1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "LiveRangeCalc.h" 27 #include "llvm/ADT/BitVector.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/DenseSet.h" 30 #include "llvm/ADT/DepthFirstIterator.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SetOperations.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/Twine.h" 37 #include "llvm/Analysis/EHPersonalities.h" 38 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 39 #include "llvm/CodeGen/LiveInterval.h" 40 #include "llvm/CodeGen/LiveIntervals.h" 41 #include "llvm/CodeGen/LiveStacks.h" 42 #include "llvm/CodeGen/LiveVariables.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/PseudoSourceValue.h" 53 #include "llvm/CodeGen/SlotIndexes.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetOpcodes.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/InlineAsm.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/MC/LaneBitmask.h" 64 #include "llvm/MC/MCAsmInfo.h" 65 #include "llvm/MC/MCInstrDesc.h" 66 #include "llvm/MC/MCRegisterInfo.h" 67 #include "llvm/MC/MCTargetOptions.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/LowLevelTypeImpl.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 83 using namespace llvm; 84 85 namespace { 86 87 struct MachineVerifier { 88 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 89 90 unsigned verify(MachineFunction &MF); 91 92 Pass *const PASS; 93 const char *Banner; 94 const MachineFunction *MF; 95 const TargetMachine *TM; 96 const TargetInstrInfo *TII; 97 const TargetRegisterInfo *TRI; 98 const MachineRegisterInfo *MRI; 99 100 unsigned foundErrors; 101 102 // Avoid querying the MachineFunctionProperties for each operand. 103 bool isFunctionRegBankSelected; 104 bool isFunctionSelected; 105 106 using RegVector = SmallVector<unsigned, 16>; 107 using RegMaskVector = SmallVector<const uint32_t *, 4>; 108 using RegSet = DenseSet<unsigned>; 109 using RegMap = DenseMap<unsigned, const MachineInstr *>; 110 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 111 112 const MachineInstr *FirstNonPHI; 113 const MachineInstr *FirstTerminator; 114 BlockSet FunctionBlocks; 115 116 BitVector regsReserved; 117 RegSet regsLive; 118 RegVector regsDefined, regsDead, regsKilled; 119 RegMaskVector regMasks; 120 121 SlotIndex lastIndex; 122 123 // Add Reg and any sub-registers to RV 124 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 125 RV.push_back(Reg); 126 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 127 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 128 RV.push_back(*SubRegs); 129 } 130 131 struct BBInfo { 132 // Is this MBB reachable from the MF entry point? 133 bool reachable = false; 134 135 // Vregs that must be live in because they are used without being 136 // defined. Map value is the user. 137 RegMap vregsLiveIn; 138 139 // Regs killed in MBB. They may be defined again, and will then be in both 140 // regsKilled and regsLiveOut. 141 RegSet regsKilled; 142 143 // Regs defined in MBB and live out. Note that vregs passing through may 144 // be live out without being mentioned here. 145 RegSet regsLiveOut; 146 147 // Vregs that pass through MBB untouched. This set is disjoint from 148 // regsKilled and regsLiveOut. 149 RegSet vregsPassed; 150 151 // Vregs that must pass through MBB because they are needed by a successor 152 // block. This set is disjoint from regsLiveOut. 153 RegSet vregsRequired; 154 155 // Set versions of block's predecessor and successor lists. 156 BlockSet Preds, Succs; 157 158 BBInfo() = default; 159 160 // Add register to vregsPassed if it belongs there. Return true if 161 // anything changed. 162 bool addPassed(unsigned Reg) { 163 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 164 return false; 165 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 166 return false; 167 return vregsPassed.insert(Reg).second; 168 } 169 170 // Same for a full set. 171 bool addPassed(const RegSet &RS) { 172 bool changed = false; 173 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 174 if (addPassed(*I)) 175 changed = true; 176 return changed; 177 } 178 179 // Add register to vregsRequired if it belongs there. Return true if 180 // anything changed. 181 bool addRequired(unsigned Reg) { 182 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 183 return false; 184 if (regsLiveOut.count(Reg)) 185 return false; 186 return vregsRequired.insert(Reg).second; 187 } 188 189 // Same for a full set. 190 bool addRequired(const RegSet &RS) { 191 bool changed = false; 192 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 193 if (addRequired(*I)) 194 changed = true; 195 return changed; 196 } 197 198 // Same for a full map. 199 bool addRequired(const RegMap &RM) { 200 bool changed = false; 201 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 202 if (addRequired(I->first)) 203 changed = true; 204 return changed; 205 } 206 207 // Live-out registers are either in regsLiveOut or vregsPassed. 208 bool isLiveOut(unsigned Reg) const { 209 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 210 } 211 }; 212 213 // Extra register info per MBB. 214 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 215 216 bool isReserved(unsigned Reg) { 217 return Reg < regsReserved.size() && regsReserved.test(Reg); 218 } 219 220 bool isAllocatable(unsigned Reg) const { 221 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 222 !regsReserved.test(Reg); 223 } 224 225 // Analysis information if available 226 LiveVariables *LiveVars; 227 LiveIntervals *LiveInts; 228 LiveStacks *LiveStks; 229 SlotIndexes *Indexes; 230 231 void visitMachineFunctionBefore(); 232 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 233 void visitMachineBundleBefore(const MachineInstr *MI); 234 void visitMachineInstrBefore(const MachineInstr *MI); 235 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 236 void visitMachineInstrAfter(const MachineInstr *MI); 237 void visitMachineBundleAfter(const MachineInstr *MI); 238 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 239 void visitMachineFunctionAfter(); 240 241 void report(const char *msg, const MachineFunction *MF); 242 void report(const char *msg, const MachineBasicBlock *MBB); 243 void report(const char *msg, const MachineInstr *MI); 244 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 245 LLT MOVRegType = LLT{}); 246 247 void report_context(const LiveInterval &LI) const; 248 void report_context(const LiveRange &LR, unsigned VRegUnit, 249 LaneBitmask LaneMask) const; 250 void report_context(const LiveRange::Segment &S) const; 251 void report_context(const VNInfo &VNI) const; 252 void report_context(SlotIndex Pos) const; 253 void report_context_liverange(const LiveRange &LR) const; 254 void report_context_lanemask(LaneBitmask LaneMask) const; 255 void report_context_vreg(unsigned VReg) const; 256 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 257 258 void verifyInlineAsm(const MachineInstr *MI); 259 260 void checkLiveness(const MachineOperand *MO, unsigned MONum); 261 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 262 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 263 LaneBitmask LaneMask = LaneBitmask::getNone()); 264 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 265 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 266 bool SubRangeCheck = false, 267 LaneBitmask LaneMask = LaneBitmask::getNone()); 268 269 void markReachable(const MachineBasicBlock *MBB); 270 void calcRegsPassed(); 271 void checkPHIOps(const MachineBasicBlock &MBB); 272 273 void calcRegsRequired(); 274 void verifyLiveVariables(); 275 void verifyLiveIntervals(); 276 void verifyLiveInterval(const LiveInterval&); 277 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 278 LaneBitmask); 279 void verifyLiveRangeSegment(const LiveRange&, 280 const LiveRange::const_iterator I, unsigned, 281 LaneBitmask); 282 void verifyLiveRange(const LiveRange&, unsigned, 283 LaneBitmask LaneMask = LaneBitmask::getNone()); 284 285 void verifyStackFrame(); 286 287 void verifySlotIndexes() const; 288 void verifyProperties(const MachineFunction &MF); 289 }; 290 291 struct MachineVerifierPass : public MachineFunctionPass { 292 static char ID; // Pass ID, replacement for typeid 293 294 const std::string Banner; 295 296 MachineVerifierPass(std::string banner = std::string()) 297 : MachineFunctionPass(ID), Banner(std::move(banner)) { 298 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 299 } 300 301 void getAnalysisUsage(AnalysisUsage &AU) const override { 302 AU.setPreservesAll(); 303 MachineFunctionPass::getAnalysisUsage(AU); 304 } 305 306 bool runOnMachineFunction(MachineFunction &MF) override { 307 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 308 if (FoundErrors) 309 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 310 return false; 311 } 312 }; 313 314 } // end anonymous namespace 315 316 char MachineVerifierPass::ID = 0; 317 318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 319 "Verify generated machine code", false, false) 320 321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 322 return new MachineVerifierPass(Banner); 323 } 324 325 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 326 const { 327 MachineFunction &MF = const_cast<MachineFunction&>(*this); 328 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 329 if (AbortOnErrors && FoundErrors) 330 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 331 return FoundErrors == 0; 332 } 333 334 void MachineVerifier::verifySlotIndexes() const { 335 if (Indexes == nullptr) 336 return; 337 338 // Ensure the IdxMBB list is sorted by slot indexes. 339 SlotIndex Last; 340 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 341 E = Indexes->MBBIndexEnd(); I != E; ++I) { 342 assert(!Last.isValid() || I->first > Last); 343 Last = I->first; 344 } 345 } 346 347 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 348 // If a pass has introduced virtual registers without clearing the 349 // NoVRegs property (or set it without allocating the vregs) 350 // then report an error. 351 if (MF.getProperties().hasProperty( 352 MachineFunctionProperties::Property::NoVRegs) && 353 MRI->getNumVirtRegs()) 354 report("Function has NoVRegs property but there are VReg operands", &MF); 355 } 356 357 unsigned MachineVerifier::verify(MachineFunction &MF) { 358 foundErrors = 0; 359 360 this->MF = &MF; 361 TM = &MF.getTarget(); 362 TII = MF.getSubtarget().getInstrInfo(); 363 TRI = MF.getSubtarget().getRegisterInfo(); 364 MRI = &MF.getRegInfo(); 365 366 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 367 MachineFunctionProperties::Property::FailedISel); 368 369 // If we're mid-GlobalISel and we already triggered the fallback path then 370 // it's expected that the MIR is somewhat broken but that's ok since we'll 371 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 372 if (isFunctionFailedISel) 373 return foundErrors; 374 375 isFunctionRegBankSelected = 376 !isFunctionFailedISel && 377 MF.getProperties().hasProperty( 378 MachineFunctionProperties::Property::RegBankSelected); 379 isFunctionSelected = !isFunctionFailedISel && 380 MF.getProperties().hasProperty( 381 MachineFunctionProperties::Property::Selected); 382 LiveVars = nullptr; 383 LiveInts = nullptr; 384 LiveStks = nullptr; 385 Indexes = nullptr; 386 if (PASS) { 387 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 388 // We don't want to verify LiveVariables if LiveIntervals is available. 389 if (!LiveInts) 390 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 391 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 392 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 393 } 394 395 verifySlotIndexes(); 396 397 verifyProperties(MF); 398 399 visitMachineFunctionBefore(); 400 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 401 MFI!=MFE; ++MFI) { 402 visitMachineBasicBlockBefore(&*MFI); 403 // Keep track of the current bundle header. 404 const MachineInstr *CurBundle = nullptr; 405 // Do we expect the next instruction to be part of the same bundle? 406 bool InBundle = false; 407 408 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 409 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 410 if (MBBI->getParent() != &*MFI) { 411 report("Bad instruction parent pointer", &*MFI); 412 errs() << "Instruction: " << *MBBI; 413 continue; 414 } 415 416 // Check for consistent bundle flags. 417 if (InBundle && !MBBI->isBundledWithPred()) 418 report("Missing BundledPred flag, " 419 "BundledSucc was set on predecessor", 420 &*MBBI); 421 if (!InBundle && MBBI->isBundledWithPred()) 422 report("BundledPred flag is set, " 423 "but BundledSucc not set on predecessor", 424 &*MBBI); 425 426 // Is this a bundle header? 427 if (!MBBI->isInsideBundle()) { 428 if (CurBundle) 429 visitMachineBundleAfter(CurBundle); 430 CurBundle = &*MBBI; 431 visitMachineBundleBefore(CurBundle); 432 } else if (!CurBundle) 433 report("No bundle header", &*MBBI); 434 visitMachineInstrBefore(&*MBBI); 435 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 436 const MachineInstr &MI = *MBBI; 437 const MachineOperand &Op = MI.getOperand(I); 438 if (Op.getParent() != &MI) { 439 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 440 // functions when replacing operands of a MachineInstr. 441 report("Instruction has operand with wrong parent set", &MI); 442 } 443 444 visitMachineOperand(&Op, I); 445 } 446 447 visitMachineInstrAfter(&*MBBI); 448 449 // Was this the last bundled instruction? 450 InBundle = MBBI->isBundledWithSucc(); 451 } 452 if (CurBundle) 453 visitMachineBundleAfter(CurBundle); 454 if (InBundle) 455 report("BundledSucc flag set on last instruction in block", &MFI->back()); 456 visitMachineBasicBlockAfter(&*MFI); 457 } 458 visitMachineFunctionAfter(); 459 460 // Clean up. 461 regsLive.clear(); 462 regsDefined.clear(); 463 regsDead.clear(); 464 regsKilled.clear(); 465 regMasks.clear(); 466 MBBInfoMap.clear(); 467 468 return foundErrors; 469 } 470 471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 472 assert(MF); 473 errs() << '\n'; 474 if (!foundErrors++) { 475 if (Banner) 476 errs() << "# " << Banner << '\n'; 477 if (LiveInts != nullptr) 478 LiveInts->print(errs()); 479 else 480 MF->print(errs(), Indexes); 481 } 482 errs() << "*** Bad machine code: " << msg << " ***\n" 483 << "- function: " << MF->getName() << "\n"; 484 } 485 486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 487 assert(MBB); 488 report(msg, MBB->getParent()); 489 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 490 << MBB->getName() << " (" << (const void *)MBB << ')'; 491 if (Indexes) 492 errs() << " [" << Indexes->getMBBStartIdx(MBB) 493 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 494 errs() << '\n'; 495 } 496 497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 498 assert(MI); 499 report(msg, MI->getParent()); 500 errs() << "- instruction: "; 501 if (Indexes && Indexes->hasIndex(*MI)) 502 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 503 MI->print(errs(), /*SkipOpers=*/true); 504 } 505 506 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 507 unsigned MONum, LLT MOVRegType) { 508 assert(MO); 509 report(msg, MO->getParent()); 510 errs() << "- operand " << MONum << ": "; 511 MO->print(errs(), MOVRegType, TRI); 512 errs() << "\n"; 513 } 514 515 void MachineVerifier::report_context(SlotIndex Pos) const { 516 errs() << "- at: " << Pos << '\n'; 517 } 518 519 void MachineVerifier::report_context(const LiveInterval &LI) const { 520 errs() << "- interval: " << LI << '\n'; 521 } 522 523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 524 LaneBitmask LaneMask) const { 525 report_context_liverange(LR); 526 report_context_vreg_regunit(VRegUnit); 527 if (LaneMask.any()) 528 report_context_lanemask(LaneMask); 529 } 530 531 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 532 errs() << "- segment: " << S << '\n'; 533 } 534 535 void MachineVerifier::report_context(const VNInfo &VNI) const { 536 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 537 } 538 539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 540 errs() << "- liverange: " << LR << '\n'; 541 } 542 543 void MachineVerifier::report_context_vreg(unsigned VReg) const { 544 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 545 } 546 547 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 548 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 549 report_context_vreg(VRegOrUnit); 550 } else { 551 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 552 } 553 } 554 555 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 556 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 557 } 558 559 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 560 BBInfo &MInfo = MBBInfoMap[MBB]; 561 if (!MInfo.reachable) { 562 MInfo.reachable = true; 563 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 564 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 565 markReachable(*SuI); 566 } 567 } 568 569 void MachineVerifier::visitMachineFunctionBefore() { 570 lastIndex = SlotIndex(); 571 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 572 : TRI->getReservedRegs(*MF); 573 574 if (!MF->empty()) 575 markReachable(&MF->front()); 576 577 // Build a set of the basic blocks in the function. 578 FunctionBlocks.clear(); 579 for (const auto &MBB : *MF) { 580 FunctionBlocks.insert(&MBB); 581 BBInfo &MInfo = MBBInfoMap[&MBB]; 582 583 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 584 if (MInfo.Preds.size() != MBB.pred_size()) 585 report("MBB has duplicate entries in its predecessor list.", &MBB); 586 587 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 588 if (MInfo.Succs.size() != MBB.succ_size()) 589 report("MBB has duplicate entries in its successor list.", &MBB); 590 } 591 592 // Check that the register use lists are sane. 593 MRI->verifyUseLists(); 594 595 if (!MF->empty()) 596 verifyStackFrame(); 597 } 598 599 // Does iterator point to a and b as the first two elements? 600 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 601 const MachineBasicBlock *a, const MachineBasicBlock *b) { 602 if (*i == a) 603 return *++i == b; 604 if (*i == b) 605 return *++i == a; 606 return false; 607 } 608 609 void 610 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 611 FirstTerminator = nullptr; 612 FirstNonPHI = nullptr; 613 614 if (!MF->getProperties().hasProperty( 615 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 616 // If this block has allocatable physical registers live-in, check that 617 // it is an entry block or landing pad. 618 for (const auto &LI : MBB->liveins()) { 619 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 620 MBB->getIterator() != MBB->getParent()->begin()) { 621 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 622 } 623 } 624 } 625 626 // Count the number of landing pad successors. 627 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 628 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 629 E = MBB->succ_end(); I != E; ++I) { 630 if ((*I)->isEHPad()) 631 LandingPadSuccs.insert(*I); 632 if (!FunctionBlocks.count(*I)) 633 report("MBB has successor that isn't part of the function.", MBB); 634 if (!MBBInfoMap[*I].Preds.count(MBB)) { 635 report("Inconsistent CFG", MBB); 636 errs() << "MBB is not in the predecessor list of the successor " 637 << printMBBReference(*(*I)) << ".\n"; 638 } 639 } 640 641 // Check the predecessor list. 642 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 643 E = MBB->pred_end(); I != E; ++I) { 644 if (!FunctionBlocks.count(*I)) 645 report("MBB has predecessor that isn't part of the function.", MBB); 646 if (!MBBInfoMap[*I].Succs.count(MBB)) { 647 report("Inconsistent CFG", MBB); 648 errs() << "MBB is not in the successor list of the predecessor " 649 << printMBBReference(*(*I)) << ".\n"; 650 } 651 } 652 653 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 654 const BasicBlock *BB = MBB->getBasicBlock(); 655 const Function &F = MF->getFunction(); 656 if (LandingPadSuccs.size() > 1 && 657 !(AsmInfo && 658 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 659 BB && isa<SwitchInst>(BB->getTerminator())) && 660 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 661 report("MBB has more than one landing pad successor", MBB); 662 663 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 664 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 665 SmallVector<MachineOperand, 4> Cond; 666 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 667 Cond)) { 668 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 669 // check whether its answers match up with reality. 670 if (!TBB && !FBB) { 671 // Block falls through to its successor. 672 MachineFunction::const_iterator MBBI = MBB->getIterator(); 673 ++MBBI; 674 if (MBBI == MF->end()) { 675 // It's possible that the block legitimately ends with a noreturn 676 // call or an unreachable, in which case it won't actually fall 677 // out the bottom of the function. 678 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 679 // It's possible that the block legitimately ends with a noreturn 680 // call or an unreachable, in which case it won't actuall fall 681 // out of the block. 682 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 683 report("MBB exits via unconditional fall-through but doesn't have " 684 "exactly one CFG successor!", MBB); 685 } else if (!MBB->isSuccessor(&*MBBI)) { 686 report("MBB exits via unconditional fall-through but its successor " 687 "differs from its CFG successor!", MBB); 688 } 689 if (!MBB->empty() && MBB->back().isBarrier() && 690 !TII->isPredicated(MBB->back())) { 691 report("MBB exits via unconditional fall-through but ends with a " 692 "barrier instruction!", MBB); 693 } 694 if (!Cond.empty()) { 695 report("MBB exits via unconditional fall-through but has a condition!", 696 MBB); 697 } 698 } else if (TBB && !FBB && Cond.empty()) { 699 // Block unconditionally branches somewhere. 700 // If the block has exactly one successor, that happens to be a 701 // landingpad, accept it as valid control flow. 702 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 703 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 704 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 705 report("MBB exits via unconditional branch but doesn't have " 706 "exactly one CFG successor!", MBB); 707 } else if (!MBB->isSuccessor(TBB)) { 708 report("MBB exits via unconditional branch but the CFG " 709 "successor doesn't match the actual successor!", MBB); 710 } 711 if (MBB->empty()) { 712 report("MBB exits via unconditional branch but doesn't contain " 713 "any instructions!", MBB); 714 } else if (!MBB->back().isBarrier()) { 715 report("MBB exits via unconditional branch but doesn't end with a " 716 "barrier instruction!", MBB); 717 } else if (!MBB->back().isTerminator()) { 718 report("MBB exits via unconditional branch but the branch isn't a " 719 "terminator instruction!", MBB); 720 } 721 } else if (TBB && !FBB && !Cond.empty()) { 722 // Block conditionally branches somewhere, otherwise falls through. 723 MachineFunction::const_iterator MBBI = MBB->getIterator(); 724 ++MBBI; 725 if (MBBI == MF->end()) { 726 report("MBB conditionally falls through out of function!", MBB); 727 } else if (MBB->succ_size() == 1) { 728 // A conditional branch with only one successor is weird, but allowed. 729 if (&*MBBI != TBB) 730 report("MBB exits via conditional branch/fall-through but only has " 731 "one CFG successor!", MBB); 732 else if (TBB != *MBB->succ_begin()) 733 report("MBB exits via conditional branch/fall-through but the CFG " 734 "successor don't match the actual successor!", MBB); 735 } else if (MBB->succ_size() != 2) { 736 report("MBB exits via conditional branch/fall-through but doesn't have " 737 "exactly two CFG successors!", MBB); 738 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 739 report("MBB exits via conditional branch/fall-through but the CFG " 740 "successors don't match the actual successors!", MBB); 741 } 742 if (MBB->empty()) { 743 report("MBB exits via conditional branch/fall-through but doesn't " 744 "contain any instructions!", MBB); 745 } else if (MBB->back().isBarrier()) { 746 report("MBB exits via conditional branch/fall-through but ends with a " 747 "barrier instruction!", MBB); 748 } else if (!MBB->back().isTerminator()) { 749 report("MBB exits via conditional branch/fall-through but the branch " 750 "isn't a terminator instruction!", MBB); 751 } 752 } else if (TBB && FBB) { 753 // Block conditionally branches somewhere, otherwise branches 754 // somewhere else. 755 if (MBB->succ_size() == 1) { 756 // A conditional branch with only one successor is weird, but allowed. 757 if (FBB != TBB) 758 report("MBB exits via conditional branch/branch through but only has " 759 "one CFG successor!", MBB); 760 else if (TBB != *MBB->succ_begin()) 761 report("MBB exits via conditional branch/branch through but the CFG " 762 "successor don't match the actual successor!", MBB); 763 } else if (MBB->succ_size() != 2) { 764 report("MBB exits via conditional branch/branch but doesn't have " 765 "exactly two CFG successors!", MBB); 766 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 767 report("MBB exits via conditional branch/branch but the CFG " 768 "successors don't match the actual successors!", MBB); 769 } 770 if (MBB->empty()) { 771 report("MBB exits via conditional branch/branch but doesn't " 772 "contain any instructions!", MBB); 773 } else if (!MBB->back().isBarrier()) { 774 report("MBB exits via conditional branch/branch but doesn't end with a " 775 "barrier instruction!", MBB); 776 } else if (!MBB->back().isTerminator()) { 777 report("MBB exits via conditional branch/branch but the branch " 778 "isn't a terminator instruction!", MBB); 779 } 780 if (Cond.empty()) { 781 report("MBB exits via conditional branch/branch but there's no " 782 "condition!", MBB); 783 } 784 } else { 785 report("AnalyzeBranch returned invalid data!", MBB); 786 } 787 } 788 789 regsLive.clear(); 790 if (MRI->tracksLiveness()) { 791 for (const auto &LI : MBB->liveins()) { 792 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 793 report("MBB live-in list contains non-physical register", MBB); 794 continue; 795 } 796 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 797 SubRegs.isValid(); ++SubRegs) 798 regsLive.insert(*SubRegs); 799 } 800 } 801 802 const MachineFrameInfo &MFI = MF->getFrameInfo(); 803 BitVector PR = MFI.getPristineRegs(*MF); 804 for (unsigned I : PR.set_bits()) { 805 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 806 SubRegs.isValid(); ++SubRegs) 807 regsLive.insert(*SubRegs); 808 } 809 810 regsKilled.clear(); 811 regsDefined.clear(); 812 813 if (Indexes) 814 lastIndex = Indexes->getMBBStartIdx(MBB); 815 } 816 817 // This function gets called for all bundle headers, including normal 818 // stand-alone unbundled instructions. 819 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 820 if (Indexes && Indexes->hasIndex(*MI)) { 821 SlotIndex idx = Indexes->getInstructionIndex(*MI); 822 if (!(idx > lastIndex)) { 823 report("Instruction index out of order", MI); 824 errs() << "Last instruction was at " << lastIndex << '\n'; 825 } 826 lastIndex = idx; 827 } 828 829 // Ensure non-terminators don't follow terminators. 830 // Ignore predicated terminators formed by if conversion. 831 // FIXME: If conversion shouldn't need to violate this rule. 832 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 833 if (!FirstTerminator) 834 FirstTerminator = MI; 835 } else if (FirstTerminator) { 836 report("Non-terminator instruction after the first terminator", MI); 837 errs() << "First terminator was:\t" << *FirstTerminator; 838 } 839 } 840 841 // The operands on an INLINEASM instruction must follow a template. 842 // Verify that the flag operands make sense. 843 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 844 // The first two operands on INLINEASM are the asm string and global flags. 845 if (MI->getNumOperands() < 2) { 846 report("Too few operands on inline asm", MI); 847 return; 848 } 849 if (!MI->getOperand(0).isSymbol()) 850 report("Asm string must be an external symbol", MI); 851 if (!MI->getOperand(1).isImm()) 852 report("Asm flags must be an immediate", MI); 853 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 854 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 855 // and Extra_IsConvergent = 32. 856 if (!isUInt<6>(MI->getOperand(1).getImm())) 857 report("Unknown asm flags", &MI->getOperand(1), 1); 858 859 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 860 861 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 862 unsigned NumOps; 863 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 864 const MachineOperand &MO = MI->getOperand(OpNo); 865 // There may be implicit ops after the fixed operands. 866 if (!MO.isImm()) 867 break; 868 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 869 } 870 871 if (OpNo > MI->getNumOperands()) 872 report("Missing operands in last group", MI); 873 874 // An optional MDNode follows the groups. 875 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 876 ++OpNo; 877 878 // All trailing operands must be implicit registers. 879 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 880 const MachineOperand &MO = MI->getOperand(OpNo); 881 if (!MO.isReg() || !MO.isImplicit()) 882 report("Expected implicit register after groups", &MO, OpNo); 883 } 884 } 885 886 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 887 const MCInstrDesc &MCID = MI->getDesc(); 888 if (MI->getNumOperands() < MCID.getNumOperands()) { 889 report("Too few operands", MI); 890 errs() << MCID.getNumOperands() << " operands expected, but " 891 << MI->getNumOperands() << " given.\n"; 892 } 893 894 if (MI->isPHI()) { 895 if (MF->getProperties().hasProperty( 896 MachineFunctionProperties::Property::NoPHIs)) 897 report("Found PHI instruction with NoPHIs property set", MI); 898 899 if (FirstNonPHI) 900 report("Found PHI instruction after non-PHI", MI); 901 } else if (FirstNonPHI == nullptr) 902 FirstNonPHI = MI; 903 904 // Check the tied operands. 905 if (MI->isInlineAsm()) 906 verifyInlineAsm(MI); 907 908 // Check the MachineMemOperands for basic consistency. 909 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 910 E = MI->memoperands_end(); 911 I != E; ++I) { 912 if ((*I)->isLoad() && !MI->mayLoad()) 913 report("Missing mayLoad flag", MI); 914 if ((*I)->isStore() && !MI->mayStore()) 915 report("Missing mayStore flag", MI); 916 } 917 918 // Debug values must not have a slot index. 919 // Other instructions must have one, unless they are inside a bundle. 920 if (LiveInts) { 921 bool mapped = !LiveInts->isNotInMIMap(*MI); 922 if (MI->isDebugInstr()) { 923 if (mapped) 924 report("Debug instruction has a slot index", MI); 925 } else if (MI->isInsideBundle()) { 926 if (mapped) 927 report("Instruction inside bundle has a slot index", MI); 928 } else { 929 if (!mapped) 930 report("Missing slot index", MI); 931 } 932 } 933 934 if (isPreISelGenericOpcode(MCID.getOpcode())) { 935 if (isFunctionSelected) 936 report("Unexpected generic instruction in a Selected function", MI); 937 938 // Check types. 939 SmallVector<LLT, 4> Types; 940 for (unsigned I = 0; I < MCID.getNumOperands(); ++I) { 941 if (!MCID.OpInfo[I].isGenericType()) 942 continue; 943 // Generic instructions specify type equality constraints between some of 944 // their operands. Make sure these are consistent. 945 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 946 Types.resize(std::max(TypeIdx + 1, Types.size())); 947 948 const MachineOperand *MO = &MI->getOperand(I); 949 LLT OpTy = MRI->getType(MO->getReg()); 950 // Don't report a type mismatch if there is no actual mismatch, only a 951 // type missing, to reduce noise: 952 if (OpTy.isValid()) { 953 // Only the first valid type for a type index will be printed: don't 954 // overwrite it later so it's always clear which type was expected: 955 if (!Types[TypeIdx].isValid()) 956 Types[TypeIdx] = OpTy; 957 else if (Types[TypeIdx] != OpTy) 958 report("Type mismatch in generic instruction", MO, I, OpTy); 959 } else { 960 // Generic instructions must have types attached to their operands. 961 report("Generic instruction is missing a virtual register type", MO, I); 962 } 963 } 964 965 // Generic opcodes must not have physical register operands. 966 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 967 const MachineOperand *MO = &MI->getOperand(I); 968 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) 969 report("Generic instruction cannot have physical register", MO, I); 970 } 971 } 972 973 StringRef ErrorInfo; 974 if (!TII->verifyInstruction(*MI, ErrorInfo)) 975 report(ErrorInfo.data(), MI); 976 977 // Verify properties of various specific instruction types 978 switch(MI->getOpcode()) { 979 default: 980 break; 981 case TargetOpcode::G_LOAD: 982 case TargetOpcode::G_STORE: 983 // Generic loads and stores must have a single MachineMemOperand 984 // describing that access. 985 if (!MI->hasOneMemOperand()) 986 report("Generic instruction accessing memory must have one mem operand", 987 MI); 988 break; 989 case TargetOpcode::G_PHI: { 990 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 991 if (!DstTy.isValid() || 992 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 993 [this, &DstTy](const MachineOperand &MO) { 994 if (!MO.isReg()) 995 return true; 996 LLT Ty = MRI->getType(MO.getReg()); 997 if (!Ty.isValid() || (Ty != DstTy)) 998 return false; 999 return true; 1000 })) 1001 report("Generic Instruction G_PHI has operands with incompatible/missing " 1002 "types", 1003 MI); 1004 break; 1005 } 1006 case TargetOpcode::G_SEXT: 1007 case TargetOpcode::G_ZEXT: 1008 case TargetOpcode::G_ANYEXT: 1009 case TargetOpcode::G_TRUNC: 1010 case TargetOpcode::G_FPEXT: 1011 case TargetOpcode::G_FPTRUNC: { 1012 // Number of operands and presense of types is already checked (and 1013 // reported in case of any issues), so no need to report them again. As 1014 // we're trying to report as many issues as possible at once, however, the 1015 // instructions aren't guaranteed to have the right number of operands or 1016 // types attached to them at this point 1017 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1018 if (MI->getNumOperands() < MCID.getNumOperands()) 1019 break; 1020 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1021 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1022 if (!DstTy.isValid() || !SrcTy.isValid()) 1023 break; 1024 1025 LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy; 1026 LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy; 1027 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1028 report("Generic extend/truncate can not operate on pointers", MI); 1029 1030 if (DstTy.isVector() != SrcTy.isVector()) { 1031 report("Generic extend/truncate must be all-vector or all-scalar", MI); 1032 // Generally we try to report as many issues as possible at once, but in 1033 // this case it's not clear what should we be comparing the size of the 1034 // scalar with: the size of the whole vector or its lane. Instead of 1035 // making an arbitrary choice and emitting not so helpful message, let's 1036 // avoid the extra noise and stop here. 1037 break; 1038 } 1039 if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()) 1040 report("Generic vector extend/truncate must preserve number of lanes", 1041 MI); 1042 unsigned DstSize = DstElTy.getSizeInBits(); 1043 unsigned SrcSize = SrcElTy.getSizeInBits(); 1044 switch (MI->getOpcode()) { 1045 default: 1046 if (DstSize <= SrcSize) 1047 report("Generic extend has destination type no larger than source", MI); 1048 break; 1049 case TargetOpcode::G_TRUNC: 1050 case TargetOpcode::G_FPTRUNC: 1051 if (DstSize >= SrcSize) 1052 report("Generic truncate has destination type no smaller than source", 1053 MI); 1054 break; 1055 } 1056 break; 1057 } 1058 case TargetOpcode::G_BUILD_VECTOR: { 1059 // Source types must be scalars, dest type a vector. Total size of scalars 1060 // must match the dest vector size. 1061 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1062 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1063 if (!DstTy.isVector() || SrcEltTy.isVector()) 1064 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1065 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1066 if (MRI->getType(MI->getOperand(1).getReg()) != 1067 MRI->getType(MI->getOperand(i).getReg())) 1068 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1069 } 1070 if (DstTy.getSizeInBits() != 1071 SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1)) 1072 report("G_BUILD_VECTOR src operands total size don't match dest " 1073 "size.", 1074 MI); 1075 break; 1076 } 1077 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1078 // Source types must be scalars, dest type a vector. Scalar types must be 1079 // larger than the dest vector elt type, as this is a truncating operation. 1080 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1081 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1082 if (!DstTy.isVector() || SrcEltTy.isVector()) 1083 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1084 MI); 1085 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1086 if (MRI->getType(MI->getOperand(1).getReg()) != 1087 MRI->getType(MI->getOperand(i).getReg())) 1088 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1089 MI); 1090 } 1091 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1092 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1093 "dest elt type", 1094 MI); 1095 break; 1096 } 1097 case TargetOpcode::G_CONCAT_VECTORS: { 1098 // Source types should be vectors, and total size should match the dest 1099 // vector size. 1100 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1101 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1102 if (!DstTy.isVector() || !SrcTy.isVector()) 1103 report("G_CONCAT_VECTOR requires vector source and destination operands", 1104 MI); 1105 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1106 if (MRI->getType(MI->getOperand(1).getReg()) != 1107 MRI->getType(MI->getOperand(i).getReg())) 1108 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1109 } 1110 if (DstTy.getNumElements() != 1111 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1112 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1113 break; 1114 } 1115 case TargetOpcode::COPY: { 1116 if (foundErrors) 1117 break; 1118 const MachineOperand &DstOp = MI->getOperand(0); 1119 const MachineOperand &SrcOp = MI->getOperand(1); 1120 LLT DstTy = MRI->getType(DstOp.getReg()); 1121 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1122 if (SrcTy.isValid() && DstTy.isValid()) { 1123 // If both types are valid, check that the types are the same. 1124 if (SrcTy != DstTy) { 1125 report("Copy Instruction is illegal with mismatching types", MI); 1126 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1127 } 1128 } 1129 if (SrcTy.isValid() || DstTy.isValid()) { 1130 // If one of them have valid types, let's just check they have the same 1131 // size. 1132 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1133 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1134 assert(SrcSize && "Expecting size here"); 1135 assert(DstSize && "Expecting size here"); 1136 if (SrcSize != DstSize) 1137 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1138 report("Copy Instruction is illegal with mismatching sizes", MI); 1139 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1140 << "\n"; 1141 } 1142 } 1143 break; 1144 } 1145 case TargetOpcode::STATEPOINT: 1146 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1147 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1148 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1149 report("meta operands to STATEPOINT not constant!", MI); 1150 break; 1151 1152 auto VerifyStackMapConstant = [&](unsigned Offset) { 1153 if (!MI->getOperand(Offset).isImm() || 1154 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1155 !MI->getOperand(Offset + 1).isImm()) 1156 report("stack map constant to STATEPOINT not well formed!", MI); 1157 }; 1158 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1159 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1160 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1161 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1162 1163 // TODO: verify we have properly encoded deopt arguments 1164 }; 1165 } 1166 1167 void 1168 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1169 const MachineInstr *MI = MO->getParent(); 1170 const MCInstrDesc &MCID = MI->getDesc(); 1171 unsigned NumDefs = MCID.getNumDefs(); 1172 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1173 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1174 1175 // The first MCID.NumDefs operands must be explicit register defines 1176 if (MONum < NumDefs) { 1177 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1178 if (!MO->isReg()) 1179 report("Explicit definition must be a register", MO, MONum); 1180 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1181 report("Explicit definition marked as use", MO, MONum); 1182 else if (MO->isImplicit()) 1183 report("Explicit definition marked as implicit", MO, MONum); 1184 } else if (MONum < MCID.getNumOperands()) { 1185 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1186 // Don't check if it's the last operand in a variadic instruction. See, 1187 // e.g., LDM_RET in the arm back end. 1188 if (MO->isReg() && 1189 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1190 if (MO->isDef() && !MCOI.isOptionalDef()) 1191 report("Explicit operand marked as def", MO, MONum); 1192 if (MO->isImplicit()) 1193 report("Explicit operand marked as implicit", MO, MONum); 1194 } 1195 1196 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1197 if (TiedTo != -1) { 1198 if (!MO->isReg()) 1199 report("Tied use must be a register", MO, MONum); 1200 else if (!MO->isTied()) 1201 report("Operand should be tied", MO, MONum); 1202 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1203 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1204 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1205 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1206 if (!MOTied.isReg()) 1207 report("Tied counterpart must be a register", &MOTied, TiedTo); 1208 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1209 MO->getReg() != MOTied.getReg()) 1210 report("Tied physical registers must match.", &MOTied, TiedTo); 1211 } 1212 } else if (MO->isReg() && MO->isTied()) 1213 report("Explicit operand should not be tied", MO, MONum); 1214 } else { 1215 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1216 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1217 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1218 } 1219 1220 switch (MO->getType()) { 1221 case MachineOperand::MO_Register: { 1222 const unsigned Reg = MO->getReg(); 1223 if (!Reg) 1224 return; 1225 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1226 checkLiveness(MO, MONum); 1227 1228 // Verify the consistency of tied operands. 1229 if (MO->isTied()) { 1230 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1231 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1232 if (!OtherMO.isReg()) 1233 report("Must be tied to a register", MO, MONum); 1234 if (!OtherMO.isTied()) 1235 report("Missing tie flags on tied operand", MO, MONum); 1236 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1237 report("Inconsistent tie links", MO, MONum); 1238 if (MONum < MCID.getNumDefs()) { 1239 if (OtherIdx < MCID.getNumOperands()) { 1240 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1241 report("Explicit def tied to explicit use without tie constraint", 1242 MO, MONum); 1243 } else { 1244 if (!OtherMO.isImplicit()) 1245 report("Explicit def should be tied to implicit use", MO, MONum); 1246 } 1247 } 1248 } 1249 1250 // Verify two-address constraints after leaving SSA form. 1251 unsigned DefIdx; 1252 if (!MRI->isSSA() && MO->isUse() && 1253 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1254 Reg != MI->getOperand(DefIdx).getReg()) 1255 report("Two-address instruction operands must be identical", MO, MONum); 1256 1257 // Check register classes. 1258 unsigned SubIdx = MO->getSubReg(); 1259 1260 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1261 if (SubIdx) { 1262 report("Illegal subregister index for physical register", MO, MONum); 1263 return; 1264 } 1265 if (MONum < MCID.getNumOperands()) { 1266 if (const TargetRegisterClass *DRC = 1267 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1268 if (!DRC->contains(Reg)) { 1269 report("Illegal physical register for instruction", MO, MONum); 1270 errs() << printReg(Reg, TRI) << " is not a " 1271 << TRI->getRegClassName(DRC) << " register.\n"; 1272 } 1273 } 1274 } 1275 if (MO->isRenamable()) { 1276 if (MRI->isReserved(Reg)) { 1277 report("isRenamable set on reserved register", MO, MONum); 1278 return; 1279 } 1280 } 1281 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1282 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1283 return; 1284 } 1285 } else { 1286 // Virtual register. 1287 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1288 if (!RC) { 1289 // This is a generic virtual register. 1290 1291 // If we're post-Select, we can't have gvregs anymore. 1292 if (isFunctionSelected) { 1293 report("Generic virtual register invalid in a Selected function", 1294 MO, MONum); 1295 return; 1296 } 1297 1298 // The gvreg must have a type and it must not have a SubIdx. 1299 LLT Ty = MRI->getType(Reg); 1300 if (!Ty.isValid()) { 1301 report("Generic virtual register must have a valid type", MO, 1302 MONum); 1303 return; 1304 } 1305 1306 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1307 1308 // If we're post-RegBankSelect, the gvreg must have a bank. 1309 if (!RegBank && isFunctionRegBankSelected) { 1310 report("Generic virtual register must have a bank in a " 1311 "RegBankSelected function", 1312 MO, MONum); 1313 return; 1314 } 1315 1316 // Make sure the register fits into its register bank if any. 1317 if (RegBank && Ty.isValid() && 1318 RegBank->getSize() < Ty.getSizeInBits()) { 1319 report("Register bank is too small for virtual register", MO, 1320 MONum); 1321 errs() << "Register bank " << RegBank->getName() << " too small(" 1322 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1323 << "-bits\n"; 1324 return; 1325 } 1326 if (SubIdx) { 1327 report("Generic virtual register does not subregister index", MO, 1328 MONum); 1329 return; 1330 } 1331 1332 // If this is a target specific instruction and this operand 1333 // has register class constraint, the virtual register must 1334 // comply to it. 1335 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1336 MONum < MCID.getNumOperands() && 1337 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1338 report("Virtual register does not match instruction constraint", MO, 1339 MONum); 1340 errs() << "Expect register class " 1341 << TRI->getRegClassName( 1342 TII->getRegClass(MCID, MONum, TRI, *MF)) 1343 << " but got nothing\n"; 1344 return; 1345 } 1346 1347 break; 1348 } 1349 if (SubIdx) { 1350 const TargetRegisterClass *SRC = 1351 TRI->getSubClassWithSubReg(RC, SubIdx); 1352 if (!SRC) { 1353 report("Invalid subregister index for virtual register", MO, MONum); 1354 errs() << "Register class " << TRI->getRegClassName(RC) 1355 << " does not support subreg index " << SubIdx << "\n"; 1356 return; 1357 } 1358 if (RC != SRC) { 1359 report("Invalid register class for subregister index", MO, MONum); 1360 errs() << "Register class " << TRI->getRegClassName(RC) 1361 << " does not fully support subreg index " << SubIdx << "\n"; 1362 return; 1363 } 1364 } 1365 if (MONum < MCID.getNumOperands()) { 1366 if (const TargetRegisterClass *DRC = 1367 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1368 if (SubIdx) { 1369 const TargetRegisterClass *SuperRC = 1370 TRI->getLargestLegalSuperClass(RC, *MF); 1371 if (!SuperRC) { 1372 report("No largest legal super class exists.", MO, MONum); 1373 return; 1374 } 1375 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1376 if (!DRC) { 1377 report("No matching super-reg register class.", MO, MONum); 1378 return; 1379 } 1380 } 1381 if (!RC->hasSuperClassEq(DRC)) { 1382 report("Illegal virtual register for instruction", MO, MONum); 1383 errs() << "Expected a " << TRI->getRegClassName(DRC) 1384 << " register, but got a " << TRI->getRegClassName(RC) 1385 << " register\n"; 1386 } 1387 } 1388 } 1389 } 1390 break; 1391 } 1392 1393 case MachineOperand::MO_RegisterMask: 1394 regMasks.push_back(MO->getRegMask()); 1395 break; 1396 1397 case MachineOperand::MO_MachineBasicBlock: 1398 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1399 report("PHI operand is not in the CFG", MO, MONum); 1400 break; 1401 1402 case MachineOperand::MO_FrameIndex: 1403 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1404 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1405 int FI = MO->getIndex(); 1406 LiveInterval &LI = LiveStks->getInterval(FI); 1407 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1408 1409 bool stores = MI->mayStore(); 1410 bool loads = MI->mayLoad(); 1411 // For a memory-to-memory move, we need to check if the frame 1412 // index is used for storing or loading, by inspecting the 1413 // memory operands. 1414 if (stores && loads) { 1415 for (auto *MMO : MI->memoperands()) { 1416 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1417 if (PSV == nullptr) continue; 1418 const FixedStackPseudoSourceValue *Value = 1419 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1420 if (Value == nullptr) continue; 1421 if (Value->getFrameIndex() != FI) continue; 1422 1423 if (MMO->isStore()) 1424 loads = false; 1425 else 1426 stores = false; 1427 break; 1428 } 1429 if (loads == stores) 1430 report("Missing fixed stack memoperand.", MI); 1431 } 1432 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1433 report("Instruction loads from dead spill slot", MO, MONum); 1434 errs() << "Live stack: " << LI << '\n'; 1435 } 1436 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1437 report("Instruction stores to dead spill slot", MO, MONum); 1438 errs() << "Live stack: " << LI << '\n'; 1439 } 1440 } 1441 break; 1442 1443 default: 1444 break; 1445 } 1446 } 1447 1448 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1449 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1450 LaneBitmask LaneMask) { 1451 LiveQueryResult LRQ = LR.Query(UseIdx); 1452 // Check if we have a segment at the use, note however that we only need one 1453 // live subregister range, the others may be dead. 1454 if (!LRQ.valueIn() && LaneMask.none()) { 1455 report("No live segment at use", MO, MONum); 1456 report_context_liverange(LR); 1457 report_context_vreg_regunit(VRegOrUnit); 1458 report_context(UseIdx); 1459 } 1460 if (MO->isKill() && !LRQ.isKill()) { 1461 report("Live range continues after kill flag", MO, MONum); 1462 report_context_liverange(LR); 1463 report_context_vreg_regunit(VRegOrUnit); 1464 if (LaneMask.any()) 1465 report_context_lanemask(LaneMask); 1466 report_context(UseIdx); 1467 } 1468 } 1469 1470 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1471 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1472 bool SubRangeCheck, LaneBitmask LaneMask) { 1473 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1474 assert(VNI && "NULL valno is not allowed"); 1475 if (VNI->def != DefIdx) { 1476 report("Inconsistent valno->def", MO, MONum); 1477 report_context_liverange(LR); 1478 report_context_vreg_regunit(VRegOrUnit); 1479 if (LaneMask.any()) 1480 report_context_lanemask(LaneMask); 1481 report_context(*VNI); 1482 report_context(DefIdx); 1483 } 1484 } else { 1485 report("No live segment at def", MO, MONum); 1486 report_context_liverange(LR); 1487 report_context_vreg_regunit(VRegOrUnit); 1488 if (LaneMask.any()) 1489 report_context_lanemask(LaneMask); 1490 report_context(DefIdx); 1491 } 1492 // Check that, if the dead def flag is present, LiveInts agree. 1493 if (MO->isDead()) { 1494 LiveQueryResult LRQ = LR.Query(DefIdx); 1495 if (!LRQ.isDeadDef()) { 1496 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) && 1497 "Expecting a virtual register."); 1498 // A dead subreg def only tells us that the specific subreg is dead. There 1499 // could be other non-dead defs of other subregs, or we could have other 1500 // parts of the register being live through the instruction. So unless we 1501 // are checking liveness for a subrange it is ok for the live range to 1502 // continue, given that we have a dead def of a subregister. 1503 if (SubRangeCheck || MO->getSubReg() == 0) { 1504 report("Live range continues after dead def flag", MO, MONum); 1505 report_context_liverange(LR); 1506 report_context_vreg_regunit(VRegOrUnit); 1507 if (LaneMask.any()) 1508 report_context_lanemask(LaneMask); 1509 } 1510 } 1511 } 1512 } 1513 1514 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1515 const MachineInstr *MI = MO->getParent(); 1516 const unsigned Reg = MO->getReg(); 1517 1518 // Both use and def operands can read a register. 1519 if (MO->readsReg()) { 1520 if (MO->isKill()) 1521 addRegWithSubRegs(regsKilled, Reg); 1522 1523 // Check that LiveVars knows this kill. 1524 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1525 MO->isKill()) { 1526 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1527 if (!is_contained(VI.Kills, MI)) 1528 report("Kill missing from LiveVariables", MO, MONum); 1529 } 1530 1531 // Check LiveInts liveness and kill. 1532 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1533 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1534 // Check the cached regunit intervals. 1535 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1536 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1537 if (MRI->isReservedRegUnit(*Units)) 1538 continue; 1539 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1540 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1541 } 1542 } 1543 1544 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1545 if (LiveInts->hasInterval(Reg)) { 1546 // This is a virtual register interval. 1547 const LiveInterval &LI = LiveInts->getInterval(Reg); 1548 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1549 1550 if (LI.hasSubRanges() && !MO->isDef()) { 1551 unsigned SubRegIdx = MO->getSubReg(); 1552 LaneBitmask MOMask = SubRegIdx != 0 1553 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1554 : MRI->getMaxLaneMaskForVReg(Reg); 1555 LaneBitmask LiveInMask; 1556 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1557 if ((MOMask & SR.LaneMask).none()) 1558 continue; 1559 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1560 LiveQueryResult LRQ = SR.Query(UseIdx); 1561 if (LRQ.valueIn()) 1562 LiveInMask |= SR.LaneMask; 1563 } 1564 // At least parts of the register has to be live at the use. 1565 if ((LiveInMask & MOMask).none()) { 1566 report("No live subrange at use", MO, MONum); 1567 report_context(LI); 1568 report_context(UseIdx); 1569 } 1570 } 1571 } else { 1572 report("Virtual register has no live interval", MO, MONum); 1573 } 1574 } 1575 } 1576 1577 // Use of a dead register. 1578 if (!regsLive.count(Reg)) { 1579 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1580 // Reserved registers may be used even when 'dead'. 1581 bool Bad = !isReserved(Reg); 1582 // We are fine if just any subregister has a defined value. 1583 if (Bad) { 1584 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1585 ++SubRegs) { 1586 if (regsLive.count(*SubRegs)) { 1587 Bad = false; 1588 break; 1589 } 1590 } 1591 } 1592 // If there is an additional implicit-use of a super register we stop 1593 // here. By definition we are fine if the super register is not 1594 // (completely) dead, if the complete super register is dead we will 1595 // get a report for its operand. 1596 if (Bad) { 1597 for (const MachineOperand &MOP : MI->uses()) { 1598 if (!MOP.isReg() || !MOP.isImplicit()) 1599 continue; 1600 1601 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg())) 1602 continue; 1603 1604 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1605 ++SubRegs) { 1606 if (*SubRegs == Reg) { 1607 Bad = false; 1608 break; 1609 } 1610 } 1611 } 1612 } 1613 if (Bad) 1614 report("Using an undefined physical register", MO, MONum); 1615 } else if (MRI->def_empty(Reg)) { 1616 report("Reading virtual register without a def", MO, MONum); 1617 } else { 1618 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1619 // We don't know which virtual registers are live in, so only complain 1620 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1621 // must be live in. PHI instructions are handled separately. 1622 if (MInfo.regsKilled.count(Reg)) 1623 report("Using a killed virtual register", MO, MONum); 1624 else if (!MI->isPHI()) 1625 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1626 } 1627 } 1628 } 1629 1630 if (MO->isDef()) { 1631 // Register defined. 1632 // TODO: verify that earlyclobber ops are not used. 1633 if (MO->isDead()) 1634 addRegWithSubRegs(regsDead, Reg); 1635 else 1636 addRegWithSubRegs(regsDefined, Reg); 1637 1638 // Verify SSA form. 1639 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1640 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1641 report("Multiple virtual register defs in SSA form", MO, MONum); 1642 1643 // Check LiveInts for a live segment, but only for virtual registers. 1644 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1645 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1646 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1647 1648 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1649 if (LiveInts->hasInterval(Reg)) { 1650 const LiveInterval &LI = LiveInts->getInterval(Reg); 1651 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1652 1653 if (LI.hasSubRanges()) { 1654 unsigned SubRegIdx = MO->getSubReg(); 1655 LaneBitmask MOMask = SubRegIdx != 0 1656 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1657 : MRI->getMaxLaneMaskForVReg(Reg); 1658 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1659 if ((SR.LaneMask & MOMask).none()) 1660 continue; 1661 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 1662 } 1663 } 1664 } else { 1665 report("Virtual register has no Live interval", MO, MONum); 1666 } 1667 } 1668 } 1669 } 1670 } 1671 1672 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1673 1674 // This function gets called after visiting all instructions in a bundle. The 1675 // argument points to the bundle header. 1676 // Normal stand-alone instructions are also considered 'bundles', and this 1677 // function is called for all of them. 1678 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1679 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1680 set_union(MInfo.regsKilled, regsKilled); 1681 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1682 // Kill any masked registers. 1683 while (!regMasks.empty()) { 1684 const uint32_t *Mask = regMasks.pop_back_val(); 1685 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1686 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1687 MachineOperand::clobbersPhysReg(Mask, *I)) 1688 regsDead.push_back(*I); 1689 } 1690 set_subtract(regsLive, regsDead); regsDead.clear(); 1691 set_union(regsLive, regsDefined); regsDefined.clear(); 1692 } 1693 1694 void 1695 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1696 MBBInfoMap[MBB].regsLiveOut = regsLive; 1697 regsLive.clear(); 1698 1699 if (Indexes) { 1700 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1701 if (!(stop > lastIndex)) { 1702 report("Block ends before last instruction index", MBB); 1703 errs() << "Block ends at " << stop 1704 << " last instruction was at " << lastIndex << '\n'; 1705 } 1706 lastIndex = stop; 1707 } 1708 } 1709 1710 // Calculate the largest possible vregsPassed sets. These are the registers that 1711 // can pass through an MBB live, but may not be live every time. It is assumed 1712 // that all vregsPassed sets are empty before the call. 1713 void MachineVerifier::calcRegsPassed() { 1714 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1715 // have any vregsPassed. 1716 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1717 for (const auto &MBB : *MF) { 1718 BBInfo &MInfo = MBBInfoMap[&MBB]; 1719 if (!MInfo.reachable) 1720 continue; 1721 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1722 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1723 BBInfo &SInfo = MBBInfoMap[*SuI]; 1724 if (SInfo.addPassed(MInfo.regsLiveOut)) 1725 todo.insert(*SuI); 1726 } 1727 } 1728 1729 // Iteratively push vregsPassed to successors. This will converge to the same 1730 // final state regardless of DenseSet iteration order. 1731 while (!todo.empty()) { 1732 const MachineBasicBlock *MBB = *todo.begin(); 1733 todo.erase(MBB); 1734 BBInfo &MInfo = MBBInfoMap[MBB]; 1735 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1736 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1737 if (*SuI == MBB) 1738 continue; 1739 BBInfo &SInfo = MBBInfoMap[*SuI]; 1740 if (SInfo.addPassed(MInfo.vregsPassed)) 1741 todo.insert(*SuI); 1742 } 1743 } 1744 } 1745 1746 // Calculate the set of virtual registers that must be passed through each basic 1747 // block in order to satisfy the requirements of successor blocks. This is very 1748 // similar to calcRegsPassed, only backwards. 1749 void MachineVerifier::calcRegsRequired() { 1750 // First push live-in regs to predecessors' vregsRequired. 1751 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1752 for (const auto &MBB : *MF) { 1753 BBInfo &MInfo = MBBInfoMap[&MBB]; 1754 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1755 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1756 BBInfo &PInfo = MBBInfoMap[*PrI]; 1757 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1758 todo.insert(*PrI); 1759 } 1760 } 1761 1762 // Iteratively push vregsRequired to predecessors. This will converge to the 1763 // same final state regardless of DenseSet iteration order. 1764 while (!todo.empty()) { 1765 const MachineBasicBlock *MBB = *todo.begin(); 1766 todo.erase(MBB); 1767 BBInfo &MInfo = MBBInfoMap[MBB]; 1768 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1769 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1770 if (*PrI == MBB) 1771 continue; 1772 BBInfo &SInfo = MBBInfoMap[*PrI]; 1773 if (SInfo.addRequired(MInfo.vregsRequired)) 1774 todo.insert(*PrI); 1775 } 1776 } 1777 } 1778 1779 // Check PHI instructions at the beginning of MBB. It is assumed that 1780 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1781 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1782 BBInfo &MInfo = MBBInfoMap[&MBB]; 1783 1784 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1785 for (const MachineInstr &Phi : MBB) { 1786 if (!Phi.isPHI()) 1787 break; 1788 seen.clear(); 1789 1790 const MachineOperand &MODef = Phi.getOperand(0); 1791 if (!MODef.isReg() || !MODef.isDef()) { 1792 report("Expected first PHI operand to be a register def", &MODef, 0); 1793 continue; 1794 } 1795 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1796 MODef.isEarlyClobber() || MODef.isDebug()) 1797 report("Unexpected flag on PHI operand", &MODef, 0); 1798 unsigned DefReg = MODef.getReg(); 1799 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1800 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1801 1802 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1803 const MachineOperand &MO0 = Phi.getOperand(I); 1804 if (!MO0.isReg()) { 1805 report("Expected PHI operand to be a register", &MO0, I); 1806 continue; 1807 } 1808 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 1809 MO0.isDebug() || MO0.isTied()) 1810 report("Unexpected flag on PHI operand", &MO0, I); 1811 1812 const MachineOperand &MO1 = Phi.getOperand(I + 1); 1813 if (!MO1.isMBB()) { 1814 report("Expected PHI operand to be a basic block", &MO1, I + 1); 1815 continue; 1816 } 1817 1818 const MachineBasicBlock &Pre = *MO1.getMBB(); 1819 if (!Pre.isSuccessor(&MBB)) { 1820 report("PHI input is not a predecessor block", &MO1, I + 1); 1821 continue; 1822 } 1823 1824 if (MInfo.reachable) { 1825 seen.insert(&Pre); 1826 BBInfo &PrInfo = MBBInfoMap[&Pre]; 1827 if (!MO0.isUndef() && PrInfo.reachable && 1828 !PrInfo.isLiveOut(MO0.getReg())) 1829 report("PHI operand is not live-out from predecessor", &MO0, I); 1830 } 1831 } 1832 1833 // Did we see all predecessors? 1834 if (MInfo.reachable) { 1835 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1836 if (!seen.count(Pred)) { 1837 report("Missing PHI operand", &Phi); 1838 errs() << printMBBReference(*Pred) 1839 << " is a predecessor according to the CFG.\n"; 1840 } 1841 } 1842 } 1843 } 1844 } 1845 1846 void MachineVerifier::visitMachineFunctionAfter() { 1847 calcRegsPassed(); 1848 1849 for (const MachineBasicBlock &MBB : *MF) 1850 checkPHIOps(MBB); 1851 1852 // Now check liveness info if available 1853 calcRegsRequired(); 1854 1855 // Check for killed virtual registers that should be live out. 1856 for (const auto &MBB : *MF) { 1857 BBInfo &MInfo = MBBInfoMap[&MBB]; 1858 for (RegSet::iterator 1859 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1860 ++I) 1861 if (MInfo.regsKilled.count(*I)) { 1862 report("Virtual register killed in block, but needed live out.", &MBB); 1863 errs() << "Virtual register " << printReg(*I) 1864 << " is used after the block.\n"; 1865 } 1866 } 1867 1868 if (!MF->empty()) { 1869 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1870 for (RegSet::iterator 1871 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1872 ++I) { 1873 report("Virtual register defs don't dominate all uses.", MF); 1874 report_context_vreg(*I); 1875 } 1876 } 1877 1878 if (LiveVars) 1879 verifyLiveVariables(); 1880 if (LiveInts) 1881 verifyLiveIntervals(); 1882 } 1883 1884 void MachineVerifier::verifyLiveVariables() { 1885 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1886 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1887 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1888 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1889 for (const auto &MBB : *MF) { 1890 BBInfo &MInfo = MBBInfoMap[&MBB]; 1891 1892 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1893 if (MInfo.vregsRequired.count(Reg)) { 1894 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1895 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1896 errs() << "Virtual register " << printReg(Reg) 1897 << " must be live through the block.\n"; 1898 } 1899 } else { 1900 if (VI.AliveBlocks.test(MBB.getNumber())) { 1901 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1902 errs() << "Virtual register " << printReg(Reg) 1903 << " is not needed live through the block.\n"; 1904 } 1905 } 1906 } 1907 } 1908 } 1909 1910 void MachineVerifier::verifyLiveIntervals() { 1911 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1912 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1913 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1914 1915 // Spilling and splitting may leave unused registers around. Skip them. 1916 if (MRI->reg_nodbg_empty(Reg)) 1917 continue; 1918 1919 if (!LiveInts->hasInterval(Reg)) { 1920 report("Missing live interval for virtual register", MF); 1921 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 1922 continue; 1923 } 1924 1925 const LiveInterval &LI = LiveInts->getInterval(Reg); 1926 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1927 verifyLiveInterval(LI); 1928 } 1929 1930 // Verify all the cached regunit intervals. 1931 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1932 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1933 verifyLiveRange(*LR, i); 1934 } 1935 1936 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1937 const VNInfo *VNI, unsigned Reg, 1938 LaneBitmask LaneMask) { 1939 if (VNI->isUnused()) 1940 return; 1941 1942 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1943 1944 if (!DefVNI) { 1945 report("Value not live at VNInfo def and not marked unused", MF); 1946 report_context(LR, Reg, LaneMask); 1947 report_context(*VNI); 1948 return; 1949 } 1950 1951 if (DefVNI != VNI) { 1952 report("Live segment at def has different VNInfo", MF); 1953 report_context(LR, Reg, LaneMask); 1954 report_context(*VNI); 1955 return; 1956 } 1957 1958 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1959 if (!MBB) { 1960 report("Invalid VNInfo definition index", MF); 1961 report_context(LR, Reg, LaneMask); 1962 report_context(*VNI); 1963 return; 1964 } 1965 1966 if (VNI->isPHIDef()) { 1967 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1968 report("PHIDef VNInfo is not defined at MBB start", MBB); 1969 report_context(LR, Reg, LaneMask); 1970 report_context(*VNI); 1971 } 1972 return; 1973 } 1974 1975 // Non-PHI def. 1976 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1977 if (!MI) { 1978 report("No instruction at VNInfo def index", MBB); 1979 report_context(LR, Reg, LaneMask); 1980 report_context(*VNI); 1981 return; 1982 } 1983 1984 if (Reg != 0) { 1985 bool hasDef = false; 1986 bool isEarlyClobber = false; 1987 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1988 if (!MOI->isReg() || !MOI->isDef()) 1989 continue; 1990 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1991 if (MOI->getReg() != Reg) 1992 continue; 1993 } else { 1994 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1995 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1996 continue; 1997 } 1998 if (LaneMask.any() && 1999 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2000 continue; 2001 hasDef = true; 2002 if (MOI->isEarlyClobber()) 2003 isEarlyClobber = true; 2004 } 2005 2006 if (!hasDef) { 2007 report("Defining instruction does not modify register", MI); 2008 report_context(LR, Reg, LaneMask); 2009 report_context(*VNI); 2010 } 2011 2012 // Early clobber defs begin at USE slots, but other defs must begin at 2013 // DEF slots. 2014 if (isEarlyClobber) { 2015 if (!VNI->def.isEarlyClobber()) { 2016 report("Early clobber def must be at an early-clobber slot", MBB); 2017 report_context(LR, Reg, LaneMask); 2018 report_context(*VNI); 2019 } 2020 } else if (!VNI->def.isRegister()) { 2021 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2022 report_context(LR, Reg, LaneMask); 2023 report_context(*VNI); 2024 } 2025 } 2026 } 2027 2028 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2029 const LiveRange::const_iterator I, 2030 unsigned Reg, LaneBitmask LaneMask) 2031 { 2032 const LiveRange::Segment &S = *I; 2033 const VNInfo *VNI = S.valno; 2034 assert(VNI && "Live segment has no valno"); 2035 2036 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2037 report("Foreign valno in live segment", MF); 2038 report_context(LR, Reg, LaneMask); 2039 report_context(S); 2040 report_context(*VNI); 2041 } 2042 2043 if (VNI->isUnused()) { 2044 report("Live segment valno is marked unused", MF); 2045 report_context(LR, Reg, LaneMask); 2046 report_context(S); 2047 } 2048 2049 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2050 if (!MBB) { 2051 report("Bad start of live segment, no basic block", MF); 2052 report_context(LR, Reg, LaneMask); 2053 report_context(S); 2054 return; 2055 } 2056 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2057 if (S.start != MBBStartIdx && S.start != VNI->def) { 2058 report("Live segment must begin at MBB entry or valno def", MBB); 2059 report_context(LR, Reg, LaneMask); 2060 report_context(S); 2061 } 2062 2063 const MachineBasicBlock *EndMBB = 2064 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2065 if (!EndMBB) { 2066 report("Bad end of live segment, no basic block", MF); 2067 report_context(LR, Reg, LaneMask); 2068 report_context(S); 2069 return; 2070 } 2071 2072 // No more checks for live-out segments. 2073 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2074 return; 2075 2076 // RegUnit intervals are allowed dead phis. 2077 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 2078 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2079 return; 2080 2081 // The live segment is ending inside EndMBB 2082 const MachineInstr *MI = 2083 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2084 if (!MI) { 2085 report("Live segment doesn't end at a valid instruction", EndMBB); 2086 report_context(LR, Reg, LaneMask); 2087 report_context(S); 2088 return; 2089 } 2090 2091 // The block slot must refer to a basic block boundary. 2092 if (S.end.isBlock()) { 2093 report("Live segment ends at B slot of an instruction", EndMBB); 2094 report_context(LR, Reg, LaneMask); 2095 report_context(S); 2096 } 2097 2098 if (S.end.isDead()) { 2099 // Segment ends on the dead slot. 2100 // That means there must be a dead def. 2101 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2102 report("Live segment ending at dead slot spans instructions", EndMBB); 2103 report_context(LR, Reg, LaneMask); 2104 report_context(S); 2105 } 2106 } 2107 2108 // A live segment can only end at an early-clobber slot if it is being 2109 // redefined by an early-clobber def. 2110 if (S.end.isEarlyClobber()) { 2111 if (I+1 == LR.end() || (I+1)->start != S.end) { 2112 report("Live segment ending at early clobber slot must be " 2113 "redefined by an EC def in the same instruction", EndMBB); 2114 report_context(LR, Reg, LaneMask); 2115 report_context(S); 2116 } 2117 } 2118 2119 // The following checks only apply to virtual registers. Physreg liveness 2120 // is too weird to check. 2121 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2122 // A live segment can end with either a redefinition, a kill flag on a 2123 // use, or a dead flag on a def. 2124 bool hasRead = false; 2125 bool hasSubRegDef = false; 2126 bool hasDeadDef = false; 2127 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2128 if (!MOI->isReg() || MOI->getReg() != Reg) 2129 continue; 2130 unsigned Sub = MOI->getSubReg(); 2131 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2132 : LaneBitmask::getAll(); 2133 if (MOI->isDef()) { 2134 if (Sub != 0) { 2135 hasSubRegDef = true; 2136 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2137 // mask for subregister defs. Read-undef defs will be handled by 2138 // readsReg below. 2139 SLM = ~SLM; 2140 } 2141 if (MOI->isDead()) 2142 hasDeadDef = true; 2143 } 2144 if (LaneMask.any() && (LaneMask & SLM).none()) 2145 continue; 2146 if (MOI->readsReg()) 2147 hasRead = true; 2148 } 2149 if (S.end.isDead()) { 2150 // Make sure that the corresponding machine operand for a "dead" live 2151 // range has the dead flag. We cannot perform this check for subregister 2152 // liveranges as partially dead values are allowed. 2153 if (LaneMask.none() && !hasDeadDef) { 2154 report("Instruction ending live segment on dead slot has no dead flag", 2155 MI); 2156 report_context(LR, Reg, LaneMask); 2157 report_context(S); 2158 } 2159 } else { 2160 if (!hasRead) { 2161 // When tracking subregister liveness, the main range must start new 2162 // values on partial register writes, even if there is no read. 2163 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2164 !hasSubRegDef) { 2165 report("Instruction ending live segment doesn't read the register", 2166 MI); 2167 report_context(LR, Reg, LaneMask); 2168 report_context(S); 2169 } 2170 } 2171 } 2172 } 2173 2174 // Now check all the basic blocks in this live segment. 2175 MachineFunction::const_iterator MFI = MBB->getIterator(); 2176 // Is this live segment the beginning of a non-PHIDef VN? 2177 if (S.start == VNI->def && !VNI->isPHIDef()) { 2178 // Not live-in to any blocks. 2179 if (MBB == EndMBB) 2180 return; 2181 // Skip this block. 2182 ++MFI; 2183 } 2184 2185 SmallVector<SlotIndex, 4> Undefs; 2186 if (LaneMask.any()) { 2187 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2188 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2189 } 2190 2191 while (true) { 2192 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2193 // We don't know how to track physregs into a landing pad. 2194 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2195 MFI->isEHPad()) { 2196 if (&*MFI == EndMBB) 2197 break; 2198 ++MFI; 2199 continue; 2200 } 2201 2202 // Is VNI a PHI-def in the current block? 2203 bool IsPHI = VNI->isPHIDef() && 2204 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2205 2206 // Check that VNI is live-out of all predecessors. 2207 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2208 PE = MFI->pred_end(); PI != PE; ++PI) { 2209 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2210 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2211 2212 // All predecessors must have a live-out value. However for a phi 2213 // instruction with subregister intervals 2214 // only one of the subregisters (not necessarily the current one) needs to 2215 // be defined. 2216 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2217 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2218 continue; 2219 report("Register not marked live out of predecessor", *PI); 2220 report_context(LR, Reg, LaneMask); 2221 report_context(*VNI); 2222 errs() << " live into " << printMBBReference(*MFI) << '@' 2223 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2224 << PEnd << '\n'; 2225 continue; 2226 } 2227 2228 // Only PHI-defs can take different predecessor values. 2229 if (!IsPHI && PVNI != VNI) { 2230 report("Different value live out of predecessor", *PI); 2231 report_context(LR, Reg, LaneMask); 2232 errs() << "Valno #" << PVNI->id << " live out of " 2233 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2234 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2235 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2236 } 2237 } 2238 if (&*MFI == EndMBB) 2239 break; 2240 ++MFI; 2241 } 2242 } 2243 2244 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2245 LaneBitmask LaneMask) { 2246 for (const VNInfo *VNI : LR.valnos) 2247 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2248 2249 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2250 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2251 } 2252 2253 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2254 unsigned Reg = LI.reg; 2255 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2256 verifyLiveRange(LI, Reg); 2257 2258 LaneBitmask Mask; 2259 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2260 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2261 if ((Mask & SR.LaneMask).any()) { 2262 report("Lane masks of sub ranges overlap in live interval", MF); 2263 report_context(LI); 2264 } 2265 if ((SR.LaneMask & ~MaxMask).any()) { 2266 report("Subrange lanemask is invalid", MF); 2267 report_context(LI); 2268 } 2269 if (SR.empty()) { 2270 report("Subrange must not be empty", MF); 2271 report_context(SR, LI.reg, SR.LaneMask); 2272 } 2273 Mask |= SR.LaneMask; 2274 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2275 if (!LI.covers(SR)) { 2276 report("A Subrange is not covered by the main range", MF); 2277 report_context(LI); 2278 } 2279 } 2280 2281 // Check the LI only has one connected component. 2282 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2283 unsigned NumComp = ConEQ.Classify(LI); 2284 if (NumComp > 1) { 2285 report("Multiple connected components in live interval", MF); 2286 report_context(LI); 2287 for (unsigned comp = 0; comp != NumComp; ++comp) { 2288 errs() << comp << ": valnos"; 2289 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2290 E = LI.vni_end(); I!=E; ++I) 2291 if (comp == ConEQ.getEqClass(*I)) 2292 errs() << ' ' << (*I)->id; 2293 errs() << '\n'; 2294 } 2295 } 2296 } 2297 2298 namespace { 2299 2300 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2301 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2302 // value is zero. 2303 // We use a bool plus an integer to capture the stack state. 2304 struct StackStateOfBB { 2305 StackStateOfBB() = default; 2306 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2307 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2308 ExitIsSetup(ExitSetup) {} 2309 2310 // Can be negative, which means we are setting up a frame. 2311 int EntryValue = 0; 2312 int ExitValue = 0; 2313 bool EntryIsSetup = false; 2314 bool ExitIsSetup = false; 2315 }; 2316 2317 } // end anonymous namespace 2318 2319 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2320 /// by a FrameDestroy <n>, stack adjustments are identical on all 2321 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2322 void MachineVerifier::verifyStackFrame() { 2323 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2324 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2325 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2326 return; 2327 2328 SmallVector<StackStateOfBB, 8> SPState; 2329 SPState.resize(MF->getNumBlockIDs()); 2330 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2331 2332 // Visit the MBBs in DFS order. 2333 for (df_ext_iterator<const MachineFunction *, 2334 df_iterator_default_set<const MachineBasicBlock *>> 2335 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2336 DFI != DFE; ++DFI) { 2337 const MachineBasicBlock *MBB = *DFI; 2338 2339 StackStateOfBB BBState; 2340 // Check the exit state of the DFS stack predecessor. 2341 if (DFI.getPathLength() >= 2) { 2342 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2343 assert(Reachable.count(StackPred) && 2344 "DFS stack predecessor is already visited.\n"); 2345 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2346 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2347 BBState.ExitValue = BBState.EntryValue; 2348 BBState.ExitIsSetup = BBState.EntryIsSetup; 2349 } 2350 2351 // Update stack state by checking contents of MBB. 2352 for (const auto &I : *MBB) { 2353 if (I.getOpcode() == FrameSetupOpcode) { 2354 if (BBState.ExitIsSetup) 2355 report("FrameSetup is after another FrameSetup", &I); 2356 BBState.ExitValue -= TII->getFrameTotalSize(I); 2357 BBState.ExitIsSetup = true; 2358 } 2359 2360 if (I.getOpcode() == FrameDestroyOpcode) { 2361 int Size = TII->getFrameTotalSize(I); 2362 if (!BBState.ExitIsSetup) 2363 report("FrameDestroy is not after a FrameSetup", &I); 2364 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2365 BBState.ExitValue; 2366 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2367 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2368 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2369 << AbsSPAdj << ">.\n"; 2370 } 2371 BBState.ExitValue += Size; 2372 BBState.ExitIsSetup = false; 2373 } 2374 } 2375 SPState[MBB->getNumber()] = BBState; 2376 2377 // Make sure the exit state of any predecessor is consistent with the entry 2378 // state. 2379 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2380 E = MBB->pred_end(); I != E; ++I) { 2381 if (Reachable.count(*I) && 2382 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2383 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2384 report("The exit stack state of a predecessor is inconsistent.", MBB); 2385 errs() << "Predecessor " << printMBBReference(*(*I)) 2386 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2387 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2388 << printMBBReference(*MBB) << " has entry state (" 2389 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2390 } 2391 } 2392 2393 // Make sure the entry state of any successor is consistent with the exit 2394 // state. 2395 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2396 E = MBB->succ_end(); I != E; ++I) { 2397 if (Reachable.count(*I) && 2398 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2399 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2400 report("The entry stack state of a successor is inconsistent.", MBB); 2401 errs() << "Successor " << printMBBReference(*(*I)) 2402 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2403 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2404 << printMBBReference(*MBB) << " has exit state (" 2405 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2406 } 2407 } 2408 2409 // Make sure a basic block with return ends with zero stack adjustment. 2410 if (!MBB->empty() && MBB->back().isReturn()) { 2411 if (BBState.ExitIsSetup) 2412 report("A return block ends with a FrameSetup.", MBB); 2413 if (BBState.ExitValue) 2414 report("A return block ends with a nonzero stack adjustment.", MBB); 2415 } 2416 } 2417 } 2418