xref: /llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision 3db4952357b70469930d1463a99a17894074784c)
1 //===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Function.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/ADT/DenseSet.h"
37 #include "llvm/ADT/SetOperations.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 using namespace llvm;
43 
44 namespace {
45   struct MachineVerifier {
46 
47     MachineVerifier(Pass *pass, bool allowDoubleDefs) :
48       PASS(pass),
49       allowVirtDoubleDefs(allowDoubleDefs),
50       allowPhysDoubleDefs(allowDoubleDefs),
51       OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
52       {}
53 
54     bool runOnMachineFunction(MachineFunction &MF);
55 
56     Pass *const PASS;
57     const bool allowVirtDoubleDefs;
58     const bool allowPhysDoubleDefs;
59 
60     const char *const OutFileName;
61     raw_ostream *OS;
62     const MachineFunction *MF;
63     const TargetMachine *TM;
64     const TargetRegisterInfo *TRI;
65     const MachineRegisterInfo *MRI;
66 
67     unsigned foundErrors;
68 
69     typedef SmallVector<unsigned, 16> RegVector;
70     typedef DenseSet<unsigned> RegSet;
71     typedef DenseMap<unsigned, const MachineInstr*> RegMap;
72 
73     BitVector regsReserved;
74     RegSet regsLive;
75     RegVector regsDefined, regsDead, regsKilled;
76     RegSet regsLiveInButUnused;
77 
78     // Add Reg and any sub-registers to RV
79     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
80       RV.push_back(Reg);
81       if (TargetRegisterInfo::isPhysicalRegister(Reg))
82         for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
83           RV.push_back(*R);
84     }
85 
86     struct BBInfo {
87       // Is this MBB reachable from the MF entry point?
88       bool reachable;
89 
90       // Vregs that must be live in because they are used without being
91       // defined. Map value is the user.
92       RegMap vregsLiveIn;
93 
94       // Vregs that must be dead in because they are defined without being
95       // killed first. Map value is the defining instruction.
96       RegMap vregsDeadIn;
97 
98       // Regs killed in MBB. They may be defined again, and will then be in both
99       // regsKilled and regsLiveOut.
100       RegSet regsKilled;
101 
102       // Regs defined in MBB and live out. Note that vregs passing through may
103       // be live out without being mentioned here.
104       RegSet regsLiveOut;
105 
106       // Vregs that pass through MBB untouched. This set is disjoint from
107       // regsKilled and regsLiveOut.
108       RegSet vregsPassed;
109 
110       // Vregs that must pass through MBB because they are needed by a successor
111       // block. This set is disjoint from regsLiveOut.
112       RegSet vregsRequired;
113 
114       BBInfo() : reachable(false) {}
115 
116       // Add register to vregsPassed if it belongs there. Return true if
117       // anything changed.
118       bool addPassed(unsigned Reg) {
119         if (!TargetRegisterInfo::isVirtualRegister(Reg))
120           return false;
121         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
122           return false;
123         return vregsPassed.insert(Reg).second;
124       }
125 
126       // Same for a full set.
127       bool addPassed(const RegSet &RS) {
128         bool changed = false;
129         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
130           if (addPassed(*I))
131             changed = true;
132         return changed;
133       }
134 
135       // Add register to vregsRequired if it belongs there. Return true if
136       // anything changed.
137       bool addRequired(unsigned Reg) {
138         if (!TargetRegisterInfo::isVirtualRegister(Reg))
139           return false;
140         if (regsLiveOut.count(Reg))
141           return false;
142         return vregsRequired.insert(Reg).second;
143       }
144 
145       // Same for a full set.
146       bool addRequired(const RegSet &RS) {
147         bool changed = false;
148         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
149           if (addRequired(*I))
150             changed = true;
151         return changed;
152       }
153 
154       // Same for a full map.
155       bool addRequired(const RegMap &RM) {
156         bool changed = false;
157         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
158           if (addRequired(I->first))
159             changed = true;
160         return changed;
161       }
162 
163       // Live-out registers are either in regsLiveOut or vregsPassed.
164       bool isLiveOut(unsigned Reg) const {
165         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
166       }
167     };
168 
169     // Extra register info per MBB.
170     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
171 
172     bool isReserved(unsigned Reg) {
173       return Reg < regsReserved.size() && regsReserved.test(Reg);
174     }
175 
176     // Analysis information if available
177     LiveVariables *LiveVars;
178 
179     void visitMachineFunctionBefore();
180     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
181     void visitMachineInstrBefore(const MachineInstr *MI);
182     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
183     void visitMachineInstrAfter(const MachineInstr *MI);
184     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
185     void visitMachineFunctionAfter();
186 
187     void report(const char *msg, const MachineFunction *MF);
188     void report(const char *msg, const MachineBasicBlock *MBB);
189     void report(const char *msg, const MachineInstr *MI);
190     void report(const char *msg, const MachineOperand *MO, unsigned MONum);
191 
192     void markReachable(const MachineBasicBlock *MBB);
193     void calcMaxRegsPassed();
194     void calcMinRegsPassed();
195     void checkPHIOps(const MachineBasicBlock *MBB);
196 
197     void calcRegsRequired();
198     void verifyLiveVariables();
199   };
200 
201   struct MachineVerifierPass : public MachineFunctionPass {
202     static char ID; // Pass ID, replacement for typeid
203     bool AllowDoubleDefs;
204 
205     explicit MachineVerifierPass(bool allowDoubleDefs = false)
206       : MachineFunctionPass(&ID),
207         AllowDoubleDefs(allowDoubleDefs) {}
208 
209     void getAnalysisUsage(AnalysisUsage &AU) const {
210       AU.setPreservesAll();
211       MachineFunctionPass::getAnalysisUsage(AU);
212     }
213 
214     bool runOnMachineFunction(MachineFunction &MF) {
215       MF.verify(this, AllowDoubleDefs);
216       return false;
217     }
218   };
219 
220 }
221 
222 char MachineVerifierPass::ID = 0;
223 static RegisterPass<MachineVerifierPass>
224 MachineVer("machineverifier", "Verify generated machine code");
225 static const PassInfo *const MachineVerifyID = &MachineVer;
226 
227 FunctionPass *llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) {
228   return new MachineVerifierPass(allowPhysDoubleDefs);
229 }
230 
231 void MachineFunction::verify(Pass *p, bool allowDoubleDefs) const {
232   MachineVerifier(p, allowDoubleDefs)
233     .runOnMachineFunction(const_cast<MachineFunction&>(*this));
234 }
235 
236 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
237   raw_ostream *OutFile = 0;
238   if (OutFileName) {
239     std::string ErrorInfo;
240     OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
241                                  raw_fd_ostream::F_Append);
242     if (!ErrorInfo.empty()) {
243       errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
244       exit(1);
245     }
246 
247     OS = OutFile;
248   } else {
249     OS = &errs();
250   }
251 
252   foundErrors = 0;
253 
254   this->MF = &MF;
255   TM = &MF.getTarget();
256   TRI = TM->getRegisterInfo();
257   MRI = &MF.getRegInfo();
258 
259   if (PASS) {
260     LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
261   } else {
262     LiveVars = NULL;
263   }
264 
265   visitMachineFunctionBefore();
266   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
267        MFI!=MFE; ++MFI) {
268     visitMachineBasicBlockBefore(MFI);
269     for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
270            MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
271       visitMachineInstrBefore(MBBI);
272       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
273         visitMachineOperand(&MBBI->getOperand(I), I);
274       visitMachineInstrAfter(MBBI);
275     }
276     visitMachineBasicBlockAfter(MFI);
277   }
278   visitMachineFunctionAfter();
279 
280   if (OutFile)
281     delete OutFile;
282   else if (foundErrors)
283     llvm_report_error("Found "+Twine(foundErrors)+" machine code errors.");
284 
285   // Clean up.
286   regsLive.clear();
287   regsDefined.clear();
288   regsDead.clear();
289   regsKilled.clear();
290   regsLiveInButUnused.clear();
291   MBBInfoMap.clear();
292 
293   return false;                 // no changes
294 }
295 
296 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
297   assert(MF);
298   *OS << '\n';
299   if (!foundErrors++)
300     MF->print(*OS);
301   *OS << "*** Bad machine code: " << msg << " ***\n"
302       << "- function:    " << MF->getFunction()->getNameStr() << "\n";
303 }
304 
305 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
306   assert(MBB);
307   report(msg, MBB->getParent());
308   *OS << "- basic block: " << MBB->getName()
309       << " " << (void*)MBB
310       << " (BB#" << MBB->getNumber() << ")\n";
311 }
312 
313 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
314   assert(MI);
315   report(msg, MI->getParent());
316   *OS << "- instruction: ";
317   MI->print(*OS, TM);
318 }
319 
320 void MachineVerifier::report(const char *msg,
321                              const MachineOperand *MO, unsigned MONum) {
322   assert(MO);
323   report(msg, MO->getParent());
324   *OS << "- operand " << MONum << ":   ";
325   MO->print(*OS, TM);
326   *OS << "\n";
327 }
328 
329 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
330   BBInfo &MInfo = MBBInfoMap[MBB];
331   if (!MInfo.reachable) {
332     MInfo.reachable = true;
333     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
334            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
335       markReachable(*SuI);
336   }
337 }
338 
339 void MachineVerifier::visitMachineFunctionBefore() {
340   regsReserved = TRI->getReservedRegs(*MF);
341 
342   // A sub-register of a reserved register is also reserved
343   for (int Reg = regsReserved.find_first(); Reg>=0;
344        Reg = regsReserved.find_next(Reg)) {
345     for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) {
346       // FIXME: This should probably be:
347       // assert(regsReserved.test(*Sub) && "Non-reserved sub-register");
348       regsReserved.set(*Sub);
349     }
350   }
351   markReachable(&MF->front());
352 }
353 
354 // Does iterator point to a and b as the first two elements?
355 bool matchPair(MachineBasicBlock::const_succ_iterator i,
356                const MachineBasicBlock *a, const MachineBasicBlock *b) {
357   if (*i == a)
358     return *++i == b;
359   if (*i == b)
360     return *++i == a;
361   return false;
362 }
363 
364 void
365 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
366   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
367 
368   // Start with minimal CFG sanity checks.
369   MachineFunction::const_iterator MBBI = MBB;
370   ++MBBI;
371   if (MBBI != MF->end()) {
372     // Block is not last in function.
373     if (!MBB->isSuccessor(MBBI)) {
374       // Block does not fall through.
375       if (MBB->empty()) {
376         report("MBB doesn't fall through but is empty!", MBB);
377       }
378     }
379   } else {
380     // Block is last in function.
381     if (MBB->empty()) {
382       report("MBB is last in function but is empty!", MBB);
383     }
384   }
385 
386   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
387   MachineBasicBlock *TBB = 0, *FBB = 0;
388   SmallVector<MachineOperand, 4> Cond;
389   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
390                           TBB, FBB, Cond)) {
391     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
392     // check whether its answers match up with reality.
393     if (!TBB && !FBB) {
394       // Block falls through to its successor.
395       MachineFunction::const_iterator MBBI = MBB;
396       ++MBBI;
397       if (MBBI == MF->end()) {
398         // It's possible that the block legitimately ends with a noreturn
399         // call or an unreachable, in which case it won't actually fall
400         // out the bottom of the function.
401       } else if (MBB->succ_empty()) {
402         // It's possible that the block legitimately ends with a noreturn
403         // call or an unreachable, in which case it won't actuall fall
404         // out of the block.
405       } else if (MBB->succ_size() != 1) {
406         report("MBB exits via unconditional fall-through but doesn't have "
407                "exactly one CFG successor!", MBB);
408       } else if (MBB->succ_begin()[0] != MBBI) {
409         report("MBB exits via unconditional fall-through but its successor "
410                "differs from its CFG successor!", MBB);
411       }
412       if (!MBB->empty() && MBB->back().getDesc().isBarrier()) {
413         report("MBB exits via unconditional fall-through but ends with a "
414                "barrier instruction!", MBB);
415       }
416       if (!Cond.empty()) {
417         report("MBB exits via unconditional fall-through but has a condition!",
418                MBB);
419       }
420     } else if (TBB && !FBB && Cond.empty()) {
421       // Block unconditionally branches somewhere.
422       if (MBB->succ_size() != 1) {
423         report("MBB exits via unconditional branch but doesn't have "
424                "exactly one CFG successor!", MBB);
425       } else if (MBB->succ_begin()[0] != TBB) {
426         report("MBB exits via unconditional branch but the CFG "
427                "successor doesn't match the actual successor!", MBB);
428       }
429       if (MBB->empty()) {
430         report("MBB exits via unconditional branch but doesn't contain "
431                "any instructions!", MBB);
432       } else if (!MBB->back().getDesc().isBarrier()) {
433         report("MBB exits via unconditional branch but doesn't end with a "
434                "barrier instruction!", MBB);
435       } else if (!MBB->back().getDesc().isTerminator()) {
436         report("MBB exits via unconditional branch but the branch isn't a "
437                "terminator instruction!", MBB);
438       }
439     } else if (TBB && !FBB && !Cond.empty()) {
440       // Block conditionally branches somewhere, otherwise falls through.
441       MachineFunction::const_iterator MBBI = MBB;
442       ++MBBI;
443       if (MBBI == MF->end()) {
444         report("MBB conditionally falls through out of function!", MBB);
445       } if (MBB->succ_size() != 2) {
446         report("MBB exits via conditional branch/fall-through but doesn't have "
447                "exactly two CFG successors!", MBB);
448       } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
449         report("MBB exits via conditional branch/fall-through but the CFG "
450                "successors don't match the actual successors!", MBB);
451       }
452       if (MBB->empty()) {
453         report("MBB exits via conditional branch/fall-through but doesn't "
454                "contain any instructions!", MBB);
455       } else if (MBB->back().getDesc().isBarrier()) {
456         report("MBB exits via conditional branch/fall-through but ends with a "
457                "barrier instruction!", MBB);
458       } else if (!MBB->back().getDesc().isTerminator()) {
459         report("MBB exits via conditional branch/fall-through but the branch "
460                "isn't a terminator instruction!", MBB);
461       }
462     } else if (TBB && FBB) {
463       // Block conditionally branches somewhere, otherwise branches
464       // somewhere else.
465       if (MBB->succ_size() != 2) {
466         report("MBB exits via conditional branch/branch but doesn't have "
467                "exactly two CFG successors!", MBB);
468       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
469         report("MBB exits via conditional branch/branch but the CFG "
470                "successors don't match the actual successors!", MBB);
471       }
472       if (MBB->empty()) {
473         report("MBB exits via conditional branch/branch but doesn't "
474                "contain any instructions!", MBB);
475       } else if (!MBB->back().getDesc().isBarrier()) {
476         report("MBB exits via conditional branch/branch but doesn't end with a "
477                "barrier instruction!", MBB);
478       } else if (!MBB->back().getDesc().isTerminator()) {
479         report("MBB exits via conditional branch/branch but the branch "
480                "isn't a terminator instruction!", MBB);
481       }
482       if (Cond.empty()) {
483         report("MBB exits via conditinal branch/branch but there's no "
484                "condition!", MBB);
485       }
486     } else {
487       report("AnalyzeBranch returned invalid data!", MBB);
488     }
489   }
490 
491   regsLive.clear();
492   for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
493          E = MBB->livein_end(); I != E; ++I) {
494     if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
495       report("MBB live-in list contains non-physical register", MBB);
496       continue;
497     }
498     regsLive.insert(*I);
499     for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
500       regsLive.insert(*R);
501   }
502   regsLiveInButUnused = regsLive;
503 
504   const MachineFrameInfo *MFI = MF->getFrameInfo();
505   assert(MFI && "Function has no frame info");
506   BitVector PR = MFI->getPristineRegs(MBB);
507   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
508     regsLive.insert(I);
509     for (const unsigned *R = TRI->getSubRegisters(I); *R; R++)
510       regsLive.insert(*R);
511   }
512 
513   regsKilled.clear();
514   regsDefined.clear();
515 }
516 
517 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
518   const TargetInstrDesc &TI = MI->getDesc();
519   if (MI->getNumOperands() < TI.getNumOperands()) {
520     report("Too few operands", MI);
521     *OS << TI.getNumOperands() << " operands expected, but "
522         << MI->getNumExplicitOperands() << " given.\n";
523   }
524 
525   // Check the MachineMemOperands for basic consistency.
526   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
527        E = MI->memoperands_end(); I != E; ++I) {
528     if ((*I)->isLoad() && !TI.mayLoad())
529       report("Missing mayLoad flag", MI);
530     if ((*I)->isStore() && !TI.mayStore())
531       report("Missing mayStore flag", MI);
532   }
533 }
534 
535 void
536 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
537   const MachineInstr *MI = MO->getParent();
538   const TargetInstrDesc &TI = MI->getDesc();
539 
540   // The first TI.NumDefs operands must be explicit register defines
541   if (MONum < TI.getNumDefs()) {
542     if (!MO->isReg())
543       report("Explicit definition must be a register", MO, MONum);
544     else if (!MO->isDef())
545       report("Explicit definition marked as use", MO, MONum);
546     else if (MO->isImplicit())
547       report("Explicit definition marked as implicit", MO, MONum);
548   } else if (MONum < TI.getNumOperands()) {
549     if (MO->isReg()) {
550       if (MO->isDef())
551         report("Explicit operand marked as def", MO, MONum);
552       if (MO->isImplicit())
553         report("Explicit operand marked as implicit", MO, MONum);
554     }
555   } else {
556     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
557     if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic() && MO->getReg())
558       report("Extra explicit operand on non-variadic instruction", MO, MONum);
559   }
560 
561   switch (MO->getType()) {
562   case MachineOperand::MO_Register: {
563     const unsigned Reg = MO->getReg();
564     if (!Reg)
565       return;
566 
567     // Check Live Variables.
568     if (MO->isUndef()) {
569       // An <undef> doesn't refer to any register, so just skip it.
570     } else if (MO->isUse()) {
571       regsLiveInButUnused.erase(Reg);
572 
573       bool isKill = false;
574       if (MO->isKill()) {
575         isKill = true;
576         // Tied operands on two-address instuctions MUST NOT have a <kill> flag.
577         if (MI->isRegTiedToDefOperand(MONum))
578             report("Illegal kill flag on two-address instruction operand",
579                    MO, MONum);
580       } else {
581         // TwoAddress instr modifying a reg is treated as kill+def.
582         unsigned defIdx;
583         if (MI->isRegTiedToDefOperand(MONum, &defIdx) &&
584             MI->getOperand(defIdx).getReg() == Reg)
585           isKill = true;
586       }
587       if (isKill) {
588         addRegWithSubRegs(regsKilled, Reg);
589 
590         // Check that LiveVars knows this kill
591         if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg)) {
592           LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
593           if (std::find(VI.Kills.begin(),
594                         VI.Kills.end(), MI) == VI.Kills.end())
595             report("Kill missing from LiveVariables", MO, MONum);
596         }
597       }
598 
599       // Use of a dead register.
600       if (!regsLive.count(Reg)) {
601         if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
602           // Reserved registers may be used even when 'dead'.
603           if (!isReserved(Reg))
604             report("Using an undefined physical register", MO, MONum);
605         } else {
606           BBInfo &MInfo = MBBInfoMap[MI->getParent()];
607           // We don't know which virtual registers are live in, so only complain
608           // if vreg was killed in this MBB. Otherwise keep track of vregs that
609           // must be live in. PHI instructions are handled separately.
610           if (MInfo.regsKilled.count(Reg))
611             report("Using a killed virtual register", MO, MONum);
612           else if (MI->getOpcode() != TargetInstrInfo::PHI)
613             MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
614         }
615       }
616     } else {
617       assert(MO->isDef());
618       // Register defined.
619       // TODO: verify that earlyclobber ops are not used.
620       if (MO->isDead())
621         addRegWithSubRegs(regsDead, Reg);
622       else
623         addRegWithSubRegs(regsDefined, Reg);
624     }
625 
626     // Check register classes.
627     if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
628       const TargetOperandInfo &TOI = TI.OpInfo[MONum];
629       unsigned SubIdx = MO->getSubReg();
630 
631       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
632         unsigned sr = Reg;
633         if (SubIdx) {
634           unsigned s = TRI->getSubReg(Reg, SubIdx);
635           if (!s) {
636             report("Invalid subregister index for physical register",
637                    MO, MONum);
638             return;
639           }
640           sr = s;
641         }
642         if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
643           if (!DRC->contains(sr)) {
644             report("Illegal physical register for instruction", MO, MONum);
645             *OS << TRI->getName(sr) << " is not a "
646                 << DRC->getName() << " register.\n";
647           }
648         }
649       } else {
650         // Virtual register.
651         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
652         if (SubIdx) {
653           if (RC->subregclasses_begin()+SubIdx >= RC->subregclasses_end()) {
654             report("Invalid subregister index for virtual register", MO, MONum);
655             return;
656           }
657           RC = *(RC->subregclasses_begin()+SubIdx);
658         }
659         if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) {
660           if (RC != DRC && !RC->hasSuperClass(DRC)) {
661             report("Illegal virtual register for instruction", MO, MONum);
662             *OS << "Expected a " << DRC->getName() << " register, but got a "
663                 << RC->getName() << " register\n";
664           }
665         }
666       }
667     }
668     break;
669   }
670 
671   case MachineOperand::MO_MachineBasicBlock:
672     if (MI->getOpcode() == TargetInstrInfo::PHI) {
673       if (!MO->getMBB()->isSuccessor(MI->getParent()))
674         report("PHI operand is not in the CFG", MO, MONum);
675     }
676     break;
677 
678   default:
679     break;
680   }
681 }
682 
683 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
684   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
685   set_union(MInfo.regsKilled, regsKilled);
686   set_subtract(regsLive, regsKilled);
687   regsKilled.clear();
688 
689   // Verify that both <def> and <def,dead> operands refer to dead registers.
690   RegVector defs(regsDefined);
691   defs.append(regsDead.begin(), regsDead.end());
692 
693   for (RegVector::const_iterator I = defs.begin(), E = defs.end();
694        I != E; ++I) {
695     if (regsLive.count(*I)) {
696       if (TargetRegisterInfo::isPhysicalRegister(*I)) {
697         if (!allowPhysDoubleDefs && !isReserved(*I) &&
698             !regsLiveInButUnused.count(*I)) {
699           report("Redefining a live physical register", MI);
700           *OS << "Register " << TRI->getName(*I)
701               << " was defined but already live.\n";
702         }
703       } else {
704         if (!allowVirtDoubleDefs) {
705           report("Redefining a live virtual register", MI);
706           *OS << "Virtual register %reg" << *I
707               << " was defined but already live.\n";
708         }
709       }
710     } else if (TargetRegisterInfo::isVirtualRegister(*I) &&
711                !MInfo.regsKilled.count(*I)) {
712       // Virtual register defined without being killed first must be dead on
713       // entry.
714       MInfo.vregsDeadIn.insert(std::make_pair(*I, MI));
715     }
716   }
717 
718   set_subtract(regsLive, regsDead); regsDead.clear();
719   set_union(regsLive, regsDefined); regsDefined.clear();
720 }
721 
722 void
723 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
724   MBBInfoMap[MBB].regsLiveOut = regsLive;
725   regsLive.clear();
726 }
727 
728 // Calculate the largest possible vregsPassed sets. These are the registers that
729 // can pass through an MBB live, but may not be live every time. It is assumed
730 // that all vregsPassed sets are empty before the call.
731 void MachineVerifier::calcMaxRegsPassed() {
732   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
733   // have any vregsPassed.
734   DenseSet<const MachineBasicBlock*> todo;
735   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
736        MFI != MFE; ++MFI) {
737     const MachineBasicBlock &MBB(*MFI);
738     BBInfo &MInfo = MBBInfoMap[&MBB];
739     if (!MInfo.reachable)
740       continue;
741     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
742            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
743       BBInfo &SInfo = MBBInfoMap[*SuI];
744       if (SInfo.addPassed(MInfo.regsLiveOut))
745         todo.insert(*SuI);
746     }
747   }
748 
749   // Iteratively push vregsPassed to successors. This will converge to the same
750   // final state regardless of DenseSet iteration order.
751   while (!todo.empty()) {
752     const MachineBasicBlock *MBB = *todo.begin();
753     todo.erase(MBB);
754     BBInfo &MInfo = MBBInfoMap[MBB];
755     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
756            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
757       if (*SuI == MBB)
758         continue;
759       BBInfo &SInfo = MBBInfoMap[*SuI];
760       if (SInfo.addPassed(MInfo.vregsPassed))
761         todo.insert(*SuI);
762     }
763   }
764 }
765 
766 // Calculate the minimum vregsPassed set. These are the registers that always
767 // pass live through an MBB. The calculation assumes that calcMaxRegsPassed has
768 // been called earlier.
769 void MachineVerifier::calcMinRegsPassed() {
770   DenseSet<const MachineBasicBlock*> todo;
771   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
772        MFI != MFE; ++MFI)
773     todo.insert(MFI);
774 
775   while (!todo.empty()) {
776     const MachineBasicBlock *MBB = *todo.begin();
777     todo.erase(MBB);
778     BBInfo &MInfo = MBBInfoMap[MBB];
779 
780     // Remove entries from vRegsPassed that are not live out from all
781     // reachable predecessors.
782     RegSet dead;
783     for (RegSet::iterator I = MInfo.vregsPassed.begin(),
784            E = MInfo.vregsPassed.end(); I != E; ++I) {
785       for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
786              PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
787         BBInfo &PrInfo = MBBInfoMap[*PrI];
788         if (PrInfo.reachable && !PrInfo.isLiveOut(*I)) {
789           dead.insert(*I);
790           break;
791         }
792       }
793     }
794     // If any regs removed, we need to recheck successors.
795     if (!dead.empty()) {
796       set_subtract(MInfo.vregsPassed, dead);
797       todo.insert(MBB->succ_begin(), MBB->succ_end());
798     }
799   }
800 }
801 
802 // Calculate the set of virtual registers that must be passed through each basic
803 // block in order to satisfy the requirements of successor blocks. This is very
804 // similar to calcMaxRegsPassed, only backwards.
805 void MachineVerifier::calcRegsRequired() {
806   // First push live-in regs to predecessors' vregsRequired.
807   DenseSet<const MachineBasicBlock*> todo;
808   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
809        MFI != MFE; ++MFI) {
810     const MachineBasicBlock &MBB(*MFI);
811     BBInfo &MInfo = MBBInfoMap[&MBB];
812     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
813            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
814       BBInfo &PInfo = MBBInfoMap[*PrI];
815       if (PInfo.addRequired(MInfo.vregsLiveIn))
816         todo.insert(*PrI);
817     }
818   }
819 
820   // Iteratively push vregsRequired to predecessors. This will converge to the
821   // same final state regardless of DenseSet iteration order.
822   while (!todo.empty()) {
823     const MachineBasicBlock *MBB = *todo.begin();
824     todo.erase(MBB);
825     BBInfo &MInfo = MBBInfoMap[MBB];
826     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
827            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
828       if (*PrI == MBB)
829         continue;
830       BBInfo &SInfo = MBBInfoMap[*PrI];
831       if (SInfo.addRequired(MInfo.vregsRequired))
832         todo.insert(*PrI);
833     }
834   }
835 }
836 
837 // Check PHI instructions at the beginning of MBB. It is assumed that
838 // calcMinRegsPassed has been run so BBInfo::isLiveOut is valid.
839 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
840   for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
841        BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
842     DenseSet<const MachineBasicBlock*> seen;
843 
844     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
845       unsigned Reg = BBI->getOperand(i).getReg();
846       const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
847       if (!Pre->isSuccessor(MBB))
848         continue;
849       seen.insert(Pre);
850       BBInfo &PrInfo = MBBInfoMap[Pre];
851       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
852         report("PHI operand is not live-out from predecessor",
853                &BBI->getOperand(i), i);
854     }
855 
856     // Did we see all predecessors?
857     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
858            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
859       if (!seen.count(*PrI)) {
860         report("Missing PHI operand", BBI);
861         *OS << "BB#" << (*PrI)->getNumber()
862             << " is a predecessor according to the CFG.\n";
863       }
864     }
865   }
866 }
867 
868 void MachineVerifier::visitMachineFunctionAfter() {
869   calcMaxRegsPassed();
870 
871   // With the maximal set of vregsPassed we can verify dead-in registers.
872   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
873        MFI != MFE; ++MFI) {
874     BBInfo &MInfo = MBBInfoMap[MFI];
875 
876     // Skip unreachable MBBs.
877     if (!MInfo.reachable)
878       continue;
879 
880     for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
881            PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
882       BBInfo &PrInfo = MBBInfoMap[*PrI];
883       if (!PrInfo.reachable)
884         continue;
885 
886       // Verify physical live-ins. EH landing pads have magic live-ins so we
887       // ignore them.
888       if (!MFI->isLandingPad()) {
889         for (MachineBasicBlock::const_livein_iterator I = MFI->livein_begin(),
890                E = MFI->livein_end(); I != E; ++I) {
891           if (TargetRegisterInfo::isPhysicalRegister(*I) &&
892               !isReserved (*I) && !PrInfo.isLiveOut(*I)) {
893             report("Live-in physical register is not live-out from predecessor",
894                    MFI);
895             *OS << "Register " << TRI->getName(*I)
896                 << " is not live-out from BB#" << (*PrI)->getNumber()
897                 << ".\n";
898           }
899         }
900       }
901 
902 
903       // Verify dead-in virtual registers.
904       if (!allowVirtDoubleDefs) {
905         for (RegMap::iterator I = MInfo.vregsDeadIn.begin(),
906                E = MInfo.vregsDeadIn.end(); I != E; ++I) {
907           // DeadIn register must be in neither regsLiveOut or vregsPassed of
908           // any predecessor.
909           if (PrInfo.isLiveOut(I->first)) {
910             report("Live-in virtual register redefined", I->second);
911             *OS << "Register %reg" << I->first
912                 << " was live-out from predecessor MBB #"
913                 << (*PrI)->getNumber() << ".\n";
914           }
915         }
916       }
917     }
918   }
919 
920   calcMinRegsPassed();
921 
922   // With the minimal set of vregsPassed we can verify live-in virtual
923   // registers, including PHI instructions.
924   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
925        MFI != MFE; ++MFI) {
926     BBInfo &MInfo = MBBInfoMap[MFI];
927 
928     // Skip unreachable MBBs.
929     if (!MInfo.reachable)
930       continue;
931 
932     checkPHIOps(MFI);
933 
934     for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
935            PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
936       BBInfo &PrInfo = MBBInfoMap[*PrI];
937       if (!PrInfo.reachable)
938         continue;
939 
940       for (RegMap::iterator I = MInfo.vregsLiveIn.begin(),
941              E = MInfo.vregsLiveIn.end(); I != E; ++I) {
942         if (!PrInfo.isLiveOut(I->first)) {
943           report("Used virtual register is not live-in", I->second);
944           *OS << "Register %reg" << I->first
945               << " is not live-out from predecessor MBB #"
946               << (*PrI)->getNumber()
947               << ".\n";
948         }
949       }
950     }
951   }
952 
953   // Now check LiveVariables info if available
954   if (LiveVars) {
955     calcRegsRequired();
956     verifyLiveVariables();
957   }
958 }
959 
960 void MachineVerifier::verifyLiveVariables() {
961   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
962   for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
963          RegE = MRI->getLastVirtReg()-1; Reg != RegE; ++Reg) {
964     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
965     for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
966          MFI != MFE; ++MFI) {
967       BBInfo &MInfo = MBBInfoMap[MFI];
968 
969       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
970       if (MInfo.vregsRequired.count(Reg)) {
971         if (!VI.AliveBlocks.test(MFI->getNumber())) {
972           report("LiveVariables: Block missing from AliveBlocks", MFI);
973           *OS << "Virtual register %reg" << Reg
974               << " must be live through the block.\n";
975         }
976       } else {
977         if (VI.AliveBlocks.test(MFI->getNumber())) {
978           report("LiveVariables: Block should not be in AliveBlocks", MFI);
979           *OS << "Virtual register %reg" << Reg
980               << " is not needed live through the block.\n";
981         }
982       }
983     }
984   }
985 }
986 
987 
988