xref: /llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision 711bbdc8942df7b81d82a9517e9dc67068eaa642)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
24 
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (TargetRegisterInfo::isPhysicalRegister(Reg))
126         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127           RV.push_back(*SubRegs);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsPassed if it belongs there. Return true if
160       // anything changed.
161       bool addPassed(unsigned Reg) {
162         if (!TargetRegisterInfo::isVirtualRegister(Reg))
163           return false;
164         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165           return false;
166         return vregsPassed.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addPassed(const RegSet &RS) {
171         bool changed = false;
172         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173           if (addPassed(*I))
174             changed = true;
175         return changed;
176       }
177 
178       // Add register to vregsRequired if it belongs there. Return true if
179       // anything changed.
180       bool addRequired(unsigned Reg) {
181         if (!TargetRegisterInfo::isVirtualRegister(Reg))
182           return false;
183         if (regsLiveOut.count(Reg))
184           return false;
185         return vregsRequired.insert(Reg).second;
186       }
187 
188       // Same for a full set.
189       bool addRequired(const RegSet &RS) {
190         bool changed = false;
191         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192           if (addRequired(*I))
193             changed = true;
194         return changed;
195       }
196 
197       // Same for a full map.
198       bool addRequired(const RegMap &RM) {
199         bool changed = false;
200         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201           if (addRequired(I->first))
202             changed = true;
203         return changed;
204       }
205 
206       // Live-out registers are either in regsLiveOut or vregsPassed.
207       bool isLiveOut(unsigned Reg) const {
208         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
209       }
210     };
211 
212     // Extra register info per MBB.
213     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
214 
215     bool isReserved(unsigned Reg) {
216       return Reg < regsReserved.size() && regsReserved.test(Reg);
217     }
218 
219     bool isAllocatable(unsigned Reg) const {
220       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221         !regsReserved.test(Reg);
222     }
223 
224     // Analysis information if available
225     LiveVariables *LiveVars;
226     LiveIntervals *LiveInts;
227     LiveStacks *LiveStks;
228     SlotIndexes *Indexes;
229 
230     void visitMachineFunctionBefore();
231     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232     void visitMachineBundleBefore(const MachineInstr *MI);
233     void visitMachineInstrBefore(const MachineInstr *MI);
234     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
235     void visitMachineInstrAfter(const MachineInstr *MI);
236     void visitMachineBundleAfter(const MachineInstr *MI);
237     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
238     void visitMachineFunctionAfter();
239 
240     void report(const char *msg, const MachineFunction *MF);
241     void report(const char *msg, const MachineBasicBlock *MBB);
242     void report(const char *msg, const MachineInstr *MI);
243     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
244                 LLT MOVRegType = LLT{});
245 
246     void report_context(const LiveInterval &LI) const;
247     void report_context(const LiveRange &LR, unsigned VRegUnit,
248                         LaneBitmask LaneMask) const;
249     void report_context(const LiveRange::Segment &S) const;
250     void report_context(const VNInfo &VNI) const;
251     void report_context(SlotIndex Pos) const;
252     void report_context(MCPhysReg PhysReg) const;
253     void report_context_liverange(const LiveRange &LR) const;
254     void report_context_lanemask(LaneBitmask LaneMask) const;
255     void report_context_vreg(unsigned VReg) const;
256     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
257 
258     void verifyInlineAsm(const MachineInstr *MI);
259 
260     void checkLiveness(const MachineOperand *MO, unsigned MONum);
261     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
262                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
263                             LaneBitmask LaneMask = LaneBitmask::getNone());
264     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
265                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                             bool SubRangeCheck = false,
267                             LaneBitmask LaneMask = LaneBitmask::getNone());
268 
269     void markReachable(const MachineBasicBlock *MBB);
270     void calcRegsPassed();
271     void checkPHIOps(const MachineBasicBlock &MBB);
272 
273     void calcRegsRequired();
274     void verifyLiveVariables();
275     void verifyLiveIntervals();
276     void verifyLiveInterval(const LiveInterval&);
277     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
278                               LaneBitmask);
279     void verifyLiveRangeSegment(const LiveRange&,
280                                 const LiveRange::const_iterator I, unsigned,
281                                 LaneBitmask);
282     void verifyLiveRange(const LiveRange&, unsigned,
283                          LaneBitmask LaneMask = LaneBitmask::getNone());
284 
285     void verifyStackFrame();
286 
287     void verifySlotIndexes() const;
288     void verifyProperties(const MachineFunction &MF);
289   };
290 
291   struct MachineVerifierPass : public MachineFunctionPass {
292     static char ID; // Pass ID, replacement for typeid
293 
294     const std::string Banner;
295 
296     MachineVerifierPass(std::string banner = std::string())
297       : MachineFunctionPass(ID), Banner(std::move(banner)) {
298         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
299       }
300 
301     void getAnalysisUsage(AnalysisUsage &AU) const override {
302       AU.setPreservesAll();
303       MachineFunctionPass::getAnalysisUsage(AU);
304     }
305 
306     bool runOnMachineFunction(MachineFunction &MF) override {
307       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
308       if (FoundErrors)
309         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
310       return false;
311     }
312   };
313 
314 } // end anonymous namespace
315 
316 char MachineVerifierPass::ID = 0;
317 
318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
319                 "Verify generated machine code", false, false)
320 
321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
322   return new MachineVerifierPass(Banner);
323 }
324 
325 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
326     const {
327   MachineFunction &MF = const_cast<MachineFunction&>(*this);
328   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
329   if (AbortOnErrors && FoundErrors)
330     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
331   return FoundErrors == 0;
332 }
333 
334 void MachineVerifier::verifySlotIndexes() const {
335   if (Indexes == nullptr)
336     return;
337 
338   // Ensure the IdxMBB list is sorted by slot indexes.
339   SlotIndex Last;
340   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
341        E = Indexes->MBBIndexEnd(); I != E; ++I) {
342     assert(!Last.isValid() || I->first > Last);
343     Last = I->first;
344   }
345 }
346 
347 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
348   // If a pass has introduced virtual registers without clearing the
349   // NoVRegs property (or set it without allocating the vregs)
350   // then report an error.
351   if (MF.getProperties().hasProperty(
352           MachineFunctionProperties::Property::NoVRegs) &&
353       MRI->getNumVirtRegs())
354     report("Function has NoVRegs property but there are VReg operands", &MF);
355 }
356 
357 unsigned MachineVerifier::verify(MachineFunction &MF) {
358   foundErrors = 0;
359 
360   this->MF = &MF;
361   TM = &MF.getTarget();
362   TII = MF.getSubtarget().getInstrInfo();
363   TRI = MF.getSubtarget().getRegisterInfo();
364   MRI = &MF.getRegInfo();
365 
366   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
367       MachineFunctionProperties::Property::FailedISel);
368 
369   // If we're mid-GlobalISel and we already triggered the fallback path then
370   // it's expected that the MIR is somewhat broken but that's ok since we'll
371   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
372   if (isFunctionFailedISel)
373     return foundErrors;
374 
375   isFunctionRegBankSelected =
376       !isFunctionFailedISel &&
377       MF.getProperties().hasProperty(
378           MachineFunctionProperties::Property::RegBankSelected);
379   isFunctionSelected = !isFunctionFailedISel &&
380                        MF.getProperties().hasProperty(
381                            MachineFunctionProperties::Property::Selected);
382   LiveVars = nullptr;
383   LiveInts = nullptr;
384   LiveStks = nullptr;
385   Indexes = nullptr;
386   if (PASS) {
387     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
388     // We don't want to verify LiveVariables if LiveIntervals is available.
389     if (!LiveInts)
390       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
391     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
392     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
393   }
394 
395   verifySlotIndexes();
396 
397   verifyProperties(MF);
398 
399   visitMachineFunctionBefore();
400   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
401        MFI!=MFE; ++MFI) {
402     visitMachineBasicBlockBefore(&*MFI);
403     // Keep track of the current bundle header.
404     const MachineInstr *CurBundle = nullptr;
405     // Do we expect the next instruction to be part of the same bundle?
406     bool InBundle = false;
407 
408     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
409            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
410       if (MBBI->getParent() != &*MFI) {
411         report("Bad instruction parent pointer", &*MFI);
412         errs() << "Instruction: " << *MBBI;
413         continue;
414       }
415 
416       // Check for consistent bundle flags.
417       if (InBundle && !MBBI->isBundledWithPred())
418         report("Missing BundledPred flag, "
419                "BundledSucc was set on predecessor",
420                &*MBBI);
421       if (!InBundle && MBBI->isBundledWithPred())
422         report("BundledPred flag is set, "
423                "but BundledSucc not set on predecessor",
424                &*MBBI);
425 
426       // Is this a bundle header?
427       if (!MBBI->isInsideBundle()) {
428         if (CurBundle)
429           visitMachineBundleAfter(CurBundle);
430         CurBundle = &*MBBI;
431         visitMachineBundleBefore(CurBundle);
432       } else if (!CurBundle)
433         report("No bundle header", &*MBBI);
434       visitMachineInstrBefore(&*MBBI);
435       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
436         const MachineInstr &MI = *MBBI;
437         const MachineOperand &Op = MI.getOperand(I);
438         if (Op.getParent() != &MI) {
439           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
440           // functions when replacing operands of a MachineInstr.
441           report("Instruction has operand with wrong parent set", &MI);
442         }
443 
444         visitMachineOperand(&Op, I);
445       }
446 
447       visitMachineInstrAfter(&*MBBI);
448 
449       // Was this the last bundled instruction?
450       InBundle = MBBI->isBundledWithSucc();
451     }
452     if (CurBundle)
453       visitMachineBundleAfter(CurBundle);
454     if (InBundle)
455       report("BundledSucc flag set on last instruction in block", &MFI->back());
456     visitMachineBasicBlockAfter(&*MFI);
457   }
458   visitMachineFunctionAfter();
459 
460   // Clean up.
461   regsLive.clear();
462   regsDefined.clear();
463   regsDead.clear();
464   regsKilled.clear();
465   regMasks.clear();
466   MBBInfoMap.clear();
467 
468   return foundErrors;
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
472   assert(MF);
473   errs() << '\n';
474   if (!foundErrors++) {
475     if (Banner)
476       errs() << "# " << Banner << '\n';
477     if (LiveInts != nullptr)
478       LiveInts->print(errs());
479     else
480       MF->print(errs(), Indexes);
481   }
482   errs() << "*** Bad machine code: " << msg << " ***\n"
483       << "- function:    " << MF->getName() << "\n";
484 }
485 
486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
487   assert(MBB);
488   report(msg, MBB->getParent());
489   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
490          << MBB->getName() << " (" << (const void *)MBB << ')';
491   if (Indexes)
492     errs() << " [" << Indexes->getMBBStartIdx(MBB)
493         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
494   errs() << '\n';
495 }
496 
497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
498   assert(MI);
499   report(msg, MI->getParent());
500   errs() << "- instruction: ";
501   if (Indexes && Indexes->hasIndex(*MI))
502     errs() << Indexes->getInstructionIndex(*MI) << '\t';
503   MI->print(errs(), /*SkipOpers=*/true);
504 }
505 
506 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
507                              unsigned MONum, LLT MOVRegType) {
508   assert(MO);
509   report(msg, MO->getParent());
510   errs() << "- operand " << MONum << ":   ";
511   MO->print(errs(), MOVRegType, TRI);
512   errs() << "\n";
513 }
514 
515 void MachineVerifier::report_context(SlotIndex Pos) const {
516   errs() << "- at:          " << Pos << '\n';
517 }
518 
519 void MachineVerifier::report_context(const LiveInterval &LI) const {
520   errs() << "- interval:    " << LI << '\n';
521 }
522 
523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
524                                      LaneBitmask LaneMask) const {
525   report_context_liverange(LR);
526   report_context_vreg_regunit(VRegUnit);
527   if (LaneMask.any())
528     report_context_lanemask(LaneMask);
529 }
530 
531 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
532   errs() << "- segment:     " << S << '\n';
533 }
534 
535 void MachineVerifier::report_context(const VNInfo &VNI) const {
536   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
537 }
538 
539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
540   errs() << "- liverange:   " << LR << '\n';
541 }
542 
543 void MachineVerifier::report_context(MCPhysReg PReg) const {
544   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
545 }
546 
547 void MachineVerifier::report_context_vreg(unsigned VReg) const {
548   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
549 }
550 
551 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
552   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
553     report_context_vreg(VRegOrUnit);
554   } else {
555     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
556   }
557 }
558 
559 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
560   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
561 }
562 
563 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
564   BBInfo &MInfo = MBBInfoMap[MBB];
565   if (!MInfo.reachable) {
566     MInfo.reachable = true;
567     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
568            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
569       markReachable(*SuI);
570   }
571 }
572 
573 void MachineVerifier::visitMachineFunctionBefore() {
574   lastIndex = SlotIndex();
575   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
576                                            : TRI->getReservedRegs(*MF);
577 
578   if (!MF->empty())
579     markReachable(&MF->front());
580 
581   // Build a set of the basic blocks in the function.
582   FunctionBlocks.clear();
583   for (const auto &MBB : *MF) {
584     FunctionBlocks.insert(&MBB);
585     BBInfo &MInfo = MBBInfoMap[&MBB];
586 
587     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
588     if (MInfo.Preds.size() != MBB.pred_size())
589       report("MBB has duplicate entries in its predecessor list.", &MBB);
590 
591     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
592     if (MInfo.Succs.size() != MBB.succ_size())
593       report("MBB has duplicate entries in its successor list.", &MBB);
594   }
595 
596   // Check that the register use lists are sane.
597   MRI->verifyUseLists();
598 
599   if (!MF->empty())
600     verifyStackFrame();
601 }
602 
603 // Does iterator point to a and b as the first two elements?
604 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
605                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
606   if (*i == a)
607     return *++i == b;
608   if (*i == b)
609     return *++i == a;
610   return false;
611 }
612 
613 void
614 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
615   FirstTerminator = nullptr;
616   FirstNonPHI = nullptr;
617 
618   if (!MF->getProperties().hasProperty(
619       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
620     // If this block has allocatable physical registers live-in, check that
621     // it is an entry block or landing pad.
622     for (const auto &LI : MBB->liveins()) {
623       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
624           MBB->getIterator() != MBB->getParent()->begin()) {
625         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
626         report_context(LI.PhysReg);
627       }
628     }
629   }
630 
631   // Count the number of landing pad successors.
632   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
633   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
634        E = MBB->succ_end(); I != E; ++I) {
635     if ((*I)->isEHPad())
636       LandingPadSuccs.insert(*I);
637     if (!FunctionBlocks.count(*I))
638       report("MBB has successor that isn't part of the function.", MBB);
639     if (!MBBInfoMap[*I].Preds.count(MBB)) {
640       report("Inconsistent CFG", MBB);
641       errs() << "MBB is not in the predecessor list of the successor "
642              << printMBBReference(*(*I)) << ".\n";
643     }
644   }
645 
646   // Check the predecessor list.
647   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
648        E = MBB->pred_end(); I != E; ++I) {
649     if (!FunctionBlocks.count(*I))
650       report("MBB has predecessor that isn't part of the function.", MBB);
651     if (!MBBInfoMap[*I].Succs.count(MBB)) {
652       report("Inconsistent CFG", MBB);
653       errs() << "MBB is not in the successor list of the predecessor "
654              << printMBBReference(*(*I)) << ".\n";
655     }
656   }
657 
658   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
659   const BasicBlock *BB = MBB->getBasicBlock();
660   const Function &F = MF->getFunction();
661   if (LandingPadSuccs.size() > 1 &&
662       !(AsmInfo &&
663         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
664         BB && isa<SwitchInst>(BB->getTerminator())) &&
665       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
666     report("MBB has more than one landing pad successor", MBB);
667 
668   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
669   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
670   SmallVector<MachineOperand, 4> Cond;
671   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
672                           Cond)) {
673     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
674     // check whether its answers match up with reality.
675     if (!TBB && !FBB) {
676       // Block falls through to its successor.
677       MachineFunction::const_iterator MBBI = MBB->getIterator();
678       ++MBBI;
679       if (MBBI == MF->end()) {
680         // It's possible that the block legitimately ends with a noreturn
681         // call or an unreachable, in which case it won't actually fall
682         // out the bottom of the function.
683       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
684         // It's possible that the block legitimately ends with a noreturn
685         // call or an unreachable, in which case it won't actually fall
686         // out of the block.
687       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
688         report("MBB exits via unconditional fall-through but doesn't have "
689                "exactly one CFG successor!", MBB);
690       } else if (!MBB->isSuccessor(&*MBBI)) {
691         report("MBB exits via unconditional fall-through but its successor "
692                "differs from its CFG successor!", MBB);
693       }
694       if (!MBB->empty() && MBB->back().isBarrier() &&
695           !TII->isPredicated(MBB->back())) {
696         report("MBB exits via unconditional fall-through but ends with a "
697                "barrier instruction!", MBB);
698       }
699       if (!Cond.empty()) {
700         report("MBB exits via unconditional fall-through but has a condition!",
701                MBB);
702       }
703     } else if (TBB && !FBB && Cond.empty()) {
704       // Block unconditionally branches somewhere.
705       // If the block has exactly one successor, that happens to be a
706       // landingpad, accept it as valid control flow.
707       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
708           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
709            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
710         report("MBB exits via unconditional branch but doesn't have "
711                "exactly one CFG successor!", MBB);
712       } else if (!MBB->isSuccessor(TBB)) {
713         report("MBB exits via unconditional branch but the CFG "
714                "successor doesn't match the actual successor!", MBB);
715       }
716       if (MBB->empty()) {
717         report("MBB exits via unconditional branch but doesn't contain "
718                "any instructions!", MBB);
719       } else if (!MBB->back().isBarrier()) {
720         report("MBB exits via unconditional branch but doesn't end with a "
721                "barrier instruction!", MBB);
722       } else if (!MBB->back().isTerminator()) {
723         report("MBB exits via unconditional branch but the branch isn't a "
724                "terminator instruction!", MBB);
725       }
726     } else if (TBB && !FBB && !Cond.empty()) {
727       // Block conditionally branches somewhere, otherwise falls through.
728       MachineFunction::const_iterator MBBI = MBB->getIterator();
729       ++MBBI;
730       if (MBBI == MF->end()) {
731         report("MBB conditionally falls through out of function!", MBB);
732       } else if (MBB->succ_size() == 1) {
733         // A conditional branch with only one successor is weird, but allowed.
734         if (&*MBBI != TBB)
735           report("MBB exits via conditional branch/fall-through but only has "
736                  "one CFG successor!", MBB);
737         else if (TBB != *MBB->succ_begin())
738           report("MBB exits via conditional branch/fall-through but the CFG "
739                  "successor don't match the actual successor!", MBB);
740       } else if (MBB->succ_size() != 2) {
741         report("MBB exits via conditional branch/fall-through but doesn't have "
742                "exactly two CFG successors!", MBB);
743       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
744         report("MBB exits via conditional branch/fall-through but the CFG "
745                "successors don't match the actual successors!", MBB);
746       }
747       if (MBB->empty()) {
748         report("MBB exits via conditional branch/fall-through but doesn't "
749                "contain any instructions!", MBB);
750       } else if (MBB->back().isBarrier()) {
751         report("MBB exits via conditional branch/fall-through but ends with a "
752                "barrier instruction!", MBB);
753       } else if (!MBB->back().isTerminator()) {
754         report("MBB exits via conditional branch/fall-through but the branch "
755                "isn't a terminator instruction!", MBB);
756       }
757     } else if (TBB && FBB) {
758       // Block conditionally branches somewhere, otherwise branches
759       // somewhere else.
760       if (MBB->succ_size() == 1) {
761         // A conditional branch with only one successor is weird, but allowed.
762         if (FBB != TBB)
763           report("MBB exits via conditional branch/branch through but only has "
764                  "one CFG successor!", MBB);
765         else if (TBB != *MBB->succ_begin())
766           report("MBB exits via conditional branch/branch through but the CFG "
767                  "successor don't match the actual successor!", MBB);
768       } else if (MBB->succ_size() != 2) {
769         report("MBB exits via conditional branch/branch but doesn't have "
770                "exactly two CFG successors!", MBB);
771       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
772         report("MBB exits via conditional branch/branch but the CFG "
773                "successors don't match the actual successors!", MBB);
774       }
775       if (MBB->empty()) {
776         report("MBB exits via conditional branch/branch but doesn't "
777                "contain any instructions!", MBB);
778       } else if (!MBB->back().isBarrier()) {
779         report("MBB exits via conditional branch/branch but doesn't end with a "
780                "barrier instruction!", MBB);
781       } else if (!MBB->back().isTerminator()) {
782         report("MBB exits via conditional branch/branch but the branch "
783                "isn't a terminator instruction!", MBB);
784       }
785       if (Cond.empty()) {
786         report("MBB exits via conditional branch/branch but there's no "
787                "condition!", MBB);
788       }
789     } else {
790       report("AnalyzeBranch returned invalid data!", MBB);
791     }
792   }
793 
794   regsLive.clear();
795   if (MRI->tracksLiveness()) {
796     for (const auto &LI : MBB->liveins()) {
797       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
798         report("MBB live-in list contains non-physical register", MBB);
799         continue;
800       }
801       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
802            SubRegs.isValid(); ++SubRegs)
803         regsLive.insert(*SubRegs);
804     }
805   }
806 
807   const MachineFrameInfo &MFI = MF->getFrameInfo();
808   BitVector PR = MFI.getPristineRegs(*MF);
809   for (unsigned I : PR.set_bits()) {
810     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
811          SubRegs.isValid(); ++SubRegs)
812       regsLive.insert(*SubRegs);
813   }
814 
815   regsKilled.clear();
816   regsDefined.clear();
817 
818   if (Indexes)
819     lastIndex = Indexes->getMBBStartIdx(MBB);
820 }
821 
822 // This function gets called for all bundle headers, including normal
823 // stand-alone unbundled instructions.
824 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
825   if (Indexes && Indexes->hasIndex(*MI)) {
826     SlotIndex idx = Indexes->getInstructionIndex(*MI);
827     if (!(idx > lastIndex)) {
828       report("Instruction index out of order", MI);
829       errs() << "Last instruction was at " << lastIndex << '\n';
830     }
831     lastIndex = idx;
832   }
833 
834   // Ensure non-terminators don't follow terminators.
835   // Ignore predicated terminators formed by if conversion.
836   // FIXME: If conversion shouldn't need to violate this rule.
837   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
838     if (!FirstTerminator)
839       FirstTerminator = MI;
840   } else if (FirstTerminator) {
841     report("Non-terminator instruction after the first terminator", MI);
842     errs() << "First terminator was:\t" << *FirstTerminator;
843   }
844 }
845 
846 // The operands on an INLINEASM instruction must follow a template.
847 // Verify that the flag operands make sense.
848 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
849   // The first two operands on INLINEASM are the asm string and global flags.
850   if (MI->getNumOperands() < 2) {
851     report("Too few operands on inline asm", MI);
852     return;
853   }
854   if (!MI->getOperand(0).isSymbol())
855     report("Asm string must be an external symbol", MI);
856   if (!MI->getOperand(1).isImm())
857     report("Asm flags must be an immediate", MI);
858   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
859   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
860   // and Extra_IsConvergent = 32.
861   if (!isUInt<6>(MI->getOperand(1).getImm()))
862     report("Unknown asm flags", &MI->getOperand(1), 1);
863 
864   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
865 
866   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
867   unsigned NumOps;
868   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
869     const MachineOperand &MO = MI->getOperand(OpNo);
870     // There may be implicit ops after the fixed operands.
871     if (!MO.isImm())
872       break;
873     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
874   }
875 
876   if (OpNo > MI->getNumOperands())
877     report("Missing operands in last group", MI);
878 
879   // An optional MDNode follows the groups.
880   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
881     ++OpNo;
882 
883   // All trailing operands must be implicit registers.
884   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
885     const MachineOperand &MO = MI->getOperand(OpNo);
886     if (!MO.isReg() || !MO.isImplicit())
887       report("Expected implicit register after groups", &MO, OpNo);
888   }
889 }
890 
891 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
892   const MCInstrDesc &MCID = MI->getDesc();
893   if (MI->getNumOperands() < MCID.getNumOperands()) {
894     report("Too few operands", MI);
895     errs() << MCID.getNumOperands() << " operands expected, but "
896            << MI->getNumOperands() << " given.\n";
897   }
898 
899   if (MI->isPHI()) {
900     if (MF->getProperties().hasProperty(
901             MachineFunctionProperties::Property::NoPHIs))
902       report("Found PHI instruction with NoPHIs property set", MI);
903 
904     if (FirstNonPHI)
905       report("Found PHI instruction after non-PHI", MI);
906   } else if (FirstNonPHI == nullptr)
907     FirstNonPHI = MI;
908 
909   // Check the tied operands.
910   if (MI->isInlineAsm())
911     verifyInlineAsm(MI);
912 
913   // Check the MachineMemOperands for basic consistency.
914   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
915                                   E = MI->memoperands_end();
916        I != E; ++I) {
917     if ((*I)->isLoad() && !MI->mayLoad())
918       report("Missing mayLoad flag", MI);
919     if ((*I)->isStore() && !MI->mayStore())
920       report("Missing mayStore flag", MI);
921   }
922 
923   // Debug values must not have a slot index.
924   // Other instructions must have one, unless they are inside a bundle.
925   if (LiveInts) {
926     bool mapped = !LiveInts->isNotInMIMap(*MI);
927     if (MI->isDebugInstr()) {
928       if (mapped)
929         report("Debug instruction has a slot index", MI);
930     } else if (MI->isInsideBundle()) {
931       if (mapped)
932         report("Instruction inside bundle has a slot index", MI);
933     } else {
934       if (!mapped)
935         report("Missing slot index", MI);
936     }
937   }
938 
939   if (isPreISelGenericOpcode(MCID.getOpcode())) {
940     if (isFunctionSelected)
941       report("Unexpected generic instruction in a Selected function", MI);
942 
943     unsigned NumOps = MI->getNumOperands();
944 
945     // Check types.
946     SmallVector<LLT, 4> Types;
947     for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
948          I != E; ++I) {
949       if (!MCID.OpInfo[I].isGenericType())
950         continue;
951       // Generic instructions specify type equality constraints between some of
952       // their operands. Make sure these are consistent.
953       size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
954       Types.resize(std::max(TypeIdx + 1, Types.size()));
955 
956       const MachineOperand *MO = &MI->getOperand(I);
957       LLT OpTy = MRI->getType(MO->getReg());
958       // Don't report a type mismatch if there is no actual mismatch, only a
959       // type missing, to reduce noise:
960       if (OpTy.isValid()) {
961         // Only the first valid type for a type index will be printed: don't
962         // overwrite it later so it's always clear which type was expected:
963         if (!Types[TypeIdx].isValid())
964           Types[TypeIdx] = OpTy;
965         else if (Types[TypeIdx] != OpTy)
966           report("Type mismatch in generic instruction", MO, I, OpTy);
967       } else {
968         // Generic instructions must have types attached to their operands.
969         report("Generic instruction is missing a virtual register type", MO, I);
970       }
971     }
972 
973     // Generic opcodes must not have physical register operands.
974     for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
975       const MachineOperand *MO = &MI->getOperand(I);
976       if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
977         report("Generic instruction cannot have physical register", MO, I);
978     }
979 
980     // Avoid out of bounds in checks below. This was already reported earlier.
981     if (MI->getNumOperands() < MCID.getNumOperands())
982       return;
983   }
984 
985   StringRef ErrorInfo;
986   if (!TII->verifyInstruction(*MI, ErrorInfo))
987     report(ErrorInfo.data(), MI);
988 
989   // Verify properties of various specific instruction types
990   switch(MI->getOpcode()) {
991   default:
992     break;
993   case TargetOpcode::G_CONSTANT:
994   case TargetOpcode::G_FCONSTANT: {
995     if (MI->getNumOperands() < MCID.getNumOperands())
996       break;
997 
998     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
999     if (DstTy.isVector())
1000       report("Instruction cannot use a vector result type", MI);
1001     break;
1002   }
1003   case TargetOpcode::G_LOAD:
1004   case TargetOpcode::G_STORE:
1005   case TargetOpcode::G_ZEXTLOAD:
1006   case TargetOpcode::G_SEXTLOAD:
1007     // Generic loads and stores must have a single MachineMemOperand
1008     // describing that access.
1009     if (!MI->hasOneMemOperand()) {
1010       report("Generic instruction accessing memory must have one mem operand",
1011              MI);
1012     } else {
1013       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1014           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1015         const MachineMemOperand &MMO = **MI->memoperands_begin();
1016         LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1017         if (MMO.getSize() * 8 >= DstTy.getSizeInBits()) {
1018           report("Generic extload must have a narrower memory type", MI);
1019         }
1020       }
1021     }
1022 
1023     break;
1024   case TargetOpcode::G_PHI: {
1025     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1026     if (!DstTy.isValid() ||
1027         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1028                      [this, &DstTy](const MachineOperand &MO) {
1029                        if (!MO.isReg())
1030                          return true;
1031                        LLT Ty = MRI->getType(MO.getReg());
1032                        if (!Ty.isValid() || (Ty != DstTy))
1033                          return false;
1034                        return true;
1035                      }))
1036       report("Generic Instruction G_PHI has operands with incompatible/missing "
1037              "types",
1038              MI);
1039     break;
1040   }
1041   case TargetOpcode::G_BITCAST: {
1042     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1043     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1044     if (!DstTy.isValid() || !SrcTy.isValid())
1045       break;
1046 
1047     if (SrcTy.isPointer() != DstTy.isPointer())
1048       report("bitcast cannot convert between pointers and other types", MI);
1049 
1050     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1051       report("bitcast sizes must match", MI);
1052     break;
1053   }
1054   case TargetOpcode::G_SEXT:
1055   case TargetOpcode::G_ZEXT:
1056   case TargetOpcode::G_ANYEXT:
1057   case TargetOpcode::G_TRUNC:
1058   case TargetOpcode::G_FPEXT:
1059   case TargetOpcode::G_FPTRUNC: {
1060     // Number of operands and presense of types is already checked (and
1061     // reported in case of any issues), so no need to report them again. As
1062     // we're trying to report as many issues as possible at once, however, the
1063     // instructions aren't guaranteed to have the right number of operands or
1064     // types attached to them at this point
1065     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1066     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1067     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1068     if (!DstTy.isValid() || !SrcTy.isValid())
1069       break;
1070 
1071     LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy;
1072     LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
1073     if (DstElTy.isPointer() || SrcElTy.isPointer())
1074       report("Generic extend/truncate can not operate on pointers", MI);
1075 
1076     if (DstTy.isVector() != SrcTy.isVector()) {
1077       report("Generic extend/truncate must be all-vector or all-scalar", MI);
1078       // Generally we try to report as many issues as possible at once, but in
1079       // this case it's not clear what should we be comparing the size of the
1080       // scalar with: the size of the whole vector or its lane. Instead of
1081       // making an arbitrary choice and emitting not so helpful message, let's
1082       // avoid the extra noise and stop here.
1083       break;
1084     }
1085     if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())
1086       report("Generic vector extend/truncate must preserve number of lanes",
1087              MI);
1088     unsigned DstSize = DstElTy.getSizeInBits();
1089     unsigned SrcSize = SrcElTy.getSizeInBits();
1090     switch (MI->getOpcode()) {
1091     default:
1092       if (DstSize <= SrcSize)
1093         report("Generic extend has destination type no larger than source", MI);
1094       break;
1095     case TargetOpcode::G_TRUNC:
1096     case TargetOpcode::G_FPTRUNC:
1097       if (DstSize >= SrcSize)
1098         report("Generic truncate has destination type no smaller than source",
1099                MI);
1100       break;
1101     }
1102     break;
1103   }
1104   case TargetOpcode::G_MERGE_VALUES: {
1105     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1106     // e.g. s2N = MERGE sN, sN
1107     // Merging multiple scalars into a vector is not allowed, should use
1108     // G_BUILD_VECTOR for that.
1109     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1110     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1111     if (DstTy.isVector() || SrcTy.isVector())
1112       report("G_MERGE_VALUES cannot operate on vectors", MI);
1113     break;
1114   }
1115   case TargetOpcode::G_UNMERGE_VALUES: {
1116     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1117     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1118     // For now G_UNMERGE can split vectors.
1119     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1120       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1121         report("G_UNMERGE_VALUES destination types do not match", MI);
1122     }
1123     if (SrcTy.getSizeInBits() !=
1124         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1125       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1126              MI);
1127     }
1128     break;
1129   }
1130   case TargetOpcode::G_BUILD_VECTOR: {
1131     // Source types must be scalars, dest type a vector. Total size of scalars
1132     // must match the dest vector size.
1133     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1134     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1135     if (!DstTy.isVector() || SrcEltTy.isVector())
1136       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1137     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1138       if (MRI->getType(MI->getOperand(1).getReg()) !=
1139           MRI->getType(MI->getOperand(i).getReg()))
1140         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1141     }
1142     if (DstTy.getSizeInBits() !=
1143         SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1))
1144       report("G_BUILD_VECTOR src operands total size don't match dest "
1145              "size.",
1146              MI);
1147     break;
1148   }
1149   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1150     // Source types must be scalars, dest type a vector. Scalar types must be
1151     // larger than the dest vector elt type, as this is a truncating operation.
1152     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1153     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1154     if (!DstTy.isVector() || SrcEltTy.isVector())
1155       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1156              MI);
1157     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1158       if (MRI->getType(MI->getOperand(1).getReg()) !=
1159           MRI->getType(MI->getOperand(i).getReg()))
1160         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1161                MI);
1162     }
1163     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1164       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1165              "dest elt type",
1166              MI);
1167     break;
1168   }
1169   case TargetOpcode::G_CONCAT_VECTORS: {
1170     // Source types should be vectors, and total size should match the dest
1171     // vector size.
1172     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1173     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1174     if (!DstTy.isVector() || !SrcTy.isVector())
1175       report("G_CONCAT_VECTOR requires vector source and destination operands",
1176              MI);
1177     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1178       if (MRI->getType(MI->getOperand(1).getReg()) !=
1179           MRI->getType(MI->getOperand(i).getReg()))
1180         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1181     }
1182     if (DstTy.getNumElements() !=
1183         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1184       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1185     break;
1186   }
1187   case TargetOpcode::COPY: {
1188     if (foundErrors)
1189       break;
1190     const MachineOperand &DstOp = MI->getOperand(0);
1191     const MachineOperand &SrcOp = MI->getOperand(1);
1192     LLT DstTy = MRI->getType(DstOp.getReg());
1193     LLT SrcTy = MRI->getType(SrcOp.getReg());
1194     if (SrcTy.isValid() && DstTy.isValid()) {
1195       // If both types are valid, check that the types are the same.
1196       if (SrcTy != DstTy) {
1197         report("Copy Instruction is illegal with mismatching types", MI);
1198         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1199       }
1200     }
1201     if (SrcTy.isValid() || DstTy.isValid()) {
1202       // If one of them have valid types, let's just check they have the same
1203       // size.
1204       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1205       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1206       assert(SrcSize && "Expecting size here");
1207       assert(DstSize && "Expecting size here");
1208       if (SrcSize != DstSize)
1209         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1210           report("Copy Instruction is illegal with mismatching sizes", MI);
1211           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1212                  << "\n";
1213         }
1214     }
1215     break;
1216   }
1217   case TargetOpcode::G_ICMP:
1218   case TargetOpcode::G_FCMP: {
1219     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1220     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1221 
1222     if ((DstTy.isVector() != SrcTy.isVector()) ||
1223         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1224       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1225 
1226     break;
1227   }
1228   case TargetOpcode::STATEPOINT:
1229     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1230         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1231         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1232       report("meta operands to STATEPOINT not constant!", MI);
1233     break;
1234 
1235     auto VerifyStackMapConstant = [&](unsigned Offset) {
1236       if (!MI->getOperand(Offset).isImm() ||
1237           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1238           !MI->getOperand(Offset + 1).isImm())
1239         report("stack map constant to STATEPOINT not well formed!", MI);
1240     };
1241     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1242     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1243     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1244     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1245 
1246     // TODO: verify we have properly encoded deopt arguments
1247   };
1248 }
1249 
1250 void
1251 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1252   const MachineInstr *MI = MO->getParent();
1253   const MCInstrDesc &MCID = MI->getDesc();
1254   unsigned NumDefs = MCID.getNumDefs();
1255   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1256     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1257 
1258   // The first MCID.NumDefs operands must be explicit register defines
1259   if (MONum < NumDefs) {
1260     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1261     if (!MO->isReg())
1262       report("Explicit definition must be a register", MO, MONum);
1263     else if (!MO->isDef() && !MCOI.isOptionalDef())
1264       report("Explicit definition marked as use", MO, MONum);
1265     else if (MO->isImplicit())
1266       report("Explicit definition marked as implicit", MO, MONum);
1267   } else if (MONum < MCID.getNumOperands()) {
1268     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1269     // Don't check if it's the last operand in a variadic instruction. See,
1270     // e.g., LDM_RET in the arm back end.
1271     if (MO->isReg() &&
1272         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1273       if (MO->isDef() && !MCOI.isOptionalDef())
1274         report("Explicit operand marked as def", MO, MONum);
1275       if (MO->isImplicit())
1276         report("Explicit operand marked as implicit", MO, MONum);
1277     }
1278 
1279     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1280     if (TiedTo != -1) {
1281       if (!MO->isReg())
1282         report("Tied use must be a register", MO, MONum);
1283       else if (!MO->isTied())
1284         report("Operand should be tied", MO, MONum);
1285       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1286         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1287       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1288         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1289         if (!MOTied.isReg())
1290           report("Tied counterpart must be a register", &MOTied, TiedTo);
1291         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1292                  MO->getReg() != MOTied.getReg())
1293           report("Tied physical registers must match.", &MOTied, TiedTo);
1294       }
1295     } else if (MO->isReg() && MO->isTied())
1296       report("Explicit operand should not be tied", MO, MONum);
1297   } else {
1298     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1299     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1300       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1301   }
1302 
1303   switch (MO->getType()) {
1304   case MachineOperand::MO_Register: {
1305     const unsigned Reg = MO->getReg();
1306     if (!Reg)
1307       return;
1308     if (MRI->tracksLiveness() && !MI->isDebugValue())
1309       checkLiveness(MO, MONum);
1310 
1311     // Verify the consistency of tied operands.
1312     if (MO->isTied()) {
1313       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1314       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1315       if (!OtherMO.isReg())
1316         report("Must be tied to a register", MO, MONum);
1317       if (!OtherMO.isTied())
1318         report("Missing tie flags on tied operand", MO, MONum);
1319       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1320         report("Inconsistent tie links", MO, MONum);
1321       if (MONum < MCID.getNumDefs()) {
1322         if (OtherIdx < MCID.getNumOperands()) {
1323           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1324             report("Explicit def tied to explicit use without tie constraint",
1325                    MO, MONum);
1326         } else {
1327           if (!OtherMO.isImplicit())
1328             report("Explicit def should be tied to implicit use", MO, MONum);
1329         }
1330       }
1331     }
1332 
1333     // Verify two-address constraints after leaving SSA form.
1334     unsigned DefIdx;
1335     if (!MRI->isSSA() && MO->isUse() &&
1336         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1337         Reg != MI->getOperand(DefIdx).getReg())
1338       report("Two-address instruction operands must be identical", MO, MONum);
1339 
1340     // Check register classes.
1341     unsigned SubIdx = MO->getSubReg();
1342 
1343     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1344       if (SubIdx) {
1345         report("Illegal subregister index for physical register", MO, MONum);
1346         return;
1347       }
1348       if (MONum < MCID.getNumOperands()) {
1349         if (const TargetRegisterClass *DRC =
1350               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1351           if (!DRC->contains(Reg)) {
1352             report("Illegal physical register for instruction", MO, MONum);
1353             errs() << printReg(Reg, TRI) << " is not a "
1354                    << TRI->getRegClassName(DRC) << " register.\n";
1355           }
1356         }
1357       }
1358       if (MO->isRenamable()) {
1359         if (MRI->isReserved(Reg)) {
1360           report("isRenamable set on reserved register", MO, MONum);
1361           return;
1362         }
1363       }
1364       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1365         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1366         return;
1367       }
1368     } else {
1369       // Virtual register.
1370       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1371       if (!RC) {
1372         // This is a generic virtual register.
1373 
1374         // If we're post-Select, we can't have gvregs anymore.
1375         if (isFunctionSelected) {
1376           report("Generic virtual register invalid in a Selected function",
1377                  MO, MONum);
1378           return;
1379         }
1380 
1381         // The gvreg must have a type and it must not have a SubIdx.
1382         LLT Ty = MRI->getType(Reg);
1383         if (!Ty.isValid()) {
1384           report("Generic virtual register must have a valid type", MO,
1385                  MONum);
1386           return;
1387         }
1388 
1389         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1390 
1391         // If we're post-RegBankSelect, the gvreg must have a bank.
1392         if (!RegBank && isFunctionRegBankSelected) {
1393           report("Generic virtual register must have a bank in a "
1394                  "RegBankSelected function",
1395                  MO, MONum);
1396           return;
1397         }
1398 
1399         // Make sure the register fits into its register bank if any.
1400         if (RegBank && Ty.isValid() &&
1401             RegBank->getSize() < Ty.getSizeInBits()) {
1402           report("Register bank is too small for virtual register", MO,
1403                  MONum);
1404           errs() << "Register bank " << RegBank->getName() << " too small("
1405                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1406                  << "-bits\n";
1407           return;
1408         }
1409         if (SubIdx)  {
1410           report("Generic virtual register does not subregister index", MO,
1411                  MONum);
1412           return;
1413         }
1414 
1415         // If this is a target specific instruction and this operand
1416         // has register class constraint, the virtual register must
1417         // comply to it.
1418         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1419             MONum < MCID.getNumOperands() &&
1420             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1421           report("Virtual register does not match instruction constraint", MO,
1422                  MONum);
1423           errs() << "Expect register class "
1424                  << TRI->getRegClassName(
1425                         TII->getRegClass(MCID, MONum, TRI, *MF))
1426                  << " but got nothing\n";
1427           return;
1428         }
1429 
1430         break;
1431       }
1432       if (SubIdx) {
1433         const TargetRegisterClass *SRC =
1434           TRI->getSubClassWithSubReg(RC, SubIdx);
1435         if (!SRC) {
1436           report("Invalid subregister index for virtual register", MO, MONum);
1437           errs() << "Register class " << TRI->getRegClassName(RC)
1438               << " does not support subreg index " << SubIdx << "\n";
1439           return;
1440         }
1441         if (RC != SRC) {
1442           report("Invalid register class for subregister index", MO, MONum);
1443           errs() << "Register class " << TRI->getRegClassName(RC)
1444               << " does not fully support subreg index " << SubIdx << "\n";
1445           return;
1446         }
1447       }
1448       if (MONum < MCID.getNumOperands()) {
1449         if (const TargetRegisterClass *DRC =
1450               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1451           if (SubIdx) {
1452             const TargetRegisterClass *SuperRC =
1453                 TRI->getLargestLegalSuperClass(RC, *MF);
1454             if (!SuperRC) {
1455               report("No largest legal super class exists.", MO, MONum);
1456               return;
1457             }
1458             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1459             if (!DRC) {
1460               report("No matching super-reg register class.", MO, MONum);
1461               return;
1462             }
1463           }
1464           if (!RC->hasSuperClassEq(DRC)) {
1465             report("Illegal virtual register for instruction", MO, MONum);
1466             errs() << "Expected a " << TRI->getRegClassName(DRC)
1467                 << " register, but got a " << TRI->getRegClassName(RC)
1468                 << " register\n";
1469           }
1470         }
1471       }
1472     }
1473     break;
1474   }
1475 
1476   case MachineOperand::MO_RegisterMask:
1477     regMasks.push_back(MO->getRegMask());
1478     break;
1479 
1480   case MachineOperand::MO_MachineBasicBlock:
1481     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1482       report("PHI operand is not in the CFG", MO, MONum);
1483     break;
1484 
1485   case MachineOperand::MO_FrameIndex:
1486     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1487         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1488       int FI = MO->getIndex();
1489       LiveInterval &LI = LiveStks->getInterval(FI);
1490       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1491 
1492       bool stores = MI->mayStore();
1493       bool loads = MI->mayLoad();
1494       // For a memory-to-memory move, we need to check if the frame
1495       // index is used for storing or loading, by inspecting the
1496       // memory operands.
1497       if (stores && loads) {
1498         for (auto *MMO : MI->memoperands()) {
1499           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1500           if (PSV == nullptr) continue;
1501           const FixedStackPseudoSourceValue *Value =
1502             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1503           if (Value == nullptr) continue;
1504           if (Value->getFrameIndex() != FI) continue;
1505 
1506           if (MMO->isStore())
1507             loads = false;
1508           else
1509             stores = false;
1510           break;
1511         }
1512         if (loads == stores)
1513           report("Missing fixed stack memoperand.", MI);
1514       }
1515       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1516         report("Instruction loads from dead spill slot", MO, MONum);
1517         errs() << "Live stack: " << LI << '\n';
1518       }
1519       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1520         report("Instruction stores to dead spill slot", MO, MONum);
1521         errs() << "Live stack: " << LI << '\n';
1522       }
1523     }
1524     break;
1525 
1526   default:
1527     break;
1528   }
1529 }
1530 
1531 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1532     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1533     LaneBitmask LaneMask) {
1534   LiveQueryResult LRQ = LR.Query(UseIdx);
1535   // Check if we have a segment at the use, note however that we only need one
1536   // live subregister range, the others may be dead.
1537   if (!LRQ.valueIn() && LaneMask.none()) {
1538     report("No live segment at use", MO, MONum);
1539     report_context_liverange(LR);
1540     report_context_vreg_regunit(VRegOrUnit);
1541     report_context(UseIdx);
1542   }
1543   if (MO->isKill() && !LRQ.isKill()) {
1544     report("Live range continues after kill flag", MO, MONum);
1545     report_context_liverange(LR);
1546     report_context_vreg_regunit(VRegOrUnit);
1547     if (LaneMask.any())
1548       report_context_lanemask(LaneMask);
1549     report_context(UseIdx);
1550   }
1551 }
1552 
1553 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1554     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1555     bool SubRangeCheck, LaneBitmask LaneMask) {
1556   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1557     assert(VNI && "NULL valno is not allowed");
1558     if (VNI->def != DefIdx) {
1559       report("Inconsistent valno->def", MO, MONum);
1560       report_context_liverange(LR);
1561       report_context_vreg_regunit(VRegOrUnit);
1562       if (LaneMask.any())
1563         report_context_lanemask(LaneMask);
1564       report_context(*VNI);
1565       report_context(DefIdx);
1566     }
1567   } else {
1568     report("No live segment at def", MO, MONum);
1569     report_context_liverange(LR);
1570     report_context_vreg_regunit(VRegOrUnit);
1571     if (LaneMask.any())
1572       report_context_lanemask(LaneMask);
1573     report_context(DefIdx);
1574   }
1575   // Check that, if the dead def flag is present, LiveInts agree.
1576   if (MO->isDead()) {
1577     LiveQueryResult LRQ = LR.Query(DefIdx);
1578     if (!LRQ.isDeadDef()) {
1579       assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1580              "Expecting a virtual register.");
1581       // A dead subreg def only tells us that the specific subreg is dead. There
1582       // could be other non-dead defs of other subregs, or we could have other
1583       // parts of the register being live through the instruction. So unless we
1584       // are checking liveness for a subrange it is ok for the live range to
1585       // continue, given that we have a dead def of a subregister.
1586       if (SubRangeCheck || MO->getSubReg() == 0) {
1587         report("Live range continues after dead def flag", MO, MONum);
1588         report_context_liverange(LR);
1589         report_context_vreg_regunit(VRegOrUnit);
1590         if (LaneMask.any())
1591           report_context_lanemask(LaneMask);
1592       }
1593     }
1594   }
1595 }
1596 
1597 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1598   const MachineInstr *MI = MO->getParent();
1599   const unsigned Reg = MO->getReg();
1600 
1601   // Both use and def operands can read a register.
1602   if (MO->readsReg()) {
1603     if (MO->isKill())
1604       addRegWithSubRegs(regsKilled, Reg);
1605 
1606     // Check that LiveVars knows this kill.
1607     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1608         MO->isKill()) {
1609       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1610       if (!is_contained(VI.Kills, MI))
1611         report("Kill missing from LiveVariables", MO, MONum);
1612     }
1613 
1614     // Check LiveInts liveness and kill.
1615     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1616       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1617       // Check the cached regunit intervals.
1618       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1619         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1620           if (MRI->isReservedRegUnit(*Units))
1621             continue;
1622           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1623             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1624         }
1625       }
1626 
1627       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1628         if (LiveInts->hasInterval(Reg)) {
1629           // This is a virtual register interval.
1630           const LiveInterval &LI = LiveInts->getInterval(Reg);
1631           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1632 
1633           if (LI.hasSubRanges() && !MO->isDef()) {
1634             unsigned SubRegIdx = MO->getSubReg();
1635             LaneBitmask MOMask = SubRegIdx != 0
1636                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1637                                : MRI->getMaxLaneMaskForVReg(Reg);
1638             LaneBitmask LiveInMask;
1639             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1640               if ((MOMask & SR.LaneMask).none())
1641                 continue;
1642               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1643               LiveQueryResult LRQ = SR.Query(UseIdx);
1644               if (LRQ.valueIn())
1645                 LiveInMask |= SR.LaneMask;
1646             }
1647             // At least parts of the register has to be live at the use.
1648             if ((LiveInMask & MOMask).none()) {
1649               report("No live subrange at use", MO, MONum);
1650               report_context(LI);
1651               report_context(UseIdx);
1652             }
1653           }
1654         } else {
1655           report("Virtual register has no live interval", MO, MONum);
1656         }
1657       }
1658     }
1659 
1660     // Use of a dead register.
1661     if (!regsLive.count(Reg)) {
1662       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1663         // Reserved registers may be used even when 'dead'.
1664         bool Bad = !isReserved(Reg);
1665         // We are fine if just any subregister has a defined value.
1666         if (Bad) {
1667           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1668                ++SubRegs) {
1669             if (regsLive.count(*SubRegs)) {
1670               Bad = false;
1671               break;
1672             }
1673           }
1674         }
1675         // If there is an additional implicit-use of a super register we stop
1676         // here. By definition we are fine if the super register is not
1677         // (completely) dead, if the complete super register is dead we will
1678         // get a report for its operand.
1679         if (Bad) {
1680           for (const MachineOperand &MOP : MI->uses()) {
1681             if (!MOP.isReg() || !MOP.isImplicit())
1682               continue;
1683 
1684             if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1685               continue;
1686 
1687             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1688                  ++SubRegs) {
1689               if (*SubRegs == Reg) {
1690                 Bad = false;
1691                 break;
1692               }
1693             }
1694           }
1695         }
1696         if (Bad)
1697           report("Using an undefined physical register", MO, MONum);
1698       } else if (MRI->def_empty(Reg)) {
1699         report("Reading virtual register without a def", MO, MONum);
1700       } else {
1701         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1702         // We don't know which virtual registers are live in, so only complain
1703         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1704         // must be live in. PHI instructions are handled separately.
1705         if (MInfo.regsKilled.count(Reg))
1706           report("Using a killed virtual register", MO, MONum);
1707         else if (!MI->isPHI())
1708           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1709       }
1710     }
1711   }
1712 
1713   if (MO->isDef()) {
1714     // Register defined.
1715     // TODO: verify that earlyclobber ops are not used.
1716     if (MO->isDead())
1717       addRegWithSubRegs(regsDead, Reg);
1718     else
1719       addRegWithSubRegs(regsDefined, Reg);
1720 
1721     // Verify SSA form.
1722     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1723         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1724       report("Multiple virtual register defs in SSA form", MO, MONum);
1725 
1726     // Check LiveInts for a live segment, but only for virtual registers.
1727     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1728       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1729       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1730 
1731       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1732         if (LiveInts->hasInterval(Reg)) {
1733           const LiveInterval &LI = LiveInts->getInterval(Reg);
1734           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1735 
1736           if (LI.hasSubRanges()) {
1737             unsigned SubRegIdx = MO->getSubReg();
1738             LaneBitmask MOMask = SubRegIdx != 0
1739               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1740               : MRI->getMaxLaneMaskForVReg(Reg);
1741             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1742               if ((SR.LaneMask & MOMask).none())
1743                 continue;
1744               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1745             }
1746           }
1747         } else {
1748           report("Virtual register has no Live interval", MO, MONum);
1749         }
1750       }
1751     }
1752   }
1753 }
1754 
1755 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1756 
1757 // This function gets called after visiting all instructions in a bundle. The
1758 // argument points to the bundle header.
1759 // Normal stand-alone instructions are also considered 'bundles', and this
1760 // function is called for all of them.
1761 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1762   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1763   set_union(MInfo.regsKilled, regsKilled);
1764   set_subtract(regsLive, regsKilled); regsKilled.clear();
1765   // Kill any masked registers.
1766   while (!regMasks.empty()) {
1767     const uint32_t *Mask = regMasks.pop_back_val();
1768     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1769       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1770           MachineOperand::clobbersPhysReg(Mask, *I))
1771         regsDead.push_back(*I);
1772   }
1773   set_subtract(regsLive, regsDead);   regsDead.clear();
1774   set_union(regsLive, regsDefined);   regsDefined.clear();
1775 }
1776 
1777 void
1778 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1779   MBBInfoMap[MBB].regsLiveOut = regsLive;
1780   regsLive.clear();
1781 
1782   if (Indexes) {
1783     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1784     if (!(stop > lastIndex)) {
1785       report("Block ends before last instruction index", MBB);
1786       errs() << "Block ends at " << stop
1787           << " last instruction was at " << lastIndex << '\n';
1788     }
1789     lastIndex = stop;
1790   }
1791 }
1792 
1793 // Calculate the largest possible vregsPassed sets. These are the registers that
1794 // can pass through an MBB live, but may not be live every time. It is assumed
1795 // that all vregsPassed sets are empty before the call.
1796 void MachineVerifier::calcRegsPassed() {
1797   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1798   // have any vregsPassed.
1799   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1800   for (const auto &MBB : *MF) {
1801     BBInfo &MInfo = MBBInfoMap[&MBB];
1802     if (!MInfo.reachable)
1803       continue;
1804     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1805            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1806       BBInfo &SInfo = MBBInfoMap[*SuI];
1807       if (SInfo.addPassed(MInfo.regsLiveOut))
1808         todo.insert(*SuI);
1809     }
1810   }
1811 
1812   // Iteratively push vregsPassed to successors. This will converge to the same
1813   // final state regardless of DenseSet iteration order.
1814   while (!todo.empty()) {
1815     const MachineBasicBlock *MBB = *todo.begin();
1816     todo.erase(MBB);
1817     BBInfo &MInfo = MBBInfoMap[MBB];
1818     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1819            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1820       if (*SuI == MBB)
1821         continue;
1822       BBInfo &SInfo = MBBInfoMap[*SuI];
1823       if (SInfo.addPassed(MInfo.vregsPassed))
1824         todo.insert(*SuI);
1825     }
1826   }
1827 }
1828 
1829 // Calculate the set of virtual registers that must be passed through each basic
1830 // block in order to satisfy the requirements of successor blocks. This is very
1831 // similar to calcRegsPassed, only backwards.
1832 void MachineVerifier::calcRegsRequired() {
1833   // First push live-in regs to predecessors' vregsRequired.
1834   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1835   for (const auto &MBB : *MF) {
1836     BBInfo &MInfo = MBBInfoMap[&MBB];
1837     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1838            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1839       BBInfo &PInfo = MBBInfoMap[*PrI];
1840       if (PInfo.addRequired(MInfo.vregsLiveIn))
1841         todo.insert(*PrI);
1842     }
1843   }
1844 
1845   // Iteratively push vregsRequired to predecessors. This will converge to the
1846   // same final state regardless of DenseSet iteration order.
1847   while (!todo.empty()) {
1848     const MachineBasicBlock *MBB = *todo.begin();
1849     todo.erase(MBB);
1850     BBInfo &MInfo = MBBInfoMap[MBB];
1851     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1852            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1853       if (*PrI == MBB)
1854         continue;
1855       BBInfo &SInfo = MBBInfoMap[*PrI];
1856       if (SInfo.addRequired(MInfo.vregsRequired))
1857         todo.insert(*PrI);
1858     }
1859   }
1860 }
1861 
1862 // Check PHI instructions at the beginning of MBB. It is assumed that
1863 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1864 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1865   BBInfo &MInfo = MBBInfoMap[&MBB];
1866 
1867   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1868   for (const MachineInstr &Phi : MBB) {
1869     if (!Phi.isPHI())
1870       break;
1871     seen.clear();
1872 
1873     const MachineOperand &MODef = Phi.getOperand(0);
1874     if (!MODef.isReg() || !MODef.isDef()) {
1875       report("Expected first PHI operand to be a register def", &MODef, 0);
1876       continue;
1877     }
1878     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1879         MODef.isEarlyClobber() || MODef.isDebug())
1880       report("Unexpected flag on PHI operand", &MODef, 0);
1881     unsigned DefReg = MODef.getReg();
1882     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1883       report("Expected first PHI operand to be a virtual register", &MODef, 0);
1884 
1885     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1886       const MachineOperand &MO0 = Phi.getOperand(I);
1887       if (!MO0.isReg()) {
1888         report("Expected PHI operand to be a register", &MO0, I);
1889         continue;
1890       }
1891       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1892           MO0.isDebug() || MO0.isTied())
1893         report("Unexpected flag on PHI operand", &MO0, I);
1894 
1895       const MachineOperand &MO1 = Phi.getOperand(I + 1);
1896       if (!MO1.isMBB()) {
1897         report("Expected PHI operand to be a basic block", &MO1, I + 1);
1898         continue;
1899       }
1900 
1901       const MachineBasicBlock &Pre = *MO1.getMBB();
1902       if (!Pre.isSuccessor(&MBB)) {
1903         report("PHI input is not a predecessor block", &MO1, I + 1);
1904         continue;
1905       }
1906 
1907       if (MInfo.reachable) {
1908         seen.insert(&Pre);
1909         BBInfo &PrInfo = MBBInfoMap[&Pre];
1910         if (!MO0.isUndef() && PrInfo.reachable &&
1911             !PrInfo.isLiveOut(MO0.getReg()))
1912           report("PHI operand is not live-out from predecessor", &MO0, I);
1913       }
1914     }
1915 
1916     // Did we see all predecessors?
1917     if (MInfo.reachable) {
1918       for (MachineBasicBlock *Pred : MBB.predecessors()) {
1919         if (!seen.count(Pred)) {
1920           report("Missing PHI operand", &Phi);
1921           errs() << printMBBReference(*Pred)
1922                  << " is a predecessor according to the CFG.\n";
1923         }
1924       }
1925     }
1926   }
1927 }
1928 
1929 void MachineVerifier::visitMachineFunctionAfter() {
1930   calcRegsPassed();
1931 
1932   for (const MachineBasicBlock &MBB : *MF)
1933     checkPHIOps(MBB);
1934 
1935   // Now check liveness info if available
1936   calcRegsRequired();
1937 
1938   // Check for killed virtual registers that should be live out.
1939   for (const auto &MBB : *MF) {
1940     BBInfo &MInfo = MBBInfoMap[&MBB];
1941     for (RegSet::iterator
1942          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1943          ++I)
1944       if (MInfo.regsKilled.count(*I)) {
1945         report("Virtual register killed in block, but needed live out.", &MBB);
1946         errs() << "Virtual register " << printReg(*I)
1947                << " is used after the block.\n";
1948       }
1949   }
1950 
1951   if (!MF->empty()) {
1952     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1953     for (RegSet::iterator
1954          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1955          ++I) {
1956       report("Virtual register defs don't dominate all uses.", MF);
1957       report_context_vreg(*I);
1958     }
1959   }
1960 
1961   if (LiveVars)
1962     verifyLiveVariables();
1963   if (LiveInts)
1964     verifyLiveIntervals();
1965 }
1966 
1967 void MachineVerifier::verifyLiveVariables() {
1968   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1969   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1970     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1971     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1972     for (const auto &MBB : *MF) {
1973       BBInfo &MInfo = MBBInfoMap[&MBB];
1974 
1975       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1976       if (MInfo.vregsRequired.count(Reg)) {
1977         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1978           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1979           errs() << "Virtual register " << printReg(Reg)
1980                  << " must be live through the block.\n";
1981         }
1982       } else {
1983         if (VI.AliveBlocks.test(MBB.getNumber())) {
1984           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1985           errs() << "Virtual register " << printReg(Reg)
1986                  << " is not needed live through the block.\n";
1987         }
1988       }
1989     }
1990   }
1991 }
1992 
1993 void MachineVerifier::verifyLiveIntervals() {
1994   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1995   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1996     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1997 
1998     // Spilling and splitting may leave unused registers around. Skip them.
1999     if (MRI->reg_nodbg_empty(Reg))
2000       continue;
2001 
2002     if (!LiveInts->hasInterval(Reg)) {
2003       report("Missing live interval for virtual register", MF);
2004       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2005       continue;
2006     }
2007 
2008     const LiveInterval &LI = LiveInts->getInterval(Reg);
2009     assert(Reg == LI.reg && "Invalid reg to interval mapping");
2010     verifyLiveInterval(LI);
2011   }
2012 
2013   // Verify all the cached regunit intervals.
2014   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2015     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2016       verifyLiveRange(*LR, i);
2017 }
2018 
2019 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2020                                            const VNInfo *VNI, unsigned Reg,
2021                                            LaneBitmask LaneMask) {
2022   if (VNI->isUnused())
2023     return;
2024 
2025   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2026 
2027   if (!DefVNI) {
2028     report("Value not live at VNInfo def and not marked unused", MF);
2029     report_context(LR, Reg, LaneMask);
2030     report_context(*VNI);
2031     return;
2032   }
2033 
2034   if (DefVNI != VNI) {
2035     report("Live segment at def has different VNInfo", MF);
2036     report_context(LR, Reg, LaneMask);
2037     report_context(*VNI);
2038     return;
2039   }
2040 
2041   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2042   if (!MBB) {
2043     report("Invalid VNInfo definition index", MF);
2044     report_context(LR, Reg, LaneMask);
2045     report_context(*VNI);
2046     return;
2047   }
2048 
2049   if (VNI->isPHIDef()) {
2050     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2051       report("PHIDef VNInfo is not defined at MBB start", MBB);
2052       report_context(LR, Reg, LaneMask);
2053       report_context(*VNI);
2054     }
2055     return;
2056   }
2057 
2058   // Non-PHI def.
2059   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2060   if (!MI) {
2061     report("No instruction at VNInfo def index", MBB);
2062     report_context(LR, Reg, LaneMask);
2063     report_context(*VNI);
2064     return;
2065   }
2066 
2067   if (Reg != 0) {
2068     bool hasDef = false;
2069     bool isEarlyClobber = false;
2070     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2071       if (!MOI->isReg() || !MOI->isDef())
2072         continue;
2073       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2074         if (MOI->getReg() != Reg)
2075           continue;
2076       } else {
2077         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2078             !TRI->hasRegUnit(MOI->getReg(), Reg))
2079           continue;
2080       }
2081       if (LaneMask.any() &&
2082           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2083         continue;
2084       hasDef = true;
2085       if (MOI->isEarlyClobber())
2086         isEarlyClobber = true;
2087     }
2088 
2089     if (!hasDef) {
2090       report("Defining instruction does not modify register", MI);
2091       report_context(LR, Reg, LaneMask);
2092       report_context(*VNI);
2093     }
2094 
2095     // Early clobber defs begin at USE slots, but other defs must begin at
2096     // DEF slots.
2097     if (isEarlyClobber) {
2098       if (!VNI->def.isEarlyClobber()) {
2099         report("Early clobber def must be at an early-clobber slot", MBB);
2100         report_context(LR, Reg, LaneMask);
2101         report_context(*VNI);
2102       }
2103     } else if (!VNI->def.isRegister()) {
2104       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2105       report_context(LR, Reg, LaneMask);
2106       report_context(*VNI);
2107     }
2108   }
2109 }
2110 
2111 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2112                                              const LiveRange::const_iterator I,
2113                                              unsigned Reg, LaneBitmask LaneMask)
2114 {
2115   const LiveRange::Segment &S = *I;
2116   const VNInfo *VNI = S.valno;
2117   assert(VNI && "Live segment has no valno");
2118 
2119   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2120     report("Foreign valno in live segment", MF);
2121     report_context(LR, Reg, LaneMask);
2122     report_context(S);
2123     report_context(*VNI);
2124   }
2125 
2126   if (VNI->isUnused()) {
2127     report("Live segment valno is marked unused", MF);
2128     report_context(LR, Reg, LaneMask);
2129     report_context(S);
2130   }
2131 
2132   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2133   if (!MBB) {
2134     report("Bad start of live segment, no basic block", MF);
2135     report_context(LR, Reg, LaneMask);
2136     report_context(S);
2137     return;
2138   }
2139   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2140   if (S.start != MBBStartIdx && S.start != VNI->def) {
2141     report("Live segment must begin at MBB entry or valno def", MBB);
2142     report_context(LR, Reg, LaneMask);
2143     report_context(S);
2144   }
2145 
2146   const MachineBasicBlock *EndMBB =
2147     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2148   if (!EndMBB) {
2149     report("Bad end of live segment, no basic block", MF);
2150     report_context(LR, Reg, LaneMask);
2151     report_context(S);
2152     return;
2153   }
2154 
2155   // No more checks for live-out segments.
2156   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2157     return;
2158 
2159   // RegUnit intervals are allowed dead phis.
2160   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2161       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2162     return;
2163 
2164   // The live segment is ending inside EndMBB
2165   const MachineInstr *MI =
2166     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2167   if (!MI) {
2168     report("Live segment doesn't end at a valid instruction", EndMBB);
2169     report_context(LR, Reg, LaneMask);
2170     report_context(S);
2171     return;
2172   }
2173 
2174   // The block slot must refer to a basic block boundary.
2175   if (S.end.isBlock()) {
2176     report("Live segment ends at B slot of an instruction", EndMBB);
2177     report_context(LR, Reg, LaneMask);
2178     report_context(S);
2179   }
2180 
2181   if (S.end.isDead()) {
2182     // Segment ends on the dead slot.
2183     // That means there must be a dead def.
2184     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2185       report("Live segment ending at dead slot spans instructions", EndMBB);
2186       report_context(LR, Reg, LaneMask);
2187       report_context(S);
2188     }
2189   }
2190 
2191   // A live segment can only end at an early-clobber slot if it is being
2192   // redefined by an early-clobber def.
2193   if (S.end.isEarlyClobber()) {
2194     if (I+1 == LR.end() || (I+1)->start != S.end) {
2195       report("Live segment ending at early clobber slot must be "
2196              "redefined by an EC def in the same instruction", EndMBB);
2197       report_context(LR, Reg, LaneMask);
2198       report_context(S);
2199     }
2200   }
2201 
2202   // The following checks only apply to virtual registers. Physreg liveness
2203   // is too weird to check.
2204   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2205     // A live segment can end with either a redefinition, a kill flag on a
2206     // use, or a dead flag on a def.
2207     bool hasRead = false;
2208     bool hasSubRegDef = false;
2209     bool hasDeadDef = false;
2210     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2211       if (!MOI->isReg() || MOI->getReg() != Reg)
2212         continue;
2213       unsigned Sub = MOI->getSubReg();
2214       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2215                                  : LaneBitmask::getAll();
2216       if (MOI->isDef()) {
2217         if (Sub != 0) {
2218           hasSubRegDef = true;
2219           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2220           // mask for subregister defs. Read-undef defs will be handled by
2221           // readsReg below.
2222           SLM = ~SLM;
2223         }
2224         if (MOI->isDead())
2225           hasDeadDef = true;
2226       }
2227       if (LaneMask.any() && (LaneMask & SLM).none())
2228         continue;
2229       if (MOI->readsReg())
2230         hasRead = true;
2231     }
2232     if (S.end.isDead()) {
2233       // Make sure that the corresponding machine operand for a "dead" live
2234       // range has the dead flag. We cannot perform this check for subregister
2235       // liveranges as partially dead values are allowed.
2236       if (LaneMask.none() && !hasDeadDef) {
2237         report("Instruction ending live segment on dead slot has no dead flag",
2238                MI);
2239         report_context(LR, Reg, LaneMask);
2240         report_context(S);
2241       }
2242     } else {
2243       if (!hasRead) {
2244         // When tracking subregister liveness, the main range must start new
2245         // values on partial register writes, even if there is no read.
2246         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2247             !hasSubRegDef) {
2248           report("Instruction ending live segment doesn't read the register",
2249                  MI);
2250           report_context(LR, Reg, LaneMask);
2251           report_context(S);
2252         }
2253       }
2254     }
2255   }
2256 
2257   // Now check all the basic blocks in this live segment.
2258   MachineFunction::const_iterator MFI = MBB->getIterator();
2259   // Is this live segment the beginning of a non-PHIDef VN?
2260   if (S.start == VNI->def && !VNI->isPHIDef()) {
2261     // Not live-in to any blocks.
2262     if (MBB == EndMBB)
2263       return;
2264     // Skip this block.
2265     ++MFI;
2266   }
2267 
2268   SmallVector<SlotIndex, 4> Undefs;
2269   if (LaneMask.any()) {
2270     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2271     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2272   }
2273 
2274   while (true) {
2275     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2276     // We don't know how to track physregs into a landing pad.
2277     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2278         MFI->isEHPad()) {
2279       if (&*MFI == EndMBB)
2280         break;
2281       ++MFI;
2282       continue;
2283     }
2284 
2285     // Is VNI a PHI-def in the current block?
2286     bool IsPHI = VNI->isPHIDef() &&
2287       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2288 
2289     // Check that VNI is live-out of all predecessors.
2290     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2291          PE = MFI->pred_end(); PI != PE; ++PI) {
2292       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2293       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2294 
2295       // All predecessors must have a live-out value. However for a phi
2296       // instruction with subregister intervals
2297       // only one of the subregisters (not necessarily the current one) needs to
2298       // be defined.
2299       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2300         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2301           continue;
2302         report("Register not marked live out of predecessor", *PI);
2303         report_context(LR, Reg, LaneMask);
2304         report_context(*VNI);
2305         errs() << " live into " << printMBBReference(*MFI) << '@'
2306                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2307                << PEnd << '\n';
2308         continue;
2309       }
2310 
2311       // Only PHI-defs can take different predecessor values.
2312       if (!IsPHI && PVNI != VNI) {
2313         report("Different value live out of predecessor", *PI);
2314         report_context(LR, Reg, LaneMask);
2315         errs() << "Valno #" << PVNI->id << " live out of "
2316                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2317                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2318                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2319       }
2320     }
2321     if (&*MFI == EndMBB)
2322       break;
2323     ++MFI;
2324   }
2325 }
2326 
2327 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2328                                       LaneBitmask LaneMask) {
2329   for (const VNInfo *VNI : LR.valnos)
2330     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2331 
2332   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2333     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2334 }
2335 
2336 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2337   unsigned Reg = LI.reg;
2338   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2339   verifyLiveRange(LI, Reg);
2340 
2341   LaneBitmask Mask;
2342   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2343   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2344     if ((Mask & SR.LaneMask).any()) {
2345       report("Lane masks of sub ranges overlap in live interval", MF);
2346       report_context(LI);
2347     }
2348     if ((SR.LaneMask & ~MaxMask).any()) {
2349       report("Subrange lanemask is invalid", MF);
2350       report_context(LI);
2351     }
2352     if (SR.empty()) {
2353       report("Subrange must not be empty", MF);
2354       report_context(SR, LI.reg, SR.LaneMask);
2355     }
2356     Mask |= SR.LaneMask;
2357     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2358     if (!LI.covers(SR)) {
2359       report("A Subrange is not covered by the main range", MF);
2360       report_context(LI);
2361     }
2362   }
2363 
2364   // Check the LI only has one connected component.
2365   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2366   unsigned NumComp = ConEQ.Classify(LI);
2367   if (NumComp > 1) {
2368     report("Multiple connected components in live interval", MF);
2369     report_context(LI);
2370     for (unsigned comp = 0; comp != NumComp; ++comp) {
2371       errs() << comp << ": valnos";
2372       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2373            E = LI.vni_end(); I!=E; ++I)
2374         if (comp == ConEQ.getEqClass(*I))
2375           errs() << ' ' << (*I)->id;
2376       errs() << '\n';
2377     }
2378   }
2379 }
2380 
2381 namespace {
2382 
2383   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2384   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2385   // value is zero.
2386   // We use a bool plus an integer to capture the stack state.
2387   struct StackStateOfBB {
2388     StackStateOfBB() = default;
2389     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2390       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2391       ExitIsSetup(ExitSetup) {}
2392 
2393     // Can be negative, which means we are setting up a frame.
2394     int EntryValue = 0;
2395     int ExitValue = 0;
2396     bool EntryIsSetup = false;
2397     bool ExitIsSetup = false;
2398   };
2399 
2400 } // end anonymous namespace
2401 
2402 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2403 /// by a FrameDestroy <n>, stack adjustments are identical on all
2404 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2405 void MachineVerifier::verifyStackFrame() {
2406   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2407   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2408   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2409     return;
2410 
2411   SmallVector<StackStateOfBB, 8> SPState;
2412   SPState.resize(MF->getNumBlockIDs());
2413   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2414 
2415   // Visit the MBBs in DFS order.
2416   for (df_ext_iterator<const MachineFunction *,
2417                        df_iterator_default_set<const MachineBasicBlock *>>
2418        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2419        DFI != DFE; ++DFI) {
2420     const MachineBasicBlock *MBB = *DFI;
2421 
2422     StackStateOfBB BBState;
2423     // Check the exit state of the DFS stack predecessor.
2424     if (DFI.getPathLength() >= 2) {
2425       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2426       assert(Reachable.count(StackPred) &&
2427              "DFS stack predecessor is already visited.\n");
2428       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2429       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2430       BBState.ExitValue = BBState.EntryValue;
2431       BBState.ExitIsSetup = BBState.EntryIsSetup;
2432     }
2433 
2434     // Update stack state by checking contents of MBB.
2435     for (const auto &I : *MBB) {
2436       if (I.getOpcode() == FrameSetupOpcode) {
2437         if (BBState.ExitIsSetup)
2438           report("FrameSetup is after another FrameSetup", &I);
2439         BBState.ExitValue -= TII->getFrameTotalSize(I);
2440         BBState.ExitIsSetup = true;
2441       }
2442 
2443       if (I.getOpcode() == FrameDestroyOpcode) {
2444         int Size = TII->getFrameTotalSize(I);
2445         if (!BBState.ExitIsSetup)
2446           report("FrameDestroy is not after a FrameSetup", &I);
2447         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2448                                                BBState.ExitValue;
2449         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2450           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2451           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2452               << AbsSPAdj << ">.\n";
2453         }
2454         BBState.ExitValue += Size;
2455         BBState.ExitIsSetup = false;
2456       }
2457     }
2458     SPState[MBB->getNumber()] = BBState;
2459 
2460     // Make sure the exit state of any predecessor is consistent with the entry
2461     // state.
2462     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2463          E = MBB->pred_end(); I != E; ++I) {
2464       if (Reachable.count(*I) &&
2465           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2466            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2467         report("The exit stack state of a predecessor is inconsistent.", MBB);
2468         errs() << "Predecessor " << printMBBReference(*(*I))
2469                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2470                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2471                << printMBBReference(*MBB) << " has entry state ("
2472                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2473       }
2474     }
2475 
2476     // Make sure the entry state of any successor is consistent with the exit
2477     // state.
2478     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2479          E = MBB->succ_end(); I != E; ++I) {
2480       if (Reachable.count(*I) &&
2481           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2482            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2483         report("The entry stack state of a successor is inconsistent.", MBB);
2484         errs() << "Successor " << printMBBReference(*(*I))
2485                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2486                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2487                << printMBBReference(*MBB) << " has exit state ("
2488                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2489       }
2490     }
2491 
2492     // Make sure a basic block with return ends with zero stack adjustment.
2493     if (!MBB->empty() && MBB->back().isReturn()) {
2494       if (BBState.ExitIsSetup)
2495         report("A return block ends with a FrameSetup.", MBB);
2496       if (BBState.ExitValue)
2497         report("A return block ends with a nonzero stack adjustment.", MBB);
2498     }
2499   }
2500 }
2501