xref: /llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision 5ec146046cbb1a69850d2712f40e9ea273e2a257)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "LiveRangeCalc.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/DepthFirstIterator.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SetOperations.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Twine.h"
37 #include "llvm/Analysis/EHPersonalities.h"
38 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
39 #include "llvm/CodeGen/LiveInterval.h"
40 #include "llvm/CodeGen/LiveIntervals.h"
41 #include "llvm/CodeGen/LiveStacks.h"
42 #include "llvm/CodeGen/LiveVariables.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/PseudoSourceValue.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/StackMaps.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetOpcodes.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/InlineAsm.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/MC/LaneBitmask.h"
64 #include "llvm/MC/MCAsmInfo.h"
65 #include "llvm/MC/MCInstrDesc.h"
66 #include "llvm/MC/MCRegisterInfo.h"
67 #include "llvm/MC/MCTargetOptions.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/LowLevelTypeImpl.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 
83 using namespace llvm;
84 
85 namespace {
86 
87   struct MachineVerifier {
88     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
89 
90     unsigned verify(MachineFunction &MF);
91 
92     Pass *const PASS;
93     const char *Banner;
94     const MachineFunction *MF;
95     const TargetMachine *TM;
96     const TargetInstrInfo *TII;
97     const TargetRegisterInfo *TRI;
98     const MachineRegisterInfo *MRI;
99 
100     unsigned foundErrors;
101 
102     // Avoid querying the MachineFunctionProperties for each operand.
103     bool isFunctionRegBankSelected;
104     bool isFunctionSelected;
105 
106     using RegVector = SmallVector<unsigned, 16>;
107     using RegMaskVector = SmallVector<const uint32_t *, 4>;
108     using RegSet = DenseSet<unsigned>;
109     using RegMap = DenseMap<unsigned, const MachineInstr *>;
110     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
111 
112     const MachineInstr *FirstNonPHI;
113     const MachineInstr *FirstTerminator;
114     BlockSet FunctionBlocks;
115 
116     BitVector regsReserved;
117     RegSet regsLive;
118     RegVector regsDefined, regsDead, regsKilled;
119     RegMaskVector regMasks;
120 
121     SlotIndex lastIndex;
122 
123     // Add Reg and any sub-registers to RV
124     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
125       RV.push_back(Reg);
126       if (TargetRegisterInfo::isPhysicalRegister(Reg))
127         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
128           RV.push_back(*SubRegs);
129     }
130 
131     struct BBInfo {
132       // Is this MBB reachable from the MF entry point?
133       bool reachable = false;
134 
135       // Vregs that must be live in because they are used without being
136       // defined. Map value is the user.
137       RegMap vregsLiveIn;
138 
139       // Regs killed in MBB. They may be defined again, and will then be in both
140       // regsKilled and regsLiveOut.
141       RegSet regsKilled;
142 
143       // Regs defined in MBB and live out. Note that vregs passing through may
144       // be live out without being mentioned here.
145       RegSet regsLiveOut;
146 
147       // Vregs that pass through MBB untouched. This set is disjoint from
148       // regsKilled and regsLiveOut.
149       RegSet vregsPassed;
150 
151       // Vregs that must pass through MBB because they are needed by a successor
152       // block. This set is disjoint from regsLiveOut.
153       RegSet vregsRequired;
154 
155       // Set versions of block's predecessor and successor lists.
156       BlockSet Preds, Succs;
157 
158       BBInfo() = default;
159 
160       // Add register to vregsPassed if it belongs there. Return true if
161       // anything changed.
162       bool addPassed(unsigned Reg) {
163         if (!TargetRegisterInfo::isVirtualRegister(Reg))
164           return false;
165         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
166           return false;
167         return vregsPassed.insert(Reg).second;
168       }
169 
170       // Same for a full set.
171       bool addPassed(const RegSet &RS) {
172         bool changed = false;
173         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
174           if (addPassed(*I))
175             changed = true;
176         return changed;
177       }
178 
179       // Add register to vregsRequired if it belongs there. Return true if
180       // anything changed.
181       bool addRequired(unsigned Reg) {
182         if (!TargetRegisterInfo::isVirtualRegister(Reg))
183           return false;
184         if (regsLiveOut.count(Reg))
185           return false;
186         return vregsRequired.insert(Reg).second;
187       }
188 
189       // Same for a full set.
190       bool addRequired(const RegSet &RS) {
191         bool changed = false;
192         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
193           if (addRequired(*I))
194             changed = true;
195         return changed;
196       }
197 
198       // Same for a full map.
199       bool addRequired(const RegMap &RM) {
200         bool changed = false;
201         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
202           if (addRequired(I->first))
203             changed = true;
204         return changed;
205       }
206 
207       // Live-out registers are either in regsLiveOut or vregsPassed.
208       bool isLiveOut(unsigned Reg) const {
209         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
210       }
211     };
212 
213     // Extra register info per MBB.
214     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
215 
216     bool isReserved(unsigned Reg) {
217       return Reg < regsReserved.size() && regsReserved.test(Reg);
218     }
219 
220     bool isAllocatable(unsigned Reg) const {
221       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
222         !regsReserved.test(Reg);
223     }
224 
225     // Analysis information if available
226     LiveVariables *LiveVars;
227     LiveIntervals *LiveInts;
228     LiveStacks *LiveStks;
229     SlotIndexes *Indexes;
230 
231     void visitMachineFunctionBefore();
232     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
233     void visitMachineBundleBefore(const MachineInstr *MI);
234     void visitMachineInstrBefore(const MachineInstr *MI);
235     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
236     void visitMachineInstrAfter(const MachineInstr *MI);
237     void visitMachineBundleAfter(const MachineInstr *MI);
238     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
239     void visitMachineFunctionAfter();
240 
241     void report(const char *msg, const MachineFunction *MF);
242     void report(const char *msg, const MachineBasicBlock *MBB);
243     void report(const char *msg, const MachineInstr *MI);
244     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
245                 LLT MOVRegType = LLT{});
246 
247     void report_context(const LiveInterval &LI) const;
248     void report_context(const LiveRange &LR, unsigned VRegUnit,
249                         LaneBitmask LaneMask) const;
250     void report_context(const LiveRange::Segment &S) const;
251     void report_context(const VNInfo &VNI) const;
252     void report_context(SlotIndex Pos) const;
253     void report_context_liverange(const LiveRange &LR) const;
254     void report_context_lanemask(LaneBitmask LaneMask) const;
255     void report_context_vreg(unsigned VReg) const;
256     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
257 
258     void verifyInlineAsm(const MachineInstr *MI);
259 
260     void checkLiveness(const MachineOperand *MO, unsigned MONum);
261     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
262                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
263                             LaneBitmask LaneMask = LaneBitmask::getNone());
264     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
265                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                             bool SubRangeCheck = false,
267                             LaneBitmask LaneMask = LaneBitmask::getNone());
268 
269     void markReachable(const MachineBasicBlock *MBB);
270     void calcRegsPassed();
271     void checkPHIOps(const MachineBasicBlock &MBB);
272 
273     void calcRegsRequired();
274     void verifyLiveVariables();
275     void verifyLiveIntervals();
276     void verifyLiveInterval(const LiveInterval&);
277     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
278                               LaneBitmask);
279     void verifyLiveRangeSegment(const LiveRange&,
280                                 const LiveRange::const_iterator I, unsigned,
281                                 LaneBitmask);
282     void verifyLiveRange(const LiveRange&, unsigned,
283                          LaneBitmask LaneMask = LaneBitmask::getNone());
284 
285     void verifyStackFrame();
286 
287     void verifySlotIndexes() const;
288     void verifyProperties(const MachineFunction &MF);
289   };
290 
291   struct MachineVerifierPass : public MachineFunctionPass {
292     static char ID; // Pass ID, replacement for typeid
293 
294     const std::string Banner;
295 
296     MachineVerifierPass(std::string banner = std::string())
297       : MachineFunctionPass(ID), Banner(std::move(banner)) {
298         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
299       }
300 
301     void getAnalysisUsage(AnalysisUsage &AU) const override {
302       AU.setPreservesAll();
303       MachineFunctionPass::getAnalysisUsage(AU);
304     }
305 
306     bool runOnMachineFunction(MachineFunction &MF) override {
307       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
308       if (FoundErrors)
309         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
310       return false;
311     }
312   };
313 
314 } // end anonymous namespace
315 
316 char MachineVerifierPass::ID = 0;
317 
318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
319                 "Verify generated machine code", false, false)
320 
321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
322   return new MachineVerifierPass(Banner);
323 }
324 
325 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
326     const {
327   MachineFunction &MF = const_cast<MachineFunction&>(*this);
328   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
329   if (AbortOnErrors && FoundErrors)
330     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
331   return FoundErrors == 0;
332 }
333 
334 void MachineVerifier::verifySlotIndexes() const {
335   if (Indexes == nullptr)
336     return;
337 
338   // Ensure the IdxMBB list is sorted by slot indexes.
339   SlotIndex Last;
340   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
341        E = Indexes->MBBIndexEnd(); I != E; ++I) {
342     assert(!Last.isValid() || I->first > Last);
343     Last = I->first;
344   }
345 }
346 
347 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
348   // If a pass has introduced virtual registers without clearing the
349   // NoVRegs property (or set it without allocating the vregs)
350   // then report an error.
351   if (MF.getProperties().hasProperty(
352           MachineFunctionProperties::Property::NoVRegs) &&
353       MRI->getNumVirtRegs())
354     report("Function has NoVRegs property but there are VReg operands", &MF);
355 }
356 
357 unsigned MachineVerifier::verify(MachineFunction &MF) {
358   foundErrors = 0;
359 
360   this->MF = &MF;
361   TM = &MF.getTarget();
362   TII = MF.getSubtarget().getInstrInfo();
363   TRI = MF.getSubtarget().getRegisterInfo();
364   MRI = &MF.getRegInfo();
365 
366   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
367       MachineFunctionProperties::Property::FailedISel);
368 
369   // If we're mid-GlobalISel and we already triggered the fallback path then
370   // it's expected that the MIR is somewhat broken but that's ok since we'll
371   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
372   if (isFunctionFailedISel)
373     return foundErrors;
374 
375   isFunctionRegBankSelected =
376       !isFunctionFailedISel &&
377       MF.getProperties().hasProperty(
378           MachineFunctionProperties::Property::RegBankSelected);
379   isFunctionSelected = !isFunctionFailedISel &&
380                        MF.getProperties().hasProperty(
381                            MachineFunctionProperties::Property::Selected);
382   LiveVars = nullptr;
383   LiveInts = nullptr;
384   LiveStks = nullptr;
385   Indexes = nullptr;
386   if (PASS) {
387     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
388     // We don't want to verify LiveVariables if LiveIntervals is available.
389     if (!LiveInts)
390       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
391     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
392     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
393   }
394 
395   verifySlotIndexes();
396 
397   verifyProperties(MF);
398 
399   visitMachineFunctionBefore();
400   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
401        MFI!=MFE; ++MFI) {
402     visitMachineBasicBlockBefore(&*MFI);
403     // Keep track of the current bundle header.
404     const MachineInstr *CurBundle = nullptr;
405     // Do we expect the next instruction to be part of the same bundle?
406     bool InBundle = false;
407 
408     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
409            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
410       if (MBBI->getParent() != &*MFI) {
411         report("Bad instruction parent pointer", &*MFI);
412         errs() << "Instruction: " << *MBBI;
413         continue;
414       }
415 
416       // Check for consistent bundle flags.
417       if (InBundle && !MBBI->isBundledWithPred())
418         report("Missing BundledPred flag, "
419                "BundledSucc was set on predecessor",
420                &*MBBI);
421       if (!InBundle && MBBI->isBundledWithPred())
422         report("BundledPred flag is set, "
423                "but BundledSucc not set on predecessor",
424                &*MBBI);
425 
426       // Is this a bundle header?
427       if (!MBBI->isInsideBundle()) {
428         if (CurBundle)
429           visitMachineBundleAfter(CurBundle);
430         CurBundle = &*MBBI;
431         visitMachineBundleBefore(CurBundle);
432       } else if (!CurBundle)
433         report("No bundle header", &*MBBI);
434       visitMachineInstrBefore(&*MBBI);
435       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
436         const MachineInstr &MI = *MBBI;
437         const MachineOperand &Op = MI.getOperand(I);
438         if (Op.getParent() != &MI) {
439           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
440           // functions when replacing operands of a MachineInstr.
441           report("Instruction has operand with wrong parent set", &MI);
442         }
443 
444         visitMachineOperand(&Op, I);
445       }
446 
447       visitMachineInstrAfter(&*MBBI);
448 
449       // Was this the last bundled instruction?
450       InBundle = MBBI->isBundledWithSucc();
451     }
452     if (CurBundle)
453       visitMachineBundleAfter(CurBundle);
454     if (InBundle)
455       report("BundledSucc flag set on last instruction in block", &MFI->back());
456     visitMachineBasicBlockAfter(&*MFI);
457   }
458   visitMachineFunctionAfter();
459 
460   // Clean up.
461   regsLive.clear();
462   regsDefined.clear();
463   regsDead.clear();
464   regsKilled.clear();
465   regMasks.clear();
466   MBBInfoMap.clear();
467 
468   return foundErrors;
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
472   assert(MF);
473   errs() << '\n';
474   if (!foundErrors++) {
475     if (Banner)
476       errs() << "# " << Banner << '\n';
477     if (LiveInts != nullptr)
478       LiveInts->print(errs());
479     else
480       MF->print(errs(), Indexes);
481   }
482   errs() << "*** Bad machine code: " << msg << " ***\n"
483       << "- function:    " << MF->getName() << "\n";
484 }
485 
486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
487   assert(MBB);
488   report(msg, MBB->getParent());
489   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
490          << MBB->getName() << " (" << (const void *)MBB << ')';
491   if (Indexes)
492     errs() << " [" << Indexes->getMBBStartIdx(MBB)
493         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
494   errs() << '\n';
495 }
496 
497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
498   assert(MI);
499   report(msg, MI->getParent());
500   errs() << "- instruction: ";
501   if (Indexes && Indexes->hasIndex(*MI))
502     errs() << Indexes->getInstructionIndex(*MI) << '\t';
503   MI->print(errs(), /*SkipOpers=*/true);
504 }
505 
506 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
507                              unsigned MONum, LLT MOVRegType) {
508   assert(MO);
509   report(msg, MO->getParent());
510   errs() << "- operand " << MONum << ":   ";
511   MO->print(errs(), MOVRegType, TRI);
512   errs() << "\n";
513 }
514 
515 void MachineVerifier::report_context(SlotIndex Pos) const {
516   errs() << "- at:          " << Pos << '\n';
517 }
518 
519 void MachineVerifier::report_context(const LiveInterval &LI) const {
520   errs() << "- interval:    " << LI << '\n';
521 }
522 
523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
524                                      LaneBitmask LaneMask) const {
525   report_context_liverange(LR);
526   report_context_vreg_regunit(VRegUnit);
527   if (LaneMask.any())
528     report_context_lanemask(LaneMask);
529 }
530 
531 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
532   errs() << "- segment:     " << S << '\n';
533 }
534 
535 void MachineVerifier::report_context(const VNInfo &VNI) const {
536   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
537 }
538 
539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
540   errs() << "- liverange:   " << LR << '\n';
541 }
542 
543 void MachineVerifier::report_context_vreg(unsigned VReg) const {
544   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
545 }
546 
547 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
548   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
549     report_context_vreg(VRegOrUnit);
550   } else {
551     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
552   }
553 }
554 
555 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
556   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
557 }
558 
559 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
560   BBInfo &MInfo = MBBInfoMap[MBB];
561   if (!MInfo.reachable) {
562     MInfo.reachable = true;
563     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
564            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
565       markReachable(*SuI);
566   }
567 }
568 
569 void MachineVerifier::visitMachineFunctionBefore() {
570   lastIndex = SlotIndex();
571   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
572                                            : TRI->getReservedRegs(*MF);
573 
574   if (!MF->empty())
575     markReachable(&MF->front());
576 
577   // Build a set of the basic blocks in the function.
578   FunctionBlocks.clear();
579   for (const auto &MBB : *MF) {
580     FunctionBlocks.insert(&MBB);
581     BBInfo &MInfo = MBBInfoMap[&MBB];
582 
583     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
584     if (MInfo.Preds.size() != MBB.pred_size())
585       report("MBB has duplicate entries in its predecessor list.", &MBB);
586 
587     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
588     if (MInfo.Succs.size() != MBB.succ_size())
589       report("MBB has duplicate entries in its successor list.", &MBB);
590   }
591 
592   // Check that the register use lists are sane.
593   MRI->verifyUseLists();
594 
595   if (!MF->empty())
596     verifyStackFrame();
597 }
598 
599 // Does iterator point to a and b as the first two elements?
600 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
601                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
602   if (*i == a)
603     return *++i == b;
604   if (*i == b)
605     return *++i == a;
606   return false;
607 }
608 
609 void
610 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
611   FirstTerminator = nullptr;
612   FirstNonPHI = nullptr;
613 
614   if (!MF->getProperties().hasProperty(
615       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
616     // If this block has allocatable physical registers live-in, check that
617     // it is an entry block or landing pad.
618     for (const auto &LI : MBB->liveins()) {
619       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
620           MBB->getIterator() != MBB->getParent()->begin()) {
621         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
622       }
623     }
624   }
625 
626   // Count the number of landing pad successors.
627   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
628   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
629        E = MBB->succ_end(); I != E; ++I) {
630     if ((*I)->isEHPad())
631       LandingPadSuccs.insert(*I);
632     if (!FunctionBlocks.count(*I))
633       report("MBB has successor that isn't part of the function.", MBB);
634     if (!MBBInfoMap[*I].Preds.count(MBB)) {
635       report("Inconsistent CFG", MBB);
636       errs() << "MBB is not in the predecessor list of the successor "
637              << printMBBReference(*(*I)) << ".\n";
638     }
639   }
640 
641   // Check the predecessor list.
642   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
643        E = MBB->pred_end(); I != E; ++I) {
644     if (!FunctionBlocks.count(*I))
645       report("MBB has predecessor that isn't part of the function.", MBB);
646     if (!MBBInfoMap[*I].Succs.count(MBB)) {
647       report("Inconsistent CFG", MBB);
648       errs() << "MBB is not in the successor list of the predecessor "
649              << printMBBReference(*(*I)) << ".\n";
650     }
651   }
652 
653   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
654   const BasicBlock *BB = MBB->getBasicBlock();
655   const Function &F = MF->getFunction();
656   if (LandingPadSuccs.size() > 1 &&
657       !(AsmInfo &&
658         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
659         BB && isa<SwitchInst>(BB->getTerminator())) &&
660       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
661     report("MBB has more than one landing pad successor", MBB);
662 
663   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
664   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
665   SmallVector<MachineOperand, 4> Cond;
666   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
667                           Cond)) {
668     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
669     // check whether its answers match up with reality.
670     if (!TBB && !FBB) {
671       // Block falls through to its successor.
672       MachineFunction::const_iterator MBBI = MBB->getIterator();
673       ++MBBI;
674       if (MBBI == MF->end()) {
675         // It's possible that the block legitimately ends with a noreturn
676         // call or an unreachable, in which case it won't actually fall
677         // out the bottom of the function.
678       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
679         // It's possible that the block legitimately ends with a noreturn
680         // call or an unreachable, in which case it won't actuall fall
681         // out of the block.
682       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
683         report("MBB exits via unconditional fall-through but doesn't have "
684                "exactly one CFG successor!", MBB);
685       } else if (!MBB->isSuccessor(&*MBBI)) {
686         report("MBB exits via unconditional fall-through but its successor "
687                "differs from its CFG successor!", MBB);
688       }
689       if (!MBB->empty() && MBB->back().isBarrier() &&
690           !TII->isPredicated(MBB->back())) {
691         report("MBB exits via unconditional fall-through but ends with a "
692                "barrier instruction!", MBB);
693       }
694       if (!Cond.empty()) {
695         report("MBB exits via unconditional fall-through but has a condition!",
696                MBB);
697       }
698     } else if (TBB && !FBB && Cond.empty()) {
699       // Block unconditionally branches somewhere.
700       // If the block has exactly one successor, that happens to be a
701       // landingpad, accept it as valid control flow.
702       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
703           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
704            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
705         report("MBB exits via unconditional branch but doesn't have "
706                "exactly one CFG successor!", MBB);
707       } else if (!MBB->isSuccessor(TBB)) {
708         report("MBB exits via unconditional branch but the CFG "
709                "successor doesn't match the actual successor!", MBB);
710       }
711       if (MBB->empty()) {
712         report("MBB exits via unconditional branch but doesn't contain "
713                "any instructions!", MBB);
714       } else if (!MBB->back().isBarrier()) {
715         report("MBB exits via unconditional branch but doesn't end with a "
716                "barrier instruction!", MBB);
717       } else if (!MBB->back().isTerminator()) {
718         report("MBB exits via unconditional branch but the branch isn't a "
719                "terminator instruction!", MBB);
720       }
721     } else if (TBB && !FBB && !Cond.empty()) {
722       // Block conditionally branches somewhere, otherwise falls through.
723       MachineFunction::const_iterator MBBI = MBB->getIterator();
724       ++MBBI;
725       if (MBBI == MF->end()) {
726         report("MBB conditionally falls through out of function!", MBB);
727       } else if (MBB->succ_size() == 1) {
728         // A conditional branch with only one successor is weird, but allowed.
729         if (&*MBBI != TBB)
730           report("MBB exits via conditional branch/fall-through but only has "
731                  "one CFG successor!", MBB);
732         else if (TBB != *MBB->succ_begin())
733           report("MBB exits via conditional branch/fall-through but the CFG "
734                  "successor don't match the actual successor!", MBB);
735       } else if (MBB->succ_size() != 2) {
736         report("MBB exits via conditional branch/fall-through but doesn't have "
737                "exactly two CFG successors!", MBB);
738       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
739         report("MBB exits via conditional branch/fall-through but the CFG "
740                "successors don't match the actual successors!", MBB);
741       }
742       if (MBB->empty()) {
743         report("MBB exits via conditional branch/fall-through but doesn't "
744                "contain any instructions!", MBB);
745       } else if (MBB->back().isBarrier()) {
746         report("MBB exits via conditional branch/fall-through but ends with a "
747                "barrier instruction!", MBB);
748       } else if (!MBB->back().isTerminator()) {
749         report("MBB exits via conditional branch/fall-through but the branch "
750                "isn't a terminator instruction!", MBB);
751       }
752     } else if (TBB && FBB) {
753       // Block conditionally branches somewhere, otherwise branches
754       // somewhere else.
755       if (MBB->succ_size() == 1) {
756         // A conditional branch with only one successor is weird, but allowed.
757         if (FBB != TBB)
758           report("MBB exits via conditional branch/branch through but only has "
759                  "one CFG successor!", MBB);
760         else if (TBB != *MBB->succ_begin())
761           report("MBB exits via conditional branch/branch through but the CFG "
762                  "successor don't match the actual successor!", MBB);
763       } else if (MBB->succ_size() != 2) {
764         report("MBB exits via conditional branch/branch but doesn't have "
765                "exactly two CFG successors!", MBB);
766       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
767         report("MBB exits via conditional branch/branch but the CFG "
768                "successors don't match the actual successors!", MBB);
769       }
770       if (MBB->empty()) {
771         report("MBB exits via conditional branch/branch but doesn't "
772                "contain any instructions!", MBB);
773       } else if (!MBB->back().isBarrier()) {
774         report("MBB exits via conditional branch/branch but doesn't end with a "
775                "barrier instruction!", MBB);
776       } else if (!MBB->back().isTerminator()) {
777         report("MBB exits via conditional branch/branch but the branch "
778                "isn't a terminator instruction!", MBB);
779       }
780       if (Cond.empty()) {
781         report("MBB exits via conditional branch/branch but there's no "
782                "condition!", MBB);
783       }
784     } else {
785       report("AnalyzeBranch returned invalid data!", MBB);
786     }
787   }
788 
789   regsLive.clear();
790   if (MRI->tracksLiveness()) {
791     for (const auto &LI : MBB->liveins()) {
792       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
793         report("MBB live-in list contains non-physical register", MBB);
794         continue;
795       }
796       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
797            SubRegs.isValid(); ++SubRegs)
798         regsLive.insert(*SubRegs);
799     }
800   }
801 
802   const MachineFrameInfo &MFI = MF->getFrameInfo();
803   BitVector PR = MFI.getPristineRegs(*MF);
804   for (unsigned I : PR.set_bits()) {
805     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
806          SubRegs.isValid(); ++SubRegs)
807       regsLive.insert(*SubRegs);
808   }
809 
810   regsKilled.clear();
811   regsDefined.clear();
812 
813   if (Indexes)
814     lastIndex = Indexes->getMBBStartIdx(MBB);
815 }
816 
817 // This function gets called for all bundle headers, including normal
818 // stand-alone unbundled instructions.
819 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
820   if (Indexes && Indexes->hasIndex(*MI)) {
821     SlotIndex idx = Indexes->getInstructionIndex(*MI);
822     if (!(idx > lastIndex)) {
823       report("Instruction index out of order", MI);
824       errs() << "Last instruction was at " << lastIndex << '\n';
825     }
826     lastIndex = idx;
827   }
828 
829   // Ensure non-terminators don't follow terminators.
830   // Ignore predicated terminators formed by if conversion.
831   // FIXME: If conversion shouldn't need to violate this rule.
832   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
833     if (!FirstTerminator)
834       FirstTerminator = MI;
835   } else if (FirstTerminator) {
836     report("Non-terminator instruction after the first terminator", MI);
837     errs() << "First terminator was:\t" << *FirstTerminator;
838   }
839 }
840 
841 // The operands on an INLINEASM instruction must follow a template.
842 // Verify that the flag operands make sense.
843 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
844   // The first two operands on INLINEASM are the asm string and global flags.
845   if (MI->getNumOperands() < 2) {
846     report("Too few operands on inline asm", MI);
847     return;
848   }
849   if (!MI->getOperand(0).isSymbol())
850     report("Asm string must be an external symbol", MI);
851   if (!MI->getOperand(1).isImm())
852     report("Asm flags must be an immediate", MI);
853   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
854   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
855   // and Extra_IsConvergent = 32.
856   if (!isUInt<6>(MI->getOperand(1).getImm()))
857     report("Unknown asm flags", &MI->getOperand(1), 1);
858 
859   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
860 
861   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
862   unsigned NumOps;
863   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
864     const MachineOperand &MO = MI->getOperand(OpNo);
865     // There may be implicit ops after the fixed operands.
866     if (!MO.isImm())
867       break;
868     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
869   }
870 
871   if (OpNo > MI->getNumOperands())
872     report("Missing operands in last group", MI);
873 
874   // An optional MDNode follows the groups.
875   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
876     ++OpNo;
877 
878   // All trailing operands must be implicit registers.
879   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
880     const MachineOperand &MO = MI->getOperand(OpNo);
881     if (!MO.isReg() || !MO.isImplicit())
882       report("Expected implicit register after groups", &MO, OpNo);
883   }
884 }
885 
886 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
887   const MCInstrDesc &MCID = MI->getDesc();
888   if (MI->getNumOperands() < MCID.getNumOperands()) {
889     report("Too few operands", MI);
890     errs() << MCID.getNumOperands() << " operands expected, but "
891            << MI->getNumOperands() << " given.\n";
892   }
893 
894   if (MI->isPHI()) {
895     if (MF->getProperties().hasProperty(
896             MachineFunctionProperties::Property::NoPHIs))
897       report("Found PHI instruction with NoPHIs property set", MI);
898 
899     if (FirstNonPHI)
900       report("Found PHI instruction after non-PHI", MI);
901   } else if (FirstNonPHI == nullptr)
902     FirstNonPHI = MI;
903 
904   // Check the tied operands.
905   if (MI->isInlineAsm())
906     verifyInlineAsm(MI);
907 
908   // Check the MachineMemOperands for basic consistency.
909   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
910                                   E = MI->memoperands_end();
911        I != E; ++I) {
912     if ((*I)->isLoad() && !MI->mayLoad())
913       report("Missing mayLoad flag", MI);
914     if ((*I)->isStore() && !MI->mayStore())
915       report("Missing mayStore flag", MI);
916   }
917 
918   // Debug values must not have a slot index.
919   // Other instructions must have one, unless they are inside a bundle.
920   if (LiveInts) {
921     bool mapped = !LiveInts->isNotInMIMap(*MI);
922     if (MI->isDebugInstr()) {
923       if (mapped)
924         report("Debug instruction has a slot index", MI);
925     } else if (MI->isInsideBundle()) {
926       if (mapped)
927         report("Instruction inside bundle has a slot index", MI);
928     } else {
929       if (!mapped)
930         report("Missing slot index", MI);
931     }
932   }
933 
934   if (isPreISelGenericOpcode(MCID.getOpcode())) {
935     if (isFunctionSelected)
936       report("Unexpected generic instruction in a Selected function", MI);
937 
938     // Check types.
939     SmallVector<LLT, 4> Types;
940     for (unsigned I = 0; I < MCID.getNumOperands(); ++I) {
941       if (!MCID.OpInfo[I].isGenericType())
942         continue;
943       // Generic instructions specify type equality constraints between some of
944       // their operands. Make sure these are consistent.
945       size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
946       Types.resize(std::max(TypeIdx + 1, Types.size()));
947 
948       const MachineOperand *MO = &MI->getOperand(I);
949       LLT OpTy = MRI->getType(MO->getReg());
950       // Don't report a type mismatch if there is no actual mismatch, only a
951       // type missing, to reduce noise:
952       if (OpTy.isValid()) {
953         // Only the first valid type for a type index will be printed: don't
954         // overwrite it later so it's always clear which type was expected:
955         if (!Types[TypeIdx].isValid())
956           Types[TypeIdx] = OpTy;
957         else if (Types[TypeIdx] != OpTy)
958           report("Type mismatch in generic instruction", MO, I, OpTy);
959       } else {
960         // Generic instructions must have types attached to their operands.
961         report("Generic instruction is missing a virtual register type", MO, I);
962       }
963     }
964 
965     // Generic opcodes must not have physical register operands.
966     for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
967       const MachineOperand *MO = &MI->getOperand(I);
968       if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
969         report("Generic instruction cannot have physical register", MO, I);
970     }
971   }
972 
973   StringRef ErrorInfo;
974   if (!TII->verifyInstruction(*MI, ErrorInfo))
975     report(ErrorInfo.data(), MI);
976 
977   // Verify properties of various specific instruction types
978   switch(MI->getOpcode()) {
979   default:
980     break;
981   case TargetOpcode::G_LOAD:
982   case TargetOpcode::G_STORE:
983     // Generic loads and stores must have a single MachineMemOperand
984     // describing that access.
985     if (!MI->hasOneMemOperand())
986       report("Generic instruction accessing memory must have one mem operand",
987              MI);
988     break;
989   case TargetOpcode::G_PHI: {
990     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
991     if (!DstTy.isValid() ||
992         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
993                      [this, &DstTy](const MachineOperand &MO) {
994                        if (!MO.isReg())
995                          return true;
996                        LLT Ty = MRI->getType(MO.getReg());
997                        if (!Ty.isValid() || (Ty != DstTy))
998                          return false;
999                        return true;
1000                      }))
1001       report("Generic Instruction G_PHI has operands with incompatible/missing "
1002              "types",
1003              MI);
1004     break;
1005   }
1006   case TargetOpcode::G_SEXT:
1007   case TargetOpcode::G_ZEXT:
1008   case TargetOpcode::G_ANYEXT:
1009   case TargetOpcode::G_TRUNC:
1010   case TargetOpcode::G_FPEXT:
1011   case TargetOpcode::G_FPTRUNC: {
1012     // Number of operands and presense of types is already checked (and
1013     // reported in case of any issues), so no need to report them again. As
1014     // we're trying to report as many issues as possible at once, however, the
1015     // instructions aren't guaranteed to have the right number of operands or
1016     // types attached to them at this point
1017     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1018     if (MI->getNumOperands() < MCID.getNumOperands())
1019       break;
1020     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1021     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1022     if (!DstTy.isValid() || !SrcTy.isValid())
1023       break;
1024 
1025     LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy;
1026     LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
1027     if (DstElTy.isPointer() || SrcElTy.isPointer())
1028       report("Generic extend/truncate can not operate on pointers", MI);
1029 
1030     if (DstTy.isVector() != SrcTy.isVector()) {
1031       report("Generic extend/truncate must be all-vector or all-scalar", MI);
1032       // Generally we try to report as many issues as possible at once, but in
1033       // this case it's not clear what should we be comparing the size of the
1034       // scalar with: the size of the whole vector or its lane. Instead of
1035       // making an arbitrary choice and emitting not so helpful message, let's
1036       // avoid the extra noise and stop here.
1037       break;
1038     }
1039     if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())
1040       report("Generic vector extend/truncate must preserve number of lanes",
1041              MI);
1042     unsigned DstSize = DstElTy.getSizeInBits();
1043     unsigned SrcSize = SrcElTy.getSizeInBits();
1044     switch (MI->getOpcode()) {
1045     default:
1046       if (DstSize <= SrcSize)
1047         report("Generic extend has destination type no larger than source", MI);
1048       break;
1049     case TargetOpcode::G_TRUNC:
1050     case TargetOpcode::G_FPTRUNC:
1051       if (DstSize >= SrcSize)
1052         report("Generic truncate has destination type no smaller than source",
1053                MI);
1054       break;
1055     }
1056     break;
1057   }
1058   case TargetOpcode::G_MERGE_VALUES: {
1059     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1060     // e.g. s2N = MERGE sN, sN
1061     // Merging multiple scalars into a vector is not allowed, should use
1062     // G_BUILD_VECTOR for that.
1063     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1064     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1065     if (DstTy.isVector() || SrcTy.isVector())
1066       report("G_MERGE_VALUES cannot operate on vectors", MI);
1067     break;
1068   }
1069   case TargetOpcode::G_UNMERGE_VALUES: {
1070     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1071     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1072     // For now G_UNMERGE can split vectors.
1073     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1074       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1075         report("G_UNMERGE_VALUES destination types do not match", MI);
1076     }
1077     if (SrcTy.getSizeInBits() !=
1078         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1079       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1080              MI);
1081     }
1082     break;
1083   }
1084   case TargetOpcode::G_BUILD_VECTOR: {
1085     // Source types must be scalars, dest type a vector. Total size of scalars
1086     // must match the dest vector size.
1087     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1088     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1089     if (!DstTy.isVector() || SrcEltTy.isVector())
1090       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1091     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1092       if (MRI->getType(MI->getOperand(1).getReg()) !=
1093           MRI->getType(MI->getOperand(i).getReg()))
1094         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1095     }
1096     if (DstTy.getSizeInBits() !=
1097         SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1))
1098       report("G_BUILD_VECTOR src operands total size don't match dest "
1099              "size.",
1100              MI);
1101     break;
1102   }
1103   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1104     // Source types must be scalars, dest type a vector. Scalar types must be
1105     // larger than the dest vector elt type, as this is a truncating operation.
1106     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1107     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1108     if (!DstTy.isVector() || SrcEltTy.isVector())
1109       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1110              MI);
1111     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1112       if (MRI->getType(MI->getOperand(1).getReg()) !=
1113           MRI->getType(MI->getOperand(i).getReg()))
1114         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1115                MI);
1116     }
1117     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1118       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1119              "dest elt type",
1120              MI);
1121     break;
1122   }
1123   case TargetOpcode::G_CONCAT_VECTORS: {
1124     // Source types should be vectors, and total size should match the dest
1125     // vector size.
1126     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1127     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1128     if (!DstTy.isVector() || !SrcTy.isVector())
1129       report("G_CONCAT_VECTOR requires vector source and destination operands",
1130              MI);
1131     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1132       if (MRI->getType(MI->getOperand(1).getReg()) !=
1133           MRI->getType(MI->getOperand(i).getReg()))
1134         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1135     }
1136     if (DstTy.getNumElements() !=
1137         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1138       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1139     break;
1140   }
1141   case TargetOpcode::COPY: {
1142     if (foundErrors)
1143       break;
1144     const MachineOperand &DstOp = MI->getOperand(0);
1145     const MachineOperand &SrcOp = MI->getOperand(1);
1146     LLT DstTy = MRI->getType(DstOp.getReg());
1147     LLT SrcTy = MRI->getType(SrcOp.getReg());
1148     if (SrcTy.isValid() && DstTy.isValid()) {
1149       // If both types are valid, check that the types are the same.
1150       if (SrcTy != DstTy) {
1151         report("Copy Instruction is illegal with mismatching types", MI);
1152         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1153       }
1154     }
1155     if (SrcTy.isValid() || DstTy.isValid()) {
1156       // If one of them have valid types, let's just check they have the same
1157       // size.
1158       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1159       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1160       assert(SrcSize && "Expecting size here");
1161       assert(DstSize && "Expecting size here");
1162       if (SrcSize != DstSize)
1163         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1164           report("Copy Instruction is illegal with mismatching sizes", MI);
1165           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1166                  << "\n";
1167         }
1168     }
1169     break;
1170   }
1171   case TargetOpcode::STATEPOINT:
1172     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1173         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1174         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1175       report("meta operands to STATEPOINT not constant!", MI);
1176     break;
1177 
1178     auto VerifyStackMapConstant = [&](unsigned Offset) {
1179       if (!MI->getOperand(Offset).isImm() ||
1180           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1181           !MI->getOperand(Offset + 1).isImm())
1182         report("stack map constant to STATEPOINT not well formed!", MI);
1183     };
1184     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1185     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1186     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1187     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1188 
1189     // TODO: verify we have properly encoded deopt arguments
1190   };
1191 }
1192 
1193 void
1194 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1195   const MachineInstr *MI = MO->getParent();
1196   const MCInstrDesc &MCID = MI->getDesc();
1197   unsigned NumDefs = MCID.getNumDefs();
1198   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1199     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1200 
1201   // The first MCID.NumDefs operands must be explicit register defines
1202   if (MONum < NumDefs) {
1203     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1204     if (!MO->isReg())
1205       report("Explicit definition must be a register", MO, MONum);
1206     else if (!MO->isDef() && !MCOI.isOptionalDef())
1207       report("Explicit definition marked as use", MO, MONum);
1208     else if (MO->isImplicit())
1209       report("Explicit definition marked as implicit", MO, MONum);
1210   } else if (MONum < MCID.getNumOperands()) {
1211     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1212     // Don't check if it's the last operand in a variadic instruction. See,
1213     // e.g., LDM_RET in the arm back end.
1214     if (MO->isReg() &&
1215         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1216       if (MO->isDef() && !MCOI.isOptionalDef())
1217         report("Explicit operand marked as def", MO, MONum);
1218       if (MO->isImplicit())
1219         report("Explicit operand marked as implicit", MO, MONum);
1220     }
1221 
1222     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1223     if (TiedTo != -1) {
1224       if (!MO->isReg())
1225         report("Tied use must be a register", MO, MONum);
1226       else if (!MO->isTied())
1227         report("Operand should be tied", MO, MONum);
1228       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1229         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1230       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1231         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1232         if (!MOTied.isReg())
1233           report("Tied counterpart must be a register", &MOTied, TiedTo);
1234         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1235                  MO->getReg() != MOTied.getReg())
1236           report("Tied physical registers must match.", &MOTied, TiedTo);
1237       }
1238     } else if (MO->isReg() && MO->isTied())
1239       report("Explicit operand should not be tied", MO, MONum);
1240   } else {
1241     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1242     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1243       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1244   }
1245 
1246   switch (MO->getType()) {
1247   case MachineOperand::MO_Register: {
1248     const unsigned Reg = MO->getReg();
1249     if (!Reg)
1250       return;
1251     if (MRI->tracksLiveness() && !MI->isDebugValue())
1252       checkLiveness(MO, MONum);
1253 
1254     // Verify the consistency of tied operands.
1255     if (MO->isTied()) {
1256       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1257       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1258       if (!OtherMO.isReg())
1259         report("Must be tied to a register", MO, MONum);
1260       if (!OtherMO.isTied())
1261         report("Missing tie flags on tied operand", MO, MONum);
1262       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1263         report("Inconsistent tie links", MO, MONum);
1264       if (MONum < MCID.getNumDefs()) {
1265         if (OtherIdx < MCID.getNumOperands()) {
1266           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1267             report("Explicit def tied to explicit use without tie constraint",
1268                    MO, MONum);
1269         } else {
1270           if (!OtherMO.isImplicit())
1271             report("Explicit def should be tied to implicit use", MO, MONum);
1272         }
1273       }
1274     }
1275 
1276     // Verify two-address constraints after leaving SSA form.
1277     unsigned DefIdx;
1278     if (!MRI->isSSA() && MO->isUse() &&
1279         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1280         Reg != MI->getOperand(DefIdx).getReg())
1281       report("Two-address instruction operands must be identical", MO, MONum);
1282 
1283     // Check register classes.
1284     unsigned SubIdx = MO->getSubReg();
1285 
1286     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1287       if (SubIdx) {
1288         report("Illegal subregister index for physical register", MO, MONum);
1289         return;
1290       }
1291       if (MONum < MCID.getNumOperands()) {
1292         if (const TargetRegisterClass *DRC =
1293               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1294           if (!DRC->contains(Reg)) {
1295             report("Illegal physical register for instruction", MO, MONum);
1296             errs() << printReg(Reg, TRI) << " is not a "
1297                    << TRI->getRegClassName(DRC) << " register.\n";
1298           }
1299         }
1300       }
1301       if (MO->isRenamable()) {
1302         if (MRI->isReserved(Reg)) {
1303           report("isRenamable set on reserved register", MO, MONum);
1304           return;
1305         }
1306       }
1307       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1308         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1309         return;
1310       }
1311     } else {
1312       // Virtual register.
1313       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1314       if (!RC) {
1315         // This is a generic virtual register.
1316 
1317         // If we're post-Select, we can't have gvregs anymore.
1318         if (isFunctionSelected) {
1319           report("Generic virtual register invalid in a Selected function",
1320                  MO, MONum);
1321           return;
1322         }
1323 
1324         // The gvreg must have a type and it must not have a SubIdx.
1325         LLT Ty = MRI->getType(Reg);
1326         if (!Ty.isValid()) {
1327           report("Generic virtual register must have a valid type", MO,
1328                  MONum);
1329           return;
1330         }
1331 
1332         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1333 
1334         // If we're post-RegBankSelect, the gvreg must have a bank.
1335         if (!RegBank && isFunctionRegBankSelected) {
1336           report("Generic virtual register must have a bank in a "
1337                  "RegBankSelected function",
1338                  MO, MONum);
1339           return;
1340         }
1341 
1342         // Make sure the register fits into its register bank if any.
1343         if (RegBank && Ty.isValid() &&
1344             RegBank->getSize() < Ty.getSizeInBits()) {
1345           report("Register bank is too small for virtual register", MO,
1346                  MONum);
1347           errs() << "Register bank " << RegBank->getName() << " too small("
1348                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1349                  << "-bits\n";
1350           return;
1351         }
1352         if (SubIdx)  {
1353           report("Generic virtual register does not subregister index", MO,
1354                  MONum);
1355           return;
1356         }
1357 
1358         // If this is a target specific instruction and this operand
1359         // has register class constraint, the virtual register must
1360         // comply to it.
1361         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1362             MONum < MCID.getNumOperands() &&
1363             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1364           report("Virtual register does not match instruction constraint", MO,
1365                  MONum);
1366           errs() << "Expect register class "
1367                  << TRI->getRegClassName(
1368                         TII->getRegClass(MCID, MONum, TRI, *MF))
1369                  << " but got nothing\n";
1370           return;
1371         }
1372 
1373         break;
1374       }
1375       if (SubIdx) {
1376         const TargetRegisterClass *SRC =
1377           TRI->getSubClassWithSubReg(RC, SubIdx);
1378         if (!SRC) {
1379           report("Invalid subregister index for virtual register", MO, MONum);
1380           errs() << "Register class " << TRI->getRegClassName(RC)
1381               << " does not support subreg index " << SubIdx << "\n";
1382           return;
1383         }
1384         if (RC != SRC) {
1385           report("Invalid register class for subregister index", MO, MONum);
1386           errs() << "Register class " << TRI->getRegClassName(RC)
1387               << " does not fully support subreg index " << SubIdx << "\n";
1388           return;
1389         }
1390       }
1391       if (MONum < MCID.getNumOperands()) {
1392         if (const TargetRegisterClass *DRC =
1393               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1394           if (SubIdx) {
1395             const TargetRegisterClass *SuperRC =
1396                 TRI->getLargestLegalSuperClass(RC, *MF);
1397             if (!SuperRC) {
1398               report("No largest legal super class exists.", MO, MONum);
1399               return;
1400             }
1401             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1402             if (!DRC) {
1403               report("No matching super-reg register class.", MO, MONum);
1404               return;
1405             }
1406           }
1407           if (!RC->hasSuperClassEq(DRC)) {
1408             report("Illegal virtual register for instruction", MO, MONum);
1409             errs() << "Expected a " << TRI->getRegClassName(DRC)
1410                 << " register, but got a " << TRI->getRegClassName(RC)
1411                 << " register\n";
1412           }
1413         }
1414       }
1415     }
1416     break;
1417   }
1418 
1419   case MachineOperand::MO_RegisterMask:
1420     regMasks.push_back(MO->getRegMask());
1421     break;
1422 
1423   case MachineOperand::MO_MachineBasicBlock:
1424     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1425       report("PHI operand is not in the CFG", MO, MONum);
1426     break;
1427 
1428   case MachineOperand::MO_FrameIndex:
1429     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1430         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1431       int FI = MO->getIndex();
1432       LiveInterval &LI = LiveStks->getInterval(FI);
1433       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1434 
1435       bool stores = MI->mayStore();
1436       bool loads = MI->mayLoad();
1437       // For a memory-to-memory move, we need to check if the frame
1438       // index is used for storing or loading, by inspecting the
1439       // memory operands.
1440       if (stores && loads) {
1441         for (auto *MMO : MI->memoperands()) {
1442           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1443           if (PSV == nullptr) continue;
1444           const FixedStackPseudoSourceValue *Value =
1445             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1446           if (Value == nullptr) continue;
1447           if (Value->getFrameIndex() != FI) continue;
1448 
1449           if (MMO->isStore())
1450             loads = false;
1451           else
1452             stores = false;
1453           break;
1454         }
1455         if (loads == stores)
1456           report("Missing fixed stack memoperand.", MI);
1457       }
1458       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1459         report("Instruction loads from dead spill slot", MO, MONum);
1460         errs() << "Live stack: " << LI << '\n';
1461       }
1462       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1463         report("Instruction stores to dead spill slot", MO, MONum);
1464         errs() << "Live stack: " << LI << '\n';
1465       }
1466     }
1467     break;
1468 
1469   default:
1470     break;
1471   }
1472 }
1473 
1474 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1475     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1476     LaneBitmask LaneMask) {
1477   LiveQueryResult LRQ = LR.Query(UseIdx);
1478   // Check if we have a segment at the use, note however that we only need one
1479   // live subregister range, the others may be dead.
1480   if (!LRQ.valueIn() && LaneMask.none()) {
1481     report("No live segment at use", MO, MONum);
1482     report_context_liverange(LR);
1483     report_context_vreg_regunit(VRegOrUnit);
1484     report_context(UseIdx);
1485   }
1486   if (MO->isKill() && !LRQ.isKill()) {
1487     report("Live range continues after kill flag", MO, MONum);
1488     report_context_liverange(LR);
1489     report_context_vreg_regunit(VRegOrUnit);
1490     if (LaneMask.any())
1491       report_context_lanemask(LaneMask);
1492     report_context(UseIdx);
1493   }
1494 }
1495 
1496 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1497     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1498     bool SubRangeCheck, LaneBitmask LaneMask) {
1499   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1500     assert(VNI && "NULL valno is not allowed");
1501     if (VNI->def != DefIdx) {
1502       report("Inconsistent valno->def", MO, MONum);
1503       report_context_liverange(LR);
1504       report_context_vreg_regunit(VRegOrUnit);
1505       if (LaneMask.any())
1506         report_context_lanemask(LaneMask);
1507       report_context(*VNI);
1508       report_context(DefIdx);
1509     }
1510   } else {
1511     report("No live segment at def", MO, MONum);
1512     report_context_liverange(LR);
1513     report_context_vreg_regunit(VRegOrUnit);
1514     if (LaneMask.any())
1515       report_context_lanemask(LaneMask);
1516     report_context(DefIdx);
1517   }
1518   // Check that, if the dead def flag is present, LiveInts agree.
1519   if (MO->isDead()) {
1520     LiveQueryResult LRQ = LR.Query(DefIdx);
1521     if (!LRQ.isDeadDef()) {
1522       assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1523              "Expecting a virtual register.");
1524       // A dead subreg def only tells us that the specific subreg is dead. There
1525       // could be other non-dead defs of other subregs, or we could have other
1526       // parts of the register being live through the instruction. So unless we
1527       // are checking liveness for a subrange it is ok for the live range to
1528       // continue, given that we have a dead def of a subregister.
1529       if (SubRangeCheck || MO->getSubReg() == 0) {
1530         report("Live range continues after dead def flag", MO, MONum);
1531         report_context_liverange(LR);
1532         report_context_vreg_regunit(VRegOrUnit);
1533         if (LaneMask.any())
1534           report_context_lanemask(LaneMask);
1535       }
1536     }
1537   }
1538 }
1539 
1540 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1541   const MachineInstr *MI = MO->getParent();
1542   const unsigned Reg = MO->getReg();
1543 
1544   // Both use and def operands can read a register.
1545   if (MO->readsReg()) {
1546     if (MO->isKill())
1547       addRegWithSubRegs(regsKilled, Reg);
1548 
1549     // Check that LiveVars knows this kill.
1550     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1551         MO->isKill()) {
1552       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1553       if (!is_contained(VI.Kills, MI))
1554         report("Kill missing from LiveVariables", MO, MONum);
1555     }
1556 
1557     // Check LiveInts liveness and kill.
1558     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1559       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1560       // Check the cached regunit intervals.
1561       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1562         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1563           if (MRI->isReservedRegUnit(*Units))
1564             continue;
1565           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1566             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1567         }
1568       }
1569 
1570       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1571         if (LiveInts->hasInterval(Reg)) {
1572           // This is a virtual register interval.
1573           const LiveInterval &LI = LiveInts->getInterval(Reg);
1574           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1575 
1576           if (LI.hasSubRanges() && !MO->isDef()) {
1577             unsigned SubRegIdx = MO->getSubReg();
1578             LaneBitmask MOMask = SubRegIdx != 0
1579                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1580                                : MRI->getMaxLaneMaskForVReg(Reg);
1581             LaneBitmask LiveInMask;
1582             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1583               if ((MOMask & SR.LaneMask).none())
1584                 continue;
1585               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1586               LiveQueryResult LRQ = SR.Query(UseIdx);
1587               if (LRQ.valueIn())
1588                 LiveInMask |= SR.LaneMask;
1589             }
1590             // At least parts of the register has to be live at the use.
1591             if ((LiveInMask & MOMask).none()) {
1592               report("No live subrange at use", MO, MONum);
1593               report_context(LI);
1594               report_context(UseIdx);
1595             }
1596           }
1597         } else {
1598           report("Virtual register has no live interval", MO, MONum);
1599         }
1600       }
1601     }
1602 
1603     // Use of a dead register.
1604     if (!regsLive.count(Reg)) {
1605       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1606         // Reserved registers may be used even when 'dead'.
1607         bool Bad = !isReserved(Reg);
1608         // We are fine if just any subregister has a defined value.
1609         if (Bad) {
1610           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1611                ++SubRegs) {
1612             if (regsLive.count(*SubRegs)) {
1613               Bad = false;
1614               break;
1615             }
1616           }
1617         }
1618         // If there is an additional implicit-use of a super register we stop
1619         // here. By definition we are fine if the super register is not
1620         // (completely) dead, if the complete super register is dead we will
1621         // get a report for its operand.
1622         if (Bad) {
1623           for (const MachineOperand &MOP : MI->uses()) {
1624             if (!MOP.isReg() || !MOP.isImplicit())
1625               continue;
1626 
1627             if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1628               continue;
1629 
1630             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1631                  ++SubRegs) {
1632               if (*SubRegs == Reg) {
1633                 Bad = false;
1634                 break;
1635               }
1636             }
1637           }
1638         }
1639         if (Bad)
1640           report("Using an undefined physical register", MO, MONum);
1641       } else if (MRI->def_empty(Reg)) {
1642         report("Reading virtual register without a def", MO, MONum);
1643       } else {
1644         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1645         // We don't know which virtual registers are live in, so only complain
1646         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1647         // must be live in. PHI instructions are handled separately.
1648         if (MInfo.regsKilled.count(Reg))
1649           report("Using a killed virtual register", MO, MONum);
1650         else if (!MI->isPHI())
1651           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1652       }
1653     }
1654   }
1655 
1656   if (MO->isDef()) {
1657     // Register defined.
1658     // TODO: verify that earlyclobber ops are not used.
1659     if (MO->isDead())
1660       addRegWithSubRegs(regsDead, Reg);
1661     else
1662       addRegWithSubRegs(regsDefined, Reg);
1663 
1664     // Verify SSA form.
1665     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1666         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1667       report("Multiple virtual register defs in SSA form", MO, MONum);
1668 
1669     // Check LiveInts for a live segment, but only for virtual registers.
1670     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1671       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1672       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1673 
1674       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1675         if (LiveInts->hasInterval(Reg)) {
1676           const LiveInterval &LI = LiveInts->getInterval(Reg);
1677           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1678 
1679           if (LI.hasSubRanges()) {
1680             unsigned SubRegIdx = MO->getSubReg();
1681             LaneBitmask MOMask = SubRegIdx != 0
1682               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1683               : MRI->getMaxLaneMaskForVReg(Reg);
1684             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1685               if ((SR.LaneMask & MOMask).none())
1686                 continue;
1687               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1688             }
1689           }
1690         } else {
1691           report("Virtual register has no Live interval", MO, MONum);
1692         }
1693       }
1694     }
1695   }
1696 }
1697 
1698 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1699 
1700 // This function gets called after visiting all instructions in a bundle. The
1701 // argument points to the bundle header.
1702 // Normal stand-alone instructions are also considered 'bundles', and this
1703 // function is called for all of them.
1704 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1705   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1706   set_union(MInfo.regsKilled, regsKilled);
1707   set_subtract(regsLive, regsKilled); regsKilled.clear();
1708   // Kill any masked registers.
1709   while (!regMasks.empty()) {
1710     const uint32_t *Mask = regMasks.pop_back_val();
1711     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1712       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1713           MachineOperand::clobbersPhysReg(Mask, *I))
1714         regsDead.push_back(*I);
1715   }
1716   set_subtract(regsLive, regsDead);   regsDead.clear();
1717   set_union(regsLive, regsDefined);   regsDefined.clear();
1718 }
1719 
1720 void
1721 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1722   MBBInfoMap[MBB].regsLiveOut = regsLive;
1723   regsLive.clear();
1724 
1725   if (Indexes) {
1726     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1727     if (!(stop > lastIndex)) {
1728       report("Block ends before last instruction index", MBB);
1729       errs() << "Block ends at " << stop
1730           << " last instruction was at " << lastIndex << '\n';
1731     }
1732     lastIndex = stop;
1733   }
1734 }
1735 
1736 // Calculate the largest possible vregsPassed sets. These are the registers that
1737 // can pass through an MBB live, but may not be live every time. It is assumed
1738 // that all vregsPassed sets are empty before the call.
1739 void MachineVerifier::calcRegsPassed() {
1740   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1741   // have any vregsPassed.
1742   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1743   for (const auto &MBB : *MF) {
1744     BBInfo &MInfo = MBBInfoMap[&MBB];
1745     if (!MInfo.reachable)
1746       continue;
1747     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1748            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1749       BBInfo &SInfo = MBBInfoMap[*SuI];
1750       if (SInfo.addPassed(MInfo.regsLiveOut))
1751         todo.insert(*SuI);
1752     }
1753   }
1754 
1755   // Iteratively push vregsPassed to successors. This will converge to the same
1756   // final state regardless of DenseSet iteration order.
1757   while (!todo.empty()) {
1758     const MachineBasicBlock *MBB = *todo.begin();
1759     todo.erase(MBB);
1760     BBInfo &MInfo = MBBInfoMap[MBB];
1761     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1762            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1763       if (*SuI == MBB)
1764         continue;
1765       BBInfo &SInfo = MBBInfoMap[*SuI];
1766       if (SInfo.addPassed(MInfo.vregsPassed))
1767         todo.insert(*SuI);
1768     }
1769   }
1770 }
1771 
1772 // Calculate the set of virtual registers that must be passed through each basic
1773 // block in order to satisfy the requirements of successor blocks. This is very
1774 // similar to calcRegsPassed, only backwards.
1775 void MachineVerifier::calcRegsRequired() {
1776   // First push live-in regs to predecessors' vregsRequired.
1777   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1778   for (const auto &MBB : *MF) {
1779     BBInfo &MInfo = MBBInfoMap[&MBB];
1780     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1781            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1782       BBInfo &PInfo = MBBInfoMap[*PrI];
1783       if (PInfo.addRequired(MInfo.vregsLiveIn))
1784         todo.insert(*PrI);
1785     }
1786   }
1787 
1788   // Iteratively push vregsRequired to predecessors. This will converge to the
1789   // same final state regardless of DenseSet iteration order.
1790   while (!todo.empty()) {
1791     const MachineBasicBlock *MBB = *todo.begin();
1792     todo.erase(MBB);
1793     BBInfo &MInfo = MBBInfoMap[MBB];
1794     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1795            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1796       if (*PrI == MBB)
1797         continue;
1798       BBInfo &SInfo = MBBInfoMap[*PrI];
1799       if (SInfo.addRequired(MInfo.vregsRequired))
1800         todo.insert(*PrI);
1801     }
1802   }
1803 }
1804 
1805 // Check PHI instructions at the beginning of MBB. It is assumed that
1806 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1807 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1808   BBInfo &MInfo = MBBInfoMap[&MBB];
1809 
1810   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1811   for (const MachineInstr &Phi : MBB) {
1812     if (!Phi.isPHI())
1813       break;
1814     seen.clear();
1815 
1816     const MachineOperand &MODef = Phi.getOperand(0);
1817     if (!MODef.isReg() || !MODef.isDef()) {
1818       report("Expected first PHI operand to be a register def", &MODef, 0);
1819       continue;
1820     }
1821     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1822         MODef.isEarlyClobber() || MODef.isDebug())
1823       report("Unexpected flag on PHI operand", &MODef, 0);
1824     unsigned DefReg = MODef.getReg();
1825     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1826       report("Expected first PHI operand to be a virtual register", &MODef, 0);
1827 
1828     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1829       const MachineOperand &MO0 = Phi.getOperand(I);
1830       if (!MO0.isReg()) {
1831         report("Expected PHI operand to be a register", &MO0, I);
1832         continue;
1833       }
1834       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1835           MO0.isDebug() || MO0.isTied())
1836         report("Unexpected flag on PHI operand", &MO0, I);
1837 
1838       const MachineOperand &MO1 = Phi.getOperand(I + 1);
1839       if (!MO1.isMBB()) {
1840         report("Expected PHI operand to be a basic block", &MO1, I + 1);
1841         continue;
1842       }
1843 
1844       const MachineBasicBlock &Pre = *MO1.getMBB();
1845       if (!Pre.isSuccessor(&MBB)) {
1846         report("PHI input is not a predecessor block", &MO1, I + 1);
1847         continue;
1848       }
1849 
1850       if (MInfo.reachable) {
1851         seen.insert(&Pre);
1852         BBInfo &PrInfo = MBBInfoMap[&Pre];
1853         if (!MO0.isUndef() && PrInfo.reachable &&
1854             !PrInfo.isLiveOut(MO0.getReg()))
1855           report("PHI operand is not live-out from predecessor", &MO0, I);
1856       }
1857     }
1858 
1859     // Did we see all predecessors?
1860     if (MInfo.reachable) {
1861       for (MachineBasicBlock *Pred : MBB.predecessors()) {
1862         if (!seen.count(Pred)) {
1863           report("Missing PHI operand", &Phi);
1864           errs() << printMBBReference(*Pred)
1865                  << " is a predecessor according to the CFG.\n";
1866         }
1867       }
1868     }
1869   }
1870 }
1871 
1872 void MachineVerifier::visitMachineFunctionAfter() {
1873   calcRegsPassed();
1874 
1875   for (const MachineBasicBlock &MBB : *MF)
1876     checkPHIOps(MBB);
1877 
1878   // Now check liveness info if available
1879   calcRegsRequired();
1880 
1881   // Check for killed virtual registers that should be live out.
1882   for (const auto &MBB : *MF) {
1883     BBInfo &MInfo = MBBInfoMap[&MBB];
1884     for (RegSet::iterator
1885          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1886          ++I)
1887       if (MInfo.regsKilled.count(*I)) {
1888         report("Virtual register killed in block, but needed live out.", &MBB);
1889         errs() << "Virtual register " << printReg(*I)
1890                << " is used after the block.\n";
1891       }
1892   }
1893 
1894   if (!MF->empty()) {
1895     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1896     for (RegSet::iterator
1897          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1898          ++I) {
1899       report("Virtual register defs don't dominate all uses.", MF);
1900       report_context_vreg(*I);
1901     }
1902   }
1903 
1904   if (LiveVars)
1905     verifyLiveVariables();
1906   if (LiveInts)
1907     verifyLiveIntervals();
1908 }
1909 
1910 void MachineVerifier::verifyLiveVariables() {
1911   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1912   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1913     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1914     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1915     for (const auto &MBB : *MF) {
1916       BBInfo &MInfo = MBBInfoMap[&MBB];
1917 
1918       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1919       if (MInfo.vregsRequired.count(Reg)) {
1920         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1921           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1922           errs() << "Virtual register " << printReg(Reg)
1923                  << " must be live through the block.\n";
1924         }
1925       } else {
1926         if (VI.AliveBlocks.test(MBB.getNumber())) {
1927           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1928           errs() << "Virtual register " << printReg(Reg)
1929                  << " is not needed live through the block.\n";
1930         }
1931       }
1932     }
1933   }
1934 }
1935 
1936 void MachineVerifier::verifyLiveIntervals() {
1937   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1938   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1939     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1940 
1941     // Spilling and splitting may leave unused registers around. Skip them.
1942     if (MRI->reg_nodbg_empty(Reg))
1943       continue;
1944 
1945     if (!LiveInts->hasInterval(Reg)) {
1946       report("Missing live interval for virtual register", MF);
1947       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
1948       continue;
1949     }
1950 
1951     const LiveInterval &LI = LiveInts->getInterval(Reg);
1952     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1953     verifyLiveInterval(LI);
1954   }
1955 
1956   // Verify all the cached regunit intervals.
1957   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1958     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1959       verifyLiveRange(*LR, i);
1960 }
1961 
1962 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1963                                            const VNInfo *VNI, unsigned Reg,
1964                                            LaneBitmask LaneMask) {
1965   if (VNI->isUnused())
1966     return;
1967 
1968   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1969 
1970   if (!DefVNI) {
1971     report("Value not live at VNInfo def and not marked unused", MF);
1972     report_context(LR, Reg, LaneMask);
1973     report_context(*VNI);
1974     return;
1975   }
1976 
1977   if (DefVNI != VNI) {
1978     report("Live segment at def has different VNInfo", MF);
1979     report_context(LR, Reg, LaneMask);
1980     report_context(*VNI);
1981     return;
1982   }
1983 
1984   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1985   if (!MBB) {
1986     report("Invalid VNInfo definition index", MF);
1987     report_context(LR, Reg, LaneMask);
1988     report_context(*VNI);
1989     return;
1990   }
1991 
1992   if (VNI->isPHIDef()) {
1993     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1994       report("PHIDef VNInfo is not defined at MBB start", MBB);
1995       report_context(LR, Reg, LaneMask);
1996       report_context(*VNI);
1997     }
1998     return;
1999   }
2000 
2001   // Non-PHI def.
2002   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2003   if (!MI) {
2004     report("No instruction at VNInfo def index", MBB);
2005     report_context(LR, Reg, LaneMask);
2006     report_context(*VNI);
2007     return;
2008   }
2009 
2010   if (Reg != 0) {
2011     bool hasDef = false;
2012     bool isEarlyClobber = false;
2013     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2014       if (!MOI->isReg() || !MOI->isDef())
2015         continue;
2016       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2017         if (MOI->getReg() != Reg)
2018           continue;
2019       } else {
2020         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2021             !TRI->hasRegUnit(MOI->getReg(), Reg))
2022           continue;
2023       }
2024       if (LaneMask.any() &&
2025           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2026         continue;
2027       hasDef = true;
2028       if (MOI->isEarlyClobber())
2029         isEarlyClobber = true;
2030     }
2031 
2032     if (!hasDef) {
2033       report("Defining instruction does not modify register", MI);
2034       report_context(LR, Reg, LaneMask);
2035       report_context(*VNI);
2036     }
2037 
2038     // Early clobber defs begin at USE slots, but other defs must begin at
2039     // DEF slots.
2040     if (isEarlyClobber) {
2041       if (!VNI->def.isEarlyClobber()) {
2042         report("Early clobber def must be at an early-clobber slot", MBB);
2043         report_context(LR, Reg, LaneMask);
2044         report_context(*VNI);
2045       }
2046     } else if (!VNI->def.isRegister()) {
2047       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2048       report_context(LR, Reg, LaneMask);
2049       report_context(*VNI);
2050     }
2051   }
2052 }
2053 
2054 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2055                                              const LiveRange::const_iterator I,
2056                                              unsigned Reg, LaneBitmask LaneMask)
2057 {
2058   const LiveRange::Segment &S = *I;
2059   const VNInfo *VNI = S.valno;
2060   assert(VNI && "Live segment has no valno");
2061 
2062   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2063     report("Foreign valno in live segment", MF);
2064     report_context(LR, Reg, LaneMask);
2065     report_context(S);
2066     report_context(*VNI);
2067   }
2068 
2069   if (VNI->isUnused()) {
2070     report("Live segment valno is marked unused", MF);
2071     report_context(LR, Reg, LaneMask);
2072     report_context(S);
2073   }
2074 
2075   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2076   if (!MBB) {
2077     report("Bad start of live segment, no basic block", MF);
2078     report_context(LR, Reg, LaneMask);
2079     report_context(S);
2080     return;
2081   }
2082   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2083   if (S.start != MBBStartIdx && S.start != VNI->def) {
2084     report("Live segment must begin at MBB entry or valno def", MBB);
2085     report_context(LR, Reg, LaneMask);
2086     report_context(S);
2087   }
2088 
2089   const MachineBasicBlock *EndMBB =
2090     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2091   if (!EndMBB) {
2092     report("Bad end of live segment, no basic block", MF);
2093     report_context(LR, Reg, LaneMask);
2094     report_context(S);
2095     return;
2096   }
2097 
2098   // No more checks for live-out segments.
2099   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2100     return;
2101 
2102   // RegUnit intervals are allowed dead phis.
2103   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2104       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2105     return;
2106 
2107   // The live segment is ending inside EndMBB
2108   const MachineInstr *MI =
2109     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2110   if (!MI) {
2111     report("Live segment doesn't end at a valid instruction", EndMBB);
2112     report_context(LR, Reg, LaneMask);
2113     report_context(S);
2114     return;
2115   }
2116 
2117   // The block slot must refer to a basic block boundary.
2118   if (S.end.isBlock()) {
2119     report("Live segment ends at B slot of an instruction", EndMBB);
2120     report_context(LR, Reg, LaneMask);
2121     report_context(S);
2122   }
2123 
2124   if (S.end.isDead()) {
2125     // Segment ends on the dead slot.
2126     // That means there must be a dead def.
2127     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2128       report("Live segment ending at dead slot spans instructions", EndMBB);
2129       report_context(LR, Reg, LaneMask);
2130       report_context(S);
2131     }
2132   }
2133 
2134   // A live segment can only end at an early-clobber slot if it is being
2135   // redefined by an early-clobber def.
2136   if (S.end.isEarlyClobber()) {
2137     if (I+1 == LR.end() || (I+1)->start != S.end) {
2138       report("Live segment ending at early clobber slot must be "
2139              "redefined by an EC def in the same instruction", EndMBB);
2140       report_context(LR, Reg, LaneMask);
2141       report_context(S);
2142     }
2143   }
2144 
2145   // The following checks only apply to virtual registers. Physreg liveness
2146   // is too weird to check.
2147   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2148     // A live segment can end with either a redefinition, a kill flag on a
2149     // use, or a dead flag on a def.
2150     bool hasRead = false;
2151     bool hasSubRegDef = false;
2152     bool hasDeadDef = false;
2153     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2154       if (!MOI->isReg() || MOI->getReg() != Reg)
2155         continue;
2156       unsigned Sub = MOI->getSubReg();
2157       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2158                                  : LaneBitmask::getAll();
2159       if (MOI->isDef()) {
2160         if (Sub != 0) {
2161           hasSubRegDef = true;
2162           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2163           // mask for subregister defs. Read-undef defs will be handled by
2164           // readsReg below.
2165           SLM = ~SLM;
2166         }
2167         if (MOI->isDead())
2168           hasDeadDef = true;
2169       }
2170       if (LaneMask.any() && (LaneMask & SLM).none())
2171         continue;
2172       if (MOI->readsReg())
2173         hasRead = true;
2174     }
2175     if (S.end.isDead()) {
2176       // Make sure that the corresponding machine operand for a "dead" live
2177       // range has the dead flag. We cannot perform this check for subregister
2178       // liveranges as partially dead values are allowed.
2179       if (LaneMask.none() && !hasDeadDef) {
2180         report("Instruction ending live segment on dead slot has no dead flag",
2181                MI);
2182         report_context(LR, Reg, LaneMask);
2183         report_context(S);
2184       }
2185     } else {
2186       if (!hasRead) {
2187         // When tracking subregister liveness, the main range must start new
2188         // values on partial register writes, even if there is no read.
2189         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2190             !hasSubRegDef) {
2191           report("Instruction ending live segment doesn't read the register",
2192                  MI);
2193           report_context(LR, Reg, LaneMask);
2194           report_context(S);
2195         }
2196       }
2197     }
2198   }
2199 
2200   // Now check all the basic blocks in this live segment.
2201   MachineFunction::const_iterator MFI = MBB->getIterator();
2202   // Is this live segment the beginning of a non-PHIDef VN?
2203   if (S.start == VNI->def && !VNI->isPHIDef()) {
2204     // Not live-in to any blocks.
2205     if (MBB == EndMBB)
2206       return;
2207     // Skip this block.
2208     ++MFI;
2209   }
2210 
2211   SmallVector<SlotIndex, 4> Undefs;
2212   if (LaneMask.any()) {
2213     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2214     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2215   }
2216 
2217   while (true) {
2218     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2219     // We don't know how to track physregs into a landing pad.
2220     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2221         MFI->isEHPad()) {
2222       if (&*MFI == EndMBB)
2223         break;
2224       ++MFI;
2225       continue;
2226     }
2227 
2228     // Is VNI a PHI-def in the current block?
2229     bool IsPHI = VNI->isPHIDef() &&
2230       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2231 
2232     // Check that VNI is live-out of all predecessors.
2233     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2234          PE = MFI->pred_end(); PI != PE; ++PI) {
2235       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2236       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2237 
2238       // All predecessors must have a live-out value. However for a phi
2239       // instruction with subregister intervals
2240       // only one of the subregisters (not necessarily the current one) needs to
2241       // be defined.
2242       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2243         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2244           continue;
2245         report("Register not marked live out of predecessor", *PI);
2246         report_context(LR, Reg, LaneMask);
2247         report_context(*VNI);
2248         errs() << " live into " << printMBBReference(*MFI) << '@'
2249                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2250                << PEnd << '\n';
2251         continue;
2252       }
2253 
2254       // Only PHI-defs can take different predecessor values.
2255       if (!IsPHI && PVNI != VNI) {
2256         report("Different value live out of predecessor", *PI);
2257         report_context(LR, Reg, LaneMask);
2258         errs() << "Valno #" << PVNI->id << " live out of "
2259                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2260                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2261                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2262       }
2263     }
2264     if (&*MFI == EndMBB)
2265       break;
2266     ++MFI;
2267   }
2268 }
2269 
2270 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2271                                       LaneBitmask LaneMask) {
2272   for (const VNInfo *VNI : LR.valnos)
2273     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2274 
2275   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2276     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2277 }
2278 
2279 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2280   unsigned Reg = LI.reg;
2281   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2282   verifyLiveRange(LI, Reg);
2283 
2284   LaneBitmask Mask;
2285   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2286   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2287     if ((Mask & SR.LaneMask).any()) {
2288       report("Lane masks of sub ranges overlap in live interval", MF);
2289       report_context(LI);
2290     }
2291     if ((SR.LaneMask & ~MaxMask).any()) {
2292       report("Subrange lanemask is invalid", MF);
2293       report_context(LI);
2294     }
2295     if (SR.empty()) {
2296       report("Subrange must not be empty", MF);
2297       report_context(SR, LI.reg, SR.LaneMask);
2298     }
2299     Mask |= SR.LaneMask;
2300     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2301     if (!LI.covers(SR)) {
2302       report("A Subrange is not covered by the main range", MF);
2303       report_context(LI);
2304     }
2305   }
2306 
2307   // Check the LI only has one connected component.
2308   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2309   unsigned NumComp = ConEQ.Classify(LI);
2310   if (NumComp > 1) {
2311     report("Multiple connected components in live interval", MF);
2312     report_context(LI);
2313     for (unsigned comp = 0; comp != NumComp; ++comp) {
2314       errs() << comp << ": valnos";
2315       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2316            E = LI.vni_end(); I!=E; ++I)
2317         if (comp == ConEQ.getEqClass(*I))
2318           errs() << ' ' << (*I)->id;
2319       errs() << '\n';
2320     }
2321   }
2322 }
2323 
2324 namespace {
2325 
2326   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2327   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2328   // value is zero.
2329   // We use a bool plus an integer to capture the stack state.
2330   struct StackStateOfBB {
2331     StackStateOfBB() = default;
2332     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2333       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2334       ExitIsSetup(ExitSetup) {}
2335 
2336     // Can be negative, which means we are setting up a frame.
2337     int EntryValue = 0;
2338     int ExitValue = 0;
2339     bool EntryIsSetup = false;
2340     bool ExitIsSetup = false;
2341   };
2342 
2343 } // end anonymous namespace
2344 
2345 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2346 /// by a FrameDestroy <n>, stack adjustments are identical on all
2347 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2348 void MachineVerifier::verifyStackFrame() {
2349   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2350   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2351   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2352     return;
2353 
2354   SmallVector<StackStateOfBB, 8> SPState;
2355   SPState.resize(MF->getNumBlockIDs());
2356   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2357 
2358   // Visit the MBBs in DFS order.
2359   for (df_ext_iterator<const MachineFunction *,
2360                        df_iterator_default_set<const MachineBasicBlock *>>
2361        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2362        DFI != DFE; ++DFI) {
2363     const MachineBasicBlock *MBB = *DFI;
2364 
2365     StackStateOfBB BBState;
2366     // Check the exit state of the DFS stack predecessor.
2367     if (DFI.getPathLength() >= 2) {
2368       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2369       assert(Reachable.count(StackPred) &&
2370              "DFS stack predecessor is already visited.\n");
2371       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2372       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2373       BBState.ExitValue = BBState.EntryValue;
2374       BBState.ExitIsSetup = BBState.EntryIsSetup;
2375     }
2376 
2377     // Update stack state by checking contents of MBB.
2378     for (const auto &I : *MBB) {
2379       if (I.getOpcode() == FrameSetupOpcode) {
2380         if (BBState.ExitIsSetup)
2381           report("FrameSetup is after another FrameSetup", &I);
2382         BBState.ExitValue -= TII->getFrameTotalSize(I);
2383         BBState.ExitIsSetup = true;
2384       }
2385 
2386       if (I.getOpcode() == FrameDestroyOpcode) {
2387         int Size = TII->getFrameTotalSize(I);
2388         if (!BBState.ExitIsSetup)
2389           report("FrameDestroy is not after a FrameSetup", &I);
2390         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2391                                                BBState.ExitValue;
2392         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2393           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2394           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2395               << AbsSPAdj << ">.\n";
2396         }
2397         BBState.ExitValue += Size;
2398         BBState.ExitIsSetup = false;
2399       }
2400     }
2401     SPState[MBB->getNumber()] = BBState;
2402 
2403     // Make sure the exit state of any predecessor is consistent with the entry
2404     // state.
2405     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2406          E = MBB->pred_end(); I != E; ++I) {
2407       if (Reachable.count(*I) &&
2408           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2409            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2410         report("The exit stack state of a predecessor is inconsistent.", MBB);
2411         errs() << "Predecessor " << printMBBReference(*(*I))
2412                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2413                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2414                << printMBBReference(*MBB) << " has entry state ("
2415                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2416       }
2417     }
2418 
2419     // Make sure the entry state of any successor is consistent with the exit
2420     // state.
2421     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2422          E = MBB->succ_end(); I != E; ++I) {
2423       if (Reachable.count(*I) &&
2424           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2425            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2426         report("The entry stack state of a successor is inconsistent.", MBB);
2427         errs() << "Successor " << printMBBReference(*(*I))
2428                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2429                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2430                << printMBBReference(*MBB) << " has exit state ("
2431                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2432       }
2433     }
2434 
2435     // Make sure a basic block with return ends with zero stack adjustment.
2436     if (!MBB->empty() && MBB->back().isReturn()) {
2437       if (BBState.ExitIsSetup)
2438         report("A return block ends with a FrameSetup.", MBB);
2439       if (BBState.ExitValue)
2440         report("A return block ends with a nonzero stack adjustment.", MBB);
2441     }
2442   }
2443 }
2444