1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "LiveRangeCalc.h" 27 #include "llvm/ADT/BitVector.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/DenseSet.h" 30 #include "llvm/ADT/DepthFirstIterator.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SetOperations.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/ADT/Twine.h" 37 #include "llvm/Analysis/EHPersonalities.h" 38 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 39 #include "llvm/CodeGen/LiveInterval.h" 40 #include "llvm/CodeGen/LiveIntervals.h" 41 #include "llvm/CodeGen/LiveStacks.h" 42 #include "llvm/CodeGen/LiveVariables.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/PseudoSourceValue.h" 53 #include "llvm/CodeGen/SlotIndexes.h" 54 #include "llvm/CodeGen/StackMaps.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetOpcodes.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/InlineAsm.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/MC/LaneBitmask.h" 64 #include "llvm/MC/MCAsmInfo.h" 65 #include "llvm/MC/MCInstrDesc.h" 66 #include "llvm/MC/MCRegisterInfo.h" 67 #include "llvm/MC/MCTargetOptions.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/LowLevelTypeImpl.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 83 using namespace llvm; 84 85 namespace { 86 87 struct MachineVerifier { 88 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 89 90 unsigned verify(MachineFunction &MF); 91 92 Pass *const PASS; 93 const char *Banner; 94 const MachineFunction *MF; 95 const TargetMachine *TM; 96 const TargetInstrInfo *TII; 97 const TargetRegisterInfo *TRI; 98 const MachineRegisterInfo *MRI; 99 100 unsigned foundErrors; 101 102 // Avoid querying the MachineFunctionProperties for each operand. 103 bool isFunctionRegBankSelected; 104 bool isFunctionSelected; 105 106 using RegVector = SmallVector<unsigned, 16>; 107 using RegMaskVector = SmallVector<const uint32_t *, 4>; 108 using RegSet = DenseSet<unsigned>; 109 using RegMap = DenseMap<unsigned, const MachineInstr *>; 110 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 111 112 const MachineInstr *FirstNonPHI; 113 const MachineInstr *FirstTerminator; 114 BlockSet FunctionBlocks; 115 116 BitVector regsReserved; 117 RegSet regsLive; 118 RegVector regsDefined, regsDead, regsKilled; 119 RegMaskVector regMasks; 120 121 SlotIndex lastIndex; 122 123 // Add Reg and any sub-registers to RV 124 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 125 RV.push_back(Reg); 126 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 127 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 128 RV.push_back(*SubRegs); 129 } 130 131 struct BBInfo { 132 // Is this MBB reachable from the MF entry point? 133 bool reachable = false; 134 135 // Vregs that must be live in because they are used without being 136 // defined. Map value is the user. 137 RegMap vregsLiveIn; 138 139 // Regs killed in MBB. They may be defined again, and will then be in both 140 // regsKilled and regsLiveOut. 141 RegSet regsKilled; 142 143 // Regs defined in MBB and live out. Note that vregs passing through may 144 // be live out without being mentioned here. 145 RegSet regsLiveOut; 146 147 // Vregs that pass through MBB untouched. This set is disjoint from 148 // regsKilled and regsLiveOut. 149 RegSet vregsPassed; 150 151 // Vregs that must pass through MBB because they are needed by a successor 152 // block. This set is disjoint from regsLiveOut. 153 RegSet vregsRequired; 154 155 // Set versions of block's predecessor and successor lists. 156 BlockSet Preds, Succs; 157 158 BBInfo() = default; 159 160 // Add register to vregsPassed if it belongs there. Return true if 161 // anything changed. 162 bool addPassed(unsigned Reg) { 163 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 164 return false; 165 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 166 return false; 167 return vregsPassed.insert(Reg).second; 168 } 169 170 // Same for a full set. 171 bool addPassed(const RegSet &RS) { 172 bool changed = false; 173 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 174 if (addPassed(*I)) 175 changed = true; 176 return changed; 177 } 178 179 // Add register to vregsRequired if it belongs there. Return true if 180 // anything changed. 181 bool addRequired(unsigned Reg) { 182 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 183 return false; 184 if (regsLiveOut.count(Reg)) 185 return false; 186 return vregsRequired.insert(Reg).second; 187 } 188 189 // Same for a full set. 190 bool addRequired(const RegSet &RS) { 191 bool changed = false; 192 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 193 if (addRequired(*I)) 194 changed = true; 195 return changed; 196 } 197 198 // Same for a full map. 199 bool addRequired(const RegMap &RM) { 200 bool changed = false; 201 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 202 if (addRequired(I->first)) 203 changed = true; 204 return changed; 205 } 206 207 // Live-out registers are either in regsLiveOut or vregsPassed. 208 bool isLiveOut(unsigned Reg) const { 209 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 210 } 211 }; 212 213 // Extra register info per MBB. 214 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 215 216 bool isReserved(unsigned Reg) { 217 return Reg < regsReserved.size() && regsReserved.test(Reg); 218 } 219 220 bool isAllocatable(unsigned Reg) const { 221 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 222 !regsReserved.test(Reg); 223 } 224 225 // Analysis information if available 226 LiveVariables *LiveVars; 227 LiveIntervals *LiveInts; 228 LiveStacks *LiveStks; 229 SlotIndexes *Indexes; 230 231 void visitMachineFunctionBefore(); 232 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 233 void visitMachineBundleBefore(const MachineInstr *MI); 234 void visitMachineInstrBefore(const MachineInstr *MI); 235 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 236 void visitMachineInstrAfter(const MachineInstr *MI); 237 void visitMachineBundleAfter(const MachineInstr *MI); 238 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 239 void visitMachineFunctionAfter(); 240 241 void report(const char *msg, const MachineFunction *MF); 242 void report(const char *msg, const MachineBasicBlock *MBB); 243 void report(const char *msg, const MachineInstr *MI); 244 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 245 LLT MOVRegType = LLT{}); 246 247 void report_context(const LiveInterval &LI) const; 248 void report_context(const LiveRange &LR, unsigned VRegUnit, 249 LaneBitmask LaneMask) const; 250 void report_context(const LiveRange::Segment &S) const; 251 void report_context(const VNInfo &VNI) const; 252 void report_context(SlotIndex Pos) const; 253 void report_context_liverange(const LiveRange &LR) const; 254 void report_context_lanemask(LaneBitmask LaneMask) const; 255 void report_context_vreg(unsigned VReg) const; 256 void report_context_vreg_regunit(unsigned VRegOrUnit) const; 257 258 void verifyInlineAsm(const MachineInstr *MI); 259 260 void checkLiveness(const MachineOperand *MO, unsigned MONum); 261 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 262 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 263 LaneBitmask LaneMask = LaneBitmask::getNone()); 264 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 265 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 266 bool SubRangeCheck = false, 267 LaneBitmask LaneMask = LaneBitmask::getNone()); 268 269 void markReachable(const MachineBasicBlock *MBB); 270 void calcRegsPassed(); 271 void checkPHIOps(const MachineBasicBlock &MBB); 272 273 void calcRegsRequired(); 274 void verifyLiveVariables(); 275 void verifyLiveIntervals(); 276 void verifyLiveInterval(const LiveInterval&); 277 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 278 LaneBitmask); 279 void verifyLiveRangeSegment(const LiveRange&, 280 const LiveRange::const_iterator I, unsigned, 281 LaneBitmask); 282 void verifyLiveRange(const LiveRange&, unsigned, 283 LaneBitmask LaneMask = LaneBitmask::getNone()); 284 285 void verifyStackFrame(); 286 287 void verifySlotIndexes() const; 288 void verifyProperties(const MachineFunction &MF); 289 }; 290 291 struct MachineVerifierPass : public MachineFunctionPass { 292 static char ID; // Pass ID, replacement for typeid 293 294 const std::string Banner; 295 296 MachineVerifierPass(std::string banner = std::string()) 297 : MachineFunctionPass(ID), Banner(std::move(banner)) { 298 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 299 } 300 301 void getAnalysisUsage(AnalysisUsage &AU) const override { 302 AU.setPreservesAll(); 303 MachineFunctionPass::getAnalysisUsage(AU); 304 } 305 306 bool runOnMachineFunction(MachineFunction &MF) override { 307 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 308 if (FoundErrors) 309 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 310 return false; 311 } 312 }; 313 314 } // end anonymous namespace 315 316 char MachineVerifierPass::ID = 0; 317 318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 319 "Verify generated machine code", false, false) 320 321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 322 return new MachineVerifierPass(Banner); 323 } 324 325 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 326 const { 327 MachineFunction &MF = const_cast<MachineFunction&>(*this); 328 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 329 if (AbortOnErrors && FoundErrors) 330 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 331 return FoundErrors == 0; 332 } 333 334 void MachineVerifier::verifySlotIndexes() const { 335 if (Indexes == nullptr) 336 return; 337 338 // Ensure the IdxMBB list is sorted by slot indexes. 339 SlotIndex Last; 340 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 341 E = Indexes->MBBIndexEnd(); I != E; ++I) { 342 assert(!Last.isValid() || I->first > Last); 343 Last = I->first; 344 } 345 } 346 347 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 348 // If a pass has introduced virtual registers without clearing the 349 // NoVRegs property (or set it without allocating the vregs) 350 // then report an error. 351 if (MF.getProperties().hasProperty( 352 MachineFunctionProperties::Property::NoVRegs) && 353 MRI->getNumVirtRegs()) 354 report("Function has NoVRegs property but there are VReg operands", &MF); 355 } 356 357 unsigned MachineVerifier::verify(MachineFunction &MF) { 358 foundErrors = 0; 359 360 this->MF = &MF; 361 TM = &MF.getTarget(); 362 TII = MF.getSubtarget().getInstrInfo(); 363 TRI = MF.getSubtarget().getRegisterInfo(); 364 MRI = &MF.getRegInfo(); 365 366 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 367 MachineFunctionProperties::Property::FailedISel); 368 369 // If we're mid-GlobalISel and we already triggered the fallback path then 370 // it's expected that the MIR is somewhat broken but that's ok since we'll 371 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 372 if (isFunctionFailedISel) 373 return foundErrors; 374 375 isFunctionRegBankSelected = 376 !isFunctionFailedISel && 377 MF.getProperties().hasProperty( 378 MachineFunctionProperties::Property::RegBankSelected); 379 isFunctionSelected = !isFunctionFailedISel && 380 MF.getProperties().hasProperty( 381 MachineFunctionProperties::Property::Selected); 382 LiveVars = nullptr; 383 LiveInts = nullptr; 384 LiveStks = nullptr; 385 Indexes = nullptr; 386 if (PASS) { 387 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 388 // We don't want to verify LiveVariables if LiveIntervals is available. 389 if (!LiveInts) 390 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 391 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 392 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 393 } 394 395 verifySlotIndexes(); 396 397 verifyProperties(MF); 398 399 visitMachineFunctionBefore(); 400 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 401 MFI!=MFE; ++MFI) { 402 visitMachineBasicBlockBefore(&*MFI); 403 // Keep track of the current bundle header. 404 const MachineInstr *CurBundle = nullptr; 405 // Do we expect the next instruction to be part of the same bundle? 406 bool InBundle = false; 407 408 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 409 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 410 if (MBBI->getParent() != &*MFI) { 411 report("Bad instruction parent pointer", &*MFI); 412 errs() << "Instruction: " << *MBBI; 413 continue; 414 } 415 416 // Check for consistent bundle flags. 417 if (InBundle && !MBBI->isBundledWithPred()) 418 report("Missing BundledPred flag, " 419 "BundledSucc was set on predecessor", 420 &*MBBI); 421 if (!InBundle && MBBI->isBundledWithPred()) 422 report("BundledPred flag is set, " 423 "but BundledSucc not set on predecessor", 424 &*MBBI); 425 426 // Is this a bundle header? 427 if (!MBBI->isInsideBundle()) { 428 if (CurBundle) 429 visitMachineBundleAfter(CurBundle); 430 CurBundle = &*MBBI; 431 visitMachineBundleBefore(CurBundle); 432 } else if (!CurBundle) 433 report("No bundle header", &*MBBI); 434 visitMachineInstrBefore(&*MBBI); 435 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 436 const MachineInstr &MI = *MBBI; 437 const MachineOperand &Op = MI.getOperand(I); 438 if (Op.getParent() != &MI) { 439 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 440 // functions when replacing operands of a MachineInstr. 441 report("Instruction has operand with wrong parent set", &MI); 442 } 443 444 visitMachineOperand(&Op, I); 445 } 446 447 visitMachineInstrAfter(&*MBBI); 448 449 // Was this the last bundled instruction? 450 InBundle = MBBI->isBundledWithSucc(); 451 } 452 if (CurBundle) 453 visitMachineBundleAfter(CurBundle); 454 if (InBundle) 455 report("BundledSucc flag set on last instruction in block", &MFI->back()); 456 visitMachineBasicBlockAfter(&*MFI); 457 } 458 visitMachineFunctionAfter(); 459 460 // Clean up. 461 regsLive.clear(); 462 regsDefined.clear(); 463 regsDead.clear(); 464 regsKilled.clear(); 465 regMasks.clear(); 466 MBBInfoMap.clear(); 467 468 return foundErrors; 469 } 470 471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 472 assert(MF); 473 errs() << '\n'; 474 if (!foundErrors++) { 475 if (Banner) 476 errs() << "# " << Banner << '\n'; 477 if (LiveInts != nullptr) 478 LiveInts->print(errs()); 479 else 480 MF->print(errs(), Indexes); 481 } 482 errs() << "*** Bad machine code: " << msg << " ***\n" 483 << "- function: " << MF->getName() << "\n"; 484 } 485 486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 487 assert(MBB); 488 report(msg, MBB->getParent()); 489 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 490 << MBB->getName() << " (" << (const void *)MBB << ')'; 491 if (Indexes) 492 errs() << " [" << Indexes->getMBBStartIdx(MBB) 493 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 494 errs() << '\n'; 495 } 496 497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 498 assert(MI); 499 report(msg, MI->getParent()); 500 errs() << "- instruction: "; 501 if (Indexes && Indexes->hasIndex(*MI)) 502 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 503 MI->print(errs(), /*SkipOpers=*/true); 504 } 505 506 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 507 unsigned MONum, LLT MOVRegType) { 508 assert(MO); 509 report(msg, MO->getParent()); 510 errs() << "- operand " << MONum << ": "; 511 MO->print(errs(), MOVRegType, TRI); 512 errs() << "\n"; 513 } 514 515 void MachineVerifier::report_context(SlotIndex Pos) const { 516 errs() << "- at: " << Pos << '\n'; 517 } 518 519 void MachineVerifier::report_context(const LiveInterval &LI) const { 520 errs() << "- interval: " << LI << '\n'; 521 } 522 523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 524 LaneBitmask LaneMask) const { 525 report_context_liverange(LR); 526 report_context_vreg_regunit(VRegUnit); 527 if (LaneMask.any()) 528 report_context_lanemask(LaneMask); 529 } 530 531 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 532 errs() << "- segment: " << S << '\n'; 533 } 534 535 void MachineVerifier::report_context(const VNInfo &VNI) const { 536 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 537 } 538 539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 540 errs() << "- liverange: " << LR << '\n'; 541 } 542 543 void MachineVerifier::report_context_vreg(unsigned VReg) const { 544 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 545 } 546 547 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 548 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 549 report_context_vreg(VRegOrUnit); 550 } else { 551 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 552 } 553 } 554 555 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 556 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 557 } 558 559 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 560 BBInfo &MInfo = MBBInfoMap[MBB]; 561 if (!MInfo.reachable) { 562 MInfo.reachable = true; 563 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 564 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 565 markReachable(*SuI); 566 } 567 } 568 569 void MachineVerifier::visitMachineFunctionBefore() { 570 lastIndex = SlotIndex(); 571 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 572 : TRI->getReservedRegs(*MF); 573 574 if (!MF->empty()) 575 markReachable(&MF->front()); 576 577 // Build a set of the basic blocks in the function. 578 FunctionBlocks.clear(); 579 for (const auto &MBB : *MF) { 580 FunctionBlocks.insert(&MBB); 581 BBInfo &MInfo = MBBInfoMap[&MBB]; 582 583 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 584 if (MInfo.Preds.size() != MBB.pred_size()) 585 report("MBB has duplicate entries in its predecessor list.", &MBB); 586 587 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 588 if (MInfo.Succs.size() != MBB.succ_size()) 589 report("MBB has duplicate entries in its successor list.", &MBB); 590 } 591 592 // Check that the register use lists are sane. 593 MRI->verifyUseLists(); 594 595 if (!MF->empty()) 596 verifyStackFrame(); 597 } 598 599 // Does iterator point to a and b as the first two elements? 600 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 601 const MachineBasicBlock *a, const MachineBasicBlock *b) { 602 if (*i == a) 603 return *++i == b; 604 if (*i == b) 605 return *++i == a; 606 return false; 607 } 608 609 void 610 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 611 FirstTerminator = nullptr; 612 FirstNonPHI = nullptr; 613 614 if (!MF->getProperties().hasProperty( 615 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 616 // If this block has allocatable physical registers live-in, check that 617 // it is an entry block or landing pad. 618 for (const auto &LI : MBB->liveins()) { 619 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 620 MBB->getIterator() != MBB->getParent()->begin()) { 621 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 622 } 623 } 624 } 625 626 // Count the number of landing pad successors. 627 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 628 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 629 E = MBB->succ_end(); I != E; ++I) { 630 if ((*I)->isEHPad()) 631 LandingPadSuccs.insert(*I); 632 if (!FunctionBlocks.count(*I)) 633 report("MBB has successor that isn't part of the function.", MBB); 634 if (!MBBInfoMap[*I].Preds.count(MBB)) { 635 report("Inconsistent CFG", MBB); 636 errs() << "MBB is not in the predecessor list of the successor " 637 << printMBBReference(*(*I)) << ".\n"; 638 } 639 } 640 641 // Check the predecessor list. 642 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 643 E = MBB->pred_end(); I != E; ++I) { 644 if (!FunctionBlocks.count(*I)) 645 report("MBB has predecessor that isn't part of the function.", MBB); 646 if (!MBBInfoMap[*I].Succs.count(MBB)) { 647 report("Inconsistent CFG", MBB); 648 errs() << "MBB is not in the successor list of the predecessor " 649 << printMBBReference(*(*I)) << ".\n"; 650 } 651 } 652 653 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 654 const BasicBlock *BB = MBB->getBasicBlock(); 655 const Function &F = MF->getFunction(); 656 if (LandingPadSuccs.size() > 1 && 657 !(AsmInfo && 658 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 659 BB && isa<SwitchInst>(BB->getTerminator())) && 660 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 661 report("MBB has more than one landing pad successor", MBB); 662 663 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 664 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 665 SmallVector<MachineOperand, 4> Cond; 666 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 667 Cond)) { 668 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 669 // check whether its answers match up with reality. 670 if (!TBB && !FBB) { 671 // Block falls through to its successor. 672 MachineFunction::const_iterator MBBI = MBB->getIterator(); 673 ++MBBI; 674 if (MBBI == MF->end()) { 675 // It's possible that the block legitimately ends with a noreturn 676 // call or an unreachable, in which case it won't actually fall 677 // out the bottom of the function. 678 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 679 // It's possible that the block legitimately ends with a noreturn 680 // call or an unreachable, in which case it won't actuall fall 681 // out of the block. 682 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 683 report("MBB exits via unconditional fall-through but doesn't have " 684 "exactly one CFG successor!", MBB); 685 } else if (!MBB->isSuccessor(&*MBBI)) { 686 report("MBB exits via unconditional fall-through but its successor " 687 "differs from its CFG successor!", MBB); 688 } 689 if (!MBB->empty() && MBB->back().isBarrier() && 690 !TII->isPredicated(MBB->back())) { 691 report("MBB exits via unconditional fall-through but ends with a " 692 "barrier instruction!", MBB); 693 } 694 if (!Cond.empty()) { 695 report("MBB exits via unconditional fall-through but has a condition!", 696 MBB); 697 } 698 } else if (TBB && !FBB && Cond.empty()) { 699 // Block unconditionally branches somewhere. 700 // If the block has exactly one successor, that happens to be a 701 // landingpad, accept it as valid control flow. 702 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 703 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 704 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 705 report("MBB exits via unconditional branch but doesn't have " 706 "exactly one CFG successor!", MBB); 707 } else if (!MBB->isSuccessor(TBB)) { 708 report("MBB exits via unconditional branch but the CFG " 709 "successor doesn't match the actual successor!", MBB); 710 } 711 if (MBB->empty()) { 712 report("MBB exits via unconditional branch but doesn't contain " 713 "any instructions!", MBB); 714 } else if (!MBB->back().isBarrier()) { 715 report("MBB exits via unconditional branch but doesn't end with a " 716 "barrier instruction!", MBB); 717 } else if (!MBB->back().isTerminator()) { 718 report("MBB exits via unconditional branch but the branch isn't a " 719 "terminator instruction!", MBB); 720 } 721 } else if (TBB && !FBB && !Cond.empty()) { 722 // Block conditionally branches somewhere, otherwise falls through. 723 MachineFunction::const_iterator MBBI = MBB->getIterator(); 724 ++MBBI; 725 if (MBBI == MF->end()) { 726 report("MBB conditionally falls through out of function!", MBB); 727 } else if (MBB->succ_size() == 1) { 728 // A conditional branch with only one successor is weird, but allowed. 729 if (&*MBBI != TBB) 730 report("MBB exits via conditional branch/fall-through but only has " 731 "one CFG successor!", MBB); 732 else if (TBB != *MBB->succ_begin()) 733 report("MBB exits via conditional branch/fall-through but the CFG " 734 "successor don't match the actual successor!", MBB); 735 } else if (MBB->succ_size() != 2) { 736 report("MBB exits via conditional branch/fall-through but doesn't have " 737 "exactly two CFG successors!", MBB); 738 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 739 report("MBB exits via conditional branch/fall-through but the CFG " 740 "successors don't match the actual successors!", MBB); 741 } 742 if (MBB->empty()) { 743 report("MBB exits via conditional branch/fall-through but doesn't " 744 "contain any instructions!", MBB); 745 } else if (MBB->back().isBarrier()) { 746 report("MBB exits via conditional branch/fall-through but ends with a " 747 "barrier instruction!", MBB); 748 } else if (!MBB->back().isTerminator()) { 749 report("MBB exits via conditional branch/fall-through but the branch " 750 "isn't a terminator instruction!", MBB); 751 } 752 } else if (TBB && FBB) { 753 // Block conditionally branches somewhere, otherwise branches 754 // somewhere else. 755 if (MBB->succ_size() == 1) { 756 // A conditional branch with only one successor is weird, but allowed. 757 if (FBB != TBB) 758 report("MBB exits via conditional branch/branch through but only has " 759 "one CFG successor!", MBB); 760 else if (TBB != *MBB->succ_begin()) 761 report("MBB exits via conditional branch/branch through but the CFG " 762 "successor don't match the actual successor!", MBB); 763 } else if (MBB->succ_size() != 2) { 764 report("MBB exits via conditional branch/branch but doesn't have " 765 "exactly two CFG successors!", MBB); 766 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 767 report("MBB exits via conditional branch/branch but the CFG " 768 "successors don't match the actual successors!", MBB); 769 } 770 if (MBB->empty()) { 771 report("MBB exits via conditional branch/branch but doesn't " 772 "contain any instructions!", MBB); 773 } else if (!MBB->back().isBarrier()) { 774 report("MBB exits via conditional branch/branch but doesn't end with a " 775 "barrier instruction!", MBB); 776 } else if (!MBB->back().isTerminator()) { 777 report("MBB exits via conditional branch/branch but the branch " 778 "isn't a terminator instruction!", MBB); 779 } 780 if (Cond.empty()) { 781 report("MBB exits via conditional branch/branch but there's no " 782 "condition!", MBB); 783 } 784 } else { 785 report("AnalyzeBranch returned invalid data!", MBB); 786 } 787 } 788 789 regsLive.clear(); 790 if (MRI->tracksLiveness()) { 791 for (const auto &LI : MBB->liveins()) { 792 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 793 report("MBB live-in list contains non-physical register", MBB); 794 continue; 795 } 796 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 797 SubRegs.isValid(); ++SubRegs) 798 regsLive.insert(*SubRegs); 799 } 800 } 801 802 const MachineFrameInfo &MFI = MF->getFrameInfo(); 803 BitVector PR = MFI.getPristineRegs(*MF); 804 for (unsigned I : PR.set_bits()) { 805 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 806 SubRegs.isValid(); ++SubRegs) 807 regsLive.insert(*SubRegs); 808 } 809 810 regsKilled.clear(); 811 regsDefined.clear(); 812 813 if (Indexes) 814 lastIndex = Indexes->getMBBStartIdx(MBB); 815 } 816 817 // This function gets called for all bundle headers, including normal 818 // stand-alone unbundled instructions. 819 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 820 if (Indexes && Indexes->hasIndex(*MI)) { 821 SlotIndex idx = Indexes->getInstructionIndex(*MI); 822 if (!(idx > lastIndex)) { 823 report("Instruction index out of order", MI); 824 errs() << "Last instruction was at " << lastIndex << '\n'; 825 } 826 lastIndex = idx; 827 } 828 829 // Ensure non-terminators don't follow terminators. 830 // Ignore predicated terminators formed by if conversion. 831 // FIXME: If conversion shouldn't need to violate this rule. 832 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 833 if (!FirstTerminator) 834 FirstTerminator = MI; 835 } else if (FirstTerminator) { 836 report("Non-terminator instruction after the first terminator", MI); 837 errs() << "First terminator was:\t" << *FirstTerminator; 838 } 839 } 840 841 // The operands on an INLINEASM instruction must follow a template. 842 // Verify that the flag operands make sense. 843 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 844 // The first two operands on INLINEASM are the asm string and global flags. 845 if (MI->getNumOperands() < 2) { 846 report("Too few operands on inline asm", MI); 847 return; 848 } 849 if (!MI->getOperand(0).isSymbol()) 850 report("Asm string must be an external symbol", MI); 851 if (!MI->getOperand(1).isImm()) 852 report("Asm flags must be an immediate", MI); 853 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 854 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 855 // and Extra_IsConvergent = 32. 856 if (!isUInt<6>(MI->getOperand(1).getImm())) 857 report("Unknown asm flags", &MI->getOperand(1), 1); 858 859 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 860 861 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 862 unsigned NumOps; 863 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 864 const MachineOperand &MO = MI->getOperand(OpNo); 865 // There may be implicit ops after the fixed operands. 866 if (!MO.isImm()) 867 break; 868 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 869 } 870 871 if (OpNo > MI->getNumOperands()) 872 report("Missing operands in last group", MI); 873 874 // An optional MDNode follows the groups. 875 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 876 ++OpNo; 877 878 // All trailing operands must be implicit registers. 879 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 880 const MachineOperand &MO = MI->getOperand(OpNo); 881 if (!MO.isReg() || !MO.isImplicit()) 882 report("Expected implicit register after groups", &MO, OpNo); 883 } 884 } 885 886 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 887 const MCInstrDesc &MCID = MI->getDesc(); 888 if (MI->getNumOperands() < MCID.getNumOperands()) { 889 report("Too few operands", MI); 890 errs() << MCID.getNumOperands() << " operands expected, but " 891 << MI->getNumOperands() << " given.\n"; 892 } 893 894 if (MI->isPHI()) { 895 if (MF->getProperties().hasProperty( 896 MachineFunctionProperties::Property::NoPHIs)) 897 report("Found PHI instruction with NoPHIs property set", MI); 898 899 if (FirstNonPHI) 900 report("Found PHI instruction after non-PHI", MI); 901 } else if (FirstNonPHI == nullptr) 902 FirstNonPHI = MI; 903 904 // Check the tied operands. 905 if (MI->isInlineAsm()) 906 verifyInlineAsm(MI); 907 908 // Check the MachineMemOperands for basic consistency. 909 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 910 E = MI->memoperands_end(); 911 I != E; ++I) { 912 if ((*I)->isLoad() && !MI->mayLoad()) 913 report("Missing mayLoad flag", MI); 914 if ((*I)->isStore() && !MI->mayStore()) 915 report("Missing mayStore flag", MI); 916 } 917 918 // Debug values must not have a slot index. 919 // Other instructions must have one, unless they are inside a bundle. 920 if (LiveInts) { 921 bool mapped = !LiveInts->isNotInMIMap(*MI); 922 if (MI->isDebugInstr()) { 923 if (mapped) 924 report("Debug instruction has a slot index", MI); 925 } else if (MI->isInsideBundle()) { 926 if (mapped) 927 report("Instruction inside bundle has a slot index", MI); 928 } else { 929 if (!mapped) 930 report("Missing slot index", MI); 931 } 932 } 933 934 if (isPreISelGenericOpcode(MCID.getOpcode())) { 935 if (isFunctionSelected) 936 report("Unexpected generic instruction in a Selected function", MI); 937 938 // Check types. 939 SmallVector<LLT, 4> Types; 940 for (unsigned I = 0; I < MCID.getNumOperands(); ++I) { 941 if (!MCID.OpInfo[I].isGenericType()) 942 continue; 943 // Generic instructions specify type equality constraints between some of 944 // their operands. Make sure these are consistent. 945 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 946 Types.resize(std::max(TypeIdx + 1, Types.size())); 947 948 const MachineOperand *MO = &MI->getOperand(I); 949 LLT OpTy = MRI->getType(MO->getReg()); 950 // Don't report a type mismatch if there is no actual mismatch, only a 951 // type missing, to reduce noise: 952 if (OpTy.isValid()) { 953 // Only the first valid type for a type index will be printed: don't 954 // overwrite it later so it's always clear which type was expected: 955 if (!Types[TypeIdx].isValid()) 956 Types[TypeIdx] = OpTy; 957 else if (Types[TypeIdx] != OpTy) 958 report("Type mismatch in generic instruction", MO, I, OpTy); 959 } else { 960 // Generic instructions must have types attached to their operands. 961 report("Generic instruction is missing a virtual register type", MO, I); 962 } 963 } 964 965 // Generic opcodes must not have physical register operands. 966 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 967 const MachineOperand *MO = &MI->getOperand(I); 968 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg())) 969 report("Generic instruction cannot have physical register", MO, I); 970 } 971 } 972 973 StringRef ErrorInfo; 974 if (!TII->verifyInstruction(*MI, ErrorInfo)) 975 report(ErrorInfo.data(), MI); 976 977 // Verify properties of various specific instruction types 978 switch(MI->getOpcode()) { 979 default: 980 break; 981 case TargetOpcode::G_LOAD: 982 case TargetOpcode::G_STORE: 983 // Generic loads and stores must have a single MachineMemOperand 984 // describing that access. 985 if (!MI->hasOneMemOperand()) 986 report("Generic instruction accessing memory must have one mem operand", 987 MI); 988 break; 989 case TargetOpcode::G_PHI: { 990 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 991 if (!DstTy.isValid() || 992 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 993 [this, &DstTy](const MachineOperand &MO) { 994 if (!MO.isReg()) 995 return true; 996 LLT Ty = MRI->getType(MO.getReg()); 997 if (!Ty.isValid() || (Ty != DstTy)) 998 return false; 999 return true; 1000 })) 1001 report("Generic Instruction G_PHI has operands with incompatible/missing " 1002 "types", 1003 MI); 1004 break; 1005 } 1006 case TargetOpcode::G_SEXT: 1007 case TargetOpcode::G_ZEXT: 1008 case TargetOpcode::G_ANYEXT: 1009 case TargetOpcode::G_TRUNC: 1010 case TargetOpcode::G_FPEXT: 1011 case TargetOpcode::G_FPTRUNC: { 1012 // Number of operands and presense of types is already checked (and 1013 // reported in case of any issues), so no need to report them again. As 1014 // we're trying to report as many issues as possible at once, however, the 1015 // instructions aren't guaranteed to have the right number of operands or 1016 // types attached to them at this point 1017 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1018 if (MI->getNumOperands() < MCID.getNumOperands()) 1019 break; 1020 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1021 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1022 if (!DstTy.isValid() || !SrcTy.isValid()) 1023 break; 1024 1025 LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy; 1026 LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy; 1027 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1028 report("Generic extend/truncate can not operate on pointers", MI); 1029 1030 if (DstTy.isVector() != SrcTy.isVector()) { 1031 report("Generic extend/truncate must be all-vector or all-scalar", MI); 1032 // Generally we try to report as many issues as possible at once, but in 1033 // this case it's not clear what should we be comparing the size of the 1034 // scalar with: the size of the whole vector or its lane. Instead of 1035 // making an arbitrary choice and emitting not so helpful message, let's 1036 // avoid the extra noise and stop here. 1037 break; 1038 } 1039 if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()) 1040 report("Generic vector extend/truncate must preserve number of lanes", 1041 MI); 1042 unsigned DstSize = DstElTy.getSizeInBits(); 1043 unsigned SrcSize = SrcElTy.getSizeInBits(); 1044 switch (MI->getOpcode()) { 1045 default: 1046 if (DstSize <= SrcSize) 1047 report("Generic extend has destination type no larger than source", MI); 1048 break; 1049 case TargetOpcode::G_TRUNC: 1050 case TargetOpcode::G_FPTRUNC: 1051 if (DstSize >= SrcSize) 1052 report("Generic truncate has destination type no smaller than source", 1053 MI); 1054 break; 1055 } 1056 break; 1057 } 1058 case TargetOpcode::G_MERGE_VALUES: { 1059 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1060 // e.g. s2N = MERGE sN, sN 1061 // Merging multiple scalars into a vector is not allowed, should use 1062 // G_BUILD_VECTOR for that. 1063 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1064 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1065 if (DstTy.isVector() || SrcTy.isVector()) 1066 report("G_MERGE_VALUES cannot operate on vectors", MI); 1067 break; 1068 } 1069 case TargetOpcode::G_UNMERGE_VALUES: { 1070 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1071 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1072 // For now G_UNMERGE can split vectors. 1073 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1074 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1075 report("G_UNMERGE_VALUES destination types do not match", MI); 1076 } 1077 if (SrcTy.getSizeInBits() != 1078 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1079 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1080 MI); 1081 } 1082 break; 1083 } 1084 case TargetOpcode::G_BUILD_VECTOR: { 1085 // Source types must be scalars, dest type a vector. Total size of scalars 1086 // must match the dest vector size. 1087 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1088 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1089 if (!DstTy.isVector() || SrcEltTy.isVector()) 1090 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1091 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1092 if (MRI->getType(MI->getOperand(1).getReg()) != 1093 MRI->getType(MI->getOperand(i).getReg())) 1094 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1095 } 1096 if (DstTy.getSizeInBits() != 1097 SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1)) 1098 report("G_BUILD_VECTOR src operands total size don't match dest " 1099 "size.", 1100 MI); 1101 break; 1102 } 1103 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1104 // Source types must be scalars, dest type a vector. Scalar types must be 1105 // larger than the dest vector elt type, as this is a truncating operation. 1106 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1107 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1108 if (!DstTy.isVector() || SrcEltTy.isVector()) 1109 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1110 MI); 1111 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1112 if (MRI->getType(MI->getOperand(1).getReg()) != 1113 MRI->getType(MI->getOperand(i).getReg())) 1114 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1115 MI); 1116 } 1117 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1118 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1119 "dest elt type", 1120 MI); 1121 break; 1122 } 1123 case TargetOpcode::G_CONCAT_VECTORS: { 1124 // Source types should be vectors, and total size should match the dest 1125 // vector size. 1126 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1127 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1128 if (!DstTy.isVector() || !SrcTy.isVector()) 1129 report("G_CONCAT_VECTOR requires vector source and destination operands", 1130 MI); 1131 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1132 if (MRI->getType(MI->getOperand(1).getReg()) != 1133 MRI->getType(MI->getOperand(i).getReg())) 1134 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1135 } 1136 if (DstTy.getNumElements() != 1137 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1138 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1139 break; 1140 } 1141 case TargetOpcode::COPY: { 1142 if (foundErrors) 1143 break; 1144 const MachineOperand &DstOp = MI->getOperand(0); 1145 const MachineOperand &SrcOp = MI->getOperand(1); 1146 LLT DstTy = MRI->getType(DstOp.getReg()); 1147 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1148 if (SrcTy.isValid() && DstTy.isValid()) { 1149 // If both types are valid, check that the types are the same. 1150 if (SrcTy != DstTy) { 1151 report("Copy Instruction is illegal with mismatching types", MI); 1152 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1153 } 1154 } 1155 if (SrcTy.isValid() || DstTy.isValid()) { 1156 // If one of them have valid types, let's just check they have the same 1157 // size. 1158 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI); 1159 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI); 1160 assert(SrcSize && "Expecting size here"); 1161 assert(DstSize && "Expecting size here"); 1162 if (SrcSize != DstSize) 1163 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1164 report("Copy Instruction is illegal with mismatching sizes", MI); 1165 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1166 << "\n"; 1167 } 1168 } 1169 break; 1170 } 1171 case TargetOpcode::STATEPOINT: 1172 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 1173 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 1174 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 1175 report("meta operands to STATEPOINT not constant!", MI); 1176 break; 1177 1178 auto VerifyStackMapConstant = [&](unsigned Offset) { 1179 if (!MI->getOperand(Offset).isImm() || 1180 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 1181 !MI->getOperand(Offset + 1).isImm()) 1182 report("stack map constant to STATEPOINT not well formed!", MI); 1183 }; 1184 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 1185 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 1186 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 1187 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 1188 1189 // TODO: verify we have properly encoded deopt arguments 1190 }; 1191 } 1192 1193 void 1194 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1195 const MachineInstr *MI = MO->getParent(); 1196 const MCInstrDesc &MCID = MI->getDesc(); 1197 unsigned NumDefs = MCID.getNumDefs(); 1198 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1199 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1200 1201 // The first MCID.NumDefs operands must be explicit register defines 1202 if (MONum < NumDefs) { 1203 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1204 if (!MO->isReg()) 1205 report("Explicit definition must be a register", MO, MONum); 1206 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1207 report("Explicit definition marked as use", MO, MONum); 1208 else if (MO->isImplicit()) 1209 report("Explicit definition marked as implicit", MO, MONum); 1210 } else if (MONum < MCID.getNumOperands()) { 1211 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1212 // Don't check if it's the last operand in a variadic instruction. See, 1213 // e.g., LDM_RET in the arm back end. 1214 if (MO->isReg() && 1215 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1216 if (MO->isDef() && !MCOI.isOptionalDef()) 1217 report("Explicit operand marked as def", MO, MONum); 1218 if (MO->isImplicit()) 1219 report("Explicit operand marked as implicit", MO, MONum); 1220 } 1221 1222 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1223 if (TiedTo != -1) { 1224 if (!MO->isReg()) 1225 report("Tied use must be a register", MO, MONum); 1226 else if (!MO->isTied()) 1227 report("Operand should be tied", MO, MONum); 1228 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1229 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1230 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1231 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1232 if (!MOTied.isReg()) 1233 report("Tied counterpart must be a register", &MOTied, TiedTo); 1234 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1235 MO->getReg() != MOTied.getReg()) 1236 report("Tied physical registers must match.", &MOTied, TiedTo); 1237 } 1238 } else if (MO->isReg() && MO->isTied()) 1239 report("Explicit operand should not be tied", MO, MONum); 1240 } else { 1241 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1242 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1243 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1244 } 1245 1246 switch (MO->getType()) { 1247 case MachineOperand::MO_Register: { 1248 const unsigned Reg = MO->getReg(); 1249 if (!Reg) 1250 return; 1251 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1252 checkLiveness(MO, MONum); 1253 1254 // Verify the consistency of tied operands. 1255 if (MO->isTied()) { 1256 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1257 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1258 if (!OtherMO.isReg()) 1259 report("Must be tied to a register", MO, MONum); 1260 if (!OtherMO.isTied()) 1261 report("Missing tie flags on tied operand", MO, MONum); 1262 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1263 report("Inconsistent tie links", MO, MONum); 1264 if (MONum < MCID.getNumDefs()) { 1265 if (OtherIdx < MCID.getNumOperands()) { 1266 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1267 report("Explicit def tied to explicit use without tie constraint", 1268 MO, MONum); 1269 } else { 1270 if (!OtherMO.isImplicit()) 1271 report("Explicit def should be tied to implicit use", MO, MONum); 1272 } 1273 } 1274 } 1275 1276 // Verify two-address constraints after leaving SSA form. 1277 unsigned DefIdx; 1278 if (!MRI->isSSA() && MO->isUse() && 1279 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1280 Reg != MI->getOperand(DefIdx).getReg()) 1281 report("Two-address instruction operands must be identical", MO, MONum); 1282 1283 // Check register classes. 1284 unsigned SubIdx = MO->getSubReg(); 1285 1286 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1287 if (SubIdx) { 1288 report("Illegal subregister index for physical register", MO, MONum); 1289 return; 1290 } 1291 if (MONum < MCID.getNumOperands()) { 1292 if (const TargetRegisterClass *DRC = 1293 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1294 if (!DRC->contains(Reg)) { 1295 report("Illegal physical register for instruction", MO, MONum); 1296 errs() << printReg(Reg, TRI) << " is not a " 1297 << TRI->getRegClassName(DRC) << " register.\n"; 1298 } 1299 } 1300 } 1301 if (MO->isRenamable()) { 1302 if (MRI->isReserved(Reg)) { 1303 report("isRenamable set on reserved register", MO, MONum); 1304 return; 1305 } 1306 } 1307 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) { 1308 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum); 1309 return; 1310 } 1311 } else { 1312 // Virtual register. 1313 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1314 if (!RC) { 1315 // This is a generic virtual register. 1316 1317 // If we're post-Select, we can't have gvregs anymore. 1318 if (isFunctionSelected) { 1319 report("Generic virtual register invalid in a Selected function", 1320 MO, MONum); 1321 return; 1322 } 1323 1324 // The gvreg must have a type and it must not have a SubIdx. 1325 LLT Ty = MRI->getType(Reg); 1326 if (!Ty.isValid()) { 1327 report("Generic virtual register must have a valid type", MO, 1328 MONum); 1329 return; 1330 } 1331 1332 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1333 1334 // If we're post-RegBankSelect, the gvreg must have a bank. 1335 if (!RegBank && isFunctionRegBankSelected) { 1336 report("Generic virtual register must have a bank in a " 1337 "RegBankSelected function", 1338 MO, MONum); 1339 return; 1340 } 1341 1342 // Make sure the register fits into its register bank if any. 1343 if (RegBank && Ty.isValid() && 1344 RegBank->getSize() < Ty.getSizeInBits()) { 1345 report("Register bank is too small for virtual register", MO, 1346 MONum); 1347 errs() << "Register bank " << RegBank->getName() << " too small(" 1348 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1349 << "-bits\n"; 1350 return; 1351 } 1352 if (SubIdx) { 1353 report("Generic virtual register does not subregister index", MO, 1354 MONum); 1355 return; 1356 } 1357 1358 // If this is a target specific instruction and this operand 1359 // has register class constraint, the virtual register must 1360 // comply to it. 1361 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1362 MONum < MCID.getNumOperands() && 1363 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1364 report("Virtual register does not match instruction constraint", MO, 1365 MONum); 1366 errs() << "Expect register class " 1367 << TRI->getRegClassName( 1368 TII->getRegClass(MCID, MONum, TRI, *MF)) 1369 << " but got nothing\n"; 1370 return; 1371 } 1372 1373 break; 1374 } 1375 if (SubIdx) { 1376 const TargetRegisterClass *SRC = 1377 TRI->getSubClassWithSubReg(RC, SubIdx); 1378 if (!SRC) { 1379 report("Invalid subregister index for virtual register", MO, MONum); 1380 errs() << "Register class " << TRI->getRegClassName(RC) 1381 << " does not support subreg index " << SubIdx << "\n"; 1382 return; 1383 } 1384 if (RC != SRC) { 1385 report("Invalid register class for subregister index", MO, MONum); 1386 errs() << "Register class " << TRI->getRegClassName(RC) 1387 << " does not fully support subreg index " << SubIdx << "\n"; 1388 return; 1389 } 1390 } 1391 if (MONum < MCID.getNumOperands()) { 1392 if (const TargetRegisterClass *DRC = 1393 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1394 if (SubIdx) { 1395 const TargetRegisterClass *SuperRC = 1396 TRI->getLargestLegalSuperClass(RC, *MF); 1397 if (!SuperRC) { 1398 report("No largest legal super class exists.", MO, MONum); 1399 return; 1400 } 1401 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1402 if (!DRC) { 1403 report("No matching super-reg register class.", MO, MONum); 1404 return; 1405 } 1406 } 1407 if (!RC->hasSuperClassEq(DRC)) { 1408 report("Illegal virtual register for instruction", MO, MONum); 1409 errs() << "Expected a " << TRI->getRegClassName(DRC) 1410 << " register, but got a " << TRI->getRegClassName(RC) 1411 << " register\n"; 1412 } 1413 } 1414 } 1415 } 1416 break; 1417 } 1418 1419 case MachineOperand::MO_RegisterMask: 1420 regMasks.push_back(MO->getRegMask()); 1421 break; 1422 1423 case MachineOperand::MO_MachineBasicBlock: 1424 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1425 report("PHI operand is not in the CFG", MO, MONum); 1426 break; 1427 1428 case MachineOperand::MO_FrameIndex: 1429 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1430 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1431 int FI = MO->getIndex(); 1432 LiveInterval &LI = LiveStks->getInterval(FI); 1433 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1434 1435 bool stores = MI->mayStore(); 1436 bool loads = MI->mayLoad(); 1437 // For a memory-to-memory move, we need to check if the frame 1438 // index is used for storing or loading, by inspecting the 1439 // memory operands. 1440 if (stores && loads) { 1441 for (auto *MMO : MI->memoperands()) { 1442 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1443 if (PSV == nullptr) continue; 1444 const FixedStackPseudoSourceValue *Value = 1445 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1446 if (Value == nullptr) continue; 1447 if (Value->getFrameIndex() != FI) continue; 1448 1449 if (MMO->isStore()) 1450 loads = false; 1451 else 1452 stores = false; 1453 break; 1454 } 1455 if (loads == stores) 1456 report("Missing fixed stack memoperand.", MI); 1457 } 1458 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1459 report("Instruction loads from dead spill slot", MO, MONum); 1460 errs() << "Live stack: " << LI << '\n'; 1461 } 1462 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1463 report("Instruction stores to dead spill slot", MO, MONum); 1464 errs() << "Live stack: " << LI << '\n'; 1465 } 1466 } 1467 break; 1468 1469 default: 1470 break; 1471 } 1472 } 1473 1474 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1475 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1476 LaneBitmask LaneMask) { 1477 LiveQueryResult LRQ = LR.Query(UseIdx); 1478 // Check if we have a segment at the use, note however that we only need one 1479 // live subregister range, the others may be dead. 1480 if (!LRQ.valueIn() && LaneMask.none()) { 1481 report("No live segment at use", MO, MONum); 1482 report_context_liverange(LR); 1483 report_context_vreg_regunit(VRegOrUnit); 1484 report_context(UseIdx); 1485 } 1486 if (MO->isKill() && !LRQ.isKill()) { 1487 report("Live range continues after kill flag", MO, MONum); 1488 report_context_liverange(LR); 1489 report_context_vreg_regunit(VRegOrUnit); 1490 if (LaneMask.any()) 1491 report_context_lanemask(LaneMask); 1492 report_context(UseIdx); 1493 } 1494 } 1495 1496 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1497 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1498 bool SubRangeCheck, LaneBitmask LaneMask) { 1499 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1500 assert(VNI && "NULL valno is not allowed"); 1501 if (VNI->def != DefIdx) { 1502 report("Inconsistent valno->def", MO, MONum); 1503 report_context_liverange(LR); 1504 report_context_vreg_regunit(VRegOrUnit); 1505 if (LaneMask.any()) 1506 report_context_lanemask(LaneMask); 1507 report_context(*VNI); 1508 report_context(DefIdx); 1509 } 1510 } else { 1511 report("No live segment at def", MO, MONum); 1512 report_context_liverange(LR); 1513 report_context_vreg_regunit(VRegOrUnit); 1514 if (LaneMask.any()) 1515 report_context_lanemask(LaneMask); 1516 report_context(DefIdx); 1517 } 1518 // Check that, if the dead def flag is present, LiveInts agree. 1519 if (MO->isDead()) { 1520 LiveQueryResult LRQ = LR.Query(DefIdx); 1521 if (!LRQ.isDeadDef()) { 1522 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) && 1523 "Expecting a virtual register."); 1524 // A dead subreg def only tells us that the specific subreg is dead. There 1525 // could be other non-dead defs of other subregs, or we could have other 1526 // parts of the register being live through the instruction. So unless we 1527 // are checking liveness for a subrange it is ok for the live range to 1528 // continue, given that we have a dead def of a subregister. 1529 if (SubRangeCheck || MO->getSubReg() == 0) { 1530 report("Live range continues after dead def flag", MO, MONum); 1531 report_context_liverange(LR); 1532 report_context_vreg_regunit(VRegOrUnit); 1533 if (LaneMask.any()) 1534 report_context_lanemask(LaneMask); 1535 } 1536 } 1537 } 1538 } 1539 1540 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1541 const MachineInstr *MI = MO->getParent(); 1542 const unsigned Reg = MO->getReg(); 1543 1544 // Both use and def operands can read a register. 1545 if (MO->readsReg()) { 1546 if (MO->isKill()) 1547 addRegWithSubRegs(regsKilled, Reg); 1548 1549 // Check that LiveVars knows this kill. 1550 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1551 MO->isKill()) { 1552 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1553 if (!is_contained(VI.Kills, MI)) 1554 report("Kill missing from LiveVariables", MO, MONum); 1555 } 1556 1557 // Check LiveInts liveness and kill. 1558 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1559 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1560 // Check the cached regunit intervals. 1561 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1562 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1563 if (MRI->isReservedRegUnit(*Units)) 1564 continue; 1565 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1566 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1567 } 1568 } 1569 1570 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1571 if (LiveInts->hasInterval(Reg)) { 1572 // This is a virtual register interval. 1573 const LiveInterval &LI = LiveInts->getInterval(Reg); 1574 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1575 1576 if (LI.hasSubRanges() && !MO->isDef()) { 1577 unsigned SubRegIdx = MO->getSubReg(); 1578 LaneBitmask MOMask = SubRegIdx != 0 1579 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1580 : MRI->getMaxLaneMaskForVReg(Reg); 1581 LaneBitmask LiveInMask; 1582 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1583 if ((MOMask & SR.LaneMask).none()) 1584 continue; 1585 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1586 LiveQueryResult LRQ = SR.Query(UseIdx); 1587 if (LRQ.valueIn()) 1588 LiveInMask |= SR.LaneMask; 1589 } 1590 // At least parts of the register has to be live at the use. 1591 if ((LiveInMask & MOMask).none()) { 1592 report("No live subrange at use", MO, MONum); 1593 report_context(LI); 1594 report_context(UseIdx); 1595 } 1596 } 1597 } else { 1598 report("Virtual register has no live interval", MO, MONum); 1599 } 1600 } 1601 } 1602 1603 // Use of a dead register. 1604 if (!regsLive.count(Reg)) { 1605 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1606 // Reserved registers may be used even when 'dead'. 1607 bool Bad = !isReserved(Reg); 1608 // We are fine if just any subregister has a defined value. 1609 if (Bad) { 1610 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1611 ++SubRegs) { 1612 if (regsLive.count(*SubRegs)) { 1613 Bad = false; 1614 break; 1615 } 1616 } 1617 } 1618 // If there is an additional implicit-use of a super register we stop 1619 // here. By definition we are fine if the super register is not 1620 // (completely) dead, if the complete super register is dead we will 1621 // get a report for its operand. 1622 if (Bad) { 1623 for (const MachineOperand &MOP : MI->uses()) { 1624 if (!MOP.isReg() || !MOP.isImplicit()) 1625 continue; 1626 1627 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg())) 1628 continue; 1629 1630 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1631 ++SubRegs) { 1632 if (*SubRegs == Reg) { 1633 Bad = false; 1634 break; 1635 } 1636 } 1637 } 1638 } 1639 if (Bad) 1640 report("Using an undefined physical register", MO, MONum); 1641 } else if (MRI->def_empty(Reg)) { 1642 report("Reading virtual register without a def", MO, MONum); 1643 } else { 1644 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1645 // We don't know which virtual registers are live in, so only complain 1646 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1647 // must be live in. PHI instructions are handled separately. 1648 if (MInfo.regsKilled.count(Reg)) 1649 report("Using a killed virtual register", MO, MONum); 1650 else if (!MI->isPHI()) 1651 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1652 } 1653 } 1654 } 1655 1656 if (MO->isDef()) { 1657 // Register defined. 1658 // TODO: verify that earlyclobber ops are not used. 1659 if (MO->isDead()) 1660 addRegWithSubRegs(regsDead, Reg); 1661 else 1662 addRegWithSubRegs(regsDefined, Reg); 1663 1664 // Verify SSA form. 1665 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1666 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1667 report("Multiple virtual register defs in SSA form", MO, MONum); 1668 1669 // Check LiveInts for a live segment, but only for virtual registers. 1670 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1671 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1672 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1673 1674 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1675 if (LiveInts->hasInterval(Reg)) { 1676 const LiveInterval &LI = LiveInts->getInterval(Reg); 1677 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1678 1679 if (LI.hasSubRanges()) { 1680 unsigned SubRegIdx = MO->getSubReg(); 1681 LaneBitmask MOMask = SubRegIdx != 0 1682 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1683 : MRI->getMaxLaneMaskForVReg(Reg); 1684 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1685 if ((SR.LaneMask & MOMask).none()) 1686 continue; 1687 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 1688 } 1689 } 1690 } else { 1691 report("Virtual register has no Live interval", MO, MONum); 1692 } 1693 } 1694 } 1695 } 1696 } 1697 1698 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1699 1700 // This function gets called after visiting all instructions in a bundle. The 1701 // argument points to the bundle header. 1702 // Normal stand-alone instructions are also considered 'bundles', and this 1703 // function is called for all of them. 1704 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1705 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1706 set_union(MInfo.regsKilled, regsKilled); 1707 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1708 // Kill any masked registers. 1709 while (!regMasks.empty()) { 1710 const uint32_t *Mask = regMasks.pop_back_val(); 1711 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1712 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1713 MachineOperand::clobbersPhysReg(Mask, *I)) 1714 regsDead.push_back(*I); 1715 } 1716 set_subtract(regsLive, regsDead); regsDead.clear(); 1717 set_union(regsLive, regsDefined); regsDefined.clear(); 1718 } 1719 1720 void 1721 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1722 MBBInfoMap[MBB].regsLiveOut = regsLive; 1723 regsLive.clear(); 1724 1725 if (Indexes) { 1726 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1727 if (!(stop > lastIndex)) { 1728 report("Block ends before last instruction index", MBB); 1729 errs() << "Block ends at " << stop 1730 << " last instruction was at " << lastIndex << '\n'; 1731 } 1732 lastIndex = stop; 1733 } 1734 } 1735 1736 // Calculate the largest possible vregsPassed sets. These are the registers that 1737 // can pass through an MBB live, but may not be live every time. It is assumed 1738 // that all vregsPassed sets are empty before the call. 1739 void MachineVerifier::calcRegsPassed() { 1740 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1741 // have any vregsPassed. 1742 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1743 for (const auto &MBB : *MF) { 1744 BBInfo &MInfo = MBBInfoMap[&MBB]; 1745 if (!MInfo.reachable) 1746 continue; 1747 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1748 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1749 BBInfo &SInfo = MBBInfoMap[*SuI]; 1750 if (SInfo.addPassed(MInfo.regsLiveOut)) 1751 todo.insert(*SuI); 1752 } 1753 } 1754 1755 // Iteratively push vregsPassed to successors. This will converge to the same 1756 // final state regardless of DenseSet iteration order. 1757 while (!todo.empty()) { 1758 const MachineBasicBlock *MBB = *todo.begin(); 1759 todo.erase(MBB); 1760 BBInfo &MInfo = MBBInfoMap[MBB]; 1761 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1762 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1763 if (*SuI == MBB) 1764 continue; 1765 BBInfo &SInfo = MBBInfoMap[*SuI]; 1766 if (SInfo.addPassed(MInfo.vregsPassed)) 1767 todo.insert(*SuI); 1768 } 1769 } 1770 } 1771 1772 // Calculate the set of virtual registers that must be passed through each basic 1773 // block in order to satisfy the requirements of successor blocks. This is very 1774 // similar to calcRegsPassed, only backwards. 1775 void MachineVerifier::calcRegsRequired() { 1776 // First push live-in regs to predecessors' vregsRequired. 1777 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1778 for (const auto &MBB : *MF) { 1779 BBInfo &MInfo = MBBInfoMap[&MBB]; 1780 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1781 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1782 BBInfo &PInfo = MBBInfoMap[*PrI]; 1783 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1784 todo.insert(*PrI); 1785 } 1786 } 1787 1788 // Iteratively push vregsRequired to predecessors. This will converge to the 1789 // same final state regardless of DenseSet iteration order. 1790 while (!todo.empty()) { 1791 const MachineBasicBlock *MBB = *todo.begin(); 1792 todo.erase(MBB); 1793 BBInfo &MInfo = MBBInfoMap[MBB]; 1794 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1795 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1796 if (*PrI == MBB) 1797 continue; 1798 BBInfo &SInfo = MBBInfoMap[*PrI]; 1799 if (SInfo.addRequired(MInfo.vregsRequired)) 1800 todo.insert(*PrI); 1801 } 1802 } 1803 } 1804 1805 // Check PHI instructions at the beginning of MBB. It is assumed that 1806 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1807 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1808 BBInfo &MInfo = MBBInfoMap[&MBB]; 1809 1810 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1811 for (const MachineInstr &Phi : MBB) { 1812 if (!Phi.isPHI()) 1813 break; 1814 seen.clear(); 1815 1816 const MachineOperand &MODef = Phi.getOperand(0); 1817 if (!MODef.isReg() || !MODef.isDef()) { 1818 report("Expected first PHI operand to be a register def", &MODef, 0); 1819 continue; 1820 } 1821 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1822 MODef.isEarlyClobber() || MODef.isDebug()) 1823 report("Unexpected flag on PHI operand", &MODef, 0); 1824 unsigned DefReg = MODef.getReg(); 1825 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1826 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1827 1828 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1829 const MachineOperand &MO0 = Phi.getOperand(I); 1830 if (!MO0.isReg()) { 1831 report("Expected PHI operand to be a register", &MO0, I); 1832 continue; 1833 } 1834 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 1835 MO0.isDebug() || MO0.isTied()) 1836 report("Unexpected flag on PHI operand", &MO0, I); 1837 1838 const MachineOperand &MO1 = Phi.getOperand(I + 1); 1839 if (!MO1.isMBB()) { 1840 report("Expected PHI operand to be a basic block", &MO1, I + 1); 1841 continue; 1842 } 1843 1844 const MachineBasicBlock &Pre = *MO1.getMBB(); 1845 if (!Pre.isSuccessor(&MBB)) { 1846 report("PHI input is not a predecessor block", &MO1, I + 1); 1847 continue; 1848 } 1849 1850 if (MInfo.reachable) { 1851 seen.insert(&Pre); 1852 BBInfo &PrInfo = MBBInfoMap[&Pre]; 1853 if (!MO0.isUndef() && PrInfo.reachable && 1854 !PrInfo.isLiveOut(MO0.getReg())) 1855 report("PHI operand is not live-out from predecessor", &MO0, I); 1856 } 1857 } 1858 1859 // Did we see all predecessors? 1860 if (MInfo.reachable) { 1861 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1862 if (!seen.count(Pred)) { 1863 report("Missing PHI operand", &Phi); 1864 errs() << printMBBReference(*Pred) 1865 << " is a predecessor according to the CFG.\n"; 1866 } 1867 } 1868 } 1869 } 1870 } 1871 1872 void MachineVerifier::visitMachineFunctionAfter() { 1873 calcRegsPassed(); 1874 1875 for (const MachineBasicBlock &MBB : *MF) 1876 checkPHIOps(MBB); 1877 1878 // Now check liveness info if available 1879 calcRegsRequired(); 1880 1881 // Check for killed virtual registers that should be live out. 1882 for (const auto &MBB : *MF) { 1883 BBInfo &MInfo = MBBInfoMap[&MBB]; 1884 for (RegSet::iterator 1885 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1886 ++I) 1887 if (MInfo.regsKilled.count(*I)) { 1888 report("Virtual register killed in block, but needed live out.", &MBB); 1889 errs() << "Virtual register " << printReg(*I) 1890 << " is used after the block.\n"; 1891 } 1892 } 1893 1894 if (!MF->empty()) { 1895 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1896 for (RegSet::iterator 1897 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1898 ++I) { 1899 report("Virtual register defs don't dominate all uses.", MF); 1900 report_context_vreg(*I); 1901 } 1902 } 1903 1904 if (LiveVars) 1905 verifyLiveVariables(); 1906 if (LiveInts) 1907 verifyLiveIntervals(); 1908 } 1909 1910 void MachineVerifier::verifyLiveVariables() { 1911 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1912 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1913 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1914 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1915 for (const auto &MBB : *MF) { 1916 BBInfo &MInfo = MBBInfoMap[&MBB]; 1917 1918 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1919 if (MInfo.vregsRequired.count(Reg)) { 1920 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1921 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1922 errs() << "Virtual register " << printReg(Reg) 1923 << " must be live through the block.\n"; 1924 } 1925 } else { 1926 if (VI.AliveBlocks.test(MBB.getNumber())) { 1927 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1928 errs() << "Virtual register " << printReg(Reg) 1929 << " is not needed live through the block.\n"; 1930 } 1931 } 1932 } 1933 } 1934 } 1935 1936 void MachineVerifier::verifyLiveIntervals() { 1937 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1938 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1939 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1940 1941 // Spilling and splitting may leave unused registers around. Skip them. 1942 if (MRI->reg_nodbg_empty(Reg)) 1943 continue; 1944 1945 if (!LiveInts->hasInterval(Reg)) { 1946 report("Missing live interval for virtual register", MF); 1947 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 1948 continue; 1949 } 1950 1951 const LiveInterval &LI = LiveInts->getInterval(Reg); 1952 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1953 verifyLiveInterval(LI); 1954 } 1955 1956 // Verify all the cached regunit intervals. 1957 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1958 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1959 verifyLiveRange(*LR, i); 1960 } 1961 1962 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1963 const VNInfo *VNI, unsigned Reg, 1964 LaneBitmask LaneMask) { 1965 if (VNI->isUnused()) 1966 return; 1967 1968 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1969 1970 if (!DefVNI) { 1971 report("Value not live at VNInfo def and not marked unused", MF); 1972 report_context(LR, Reg, LaneMask); 1973 report_context(*VNI); 1974 return; 1975 } 1976 1977 if (DefVNI != VNI) { 1978 report("Live segment at def has different VNInfo", MF); 1979 report_context(LR, Reg, LaneMask); 1980 report_context(*VNI); 1981 return; 1982 } 1983 1984 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1985 if (!MBB) { 1986 report("Invalid VNInfo definition index", MF); 1987 report_context(LR, Reg, LaneMask); 1988 report_context(*VNI); 1989 return; 1990 } 1991 1992 if (VNI->isPHIDef()) { 1993 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1994 report("PHIDef VNInfo is not defined at MBB start", MBB); 1995 report_context(LR, Reg, LaneMask); 1996 report_context(*VNI); 1997 } 1998 return; 1999 } 2000 2001 // Non-PHI def. 2002 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2003 if (!MI) { 2004 report("No instruction at VNInfo def index", MBB); 2005 report_context(LR, Reg, LaneMask); 2006 report_context(*VNI); 2007 return; 2008 } 2009 2010 if (Reg != 0) { 2011 bool hasDef = false; 2012 bool isEarlyClobber = false; 2013 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2014 if (!MOI->isReg() || !MOI->isDef()) 2015 continue; 2016 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2017 if (MOI->getReg() != Reg) 2018 continue; 2019 } else { 2020 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 2021 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2022 continue; 2023 } 2024 if (LaneMask.any() && 2025 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2026 continue; 2027 hasDef = true; 2028 if (MOI->isEarlyClobber()) 2029 isEarlyClobber = true; 2030 } 2031 2032 if (!hasDef) { 2033 report("Defining instruction does not modify register", MI); 2034 report_context(LR, Reg, LaneMask); 2035 report_context(*VNI); 2036 } 2037 2038 // Early clobber defs begin at USE slots, but other defs must begin at 2039 // DEF slots. 2040 if (isEarlyClobber) { 2041 if (!VNI->def.isEarlyClobber()) { 2042 report("Early clobber def must be at an early-clobber slot", MBB); 2043 report_context(LR, Reg, LaneMask); 2044 report_context(*VNI); 2045 } 2046 } else if (!VNI->def.isRegister()) { 2047 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2048 report_context(LR, Reg, LaneMask); 2049 report_context(*VNI); 2050 } 2051 } 2052 } 2053 2054 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2055 const LiveRange::const_iterator I, 2056 unsigned Reg, LaneBitmask LaneMask) 2057 { 2058 const LiveRange::Segment &S = *I; 2059 const VNInfo *VNI = S.valno; 2060 assert(VNI && "Live segment has no valno"); 2061 2062 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2063 report("Foreign valno in live segment", MF); 2064 report_context(LR, Reg, LaneMask); 2065 report_context(S); 2066 report_context(*VNI); 2067 } 2068 2069 if (VNI->isUnused()) { 2070 report("Live segment valno is marked unused", MF); 2071 report_context(LR, Reg, LaneMask); 2072 report_context(S); 2073 } 2074 2075 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2076 if (!MBB) { 2077 report("Bad start of live segment, no basic block", MF); 2078 report_context(LR, Reg, LaneMask); 2079 report_context(S); 2080 return; 2081 } 2082 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2083 if (S.start != MBBStartIdx && S.start != VNI->def) { 2084 report("Live segment must begin at MBB entry or valno def", MBB); 2085 report_context(LR, Reg, LaneMask); 2086 report_context(S); 2087 } 2088 2089 const MachineBasicBlock *EndMBB = 2090 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2091 if (!EndMBB) { 2092 report("Bad end of live segment, no basic block", MF); 2093 report_context(LR, Reg, LaneMask); 2094 report_context(S); 2095 return; 2096 } 2097 2098 // No more checks for live-out segments. 2099 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2100 return; 2101 2102 // RegUnit intervals are allowed dead phis. 2103 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 2104 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2105 return; 2106 2107 // The live segment is ending inside EndMBB 2108 const MachineInstr *MI = 2109 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2110 if (!MI) { 2111 report("Live segment doesn't end at a valid instruction", EndMBB); 2112 report_context(LR, Reg, LaneMask); 2113 report_context(S); 2114 return; 2115 } 2116 2117 // The block slot must refer to a basic block boundary. 2118 if (S.end.isBlock()) { 2119 report("Live segment ends at B slot of an instruction", EndMBB); 2120 report_context(LR, Reg, LaneMask); 2121 report_context(S); 2122 } 2123 2124 if (S.end.isDead()) { 2125 // Segment ends on the dead slot. 2126 // That means there must be a dead def. 2127 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2128 report("Live segment ending at dead slot spans instructions", EndMBB); 2129 report_context(LR, Reg, LaneMask); 2130 report_context(S); 2131 } 2132 } 2133 2134 // A live segment can only end at an early-clobber slot if it is being 2135 // redefined by an early-clobber def. 2136 if (S.end.isEarlyClobber()) { 2137 if (I+1 == LR.end() || (I+1)->start != S.end) { 2138 report("Live segment ending at early clobber slot must be " 2139 "redefined by an EC def in the same instruction", EndMBB); 2140 report_context(LR, Reg, LaneMask); 2141 report_context(S); 2142 } 2143 } 2144 2145 // The following checks only apply to virtual registers. Physreg liveness 2146 // is too weird to check. 2147 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 2148 // A live segment can end with either a redefinition, a kill flag on a 2149 // use, or a dead flag on a def. 2150 bool hasRead = false; 2151 bool hasSubRegDef = false; 2152 bool hasDeadDef = false; 2153 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2154 if (!MOI->isReg() || MOI->getReg() != Reg) 2155 continue; 2156 unsigned Sub = MOI->getSubReg(); 2157 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2158 : LaneBitmask::getAll(); 2159 if (MOI->isDef()) { 2160 if (Sub != 0) { 2161 hasSubRegDef = true; 2162 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2163 // mask for subregister defs. Read-undef defs will be handled by 2164 // readsReg below. 2165 SLM = ~SLM; 2166 } 2167 if (MOI->isDead()) 2168 hasDeadDef = true; 2169 } 2170 if (LaneMask.any() && (LaneMask & SLM).none()) 2171 continue; 2172 if (MOI->readsReg()) 2173 hasRead = true; 2174 } 2175 if (S.end.isDead()) { 2176 // Make sure that the corresponding machine operand for a "dead" live 2177 // range has the dead flag. We cannot perform this check for subregister 2178 // liveranges as partially dead values are allowed. 2179 if (LaneMask.none() && !hasDeadDef) { 2180 report("Instruction ending live segment on dead slot has no dead flag", 2181 MI); 2182 report_context(LR, Reg, LaneMask); 2183 report_context(S); 2184 } 2185 } else { 2186 if (!hasRead) { 2187 // When tracking subregister liveness, the main range must start new 2188 // values on partial register writes, even if there is no read. 2189 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2190 !hasSubRegDef) { 2191 report("Instruction ending live segment doesn't read the register", 2192 MI); 2193 report_context(LR, Reg, LaneMask); 2194 report_context(S); 2195 } 2196 } 2197 } 2198 } 2199 2200 // Now check all the basic blocks in this live segment. 2201 MachineFunction::const_iterator MFI = MBB->getIterator(); 2202 // Is this live segment the beginning of a non-PHIDef VN? 2203 if (S.start == VNI->def && !VNI->isPHIDef()) { 2204 // Not live-in to any blocks. 2205 if (MBB == EndMBB) 2206 return; 2207 // Skip this block. 2208 ++MFI; 2209 } 2210 2211 SmallVector<SlotIndex, 4> Undefs; 2212 if (LaneMask.any()) { 2213 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 2214 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 2215 } 2216 2217 while (true) { 2218 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2219 // We don't know how to track physregs into a landing pad. 2220 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2221 MFI->isEHPad()) { 2222 if (&*MFI == EndMBB) 2223 break; 2224 ++MFI; 2225 continue; 2226 } 2227 2228 // Is VNI a PHI-def in the current block? 2229 bool IsPHI = VNI->isPHIDef() && 2230 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2231 2232 // Check that VNI is live-out of all predecessors. 2233 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2234 PE = MFI->pred_end(); PI != PE; ++PI) { 2235 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2236 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2237 2238 // All predecessors must have a live-out value. However for a phi 2239 // instruction with subregister intervals 2240 // only one of the subregisters (not necessarily the current one) needs to 2241 // be defined. 2242 if (!PVNI && (LaneMask.none() || !IsPHI)) { 2243 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes)) 2244 continue; 2245 report("Register not marked live out of predecessor", *PI); 2246 report_context(LR, Reg, LaneMask); 2247 report_context(*VNI); 2248 errs() << " live into " << printMBBReference(*MFI) << '@' 2249 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2250 << PEnd << '\n'; 2251 continue; 2252 } 2253 2254 // Only PHI-defs can take different predecessor values. 2255 if (!IsPHI && PVNI != VNI) { 2256 report("Different value live out of predecessor", *PI); 2257 report_context(LR, Reg, LaneMask); 2258 errs() << "Valno #" << PVNI->id << " live out of " 2259 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2260 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2261 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2262 } 2263 } 2264 if (&*MFI == EndMBB) 2265 break; 2266 ++MFI; 2267 } 2268 } 2269 2270 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2271 LaneBitmask LaneMask) { 2272 for (const VNInfo *VNI : LR.valnos) 2273 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2274 2275 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2276 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2277 } 2278 2279 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2280 unsigned Reg = LI.reg; 2281 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2282 verifyLiveRange(LI, Reg); 2283 2284 LaneBitmask Mask; 2285 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2286 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2287 if ((Mask & SR.LaneMask).any()) { 2288 report("Lane masks of sub ranges overlap in live interval", MF); 2289 report_context(LI); 2290 } 2291 if ((SR.LaneMask & ~MaxMask).any()) { 2292 report("Subrange lanemask is invalid", MF); 2293 report_context(LI); 2294 } 2295 if (SR.empty()) { 2296 report("Subrange must not be empty", MF); 2297 report_context(SR, LI.reg, SR.LaneMask); 2298 } 2299 Mask |= SR.LaneMask; 2300 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2301 if (!LI.covers(SR)) { 2302 report("A Subrange is not covered by the main range", MF); 2303 report_context(LI); 2304 } 2305 } 2306 2307 // Check the LI only has one connected component. 2308 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2309 unsigned NumComp = ConEQ.Classify(LI); 2310 if (NumComp > 1) { 2311 report("Multiple connected components in live interval", MF); 2312 report_context(LI); 2313 for (unsigned comp = 0; comp != NumComp; ++comp) { 2314 errs() << comp << ": valnos"; 2315 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2316 E = LI.vni_end(); I!=E; ++I) 2317 if (comp == ConEQ.getEqClass(*I)) 2318 errs() << ' ' << (*I)->id; 2319 errs() << '\n'; 2320 } 2321 } 2322 } 2323 2324 namespace { 2325 2326 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2327 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2328 // value is zero. 2329 // We use a bool plus an integer to capture the stack state. 2330 struct StackStateOfBB { 2331 StackStateOfBB() = default; 2332 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2333 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2334 ExitIsSetup(ExitSetup) {} 2335 2336 // Can be negative, which means we are setting up a frame. 2337 int EntryValue = 0; 2338 int ExitValue = 0; 2339 bool EntryIsSetup = false; 2340 bool ExitIsSetup = false; 2341 }; 2342 2343 } // end anonymous namespace 2344 2345 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2346 /// by a FrameDestroy <n>, stack adjustments are identical on all 2347 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2348 void MachineVerifier::verifyStackFrame() { 2349 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2350 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2351 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2352 return; 2353 2354 SmallVector<StackStateOfBB, 8> SPState; 2355 SPState.resize(MF->getNumBlockIDs()); 2356 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2357 2358 // Visit the MBBs in DFS order. 2359 for (df_ext_iterator<const MachineFunction *, 2360 df_iterator_default_set<const MachineBasicBlock *>> 2361 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2362 DFI != DFE; ++DFI) { 2363 const MachineBasicBlock *MBB = *DFI; 2364 2365 StackStateOfBB BBState; 2366 // Check the exit state of the DFS stack predecessor. 2367 if (DFI.getPathLength() >= 2) { 2368 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2369 assert(Reachable.count(StackPred) && 2370 "DFS stack predecessor is already visited.\n"); 2371 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2372 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2373 BBState.ExitValue = BBState.EntryValue; 2374 BBState.ExitIsSetup = BBState.EntryIsSetup; 2375 } 2376 2377 // Update stack state by checking contents of MBB. 2378 for (const auto &I : *MBB) { 2379 if (I.getOpcode() == FrameSetupOpcode) { 2380 if (BBState.ExitIsSetup) 2381 report("FrameSetup is after another FrameSetup", &I); 2382 BBState.ExitValue -= TII->getFrameTotalSize(I); 2383 BBState.ExitIsSetup = true; 2384 } 2385 2386 if (I.getOpcode() == FrameDestroyOpcode) { 2387 int Size = TII->getFrameTotalSize(I); 2388 if (!BBState.ExitIsSetup) 2389 report("FrameDestroy is not after a FrameSetup", &I); 2390 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2391 BBState.ExitValue; 2392 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2393 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2394 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2395 << AbsSPAdj << ">.\n"; 2396 } 2397 BBState.ExitValue += Size; 2398 BBState.ExitIsSetup = false; 2399 } 2400 } 2401 SPState[MBB->getNumber()] = BBState; 2402 2403 // Make sure the exit state of any predecessor is consistent with the entry 2404 // state. 2405 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2406 E = MBB->pred_end(); I != E; ++I) { 2407 if (Reachable.count(*I) && 2408 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2409 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2410 report("The exit stack state of a predecessor is inconsistent.", MBB); 2411 errs() << "Predecessor " << printMBBReference(*(*I)) 2412 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2413 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2414 << printMBBReference(*MBB) << " has entry state (" 2415 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2416 } 2417 } 2418 2419 // Make sure the entry state of any successor is consistent with the exit 2420 // state. 2421 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2422 E = MBB->succ_end(); I != E; ++I) { 2423 if (Reachable.count(*I) && 2424 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2425 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2426 report("The entry stack state of a successor is inconsistent.", MBB); 2427 errs() << "Successor " << printMBBReference(*(*I)) 2428 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2429 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2430 << printMBBReference(*MBB) << " has exit state (" 2431 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2432 } 2433 } 2434 2435 // Make sure a basic block with return ends with zero stack adjustment. 2436 if (!MBB->empty() && MBB->back().isReturn()) { 2437 if (BBState.ExitIsSetup) 2438 report("A return block ends with a FrameSetup.", MBB); 2439 if (BBState.ExitValue) 2440 report("A return block ends with a nonzero stack adjustment.", MBB); 2441 } 2442 } 2443 } 2444