498         }
1499         if (loads == stores)
1500           report("Missing fixed stack memoperand.", MI);
1501       }
1502       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1503         report("Instruction loads from dead spill slot", MO, MONum);
1504         errs() << "Live stack: " << LI << '\n';
1505       }
1506       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1507         report("Instruction stores to dead spill slot", MO, MONum);
1508         errs() << "Live stack: " << LI << '\n';
1509       }
1510     }
1511     break;
1512 
1513   default:
1514     break;
1515   }
1516 }
1517 
1518 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1519     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1520     LaneBitmask LaneMask) {
1521   LiveQueryResult LRQ = LR.Query(UseIdx);
1522   // Check if we have a segment at the use, note however that we only need one
1523   // live subregister range, the others may be dead.
1524   if (!LRQ.valueIn() && LaneMask.none()) {
1525     report("No live segment at use", MO, MONum);
1526     report_context_liverange(LR);
1527     report_context_vreg_regunit(VRegOrUnit);
1528     report_context(UseIdx);
1529   }
1530   if (MO->isKill() && !LRQ.isKill()) {
1531     report("Live range continues after kill flag", MO, MONum);
1532     report_context_liverange(LR);
1533     report_context_vreg_regunit(VRegOrUnit);
1534     if (LaneMask.any())
1535       report_context_lanemask(LaneMask);
1536     report_context(UseIdx);
1537   }
1538 }
1539 
1540 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1541     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1542     bool SubRangeCheck, LaneBitmask LaneMask) {
1543   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1544     assert(VNI && "NULL valno is not allowed");
1545     if (VNI->def != DefIdx) {
1546       report("Inconsistent valno->def", MO, MONum);
1547       report_context_liverange(LR);
1548       report_context_vreg_regunit(VRegOrUnit);
1549       if (LaneMask.any())
1550         report_context_lanemask(LaneMask);
1551       report_context(*VNI);
1552       report_context(DefIdx);
1553     }
1554   } else {
1555     report("No live segment at def", MO, MONum);
1556     report_context_liverange(LR);
1557     report_context_vreg_regunit(VRegOrUnit);
1558     if (LaneMask.any())
1559       report_context_lanemask(LaneMask);
1560     report_context(DefIdx);
1561   }
1562   // Check that, if the dead def flag is present, LiveInts agree.
1563   if (MO->isDead()) {
1564     LiveQueryResult LRQ = LR.Query(DefIdx);
1565     if (!LRQ.isDeadDef()) {
1566       assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1567              "Expecting a virtual register.");
1568       // A dead subreg def only tells us that the specific subreg is dead. There
1569       // could be other non-dead defs of other subregs, or we could have other
1570       // parts of the register being live through the instruction. So unless we
1571       // are checking liveness for a subrange it is ok for the live range to
1572       // continue, given that we have a dead def of a subregister.
1573       if (SubRangeCheck || MO->getSubReg() == 0) {
1574         report("Live range continues after dead def flag", MO, MONum);
1575         report_context_liverange(LR);
1576         report_context_vreg_regunit(VRegOrUnit);
1577         if (LaneMask.any())
1578           report_context_lanemask(LaneMask);
1579       }
1580     }
1581   }
1582 }
1583 
1584 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1585   const MachineInstr *MI = MO->getParent();
1586   const unsigned Reg = MO->getReg();
1587 
1588   // Both use and def operands can read a register.
1589   if (MO->readsReg()) {
1590     if (MO->isKill())
1591       addRegWithSubRegs(regsKilled, Reg);
1592 
1593     // Check that LiveVars knows this kill.
1594     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1595         MO->isKill()) {
1596       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1597       if (!is_contained(VI.Kills, MI))
1598         report("Kill missing from LiveVariables", MO, MONum);
1599     }
1600 
1601     // Check LiveInts liveness and kill.
1602     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1603       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1604       // Check the cached regunit intervals.
1605       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1606         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1607           if (MRI->isReservedRegUnit(*Units))
1608             continue;
1609           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1610             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1611         }
1612       }
1613 
1614       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1615         if (LiveInts->hasInterval(Reg)) {
1616           // This is a virtual register interval.
1617           const LiveInterval &LI = LiveInts->getInterval(Reg);
1618           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1619 
1620           if (LI.hasSubRanges() && !MO->isDef()) {
1621             unsigned SubRegIdx = MO->getSubReg();
1622             LaneBitmask MOMask = SubRegIdx != 0
1623                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1624                                : MRI->getMaxLaneMaskForVReg(Reg);
1625             LaneBitmask LiveInMask;
1626             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1627               if ((MOMask & SR.LaneMask).none())
1628                 continue;
1629               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1630               LiveQueryResult LRQ = SR.Query(UseIdx);
1631               if (LRQ.valueIn())
1632                 LiveInMask |= SR.LaneMask;
1633             }
1634             // At least parts of the register has to be live at the use.
1635             if ((LiveInMask & MOMask).none()) {
1636               report("No live subrange at use", MO, MONum);
1637               report_context(LI);
1638               report_context(UseIdx);
1639             }
1640           }
1641         } else {
1642           report("Virtual register has no live interval", MO, MONum);
1643         }
1644       }
1645     }
1646 
1647     // Use of a dead register.
1648     if (!regsLive.count(Reg)) {
1649       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1650         // Reserved registers may be used even when 'dead'.
1651         bool Bad = !isReserved(Reg);
1652         // We are fine if just any subregister has a defined value.
1653         if (Bad) {
1654           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1655                ++SubRegs) {
1656             if (regsLive.count(*SubRegs)) {
1657               Bad = false;
1658               break;
1659             }
1660           }
1661         }
1662         // If there is an additional implicit-use of a super register we stop
1663         // here. By definition we are fine if the super register is not
1664         // (completely) dead, if the complete super register is dead we will
1665         // get a report for its operand.
1666         if (Bad) {
1667           for (const MachineOperand &MOP : MI->uses()) {
1668             if (!MOP.isReg() || !MOP.isImplicit())
1669               continue;
1670 
1671             if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1672               continue;
1673 
1674             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1675                  ++SubRegs) {
1676               if (*SubRegs == Reg) {
1677                 Bad = false;
1678                 break;
1679               }
1680             }
1681           }
1682         }
1683         if (Bad)
1684           report("Using an undefined physical register", MO, MONum);
1685       } else if (MRI->def_empty(Reg)) {
1686         report("Reading virtual register without a def", MO, MONum);
1687       } else {
1688         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1689         // We don't know which virtual registers are live in, so only complain
1690         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1691         // must be live in. PHI instructions are handled separately.
1692         if (MInfo.regsKilled.count(Reg))
1693           report("Using a killed virtual register", MO, MONum);
1694         else if (!MI->isPHI())
1695           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1696       }
1697     }
1698   }
1699 
1700   if (MO->isDef()) {
1701     // Register defined.
1702     // TODO: verify that earlyclobber ops are not used.
1703     if (MO->isDead())
1704       addRegWithSubRegs(regsDead, Reg);
1705     else
1706       addRegWithSubRegs(regsDefined, Reg);
1707 
1708     // Verify SSA form.
1709     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1710         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1711       report("Multiple virtual register defs in SSA form", MO, MONum);
1712 
1713     // Check LiveInts for a live segment, but only for virtual registers.
1714     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1715       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1716       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1717 
1718       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1719         if (LiveInts->hasInterval(Reg)) {
1720           const LiveInterval &LI = LiveInts->getInterval(Reg);
1721           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1722 
1723           if (LI.hasSubRanges()) {
1724             unsigned SubRegIdx = MO->getSubReg();
1725             LaneBitmask MOMask = SubRegIdx != 0
1726               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1727               : MRI->getMaxLaneMaskForVReg(Reg);
1728             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1729               if ((SR.LaneMask & MOMask).none())
1730                 continue;
1731               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1732             }
1733           }
1734         } else {
1735           report("Virtual register has no Live interval", MO, MONum);
1736         }
1737       }
1738     }
1739   }
1740 }
1741 
1742 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1743 
1744 // This function gets called after visiting all instructions in a bundle. The
1745 // argument points to the bundle header.
1746 // Normal stand-alone instructions are also considered 'bundles', and this
1747 // function is called for all of them.
1748 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1749   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1750   set_union(MInfo.regsKilled, regsKilled);
1751   set_subtract(regsLive, regsKilled); regsKilled.clear();
1752   // Kill any masked registers.
1753   while (!regMasks.empty()) {
1754     const uint32_t *Mask = regMasks.pop_back_val();
1755     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1756       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1757           MachineOperand::clobbersPhysReg(Mask, *I))
1758         regsDead.push_back(*I);
1759   }
1760   set_subtract(regsLive, regsDead);   regsDead.clear();
1761   set_union(regsLive, regsDefined);   regsDefined.clear();
1762 }
1763 
1764 void
1765 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1766   MBBInfoMap[MBB].regsLiveOut = regsLive;
1767   regsLive.clear();
1768 
1769   if (Indexes) {
1770     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1771     if (!(stop > lastIndex)) {
1772       report("Block ends before last instruction index", MBB);
1773       errs() << "Block ends at " << stop
1774           << " last instruction was at " << lastIndex << '\n';
1775     }
1776     lastIndex = stop;
1777   }
1778 }
1779 
1780 // Calculate the largest possible vregsPassed sets. These are the registers that
1781 // can pass through an MBB live, but may not be live every time. It is assumed
1782 // that all vregsPassed sets are empty before the call.
1783 void MachineVerifier::calcRegsPassed() {
1784   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1785   // have any vregsPassed.
1786   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1787   for (const auto &MBB : *MF) {
1788     BBInfo &MInfo = MBBInfoMap[&MBB];
1789     if (!MInfo.reachable)
1790       continue;
1791     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1792            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1793       BBInfo &SInfo = MBBInfoMap[*SuI];
1794       if (SInfo.addPassed(MInfo.regsLiveOut))
1795         todo.insert(*SuI);
1796     }
1797   }
1798 
1799   // Iteratively push vregsPassed to successors. This will converge to the same
1800   // final state regardless of DenseSet iteration order.
1801   while (!todo.empty()) {
1802     const MachineBasicBlock *MBB = *todo.begin();
1803     todo.erase(MBB);
1804     BBInfo &MInfo = MBBInfoMap[MBB];
1805     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1806            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1807       if (*SuI == MBB)
1808         continue;
1809       BBInfo &SInfo = MBBInfoMap[*SuI];
1810       if (SInfo.addPassed(MInfo.vregsPassed))
1811         todo.insert(*SuI);
1812     }
1813   }
1814 }
1815 
1816 // Calculate the set of virtual registers that must be passed through each basic
1817 // block in order to satisfy the requirements of successor blocks. This is very
1818 // similar to calcRegsPassed, only backwards.
1819 void MachineVerifier::calcRegsRequired() {
1820   // First push live-in regs to predecessors' vregsRequired.
1821   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1822   for (const auto &MBB : *MF) {
1823     BBInfo &MInfo = MBBInfoMap[&MBB];
1824     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1825            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1826       BBInfo &PInfo = MBBInfoMap[*PrI];
1827       if (PInfo.addRequired(MInfo.vregsLiveIn))
1828         todo.insert(*PrI);
1829     }
1830   }
1831 
1832   // Iteratively push vregsRequired to predecessors. This will converge to the
1833   // same final state regardless of DenseSet iteration order.
1834   while (!todo.empty()) {
1835     const MachineBasicBlock *MBB = *todo.begin();
1836     todo.erase(MBB);
1837     BBInfo &MInfo = MBBInfoMap[MBB];
1838     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1839            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1840       if (*PrI == MBB)
1841         continue;
1842       BBInfo &SInfo = MBBInfoMap[*PrI];
1843       if (SInfo.addRequired(MInfo.vregsRequired))
1844         todo.insert(*PrI);
1845     }
1846   }
1847 }
1848 
1849 // Check PHI instructions at the beginning of MBB. It is assumed that
1850 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1851 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1852   BBInfo &MInfo = MBBInfoMap[&MBB];
1853 
1854   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1855   for (const MachineInstr &Phi : MBB) {
1856     if (!Phi.isPHI())
1857       break;
1858     seen.clear();
1859 
1860     const MachineOperand &MODef = Phi.getOperand(0);
1861     if (!MODef.isReg() || !MODef.isDef()) {
1862       report("Expected first PHI operand to be a register def", &MODef, 0);
1863       continue;
1864     }
1865     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1866         MODef.isEarlyClobber() || MODef.isDebug())
1867       report("Unexpected flag on PHI operand", &MODef, 0);
1868     unsigned DefReg = MODef.getReg();
1869     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1870       report("Expected first PHI operand to be a virtual register", &MODef, 0);
1871 
1872     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1873       const MachineOperand &MO0 = Phi.getOperand(I);
1874       if (!MO0.isReg()) {
1875         report("Expected PHI operand to be a register", &MO0, I);
1876         continue;
1877       }
1878       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1879           MO0.isDebug() || MO0.isTied())
1880         report("Unexpected flag on PHI operand", &MO0, I);
1881 
1882       const MachineOperand &MO1 = Phi.getOperand(I + 1);
1883       if (!MO1.isMBB()) {
1884         report("Expected PHI operand to be a basic block", &MO1, I + 1);
1885         continue;
1886       }
1887 
1888       const MachineBasicBlock &Pre = *MO1.getMBB();
1889       if (!Pre.isSuccessor(&MBB)) {
1890         report("PHI input is not a predecessor block", &MO1, I + 1);
1891         continue;
1892       }
1893 
1894       if (MInfo.reachable) {
1895         seen.insert(&Pre);
1896         BBInfo &PrInfo = MBBInfoMap[&Pre];
1897         if (!MO0.isUndef() && PrInfo.reachable &&
1898             !PrInfo.isLiveOut(MO0.getReg()))
1899           report("PHI operand is not live-out from predecessor", &MO0, I);
1900       }
1901     }
1902 
1903     // Did we see all predecessors?
1904     if (MInfo.reachable) {
1905       for (MachineBasicBlock *Pred : MBB.predecessors()) {
1906         if (!seen.count(Pred)) {
1907           report("Missing PHI operand", &Phi);
1908           errs() << printMBBReference(*Pred)
1909                  << " is a predecessor according to the CFG.\n";
1910         }
1911       }
1912     }
1913   }
1914 }
1915 
1916 void MachineVerifier::visitMachineFunctionAfter() {
1917   calcRegsPassed();
1918 
1919   for (const MachineBasicBlock &MBB : *MF)
1920     checkPHIOps(MBB);
1921 
1922   // Now check liveness info if available
1923   calcRegsRequired();
1924 
1925   // Check for killed virtual registers that should be live out.
1926   for (const auto &MBB : *MF) {
1927     BBInfo &MInfo = MBBInfoMap[&MBB];
1928     for (RegSet::iterator
1929          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1930          ++I)
1931       if (MInfo.regsKilled.count(*I)) {
1932         report("Virtual register killed in block, but needed live out.", &MBB);
1933         errs() << "Virtual register " << printReg(*I)
1934                << " is used after the block.\n";
1935       }
1936   }
1937 
1938   if (!MF->empty()) {
1939     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1940     for (RegSet::iterator
1941          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1942          ++I) {
1943       report("Virtual register defs don't dominate all uses.", MF);
1944       report_context_vreg(*I);
1945     }
1946   }
1947 
1948   if (LiveVars)
1949     verifyLiveVariables();
1950   if (LiveInts)
1951     verifyLiveIntervals();
1952 }
1953 
1954 void MachineVerifier::verifyLiveVariables() {
1955   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1956   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1957     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1958     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1959     for (const auto &MBB : *MF) {
1960       BBInfo &MInfo = MBBInfoMap[&MBB];
1961 
1962       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1963       if (MInfo.vregsRequired.count(Reg)) {
1964         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1965           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1966           errs() << "Virtual register " << printReg(Reg)
1967                  << " must be live through the block.\n";
1968         }
1969       } else {
1970         if (VI.AliveBlocks.test(MBB.getNumber())) {
1971           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1972           errs() << "Virtual register " << printReg(Reg)
1973                  << " is not needed live through the block.\n";
1974         }
1975       }
1976     }
1977   }
1978 }
1979 
1980 void MachineVerifier::verifyLiveIntervals() {
1981   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1982   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1983     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1984 
1985     // Spilling and splitting may leave unused registers around. Skip them.
1986     if (MRI->reg_nodbg_empty(Reg))
1987       continue;
1988 
1989     if (!LiveInts->hasInterval(Reg)) {
1990       report("Missing live interval for virtual register", MF);
1991       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
1992       continue;
1993     }
1994 
1995     const LiveInterval &LI = LiveInts->getInterval(Reg);
1996     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1997     verifyLiveInterval(LI);
1998   }
1999 
2000   // Verify all the cached regunit intervals.
2001   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2002     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2003       verifyLiveRange(*LR, i);
2004 }
2005 
2006 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2007                                            const VNInfo *VNI, unsigned Reg,
2008                                            LaneBitmask LaneMask) {
2009   if (VNI->isUnused())
2010     return;
2011 
2012   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2013 
2014   if (!DefVNI) {
2015     report("Value not live at VNInfo def and not marked unused", MF);
2016     report_context(LR, Reg, LaneMask);
2017     report_context(*VNI);
2018     return;
2019   }
2020 
2021   if (DefVNI != VNI) {
2022     report("Live segment at def has different VNInfo", MF);
2023     report_context(LR, Reg, LaneMask);
2024     report_context(*VNI);
2025     return;
2026   }
2027 
2028   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2029   if (!MBB) {
2030     report("Invalid VNInfo definition index", MF);
2031     report_context(LR, Reg, LaneMask);
2032     report_context(*VNI);
2033     return;
2034   }
2035 
2036   if (VNI->isPHIDef()) {
2037     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2038       report("PHIDef VNInfo is not defined at MBB start", MBB);
2039       report_context(LR, Reg, LaneMask);
2040       report_context(*VNI);
2041     }
2042     return;
2043   }
2044 
2045   // Non-PHI def.
2046   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2047   if (!MI) {
2048     report("No instruction at VNInfo def index", MBB);
2049     report_context(LR, Reg, LaneMask);
2050     report_context(*VNI);
2051     return;
2052   }
2053 
2054   if (Reg != 0) {
2055     bool hasDef = false;
2056     bool isEarlyClobber = false;
2057     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2058       if (!MOI->isReg() || !MOI->isDef())
2059         continue;
2060       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2061         if (MOI->getReg() != Reg)
2062           continue;
2063       } else {
2064         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2065             !TRI->hasRegUnit(MOI->getReg(), Reg))
2066           continue;
2067       }
2068       if (LaneMask.any() &&
2069           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2070         continue;
2071       hasDef = true;
2072       if (MOI->isEarlyClobber())
2073         isEarlyClobber = true;
2074     }
2075 
2076     if (!hasDef) {
2077       report("Defining instruction does not modify register", MI);
2078       report_context(LR, Reg, LaneMask);
2079       report_context(*VNI);
2080     }
2081 
2082     // Early clobber defs begin at USE slots, but other defs must begin at
2083     // DEF slots.
2084     if (isEarlyClobber) {
2085       if (!VNI->def.isEarlyClobber()) {
2086         report("Early clobber def must be at an early-clobber slot", MBB);
2087         report_context(LR, Reg, LaneMask);
2088         report_context(*VNI);
2089       }
2090     } else if (!VNI->def.isRegister()) {
2091       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2092       report_context(LR, Reg, LaneMask);
2093       report_context(*VNI);
2094     }
2095   }
2096 }
2097 
2098 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2099                                              const LiveRange::const_iterator I,
2100                                              unsigned Reg, LaneBitmask LaneMask)
2101 {
2102   const LiveRange::Segment &S = *I;
2103   const VNInfo *VNI = S.valno;
2104   assert(VNI && "Live segment has no valno");
2105 
2106   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2107     report("Foreign valno in live segment", MF);
2108     report_context(LR, Reg, LaneMask);
2109     report_context(S);
2110     report_context(*VNI);
2111   }
2112 
2113   if (VNI->isUnused()) {
2114     report("Live segment valno is marked unused", MF);
2115     report_context(LR, Reg, LaneMask);
2116     report_context(S);
2117   }
2118 
2119   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2120   if (!MBB) {
2121     report("Bad start of live segment, no basic block", MF);
2122     report_context(LR, Reg, LaneMask);
2123     report_context(S);
2124     return;
2125   }
2126   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2127   if (S.start != MBBStartIdx && S.start != VNI->def) {
2128     report("Live segment must begin at MBB entry or valno def", MBB);
2129     report_context(LR, Reg, LaneMask);
2130     report_context(S);
2131   }
2132 
2133   const MachineBasicBlock *EndMBB =
2134     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2135   if (!EndMBB) {
2136     report("Bad end of live segment, no basic block", MF);
2137     report_context(LR, Reg, LaneMask);
2138     report_context(S);
2139     return;
2140   }
2141 
2142   // No more checks for live-out segments.
2143   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2144     return;
2145 
2146   // RegUnit intervals are allowed dead phis.
2147   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2148       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2149     return;
2150 
2151   // The live segment is ending inside EndMBB
2152   const MachineInstr *MI =
2153     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2154   if (!MI) {
2155     report("Live segment doesn't end at a valid instruction", EndMBB);
2156     report_context(LR, Reg, LaneMask);
2157     report_context(S);
2158     return;
2159   }
2160 
2161   // The block slot must refer to a basic block boundary.
2162   if (S.end.isBlock()) {
2163     report("Live segment ends at B slot of an instruction", EndMBB);
2164     report_context(LR, Reg, LaneMask);
2165     report_context(S);
2166   }
2167 
2168   if (S.end.isDead()) {
2169     // Segment ends on the dead slot.
2170     // That means there must be a dead def.
2171     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2172       report("Live segment ending at dead slot spans instructions", EndMBB);
2173       report_context(LR, Reg, LaneMask);
2174       report_context(S);
2175     }
2176   }
2177 
2178   // A live segment can only end at an early-clobber slot if it is being
2179   // redefined by an early-clobber def.
2180   if (S.end.isEarlyClobber()) {
2181     if (I+1 == LR.end() || (I+1)->start != S.end) {
2182       report("Live segment ending at early clobber slot must be "
2183              "redefined by an EC def in the same instruction", EndMBB);
2184       report_context(LR, Reg, LaneMask);
2185       report_context(S);
2186     }
2187   }
2188 
2189   // The following checks only apply to virtual registers. Physreg liveness
2190   // is too weird to check.
2191   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2192     // A live segment can end with either a redefinition, a kill flag on a
2193     // use, or a dead flag on a def.
2194     bool hasRead = false;
2195     bool hasSubRegDef = false;
2196     bool hasDeadDef = false;
2197     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2198       if (!MOI->isReg() || MOI->getReg() != Reg)
2199         continue;
2200       unsigned Sub = MOI->getSubReg();
2201       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2202                                  : LaneBitmask::getAll();
2203       if (MOI->isDef()) {
2204         if (Sub != 0) {
2205           hasSubRegDef = true;
2206           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2207           // mask for subregister defs. Read-undef defs will be handled by
2208           // readsReg below.
2209           SLM = ~SLM;
2210         }
2211         if (MOI->isDead())
2212           hasDeadDef = true;
2213       }
2214       if (LaneMask.any() && (LaneMask & SLM).none())
2215         continue;
2216       if (MOI->readsReg())
2217         hasRead = true;
2218     }
2219     if (S.end.isDead()) {
2220       // Make sure that the corresponding machine operand for a "dead" live
2221       // range has the dead flag. We cannot perform this check for subregister
2222       // liveranges as partially dead values are allowed.
2223       if (LaneMask.none() && !hasDeadDef) {
2224         report("Instruction ending live segment on dead slot has no dead flag",
2225                MI);
2226         report_context(LR, Reg, LaneMask);
2227         report_context(S);
2228       }
2229     } else {
2230       if (!hasRead) {
2231         // When tracking subregister liveness, the main range must start new
2232         // values on partial register writes, even if there is no read.
2233         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2234             !hasSubRegDef) {
2235           report("Instruction ending live segment doesn't read the register",
2236                  MI);
2237           report_context(LR, Reg, LaneMask);
2238           report_context(S);
2239         }
2240       }
2241     }
2242   }
2243 
2244   // Now check all the basic blocks in this live segment.
2245   MachineFunction::const_iterator MFI = MBB->getIterator();
2246   // Is this live segment the beginning of a non-PHIDef VN?
2247   if (S.start == VNI->def && !VNI->isPHIDef()) {
2248     // Not live-in to any blocks.
2249     if (MBB == EndMBB)
2250       return;
2251     // Skip this block.
2252     ++MFI;
2253   }
2254 
2255   SmallVector<SlotIndex, 4> Undefs;
2256   if (LaneMask.any()) {
2257     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2258     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2259   }
2260 
2261   while (true) {
2262     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2263     // We don't know how to track physregs into a landing pad.
2264     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2265         MFI->isEHPad()) {
2266       if (&*MFI == EndMBB)
2267         break;
2268       ++MFI;
2269       continue;
2270     }
2271 
2272     // Is VNI a PHI-def in the current block?
2273     bool IsPHI = VNI->isPHIDef() &&
2274       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2275 
2276     // Check that VNI is live-out of all predecessors.
2277     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2278          PE = MFI->pred_end(); PI != PE; ++PI) {
2279       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2280       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2281 
2282       // All predecessors must have a live-out value. However for a phi
2283       // instruction with subregister intervals
2284       // only one of the subregisters (not necessarily the current one) needs to
2285       // be defined.
2286       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2287         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2288           continue;
2289         report("Register not marked live out of predecessor", *PI);
2290         report_context(LR, Reg, LaneMask);
2291         report_context(*VNI);
2292         errs() << " live into " << printMBBReference(*MFI) << '@'
2293                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2294                << PEnd << '\n';
2295         continue;
2296       }
2297 
2298       // Only PHI-defs can take different predecessor values.
2299       if (!IsPHI && PVNI != VNI) {
2300         report("Different value live out of predecessor", *PI);
2301         report_context(LR, Reg, LaneMask);
2302         errs() << "Valno #" << PVNI->id << " live out of "
2303                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2304                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2305                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2306       }
2307     }
2308     if (&*MFI == EndMBB)
2309       break;
2310     ++MFI;
2311   }
2312 }
2313 
2314 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2315                                       LaneBitmask LaneMask) {
2316   for (const VNInfo *VNI : LR.valnos)
2317     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2318 
2319   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2320     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2321 }
2322 
2323 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2324   unsigned Reg = LI.reg;
2325   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2326   verifyLiveRange(LI, Reg);
2327 
2328   LaneBitmask Mask;
2329   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2330   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2331     if ((Mask & SR.LaneMask).any()) {
2332       report("Lane masks of sub ranges overlap in live interval", MF);
2333       report_context(LI);
2334     }
2335     if ((SR.LaneMask & ~MaxMask).any()) {
2336       report("Subrange lanemask is invalid", MF);
2337       report_context(LI);
2338     }
2339     if (SR.empty()) {
2340       report("Subrange must not be empty", MF);
2341       report_context(SR, LI.reg, SR.LaneMask);
2342     }
2343     Mask |= SR.LaneMask;
2344     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2345     if (!LI.covers(SR)) {
2346       report("A Subrange is not covered by the main range", MF);
2347       report_context(LI);
2348     }
2349   }
2350 
2351   // Check the LI only has one connected component.
2352   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2353   unsigned NumComp = ConEQ.Classify(LI);
2354   if (NumComp > 1) {
2355     report("Multiple connected components in live interval", MF);
2356     report_context(LI);
2357     for (unsigned comp = 0; comp != NumComp; ++comp) {
2358       errs() << comp << ": valnos";
2359       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2360            E = LI.vni_end(); I!=E; ++I)
2361         if (comp == ConEQ.getEqClass(*I))
2362           errs() << ' ' << (*I)->id;
2363       errs() << '\n';
2364     }
2365   }
2366 }
2367 
2368 namespace {
2369 
2370   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2371   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2372   // value is zero.
2373   // We use a bool plus an integer to capture the stack state.
2374   struct StackStateOfBB {
2375     StackStateOfBB() = default;
2376     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2377       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2378       ExitIsSetup(ExitSetup) {}
2379 
2380     // Can be negative, which means we are setting up a frame.
2381     int EntryValue = 0;
2382     int ExitValue = 0;
2383     bool EntryIsSetup = false;
2384     bool ExitIsSetup = false;
2385   };
2386 
2387 } // end anonymous namespace
2388 
2389 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2390 /// by a FrameDestroy <n>, stack adjustments are identical on all
2391 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2392 void MachineVerifier::verifyStackFrame() {
2393   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2394   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2395   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2396     return;
2397 
2398   SmallVector<StackStateOfBB, 8> SPState;
2399   SPState.resize(MF->getNumBlockIDs());
2400   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2401 
2402   // Visit the MBBs in DFS order.
2403   for (df_ext_iterator<const MachineFunction *,
2404                        df_iterator_default_set<const MachineBasicBlock *>>
2405        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2406        DFI != DFE; ++DFI) {
2407     const MachineBasicBlock *MBB = *DFI;
2408 
2409     StackStateOfBB BBState;
2410     // Check the exit state of the DFS stack predecessor.
2411     if (DFI.getPathLength() >= 2) {
2412       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2413       assert(Reachable.count(StackPred) &&
2414              "DFS stack predecessor is already visited.\n");
2415       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2416       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2417       BBState.ExitValue = BBState.EntryValue;
2418       BBState.ExitIsSetup = BBState.EntryIsSetup;
2419     }
2420 
2421     // Update stack state by checking contents of MBB.
2422     for (const auto &I : *MBB) {
2423       if (I.getOpcode() == FrameSetupOpcode) {
2424         if (BBState.ExitIsSetup)
2425           report("FrameSetup is after another FrameSetup", &I);
2426         BBState.ExitValue -= TII->getFrameTotalSize(I);
2427         BBState.ExitIsSetup = true;
2428       }
2429 
2430       if (I.getOpcode() == FrameDestroyOpcode) {
2431         int Size = TII->getFrameTotalSize(I);
2432         if (!BBState.ExitIsSetup)
2433           report("FrameDestroy is not after a FrameSetup", &I);
2434         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2435                                                BBState.ExitValue;
2436         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2437           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2438           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2439               << AbsSPAdj << ">.\n";
2440         }
2441         BBState.ExitValue += Size;
2442         BBState.ExitIsSetup = false;
2443       }
2444     }
2445     SPState[MBB->getNumber()] = BBState;
2446 
2447     // Make sure the exit state of any predecessor is consistent with the entry
2448     // state.
2449     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2450          E = MBB->pred_end(); I != E; ++I) {
2451       if (Reachable.count(*I) &&
2452           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2453            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2454         report("The exit stack state of a predecessor is inconsistent.", MBB);
2455         errs() << "Predecessor " << printMBBReference(*(*I))
2456                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2457                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2458                << printMBBReference(*MBB) << " has entry state ("
2459                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2460       }
2461     }
2462 
2463     // Make sure the entry state of any successor is consistent with the exit
2464     // state.
2465     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2466          E = MBB->succ_end(); I != E; ++I) {
2467       if (Reachable.count(*I) &&
2468           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2469            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2470         report("The entry stack state of a successor is inconsistent.", MBB);
2471         errs() << "Successor " << printMBBReference(*(*I))
2472                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2473                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2474                << printMBBReference(*MBB) << " has exit state ("
2475                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2476       }
2477     }
2478 
2479     // Make sure a basic block with return ends with zero stack adjustment.
2480     if (!MBB->empty() && MBB->back().isReturn()) {
2481       if (BBState.ExitIsSetup)
2482         report("A return block ends with a FrameSetup.", MBB);
2483       if (BBState.ExitValue)
2484         report("A return block ends with a nonzero stack adjustment.", MBB);
2485     }
2486   }
2487 }
2488