xref: /llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision 2946cd701067404b99c39fb29dc9c74bd7193eb3)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
20 // command-line option -verify-machineinstrs, or by defining the environment
21 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
22 // the verifier errors.
23 //===----------------------------------------------------------------------===//
24 
25 #include "LiveRangeCalc.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/DenseSet.h"
29 #include "llvm/ADT/DepthFirstIterator.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetOperations.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/ADT/Twine.h"
36 #include "llvm/Analysis/EHPersonalities.h"
37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
38 #include "llvm/CodeGen/LiveInterval.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/SlotIndexes.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetOpcodes.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 namespace {
85 
86   struct MachineVerifier {
87     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
88 
89     unsigned verify(MachineFunction &MF);
90 
91     Pass *const PASS;
92     const char *Banner;
93     const MachineFunction *MF;
94     const TargetMachine *TM;
95     const TargetInstrInfo *TII;
96     const TargetRegisterInfo *TRI;
97     const MachineRegisterInfo *MRI;
98 
99     unsigned foundErrors;
100 
101     // Avoid querying the MachineFunctionProperties for each operand.
102     bool isFunctionRegBankSelected;
103     bool isFunctionSelected;
104 
105     using RegVector = SmallVector<unsigned, 16>;
106     using RegMaskVector = SmallVector<const uint32_t *, 4>;
107     using RegSet = DenseSet<unsigned>;
108     using RegMap = DenseMap<unsigned, const MachineInstr *>;
109     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
110 
111     const MachineInstr *FirstNonPHI;
112     const MachineInstr *FirstTerminator;
113     BlockSet FunctionBlocks;
114 
115     BitVector regsReserved;
116     RegSet regsLive;
117     RegVector regsDefined, regsDead, regsKilled;
118     RegMaskVector regMasks;
119 
120     SlotIndex lastIndex;
121 
122     // Add Reg and any sub-registers to RV
123     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
124       RV.push_back(Reg);
125       if (TargetRegisterInfo::isPhysicalRegister(Reg))
126         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
127           RV.push_back(*SubRegs);
128     }
129 
130     struct BBInfo {
131       // Is this MBB reachable from the MF entry point?
132       bool reachable = false;
133 
134       // Vregs that must be live in because they are used without being
135       // defined. Map value is the user.
136       RegMap vregsLiveIn;
137 
138       // Regs killed in MBB. They may be defined again, and will then be in both
139       // regsKilled and regsLiveOut.
140       RegSet regsKilled;
141 
142       // Regs defined in MBB and live out. Note that vregs passing through may
143       // be live out without being mentioned here.
144       RegSet regsLiveOut;
145 
146       // Vregs that pass through MBB untouched. This set is disjoint from
147       // regsKilled and regsLiveOut.
148       RegSet vregsPassed;
149 
150       // Vregs that must pass through MBB because they are needed by a successor
151       // block. This set is disjoint from regsLiveOut.
152       RegSet vregsRequired;
153 
154       // Set versions of block's predecessor and successor lists.
155       BlockSet Preds, Succs;
156 
157       BBInfo() = default;
158 
159       // Add register to vregsPassed if it belongs there. Return true if
160       // anything changed.
161       bool addPassed(unsigned Reg) {
162         if (!TargetRegisterInfo::isVirtualRegister(Reg))
163           return false;
164         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
165           return false;
166         return vregsPassed.insert(Reg).second;
167       }
168 
169       // Same for a full set.
170       bool addPassed(const RegSet &RS) {
171         bool changed = false;
172         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
173           if (addPassed(*I))
174             changed = true;
175         return changed;
176       }
177 
178       // Add register to vregsRequired if it belongs there. Return true if
179       // anything changed.
180       bool addRequired(unsigned Reg) {
181         if (!TargetRegisterInfo::isVirtualRegister(Reg))
182           return false;
183         if (regsLiveOut.count(Reg))
184           return false;
185         return vregsRequired.insert(Reg).second;
186       }
187 
188       // Same for a full set.
189       bool addRequired(const RegSet &RS) {
190         bool changed = false;
191         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
192           if (addRequired(*I))
193             changed = true;
194         return changed;
195       }
196 
197       // Same for a full map.
198       bool addRequired(const RegMap &RM) {
199         bool changed = false;
200         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
201           if (addRequired(I->first))
202             changed = true;
203         return changed;
204       }
205 
206       // Live-out registers are either in regsLiveOut or vregsPassed.
207       bool isLiveOut(unsigned Reg) const {
208         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
209       }
210     };
211 
212     // Extra register info per MBB.
213     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
214 
215     bool isReserved(unsigned Reg) {
216       return Reg < regsReserved.size() && regsReserved.test(Reg);
217     }
218 
219     bool isAllocatable(unsigned Reg) const {
220       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
221         !regsReserved.test(Reg);
222     }
223 
224     // Analysis information if available
225     LiveVariables *LiveVars;
226     LiveIntervals *LiveInts;
227     LiveStacks *LiveStks;
228     SlotIndexes *Indexes;
229 
230     void visitMachineFunctionBefore();
231     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
232     void visitMachineBundleBefore(const MachineInstr *MI);
233     void visitMachineInstrBefore(const MachineInstr *MI);
234     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
235     void visitMachineInstrAfter(const MachineInstr *MI);
236     void visitMachineBundleAfter(const MachineInstr *MI);
237     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
238     void visitMachineFunctionAfter();
239 
240     void report(const char *msg, const MachineFunction *MF);
241     void report(const char *msg, const MachineBasicBlock *MBB);
242     void report(const char *msg, const MachineInstr *MI);
243     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
244                 LLT MOVRegType = LLT{});
245 
246     void report_context(const LiveInterval &LI) const;
247     void report_context(const LiveRange &LR, unsigned VRegUnit,
248                         LaneBitmask LaneMask) const;
249     void report_context(const LiveRange::Segment &S) const;
250     void report_context(const VNInfo &VNI) const;
251     void report_context(SlotIndex Pos) const;
252     void report_context(MCPhysReg PhysReg) const;
253     void report_context_liverange(const LiveRange &LR) const;
254     void report_context_lanemask(LaneBitmask LaneMask) const;
255     void report_context_vreg(unsigned VReg) const;
256     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
257 
258     void verifyInlineAsm(const MachineInstr *MI);
259 
260     void checkLiveness(const MachineOperand *MO, unsigned MONum);
261     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
262                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
263                             LaneBitmask LaneMask = LaneBitmask::getNone());
264     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
265                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
266                             bool SubRangeCheck = false,
267                             LaneBitmask LaneMask = LaneBitmask::getNone());
268 
269     void markReachable(const MachineBasicBlock *MBB);
270     void calcRegsPassed();
271     void checkPHIOps(const MachineBasicBlock &MBB);
272 
273     void calcRegsRequired();
274     void verifyLiveVariables();
275     void verifyLiveIntervals();
276     void verifyLiveInterval(const LiveInterval&);
277     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
278                               LaneBitmask);
279     void verifyLiveRangeSegment(const LiveRange&,
280                                 const LiveRange::const_iterator I, unsigned,
281                                 LaneBitmask);
282     void verifyLiveRange(const LiveRange&, unsigned,
283                          LaneBitmask LaneMask = LaneBitmask::getNone());
284 
285     void verifyStackFrame();
286 
287     void verifySlotIndexes() const;
288     void verifyProperties(const MachineFunction &MF);
289   };
290 
291   struct MachineVerifierPass : public MachineFunctionPass {
292     static char ID; // Pass ID, replacement for typeid
293 
294     const std::string Banner;
295 
296     MachineVerifierPass(std::string banner = std::string())
297       : MachineFunctionPass(ID), Banner(std::move(banner)) {
298         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
299       }
300 
301     void getAnalysisUsage(AnalysisUsage &AU) const override {
302       AU.setPreservesAll();
303       MachineFunctionPass::getAnalysisUsage(AU);
304     }
305 
306     bool runOnMachineFunction(MachineFunction &MF) override {
307       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
308       if (FoundErrors)
309         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
310       return false;
311     }
312   };
313 
314 } // end anonymous namespace
315 
316 char MachineVerifierPass::ID = 0;
317 
318 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
319                 "Verify generated machine code", false, false)
320 
321 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
322   return new MachineVerifierPass(Banner);
323 }
324 
325 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
326     const {
327   MachineFunction &MF = const_cast<MachineFunction&>(*this);
328   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
329   if (AbortOnErrors && FoundErrors)
330     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
331   return FoundErrors == 0;
332 }
333 
334 void MachineVerifier::verifySlotIndexes() const {
335   if (Indexes == nullptr)
336     return;
337 
338   // Ensure the IdxMBB list is sorted by slot indexes.
339   SlotIndex Last;
340   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
341        E = Indexes->MBBIndexEnd(); I != E; ++I) {
342     assert(!Last.isValid() || I->first > Last);
343     Last = I->first;
344   }
345 }
346 
347 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
348   // If a pass has introduced virtual registers without clearing the
349   // NoVRegs property (or set it without allocating the vregs)
350   // then report an error.
351   if (MF.getProperties().hasProperty(
352           MachineFunctionProperties::Property::NoVRegs) &&
353       MRI->getNumVirtRegs())
354     report("Function has NoVRegs property but there are VReg operands", &MF);
355 }
356 
357 unsigned MachineVerifier::verify(MachineFunction &MF) {
358   foundErrors = 0;
359 
360   this->MF = &MF;
361   TM = &MF.getTarget();
362   TII = MF.getSubtarget().getInstrInfo();
363   TRI = MF.getSubtarget().getRegisterInfo();
364   MRI = &MF.getRegInfo();
365 
366   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
367       MachineFunctionProperties::Property::FailedISel);
368 
369   // If we're mid-GlobalISel and we already triggered the fallback path then
370   // it's expected that the MIR is somewhat broken but that's ok since we'll
371   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
372   if (isFunctionFailedISel)
373     return foundErrors;
374 
375   isFunctionRegBankSelected =
376       !isFunctionFailedISel &&
377       MF.getProperties().hasProperty(
378           MachineFunctionProperties::Property::RegBankSelected);
379   isFunctionSelected = !isFunctionFailedISel &&
380                        MF.getProperties().hasProperty(
381                            MachineFunctionProperties::Property::Selected);
382   LiveVars = nullptr;
383   LiveInts = nullptr;
384   LiveStks = nullptr;
385   Indexes = nullptr;
386   if (PASS) {
387     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
388     // We don't want to verify LiveVariables if LiveIntervals is available.
389     if (!LiveInts)
390       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
391     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
392     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
393   }
394 
395   verifySlotIndexes();
396 
397   verifyProperties(MF);
398 
399   visitMachineFunctionBefore();
400   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
401        MFI!=MFE; ++MFI) {
402     visitMachineBasicBlockBefore(&*MFI);
403     // Keep track of the current bundle header.
404     const MachineInstr *CurBundle = nullptr;
405     // Do we expect the next instruction to be part of the same bundle?
406     bool InBundle = false;
407 
408     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
409            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
410       if (MBBI->getParent() != &*MFI) {
411         report("Bad instruction parent pointer", &*MFI);
412         errs() << "Instruction: " << *MBBI;
413         continue;
414       }
415 
416       // Check for consistent bundle flags.
417       if (InBundle && !MBBI->isBundledWithPred())
418         report("Missing BundledPred flag, "
419                "BundledSucc was set on predecessor",
420                &*MBBI);
421       if (!InBundle && MBBI->isBundledWithPred())
422         report("BundledPred flag is set, "
423                "but BundledSucc not set on predecessor",
424                &*MBBI);
425 
426       // Is this a bundle header?
427       if (!MBBI->isInsideBundle()) {
428         if (CurBundle)
429           visitMachineBundleAfter(CurBundle);
430         CurBundle = &*MBBI;
431         visitMachineBundleBefore(CurBundle);
432       } else if (!CurBundle)
433         report("No bundle header", &*MBBI);
434       visitMachineInstrBefore(&*MBBI);
435       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
436         const MachineInstr &MI = *MBBI;
437         const MachineOperand &Op = MI.getOperand(I);
438         if (Op.getParent() != &MI) {
439           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
440           // functions when replacing operands of a MachineInstr.
441           report("Instruction has operand with wrong parent set", &MI);
442         }
443 
444         visitMachineOperand(&Op, I);
445       }
446 
447       visitMachineInstrAfter(&*MBBI);
448 
449       // Was this the last bundled instruction?
450       InBundle = MBBI->isBundledWithSucc();
451     }
452     if (CurBundle)
453       visitMachineBundleAfter(CurBundle);
454     if (InBundle)
455       report("BundledSucc flag set on last instruction in block", &MFI->back());
456     visitMachineBasicBlockAfter(&*MFI);
457   }
458   visitMachineFunctionAfter();
459 
460   // Clean up.
461   regsLive.clear();
462   regsDefined.clear();
463   regsDead.clear();
464   regsKilled.clear();
465   regMasks.clear();
466   MBBInfoMap.clear();
467 
468   return foundErrors;
469 }
470 
471 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
472   assert(MF);
473   errs() << '\n';
474   if (!foundErrors++) {
475     if (Banner)
476       errs() << "# " << Banner << '\n';
477     if (LiveInts != nullptr)
478       LiveInts->print(errs());
479     else
480       MF->print(errs(), Indexes);
481   }
482   errs() << "*** Bad machine code: " << msg << " ***\n"
483       << "- function:    " << MF->getName() << "\n";
484 }
485 
486 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
487   assert(MBB);
488   report(msg, MBB->getParent());
489   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
490          << MBB->getName() << " (" << (const void *)MBB << ')';
491   if (Indexes)
492     errs() << " [" << Indexes->getMBBStartIdx(MBB)
493         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
494   errs() << '\n';
495 }
496 
497 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
498   assert(MI);
499   report(msg, MI->getParent());
500   errs() << "- instruction: ";
501   if (Indexes && Indexes->hasIndex(*MI))
502     errs() << Indexes->getInstructionIndex(*MI) << '\t';
503   MI->print(errs(), /*SkipOpers=*/true);
504 }
505 
506 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
507                              unsigned MONum, LLT MOVRegType) {
508   assert(MO);
509   report(msg, MO->getParent());
510   errs() << "- operand " << MONum << ":   ";
511   MO->print(errs(), MOVRegType, TRI);
512   errs() << "\n";
513 }
514 
515 void MachineVerifier::report_context(SlotIndex Pos) const {
516   errs() << "- at:          " << Pos << '\n';
517 }
518 
519 void MachineVerifier::report_context(const LiveInterval &LI) const {
520   errs() << "- interval:    " << LI << '\n';
521 }
522 
523 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
524                                      LaneBitmask LaneMask) const {
525   report_context_liverange(LR);
526   report_context_vreg_regunit(VRegUnit);
527   if (LaneMask.any())
528     report_context_lanemask(LaneMask);
529 }
530 
531 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
532   errs() << "- segment:     " << S << '\n';
533 }
534 
535 void MachineVerifier::report_context(const VNInfo &VNI) const {
536   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
537 }
538 
539 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
540   errs() << "- liverange:   " << LR << '\n';
541 }
542 
543 void MachineVerifier::report_context(MCPhysReg PReg) const {
544   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
545 }
546 
547 void MachineVerifier::report_context_vreg(unsigned VReg) const {
548   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
549 }
550 
551 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
552   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
553     report_context_vreg(VRegOrUnit);
554   } else {
555     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
556   }
557 }
558 
559 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
560   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
561 }
562 
563 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
564   BBInfo &MInfo = MBBInfoMap[MBB];
565   if (!MInfo.reachable) {
566     MInfo.reachable = true;
567     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
568            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
569       markReachable(*SuI);
570   }
571 }
572 
573 void MachineVerifier::visitMachineFunctionBefore() {
574   lastIndex = SlotIndex();
575   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
576                                            : TRI->getReservedRegs(*MF);
577 
578   if (!MF->empty())
579     markReachable(&MF->front());
580 
581   // Build a set of the basic blocks in the function.
582   FunctionBlocks.clear();
583   for (const auto &MBB : *MF) {
584     FunctionBlocks.insert(&MBB);
585     BBInfo &MInfo = MBBInfoMap[&MBB];
586 
587     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
588     if (MInfo.Preds.size() != MBB.pred_size())
589       report("MBB has duplicate entries in its predecessor list.", &MBB);
590 
591     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
592     if (MInfo.Succs.size() != MBB.succ_size())
593       report("MBB has duplicate entries in its successor list.", &MBB);
594   }
595 
596   // Check that the register use lists are sane.
597   MRI->verifyUseLists();
598 
599   if (!MF->empty())
600     verifyStackFrame();
601 }
602 
603 // Does iterator point to a and b as the first two elements?
604 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
605                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
606   if (*i == a)
607     return *++i == b;
608   if (*i == b)
609     return *++i == a;
610   return false;
611 }
612 
613 void
614 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
615   FirstTerminator = nullptr;
616   FirstNonPHI = nullptr;
617 
618   if (!MF->getProperties().hasProperty(
619       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
620     // If this block has allocatable physical registers live-in, check that
621     // it is an entry block or landing pad.
622     for (const auto &LI : MBB->liveins()) {
623       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
624           MBB->getIterator() != MBB->getParent()->begin()) {
625         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
626         report_context(LI.PhysReg);
627       }
628     }
629   }
630 
631   // Count the number of landing pad successors.
632   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
633   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
634        E = MBB->succ_end(); I != E; ++I) {
635     if ((*I)->isEHPad())
636       LandingPadSuccs.insert(*I);
637     if (!FunctionBlocks.count(*I))
638       report("MBB has successor that isn't part of the function.", MBB);
639     if (!MBBInfoMap[*I].Preds.count(MBB)) {
640       report("Inconsistent CFG", MBB);
641       errs() << "MBB is not in the predecessor list of the successor "
642              << printMBBReference(*(*I)) << ".\n";
643     }
644   }
645 
646   // Check the predecessor list.
647   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
648        E = MBB->pred_end(); I != E; ++I) {
649     if (!FunctionBlocks.count(*I))
650       report("MBB has predecessor that isn't part of the function.", MBB);
651     if (!MBBInfoMap[*I].Succs.count(MBB)) {
652       report("Inconsistent CFG", MBB);
653       errs() << "MBB is not in the successor list of the predecessor "
654              << printMBBReference(*(*I)) << ".\n";
655     }
656   }
657 
658   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
659   const BasicBlock *BB = MBB->getBasicBlock();
660   const Function &F = MF->getFunction();
661   if (LandingPadSuccs.size() > 1 &&
662       !(AsmInfo &&
663         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
664         BB && isa<SwitchInst>(BB->getTerminator())) &&
665       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
666     report("MBB has more than one landing pad successor", MBB);
667 
668   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
669   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
670   SmallVector<MachineOperand, 4> Cond;
671   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
672                           Cond)) {
673     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
674     // check whether its answers match up with reality.
675     if (!TBB && !FBB) {
676       // Block falls through to its successor.
677       MachineFunction::const_iterator MBBI = MBB->getIterator();
678       ++MBBI;
679       if (MBBI == MF->end()) {
680         // It's possible that the block legitimately ends with a noreturn
681         // call or an unreachable, in which case it won't actually fall
682         // out the bottom of the function.
683       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
684         // It's possible that the block legitimately ends with a noreturn
685         // call or an unreachable, in which case it won't actually fall
686         // out of the block.
687       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
688         report("MBB exits via unconditional fall-through but doesn't have "
689                "exactly one CFG successor!", MBB);
690       } else if (!MBB->isSuccessor(&*MBBI)) {
691         report("MBB exits via unconditional fall-through but its successor "
692                "differs from its CFG successor!", MBB);
693       }
694       if (!MBB->empty() && MBB->back().isBarrier() &&
695           !TII->isPredicated(MBB->back())) {
696         report("MBB exits via unconditional fall-through but ends with a "
697                "barrier instruction!", MBB);
698       }
699       if (!Cond.empty()) {
700         report("MBB exits via unconditional fall-through but has a condition!",
701                MBB);
702       }
703     } else if (TBB && !FBB && Cond.empty()) {
704       // Block unconditionally branches somewhere.
705       // If the block has exactly one successor, that happens to be a
706       // landingpad, accept it as valid control flow.
707       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
708           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
709            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
710         report("MBB exits via unconditional branch but doesn't have "
711                "exactly one CFG successor!", MBB);
712       } else if (!MBB->isSuccessor(TBB)) {
713         report("MBB exits via unconditional branch but the CFG "
714                "successor doesn't match the actual successor!", MBB);
715       }
716       if (MBB->empty()) {
717         report("MBB exits via unconditional branch but doesn't contain "
718                "any instructions!", MBB);
719       } else if (!MBB->back().isBarrier()) {
720         report("MBB exits via unconditional branch but doesn't end with a "
721                "barrier instruction!", MBB);
722       } else if (!MBB->back().isTerminator()) {
723         report("MBB exits via unconditional branch but the branch isn't a "
724                "terminator instruction!", MBB);
725       }
726     } else if (TBB && !FBB && !Cond.empty()) {
727       // Block conditionally branches somewhere, otherwise falls through.
728       MachineFunction::const_iterator MBBI = MBB->getIterator();
729       ++MBBI;
730       if (MBBI == MF->end()) {
731         report("MBB conditionally falls through out of function!", MBB);
732       } else if (MBB->succ_size() == 1) {
733         // A conditional branch with only one successor is weird, but allowed.
734         if (&*MBBI != TBB)
735           report("MBB exits via conditional branch/fall-through but only has "
736                  "one CFG successor!", MBB);
737         else if (TBB != *MBB->succ_begin())
738           report("MBB exits via conditional branch/fall-through but the CFG "
739                  "successor don't match the actual successor!", MBB);
740       } else if (MBB->succ_size() != 2) {
741         report("MBB exits via conditional branch/fall-through but doesn't have "
742                "exactly two CFG successors!", MBB);
743       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
744         report("MBB exits via conditional branch/fall-through but the CFG "
745                "successors don't match the actual successors!", MBB);
746       }
747       if (MBB->empty()) {
748         report("MBB exits via conditional branch/fall-through but doesn't "
749                "contain any instructions!", MBB);
750       } else if (MBB->back().isBarrier()) {
751         report("MBB exits via conditional branch/fall-through but ends with a "
752                "barrier instruction!", MBB);
753       } else if (!MBB->back().isTerminator()) {
754         report("MBB exits via conditional branch/fall-through but the branch "
755                "isn't a terminator instruction!", MBB);
756       }
757     } else if (TBB && FBB) {
758       // Block conditionally branches somewhere, otherwise branches
759       // somewhere else.
760       if (MBB->succ_size() == 1) {
761         // A conditional branch with only one successor is weird, but allowed.
762         if (FBB != TBB)
763           report("MBB exits via conditional branch/branch through but only has "
764                  "one CFG successor!", MBB);
765         else if (TBB != *MBB->succ_begin())
766           report("MBB exits via conditional branch/branch through but the CFG "
767                  "successor don't match the actual successor!", MBB);
768       } else if (MBB->succ_size() != 2) {
769         report("MBB exits via conditional branch/branch but doesn't have "
770                "exactly two CFG successors!", MBB);
771       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
772         report("MBB exits via conditional branch/branch but the CFG "
773                "successors don't match the actual successors!", MBB);
774       }
775       if (MBB->empty()) {
776         report("MBB exits via conditional branch/branch but doesn't "
777                "contain any instructions!", MBB);
778       } else if (!MBB->back().isBarrier()) {
779         report("MBB exits via conditional branch/branch but doesn't end with a "
780                "barrier instruction!", MBB);
781       } else if (!MBB->back().isTerminator()) {
782         report("MBB exits via conditional branch/branch but the branch "
783                "isn't a terminator instruction!", MBB);
784       }
785       if (Cond.empty()) {
786         report("MBB exits via conditional branch/branch but there's no "
787                "condition!", MBB);
788       }
789     } else {
790       report("AnalyzeBranch returned invalid data!", MBB);
791     }
792   }
793 
794   regsLive.clear();
795   if (MRI->tracksLiveness()) {
796     for (const auto &LI : MBB->liveins()) {
797       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
798         report("MBB live-in list contains non-physical register", MBB);
799         continue;
800       }
801       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
802            SubRegs.isValid(); ++SubRegs)
803         regsLive.insert(*SubRegs);
804     }
805   }
806 
807   const MachineFrameInfo &MFI = MF->getFrameInfo();
808   BitVector PR = MFI.getPristineRegs(*MF);
809   for (unsigned I : PR.set_bits()) {
810     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
811          SubRegs.isValid(); ++SubRegs)
812       regsLive.insert(*SubRegs);
813   }
814 
815   regsKilled.clear();
816   regsDefined.clear();
817 
818   if (Indexes)
819     lastIndex = Indexes->getMBBStartIdx(MBB);
820 }
821 
822 // This function gets called for all bundle headers, including normal
823 // stand-alone unbundled instructions.
824 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
825   if (Indexes && Indexes->hasIndex(*MI)) {
826     SlotIndex idx = Indexes->getInstructionIndex(*MI);
827     if (!(idx > lastIndex)) {
828       report("Instruction index out of order", MI);
829       errs() << "Last instruction was at " << lastIndex << '\n';
830     }
831     lastIndex = idx;
832   }
833 
834   // Ensure non-terminators don't follow terminators.
835   // Ignore predicated terminators formed by if conversion.
836   // FIXME: If conversion shouldn't need to violate this rule.
837   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
838     if (!FirstTerminator)
839       FirstTerminator = MI;
840   } else if (FirstTerminator) {
841     report("Non-terminator instruction after the first terminator", MI);
842     errs() << "First terminator was:\t" << *FirstTerminator;
843   }
844 }
845 
846 // The operands on an INLINEASM instruction must follow a template.
847 // Verify that the flag operands make sense.
848 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
849   // The first two operands on INLINEASM are the asm string and global flags.
850   if (MI->getNumOperands() < 2) {
851     report("Too few operands on inline asm", MI);
852     return;
853   }
854   if (!MI->getOperand(0).isSymbol())
855     report("Asm string must be an external symbol", MI);
856   if (!MI->getOperand(1).isImm())
857     report("Asm flags must be an immediate", MI);
858   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
859   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
860   // and Extra_IsConvergent = 32.
861   if (!isUInt<6>(MI->getOperand(1).getImm()))
862     report("Unknown asm flags", &MI->getOperand(1), 1);
863 
864   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
865 
866   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
867   unsigned NumOps;
868   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
869     const MachineOperand &MO = MI->getOperand(OpNo);
870     // There may be implicit ops after the fixed operands.
871     if (!MO.isImm())
872       break;
873     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
874   }
875 
876   if (OpNo > MI->getNumOperands())
877     report("Missing operands in last group", MI);
878 
879   // An optional MDNode follows the groups.
880   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
881     ++OpNo;
882 
883   // All trailing operands must be implicit registers.
884   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
885     const MachineOperand &MO = MI->getOperand(OpNo);
886     if (!MO.isReg() || !MO.isImplicit())
887       report("Expected implicit register after groups", &MO, OpNo);
888   }
889 }
890 
891 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
892   const MCInstrDesc &MCID = MI->getDesc();
893   if (MI->getNumOperands() < MCID.getNumOperands()) {
894     report("Too few operands", MI);
895     errs() << MCID.getNumOperands() << " operands expected, but "
896            << MI->getNumOperands() << " given.\n";
897   }
898 
899   if (MI->isPHI()) {
900     if (MF->getProperties().hasProperty(
901             MachineFunctionProperties::Property::NoPHIs))
902       report("Found PHI instruction with NoPHIs property set", MI);
903 
904     if (FirstNonPHI)
905       report("Found PHI instruction after non-PHI", MI);
906   } else if (FirstNonPHI == nullptr)
907     FirstNonPHI = MI;
908 
909   // Check the tied operands.
910   if (MI->isInlineAsm())
911     verifyInlineAsm(MI);
912 
913   // Check the MachineMemOperands for basic consistency.
914   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
915                                   E = MI->memoperands_end();
916        I != E; ++I) {
917     if ((*I)->isLoad() && !MI->mayLoad())
918       report("Missing mayLoad flag", MI);
919     if ((*I)->isStore() && !MI->mayStore())
920       report("Missing mayStore flag", MI);
921   }
922 
923   // Debug values must not have a slot index.
924   // Other instructions must have one, unless they are inside a bundle.
925   if (LiveInts) {
926     bool mapped = !LiveInts->isNotInMIMap(*MI);
927     if (MI->isDebugInstr()) {
928       if (mapped)
929         report("Debug instruction has a slot index", MI);
930     } else if (MI->isInsideBundle()) {
931       if (mapped)
932         report("Instruction inside bundle has a slot index", MI);
933     } else {
934       if (!mapped)
935         report("Missing slot index", MI);
936     }
937   }
938 
939   if (isPreISelGenericOpcode(MCID.getOpcode())) {
940     if (isFunctionSelected)
941       report("Unexpected generic instruction in a Selected function", MI);
942 
943     // Check types.
944     SmallVector<LLT, 4> Types;
945     for (unsigned I = 0; I < MCID.getNumOperands(); ++I) {
946       if (!MCID.OpInfo[I].isGenericType())
947         continue;
948       // Generic instructions specify type equality constraints between some of
949       // their operands. Make sure these are consistent.
950       size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
951       Types.resize(std::max(TypeIdx + 1, Types.size()));
952 
953       const MachineOperand *MO = &MI->getOperand(I);
954       LLT OpTy = MRI->getType(MO->getReg());
955       // Don't report a type mismatch if there is no actual mismatch, only a
956       // type missing, to reduce noise:
957       if (OpTy.isValid()) {
958         // Only the first valid type for a type index will be printed: don't
959         // overwrite it later so it's always clear which type was expected:
960         if (!Types[TypeIdx].isValid())
961           Types[TypeIdx] = OpTy;
962         else if (Types[TypeIdx] != OpTy)
963           report("Type mismatch in generic instruction", MO, I, OpTy);
964       } else {
965         // Generic instructions must have types attached to their operands.
966         report("Generic instruction is missing a virtual register type", MO, I);
967       }
968     }
969 
970     // Generic opcodes must not have physical register operands.
971     for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
972       const MachineOperand *MO = &MI->getOperand(I);
973       if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
974         report("Generic instruction cannot have physical register", MO, I);
975     }
976   }
977 
978   StringRef ErrorInfo;
979   if (!TII->verifyInstruction(*MI, ErrorInfo))
980     report(ErrorInfo.data(), MI);
981 
982   // Verify properties of various specific instruction types
983   switch(MI->getOpcode()) {
984   default:
985     break;
986   case TargetOpcode::G_LOAD:
987   case TargetOpcode::G_STORE:
988     // Generic loads and stores must have a single MachineMemOperand
989     // describing that access.
990     if (!MI->hasOneMemOperand())
991       report("Generic instruction accessing memory must have one mem operand",
992              MI);
993     break;
994   case TargetOpcode::G_PHI: {
995     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
996     if (!DstTy.isValid() ||
997         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
998                      [this, &DstTy](const MachineOperand &MO) {
999                        if (!MO.isReg())
1000                          return true;
1001                        LLT Ty = MRI->getType(MO.getReg());
1002                        if (!Ty.isValid() || (Ty != DstTy))
1003                          return false;
1004                        return true;
1005                      }))
1006       report("Generic Instruction G_PHI has operands with incompatible/missing "
1007              "types",
1008              MI);
1009     break;
1010   }
1011   case TargetOpcode::G_BITCAST: {
1012     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1013     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1014     if (!DstTy.isValid() || !SrcTy.isValid())
1015       break;
1016 
1017     if (SrcTy.isPointer() != DstTy.isPointer())
1018       report("bitcast cannot convert between pointers and other types", MI);
1019 
1020     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1021       report("bitcast sizes must match", MI);
1022     break;
1023   }
1024   case TargetOpcode::G_SEXT:
1025   case TargetOpcode::G_ZEXT:
1026   case TargetOpcode::G_ANYEXT:
1027   case TargetOpcode::G_TRUNC:
1028   case TargetOpcode::G_FPEXT:
1029   case TargetOpcode::G_FPTRUNC: {
1030     // Number of operands and presense of types is already checked (and
1031     // reported in case of any issues), so no need to report them again. As
1032     // we're trying to report as many issues as possible at once, however, the
1033     // instructions aren't guaranteed to have the right number of operands or
1034     // types attached to them at this point
1035     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1036     if (MI->getNumOperands() < MCID.getNumOperands())
1037       break;
1038     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1039     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1040     if (!DstTy.isValid() || !SrcTy.isValid())
1041       break;
1042 
1043     LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy;
1044     LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
1045     if (DstElTy.isPointer() || SrcElTy.isPointer())
1046       report("Generic extend/truncate can not operate on pointers", MI);
1047 
1048     if (DstTy.isVector() != SrcTy.isVector()) {
1049       report("Generic extend/truncate must be all-vector or all-scalar", MI);
1050       // Generally we try to report as many issues as possible at once, but in
1051       // this case it's not clear what should we be comparing the size of the
1052       // scalar with: the size of the whole vector or its lane. Instead of
1053       // making an arbitrary choice and emitting not so helpful message, let's
1054       // avoid the extra noise and stop here.
1055       break;
1056     }
1057     if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())
1058       report("Generic vector extend/truncate must preserve number of lanes",
1059              MI);
1060     unsigned DstSize = DstElTy.getSizeInBits();
1061     unsigned SrcSize = SrcElTy.getSizeInBits();
1062     switch (MI->getOpcode()) {
1063     default:
1064       if (DstSize <= SrcSize)
1065         report("Generic extend has destination type no larger than source", MI);
1066       break;
1067     case TargetOpcode::G_TRUNC:
1068     case TargetOpcode::G_FPTRUNC:
1069       if (DstSize >= SrcSize)
1070         report("Generic truncate has destination type no smaller than source",
1071                MI);
1072       break;
1073     }
1074     break;
1075   }
1076   case TargetOpcode::G_MERGE_VALUES: {
1077     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1078     // e.g. s2N = MERGE sN, sN
1079     // Merging multiple scalars into a vector is not allowed, should use
1080     // G_BUILD_VECTOR for that.
1081     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1082     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1083     if (DstTy.isVector() || SrcTy.isVector())
1084       report("G_MERGE_VALUES cannot operate on vectors", MI);
1085     break;
1086   }
1087   case TargetOpcode::G_UNMERGE_VALUES: {
1088     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1089     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1090     // For now G_UNMERGE can split vectors.
1091     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1092       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1093         report("G_UNMERGE_VALUES destination types do not match", MI);
1094     }
1095     if (SrcTy.getSizeInBits() !=
1096         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1097       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1098              MI);
1099     }
1100     break;
1101   }
1102   case TargetOpcode::G_BUILD_VECTOR: {
1103     // Source types must be scalars, dest type a vector. Total size of scalars
1104     // must match the dest vector size.
1105     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1106     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1107     if (!DstTy.isVector() || SrcEltTy.isVector())
1108       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1109     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1110       if (MRI->getType(MI->getOperand(1).getReg()) !=
1111           MRI->getType(MI->getOperand(i).getReg()))
1112         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1113     }
1114     if (DstTy.getSizeInBits() !=
1115         SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1))
1116       report("G_BUILD_VECTOR src operands total size don't match dest "
1117              "size.",
1118              MI);
1119     break;
1120   }
1121   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1122     // Source types must be scalars, dest type a vector. Scalar types must be
1123     // larger than the dest vector elt type, as this is a truncating operation.
1124     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1125     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1126     if (!DstTy.isVector() || SrcEltTy.isVector())
1127       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1128              MI);
1129     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1130       if (MRI->getType(MI->getOperand(1).getReg()) !=
1131           MRI->getType(MI->getOperand(i).getReg()))
1132         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1133                MI);
1134     }
1135     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1136       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1137              "dest elt type",
1138              MI);
1139     break;
1140   }
1141   case TargetOpcode::G_CONCAT_VECTORS: {
1142     // Source types should be vectors, and total size should match the dest
1143     // vector size.
1144     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1145     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1146     if (!DstTy.isVector() || !SrcTy.isVector())
1147       report("G_CONCAT_VECTOR requires vector source and destination operands",
1148              MI);
1149     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1150       if (MRI->getType(MI->getOperand(1).getReg()) !=
1151           MRI->getType(MI->getOperand(i).getReg()))
1152         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1153     }
1154     if (DstTy.getNumElements() !=
1155         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1156       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1157     break;
1158   }
1159   case TargetOpcode::COPY: {
1160     if (foundErrors)
1161       break;
1162     const MachineOperand &DstOp = MI->getOperand(0);
1163     const MachineOperand &SrcOp = MI->getOperand(1);
1164     LLT DstTy = MRI->getType(DstOp.getReg());
1165     LLT SrcTy = MRI->getType(SrcOp.getReg());
1166     if (SrcTy.isValid() && DstTy.isValid()) {
1167       // If both types are valid, check that the types are the same.
1168       if (SrcTy != DstTy) {
1169         report("Copy Instruction is illegal with mismatching types", MI);
1170         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1171       }
1172     }
1173     if (SrcTy.isValid() || DstTy.isValid()) {
1174       // If one of them have valid types, let's just check they have the same
1175       // size.
1176       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1177       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1178       assert(SrcSize && "Expecting size here");
1179       assert(DstSize && "Expecting size here");
1180       if (SrcSize != DstSize)
1181         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1182           report("Copy Instruction is illegal with mismatching sizes", MI);
1183           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1184                  << "\n";
1185         }
1186     }
1187     break;
1188   }
1189   case TargetOpcode::G_ICMP:
1190   case TargetOpcode::G_FCMP: {
1191     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1192     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1193 
1194     if ((DstTy.isVector() != SrcTy.isVector()) ||
1195         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1196       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1197 
1198     break;
1199   }
1200   case TargetOpcode::STATEPOINT:
1201     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1202         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1203         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1204       report("meta operands to STATEPOINT not constant!", MI);
1205     break;
1206 
1207     auto VerifyStackMapConstant = [&](unsigned Offset) {
1208       if (!MI->getOperand(Offset).isImm() ||
1209           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1210           !MI->getOperand(Offset + 1).isImm())
1211         report("stack map constant to STATEPOINT not well formed!", MI);
1212     };
1213     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1214     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1215     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1216     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1217 
1218     // TODO: verify we have properly encoded deopt arguments
1219   };
1220 }
1221 
1222 void
1223 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1224   const MachineInstr *MI = MO->getParent();
1225   const MCInstrDesc &MCID = MI->getDesc();
1226   unsigned NumDefs = MCID.getNumDefs();
1227   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1228     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1229 
1230   // The first MCID.NumDefs operands must be explicit register defines
1231   if (MONum < NumDefs) {
1232     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1233     if (!MO->isReg())
1234       report("Explicit definition must be a register", MO, MONum);
1235     else if (!MO->isDef() && !MCOI.isOptionalDef())
1236       report("Explicit definition marked as use", MO, MONum);
1237     else if (MO->isImplicit())
1238       report("Explicit definition marked as implicit", MO, MONum);
1239   } else if (MONum < MCID.getNumOperands()) {
1240     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1241     // Don't check if it's the last operand in a variadic instruction. See,
1242     // e.g., LDM_RET in the arm back end.
1243     if (MO->isReg() &&
1244         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1245       if (MO->isDef() && !MCOI.isOptionalDef())
1246         report("Explicit operand marked as def", MO, MONum);
1247       if (MO->isImplicit())
1248         report("Explicit operand marked as implicit", MO, MONum);
1249     }
1250 
1251     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1252     if (TiedTo != -1) {
1253       if (!MO->isReg())
1254         report("Tied use must be a register", MO, MONum);
1255       else if (!MO->isTied())
1256         report("Operand should be tied", MO, MONum);
1257       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1258         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1259       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1260         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1261         if (!MOTied.isReg())
1262           report("Tied counterpart must be a register", &MOTied, TiedTo);
1263         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1264                  MO->getReg() != MOTied.getReg())
1265           report("Tied physical registers must match.", &MOTied, TiedTo);
1266       }
1267     } else if (MO->isReg() && MO->isTied())
1268       report("Explicit operand should not be tied", MO, MONum);
1269   } else {
1270     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1271     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1272       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1273   }
1274 
1275   switch (MO->getType()) {
1276   case MachineOperand::MO_Register: {
1277     const unsigned Reg = MO->getReg();
1278     if (!Reg)
1279       return;
1280     if (MRI->tracksLiveness() && !MI->isDebugValue())
1281       checkLiveness(MO, MONum);
1282 
1283     // Verify the consistency of tied operands.
1284     if (MO->isTied()) {
1285       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1286       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1287       if (!OtherMO.isReg())
1288         report("Must be tied to a register", MO, MONum);
1289       if (!OtherMO.isTied())
1290         report("Missing tie flags on tied operand", MO, MONum);
1291       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1292         report("Inconsistent tie links", MO, MONum);
1293       if (MONum < MCID.getNumDefs()) {
1294         if (OtherIdx < MCID.getNumOperands()) {
1295           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1296             report("Explicit def tied to explicit use without tie constraint",
1297                    MO, MONum);
1298         } else {
1299           if (!OtherMO.isImplicit())
1300             report("Explicit def should be tied to implicit use", MO, MONum);
1301         }
1302       }
1303     }
1304 
1305     // Verify two-address constraints after leaving SSA form.
1306     unsigned DefIdx;
1307     if (!MRI->isSSA() && MO->isUse() &&
1308         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1309         Reg != MI->getOperand(DefIdx).getReg())
1310       report("Two-address instruction operands must be identical", MO, MONum);
1311 
1312     // Check register classes.
1313     unsigned SubIdx = MO->getSubReg();
1314 
1315     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1316       if (SubIdx) {
1317         report("Illegal subregister index for physical register", MO, MONum);
1318         return;
1319       }
1320       if (MONum < MCID.getNumOperands()) {
1321         if (const TargetRegisterClass *DRC =
1322               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1323           if (!DRC->contains(Reg)) {
1324             report("Illegal physical register for instruction", MO, MONum);
1325             errs() << printReg(Reg, TRI) << " is not a "
1326                    << TRI->getRegClassName(DRC) << " register.\n";
1327           }
1328         }
1329       }
1330       if (MO->isRenamable()) {
1331         if (MRI->isReserved(Reg)) {
1332           report("isRenamable set on reserved register", MO, MONum);
1333           return;
1334         }
1335       }
1336       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1337         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1338         return;
1339       }
1340     } else {
1341       // Virtual register.
1342       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1343       if (!RC) {
1344         // This is a generic virtual register.
1345 
1346         // If we're post-Select, we can't have gvregs anymore.
1347         if (isFunctionSelected) {
1348           report("Generic virtual register invalid in a Selected function",
1349                  MO, MONum);
1350           return;
1351         }
1352 
1353         // The gvreg must have a type and it must not have a SubIdx.
1354         LLT Ty = MRI->getType(Reg);
1355         if (!Ty.isValid()) {
1356           report("Generic virtual register must have a valid type", MO,
1357                  MONum);
1358           return;
1359         }
1360 
1361         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1362 
1363         // If we're post-RegBankSelect, the gvreg must have a bank.
1364         if (!RegBank && isFunctionRegBankSelected) {
1365           report("Generic virtual register must have a bank in a "
1366                  "RegBankSelected function",
1367                  MO, MONum);
1368           return;
1369         }
1370 
1371         // Make sure the register fits into its register bank if any.
1372         if (RegBank && Ty.isValid() &&
1373             RegBank->getSize() < Ty.getSizeInBits()) {
1374           report("Register bank is too small for virtual register", MO,
1375                  MONum);
1376           errs() << "Register bank " << RegBank->getName() << " too small("
1377                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1378                  << "-bits\n";
1379           return;
1380         }
1381         if (SubIdx)  {
1382           report("Generic virtual register does not subregister index", MO,
1383                  MONum);
1384           return;
1385         }
1386 
1387         // If this is a target specific instruction and this operand
1388         // has register class constraint, the virtual register must
1389         // comply to it.
1390         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1391             MONum < MCID.getNumOperands() &&
1392             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1393           report("Virtual register does not match instruction constraint", MO,
1394                  MONum);
1395           errs() << "Expect register class "
1396                  << TRI->getRegClassName(
1397                         TII->getRegClass(MCID, MONum, TRI, *MF))
1398                  << " but got nothing\n";
1399           return;
1400         }
1401 
1402         break;
1403       }
1404       if (SubIdx) {
1405         const TargetRegisterClass *SRC =
1406           TRI->getSubClassWithSubReg(RC, SubIdx);
1407         if (!SRC) {
1408           report("Invalid subregister index for virtual register", MO, MONum);
1409           errs() << "Register class " << TRI->getRegClassName(RC)
1410               << " does not support subreg index " << SubIdx << "\n";
1411           return;
1412         }
1413         if (RC != SRC) {
1414           report("Invalid register class for subregister index", MO, MONum);
1415           errs() << "Register class " << TRI->getRegClassName(RC)
1416               << " does not fully support subreg index " << SubIdx << "\n";
1417           return;
1418         }
1419       }
1420       if (MONum < MCID.getNumOperands()) {
1421         if (const TargetRegisterClass *DRC =
1422               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1423           if (SubIdx) {
1424             const TargetRegisterClass *SuperRC =
1425                 TRI->getLargestLegalSuperClass(RC, *MF);
1426             if (!SuperRC) {
1427               report("No largest legal super class exists.", MO, MONum);
1428               return;
1429             }
1430             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1431             if (!DRC) {
1432               report("No matching super-reg register class.", MO, MONum);
1433               return;
1434             }
1435           }
1436           if (!RC->hasSuperClassEq(DRC)) {
1437             report("Illegal virtual register for instruction", MO, MONum);
1438             errs() << "Expected a " << TRI->getRegClassName(DRC)
1439                 << " register, but got a " << TRI->getRegClassName(RC)
1440                 << " register\n";
1441           }
1442         }
1443       }
1444     }
1445     break;
1446   }
1447 
1448   case MachineOperand::MO_RegisterMask:
1449     regMasks.push_back(MO->getRegMask());
1450     break;
1451 
1452   case MachineOperand::MO_MachineBasicBlock:
1453     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1454       report("PHI operand is not in the CFG", MO, MONum);
1455     break;
1456 
1457   case MachineOperand::MO_FrameIndex:
1458     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1459         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1460       int FI = MO->getIndex();
1461       LiveInterval &LI = LiveStks->getInterval(FI);
1462       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1463 
1464       bool stores = MI->mayStore();
1465       bool loads = MI->mayLoad();
1466       // For a memory-to-memory move, we need to check if the frame
1467       // index is used for storing or loading, by inspecting the
1468       // memory operands.
1469       if (stores && loads) {
1470         for (auto *MMO : MI->memoperands()) {
1471           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1472           if (PSV == nullptr) continue;
1473           const FixedStackPseudoSourceValue *Value =
1474             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1475           if (Value == nullptr) continue;
1476           if (Value->getFrameIndex() != FI) continue;
1477 
1478           if (MMO->isStore())
1479             loads = false;
1480           else
1481             stores = false;
1482           break;
1483         }
1484         if (loads == stores)
1485           report("Missing fixed stack memoperand.", MI);
1486       }
1487       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1488         report("Instruction loads from dead spill slot", MO, MONum);
1489         errs() << "Live stack: " << LI << '\n';
1490       }
1491       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1492         report("Instruction stores to dead spill slot", MO, MONum);
1493         errs() << "Live stack: " << LI << '\n';
1494       }
1495     }
1496     break;
1497 
1498   default:
1499     break;
1500   }
1501 }
1502 
1503 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1504     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1505     LaneBitmask LaneMask) {
1506   LiveQueryResult LRQ = LR.Query(UseIdx);
1507   // Check if we have a segment at the use, note however that we only need one
1508   // live subregister range, the others may be dead.
1509   if (!LRQ.valueIn() && LaneMask.none()) {
1510     report("No live segment at use", MO, MONum);
1511     report_context_liverange(LR);
1512     report_context_vreg_regunit(VRegOrUnit);
1513     report_context(UseIdx);
1514   }
1515   if (MO->isKill() && !LRQ.isKill()) {
1516     report("Live range continues after kill flag", MO, MONum);
1517     report_context_liverange(LR);
1518     report_context_vreg_regunit(VRegOrUnit);
1519     if (LaneMask.any())
1520       report_context_lanemask(LaneMask);
1521     report_context(UseIdx);
1522   }
1523 }
1524 
1525 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1526     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1527     bool SubRangeCheck, LaneBitmask LaneMask) {
1528   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1529     assert(VNI && "NULL valno is not allowed");
1530     if (VNI->def != DefIdx) {
1531       report("Inconsistent valno->def", MO, MONum);
1532       report_context_liverange(LR);
1533       report_context_vreg_regunit(VRegOrUnit);
1534       if (LaneMask.any())
1535         report_context_lanemask(LaneMask);
1536       report_context(*VNI);
1537       report_context(DefIdx);
1538     }
1539   } else {
1540     report("No live segment at def", MO, MONum);
1541     report_context_liverange(LR);
1542     report_context_vreg_regunit(VRegOrUnit);
1543     if (LaneMask.any())
1544       report_context_lanemask(LaneMask);
1545     report_context(DefIdx);
1546   }
1547   // Check that, if the dead def flag is present, LiveInts agree.
1548   if (MO->isDead()) {
1549     LiveQueryResult LRQ = LR.Query(DefIdx);
1550     if (!LRQ.isDeadDef()) {
1551       assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1552              "Expecting a virtual register.");
1553       // A dead subreg def only tells us that the specific subreg is dead. There
1554       // could be other non-dead defs of other subregs, or we could have other
1555       // parts of the register being live through the instruction. So unless we
1556       // are checking liveness for a subrange it is ok for the live range to
1557       // continue, given that we have a dead def of a subregister.
1558       if (SubRangeCheck || MO->getSubReg() == 0) {
1559         report("Live range continues after dead def flag", MO, MONum);
1560         report_context_liverange(LR);
1561         report_context_vreg_regunit(VRegOrUnit);
1562         if (LaneMask.any())
1563           report_context_lanemask(LaneMask);
1564       }
1565     }
1566   }
1567 }
1568 
1569 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1570   const MachineInstr *MI = MO->getParent();
1571   const unsigned Reg = MO->getReg();
1572 
1573   // Both use and def operands can read a register.
1574   if (MO->readsReg()) {
1575     if (MO->isKill())
1576       addRegWithSubRegs(regsKilled, Reg);
1577 
1578     // Check that LiveVars knows this kill.
1579     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1580         MO->isKill()) {
1581       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1582       if (!is_contained(VI.Kills, MI))
1583         report("Kill missing from LiveVariables", MO, MONum);
1584     }
1585 
1586     // Check LiveInts liveness and kill.
1587     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1588       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1589       // Check the cached regunit intervals.
1590       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1591         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1592           if (MRI->isReservedRegUnit(*Units))
1593             continue;
1594           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1595             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1596         }
1597       }
1598 
1599       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1600         if (LiveInts->hasInterval(Reg)) {
1601           // This is a virtual register interval.
1602           const LiveInterval &LI = LiveInts->getInterval(Reg);
1603           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1604 
1605           if (LI.hasSubRanges() && !MO->isDef()) {
1606             unsigned SubRegIdx = MO->getSubReg();
1607             LaneBitmask MOMask = SubRegIdx != 0
1608                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1609                                : MRI->getMaxLaneMaskForVReg(Reg);
1610             LaneBitmask LiveInMask;
1611             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1612               if ((MOMask & SR.LaneMask).none())
1613                 continue;
1614               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1615               LiveQueryResult LRQ = SR.Query(UseIdx);
1616               if (LRQ.valueIn())
1617                 LiveInMask |= SR.LaneMask;
1618             }
1619             // At least parts of the register has to be live at the use.
1620             if ((LiveInMask & MOMask).none()) {
1621               report("No live subrange at use", MO, MONum);
1622               report_context(LI);
1623               report_context(UseIdx);
1624             }
1625           }
1626         } else {
1627           report("Virtual register has no live interval", MO, MONum);
1628         }
1629       }
1630     }
1631 
1632     // Use of a dead register.
1633     if (!regsLive.count(Reg)) {
1634       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1635         // Reserved registers may be used even when 'dead'.
1636         bool Bad = !isReserved(Reg);
1637         // We are fine if just any subregister has a defined value.
1638         if (Bad) {
1639           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1640                ++SubRegs) {
1641             if (regsLive.count(*SubRegs)) {
1642               Bad = false;
1643               break;
1644             }
1645           }
1646         }
1647         // If there is an additional implicit-use of a super register we stop
1648         // here. By definition we are fine if the super register is not
1649         // (completely) dead, if the complete super register is dead we will
1650         // get a report for its operand.
1651         if (Bad) {
1652           for (const MachineOperand &MOP : MI->uses()) {
1653             if (!MOP.isReg() || !MOP.isImplicit())
1654               continue;
1655 
1656             if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1657               continue;
1658 
1659             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1660                  ++SubRegs) {
1661               if (*SubRegs == Reg) {
1662                 Bad = false;
1663                 break;
1664               }
1665             }
1666           }
1667         }
1668         if (Bad)
1669           report("Using an undefined physical register", MO, MONum);
1670       } else if (MRI->def_empty(Reg)) {
1671         report("Reading virtual register without a def", MO, MONum);
1672       } else {
1673         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1674         // We don't know which virtual registers are live in, so only complain
1675         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1676         // must be live in. PHI instructions are handled separately.
1677         if (MInfo.regsKilled.count(Reg))
1678           report("Using a killed virtual register", MO, MONum);
1679         else if (!MI->isPHI())
1680           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1681       }
1682     }
1683   }
1684 
1685   if (MO->isDef()) {
1686     // Register defined.
1687     // TODO: verify that earlyclobber ops are not used.
1688     if (MO->isDead())
1689       addRegWithSubRegs(regsDead, Reg);
1690     else
1691       addRegWithSubRegs(regsDefined, Reg);
1692 
1693     // Verify SSA form.
1694     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1695         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1696       report("Multiple virtual register defs in SSA form", MO, MONum);
1697 
1698     // Check LiveInts for a live segment, but only for virtual registers.
1699     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1700       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1701       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1702 
1703       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1704         if (LiveInts->hasInterval(Reg)) {
1705           const LiveInterval &LI = LiveInts->getInterval(Reg);
1706           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1707 
1708           if (LI.hasSubRanges()) {
1709             unsigned SubRegIdx = MO->getSubReg();
1710             LaneBitmask MOMask = SubRegIdx != 0
1711               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1712               : MRI->getMaxLaneMaskForVReg(Reg);
1713             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1714               if ((SR.LaneMask & MOMask).none())
1715                 continue;
1716               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1717             }
1718           }
1719         } else {
1720           report("Virtual register has no Live interval", MO, MONum);
1721         }
1722       }
1723     }
1724   }
1725 }
1726 
1727 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1728 
1729 // This function gets called after visiting all instructions in a bundle. The
1730 // argument points to the bundle header.
1731 // Normal stand-alone instructions are also considered 'bundles', and this
1732 // function is called for all of them.
1733 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1734   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1735   set_union(MInfo.regsKilled, regsKilled);
1736   set_subtract(regsLive, regsKilled); regsKilled.clear();
1737   // Kill any masked registers.
1738   while (!regMasks.empty()) {
1739     const uint32_t *Mask = regMasks.pop_back_val();
1740     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1741       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1742           MachineOperand::clobbersPhysReg(Mask, *I))
1743         regsDead.push_back(*I);
1744   }
1745   set_subtract(regsLive, regsDead);   regsDead.clear();
1746   set_union(regsLive, regsDefined);   regsDefined.clear();
1747 }
1748 
1749 void
1750 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1751   MBBInfoMap[MBB].regsLiveOut = regsLive;
1752   regsLive.clear();
1753 
1754   if (Indexes) {
1755     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1756     if (!(stop > lastIndex)) {
1757       report("Block ends before last instruction index", MBB);
1758       errs() << "Block ends at " << stop
1759           << " last instruction was at " << lastIndex << '\n';
1760     }
1761     lastIndex = stop;
1762   }
1763 }
1764 
1765 // Calculate the largest possible vregsPassed sets. These are the registers that
1766 // can pass through an MBB live, but may not be live every time. It is assumed
1767 // that all vregsPassed sets are empty before the call.
1768 void MachineVerifier::calcRegsPassed() {
1769   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1770   // have any vregsPassed.
1771   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1772   for (const auto &MBB : *MF) {
1773     BBInfo &MInfo = MBBInfoMap[&MBB];
1774     if (!MInfo.reachable)
1775       continue;
1776     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1777            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1778       BBInfo &SInfo = MBBInfoMap[*SuI];
1779       if (SInfo.addPassed(MInfo.regsLiveOut))
1780         todo.insert(*SuI);
1781     }
1782   }
1783 
1784   // Iteratively push vregsPassed to successors. This will converge to the same
1785   // final state regardless of DenseSet iteration order.
1786   while (!todo.empty()) {
1787     const MachineBasicBlock *MBB = *todo.begin();
1788     todo.erase(MBB);
1789     BBInfo &MInfo = MBBInfoMap[MBB];
1790     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1791            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1792       if (*SuI == MBB)
1793         continue;
1794       BBInfo &SInfo = MBBInfoMap[*SuI];
1795       if (SInfo.addPassed(MInfo.vregsPassed))
1796         todo.insert(*SuI);
1797     }
1798   }
1799 }
1800 
1801 // Calculate the set of virtual registers that must be passed through each basic
1802 // block in order to satisfy the requirements of successor blocks. This is very
1803 // similar to calcRegsPassed, only backwards.
1804 void MachineVerifier::calcRegsRequired() {
1805   // First push live-in regs to predecessors' vregsRequired.
1806   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1807   for (const auto &MBB : *MF) {
1808     BBInfo &MInfo = MBBInfoMap[&MBB];
1809     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1810            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1811       BBInfo &PInfo = MBBInfoMap[*PrI];
1812       if (PInfo.addRequired(MInfo.vregsLiveIn))
1813         todo.insert(*PrI);
1814     }
1815   }
1816 
1817   // Iteratively push vregsRequired to predecessors. This will converge to the
1818   // same final state regardless of DenseSet iteration order.
1819   while (!todo.empty()) {
1820     const MachineBasicBlock *MBB = *todo.begin();
1821     todo.erase(MBB);
1822     BBInfo &MInfo = MBBInfoMap[MBB];
1823     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1824            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1825       if (*PrI == MBB)
1826         continue;
1827       BBInfo &SInfo = MBBInfoMap[*PrI];
1828       if (SInfo.addRequired(MInfo.vregsRequired))
1829         todo.insert(*PrI);
1830     }
1831   }
1832 }
1833 
1834 // Check PHI instructions at the beginning of MBB. It is assumed that
1835 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1836 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1837   BBInfo &MInfo = MBBInfoMap[&MBB];
1838 
1839   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1840   for (const MachineInstr &Phi : MBB) {
1841     if (!Phi.isPHI())
1842       break;
1843     seen.clear();
1844 
1845     const MachineOperand &MODef = Phi.getOperand(0);
1846     if (!MODef.isReg() || !MODef.isDef()) {
1847       report("Expected first PHI operand to be a register def", &MODef, 0);
1848       continue;
1849     }
1850     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1851         MODef.isEarlyClobber() || MODef.isDebug())
1852       report("Unexpected flag on PHI operand", &MODef, 0);
1853     unsigned DefReg = MODef.getReg();
1854     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1855       report("Expected first PHI operand to be a virtual register", &MODef, 0);
1856 
1857     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1858       const MachineOperand &MO0 = Phi.getOperand(I);
1859       if (!MO0.isReg()) {
1860         report("Expected PHI operand to be a register", &MO0, I);
1861         continue;
1862       }
1863       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1864           MO0.isDebug() || MO0.isTied())
1865         report("Unexpected flag on PHI operand", &MO0, I);
1866 
1867       const MachineOperand &MO1 = Phi.getOperand(I + 1);
1868       if (!MO1.isMBB()) {
1869         report("Expected PHI operand to be a basic block", &MO1, I + 1);
1870         continue;
1871       }
1872 
1873       const MachineBasicBlock &Pre = *MO1.getMBB();
1874       if (!Pre.isSuccessor(&MBB)) {
1875         report("PHI input is not a predecessor block", &MO1, I + 1);
1876         continue;
1877       }
1878 
1879       if (MInfo.reachable) {
1880         seen.insert(&Pre);
1881         BBInfo &PrInfo = MBBInfoMap[&Pre];
1882         if (!MO0.isUndef() && PrInfo.reachable &&
1883             !PrInfo.isLiveOut(MO0.getReg()))
1884           report("PHI operand is not live-out from predecessor", &MO0, I);
1885       }
1886     }
1887 
1888     // Did we see all predecessors?
1889     if (MInfo.reachable) {
1890       for (MachineBasicBlock *Pred : MBB.predecessors()) {
1891         if (!seen.count(Pred)) {
1892           report("Missing PHI operand", &Phi);
1893           errs() << printMBBReference(*Pred)
1894                  << " is a predecessor according to the CFG.\n";
1895         }
1896       }
1897     }
1898   }
1899 }
1900 
1901 void MachineVerifier::visitMachineFunctionAfter() {
1902   calcRegsPassed();
1903 
1904   for (const MachineBasicBlock &MBB : *MF)
1905     checkPHIOps(MBB);
1906 
1907   // Now check liveness info if available
1908   calcRegsRequired();
1909 
1910   // Check for killed virtual registers that should be live out.
1911   for (const auto &MBB : *MF) {
1912     BBInfo &MInfo = MBBInfoMap[&MBB];
1913     for (RegSet::iterator
1914          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1915          ++I)
1916       if (MInfo.regsKilled.count(*I)) {
1917         report("Virtual register killed in block, but needed live out.", &MBB);
1918         errs() << "Virtual register " << printReg(*I)
1919                << " is used after the block.\n";
1920       }
1921   }
1922 
1923   if (!MF->empty()) {
1924     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1925     for (RegSet::iterator
1926          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1927          ++I) {
1928       report("Virtual register defs don't dominate all uses.", MF);
1929       report_context_vreg(*I);
1930     }
1931   }
1932 
1933   if (LiveVars)
1934     verifyLiveVariables();
1935   if (LiveInts)
1936     verifyLiveIntervals();
1937 }
1938 
1939 void MachineVerifier::verifyLiveVariables() {
1940   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1941   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1942     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1943     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1944     for (const auto &MBB : *MF) {
1945       BBInfo &MInfo = MBBInfoMap[&MBB];
1946 
1947       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1948       if (MInfo.vregsRequired.count(Reg)) {
1949         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1950           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1951           errs() << "Virtual register " << printReg(Reg)
1952                  << " must be live through the block.\n";
1953         }
1954       } else {
1955         if (VI.AliveBlocks.test(MBB.getNumber())) {
1956           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1957           errs() << "Virtual register " << printReg(Reg)
1958                  << " is not needed live through the block.\n";
1959         }
1960       }
1961     }
1962   }
1963 }
1964 
1965 void MachineVerifier::verifyLiveIntervals() {
1966   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1967   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1968     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1969 
1970     // Spilling and splitting may leave unused registers around. Skip them.
1971     if (MRI->reg_nodbg_empty(Reg))
1972       continue;
1973 
1974     if (!LiveInts->hasInterval(Reg)) {
1975       report("Missing live interval for virtual register", MF);
1976       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
1977       continue;
1978     }
1979 
1980     const LiveInterval &LI = LiveInts->getInterval(Reg);
1981     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1982     verifyLiveInterval(LI);
1983   }
1984 
1985   // Verify all the cached regunit intervals.
1986   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1987     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1988       verifyLiveRange(*LR, i);
1989 }
1990 
1991 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1992                                            const VNInfo *VNI, unsigned Reg,
1993                                            LaneBitmask LaneMask) {
1994   if (VNI->isUnused())
1995     return;
1996 
1997   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1998 
1999   if (!DefVNI) {
2000     report("Value not live at VNInfo def and not marked unused", MF);
2001     report_context(LR, Reg, LaneMask);
2002     report_context(*VNI);
2003     return;
2004   }
2005 
2006   if (DefVNI != VNI) {
2007     report("Live segment at def has different VNInfo", MF);
2008     report_context(LR, Reg, LaneMask);
2009     report_context(*VNI);
2010     return;
2011   }
2012 
2013   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2014   if (!MBB) {
2015     report("Invalid VNInfo definition index", MF);
2016     report_context(LR, Reg, LaneMask);
2017     report_context(*VNI);
2018     return;
2019   }
2020 
2021   if (VNI->isPHIDef()) {
2022     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2023       report("PHIDef VNInfo is not defined at MBB start", MBB);
2024       report_context(LR, Reg, LaneMask);
2025       report_context(*VNI);
2026     }
2027     return;
2028   }
2029 
2030   // Non-PHI def.
2031   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2032   if (!MI) {
2033     report("No instruction at VNInfo def index", MBB);
2034     report_context(LR, Reg, LaneMask);
2035     report_context(*VNI);
2036     return;
2037   }
2038 
2039   if (Reg != 0) {
2040     bool hasDef = false;
2041     bool isEarlyClobber = false;
2042     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2043       if (!MOI->isReg() || !MOI->isDef())
2044         continue;
2045       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2046         if (MOI->getReg() != Reg)
2047           continue;
2048       } else {
2049         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2050             !TRI->hasRegUnit(MOI->getReg(), Reg))
2051           continue;
2052       }
2053       if (LaneMask.any() &&
2054           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2055         continue;
2056       hasDef = true;
2057       if (MOI->isEarlyClobber())
2058         isEarlyClobber = true;
2059     }
2060 
2061     if (!hasDef) {
2062       report("Defining instruction does not modify register", MI);
2063       report_context(LR, Reg, LaneMask);
2064       report_context(*VNI);
2065     }
2066 
2067     // Early clobber defs begin at USE slots, but other defs must begin at
2068     // DEF slots.
2069     if (isEarlyClobber) {
2070       if (!VNI->def.isEarlyClobber()) {
2071         report("Early clobber def must be at an early-clobber slot", MBB);
2072         report_context(LR, Reg, LaneMask);
2073         report_context(*VNI);
2074       }
2075     } else if (!VNI->def.isRegister()) {
2076       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2077       report_context(LR, Reg, LaneMask);
2078       report_context(*VNI);
2079     }
2080   }
2081 }
2082 
2083 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2084                                              const LiveRange::const_iterator I,
2085                                              unsigned Reg, LaneBitmask LaneMask)
2086 {
2087   const LiveRange::Segment &S = *I;
2088   const VNInfo *VNI = S.valno;
2089   assert(VNI && "Live segment has no valno");
2090 
2091   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2092     report("Foreign valno in live segment", MF);
2093     report_context(LR, Reg, LaneMask);
2094     report_context(S);
2095     report_context(*VNI);
2096   }
2097 
2098   if (VNI->isUnused()) {
2099     report("Live segment valno is marked unused", MF);
2100     report_context(LR, Reg, LaneMask);
2101     report_context(S);
2102   }
2103 
2104   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2105   if (!MBB) {
2106     report("Bad start of live segment, no basic block", MF);
2107     report_context(LR, Reg, LaneMask);
2108     report_context(S);
2109     return;
2110   }
2111   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2112   if (S.start != MBBStartIdx && S.start != VNI->def) {
2113     report("Live segment must begin at MBB entry or valno def", MBB);
2114     report_context(LR, Reg, LaneMask);
2115     report_context(S);
2116   }
2117 
2118   const MachineBasicBlock *EndMBB =
2119     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2120   if (!EndMBB) {
2121     report("Bad end of live segment, no basic block", MF);
2122     report_context(LR, Reg, LaneMask);
2123     report_context(S);
2124     return;
2125   }
2126 
2127   // No more checks for live-out segments.
2128   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2129     return;
2130 
2131   // RegUnit intervals are allowed dead phis.
2132   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2133       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2134     return;
2135 
2136   // The live segment is ending inside EndMBB
2137   const MachineInstr *MI =
2138     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2139   if (!MI) {
2140     report("Live segment doesn't end at a valid instruction", EndMBB);
2141     report_context(LR, Reg, LaneMask);
2142     report_context(S);
2143     return;
2144   }
2145 
2146   // The block slot must refer to a basic block boundary.
2147   if (S.end.isBlock()) {
2148     report("Live segment ends at B slot of an instruction", EndMBB);
2149     report_context(LR, Reg, LaneMask);
2150     report_context(S);
2151   }
2152 
2153   if (S.end.isDead()) {
2154     // Segment ends on the dead slot.
2155     // That means there must be a dead def.
2156     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2157       report("Live segment ending at dead slot spans instructions", EndMBB);
2158       report_context(LR, Reg, LaneMask);
2159       report_context(S);
2160     }
2161   }
2162 
2163   // A live segment can only end at an early-clobber slot if it is being
2164   // redefined by an early-clobber def.
2165   if (S.end.isEarlyClobber()) {
2166     if (I+1 == LR.end() || (I+1)->start != S.end) {
2167       report("Live segment ending at early clobber slot must be "
2168              "redefined by an EC def in the same instruction", EndMBB);
2169       report_context(LR, Reg, LaneMask);
2170       report_context(S);
2171     }
2172   }
2173 
2174   // The following checks only apply to virtual registers. Physreg liveness
2175   // is too weird to check.
2176   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2177     // A live segment can end with either a redefinition, a kill flag on a
2178     // use, or a dead flag on a def.
2179     bool hasRead = false;
2180     bool hasSubRegDef = false;
2181     bool hasDeadDef = false;
2182     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2183       if (!MOI->isReg() || MOI->getReg() != Reg)
2184         continue;
2185       unsigned Sub = MOI->getSubReg();
2186       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2187                                  : LaneBitmask::getAll();
2188       if (MOI->isDef()) {
2189         if (Sub != 0) {
2190           hasSubRegDef = true;
2191           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2192           // mask for subregister defs. Read-undef defs will be handled by
2193           // readsReg below.
2194           SLM = ~SLM;
2195         }
2196         if (MOI->isDead())
2197           hasDeadDef = true;
2198       }
2199       if (LaneMask.any() && (LaneMask & SLM).none())
2200         continue;
2201       if (MOI->readsReg())
2202         hasRead = true;
2203     }
2204     if (S.end.isDead()) {
2205       // Make sure that the corresponding machine operand for a "dead" live
2206       // range has the dead flag. We cannot perform this check for subregister
2207       // liveranges as partially dead values are allowed.
2208       if (LaneMask.none() && !hasDeadDef) {
2209         report("Instruction ending live segment on dead slot has no dead flag",
2210                MI);
2211         report_context(LR, Reg, LaneMask);
2212         report_context(S);
2213       }
2214     } else {
2215       if (!hasRead) {
2216         // When tracking subregister liveness, the main range must start new
2217         // values on partial register writes, even if there is no read.
2218         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2219             !hasSubRegDef) {
2220           report("Instruction ending live segment doesn't read the register",
2221                  MI);
2222           report_context(LR, Reg, LaneMask);
2223           report_context(S);
2224         }
2225       }
2226     }
2227   }
2228 
2229   // Now check all the basic blocks in this live segment.
2230   MachineFunction::const_iterator MFI = MBB->getIterator();
2231   // Is this live segment the beginning of a non-PHIDef VN?
2232   if (S.start == VNI->def && !VNI->isPHIDef()) {
2233     // Not live-in to any blocks.
2234     if (MBB == EndMBB)
2235       return;
2236     // Skip this block.
2237     ++MFI;
2238   }
2239 
2240   SmallVector<SlotIndex, 4> Undefs;
2241   if (LaneMask.any()) {
2242     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2243     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2244   }
2245 
2246   while (true) {
2247     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2248     // We don't know how to track physregs into a landing pad.
2249     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2250         MFI->isEHPad()) {
2251       if (&*MFI == EndMBB)
2252         break;
2253       ++MFI;
2254       continue;
2255     }
2256 
2257     // Is VNI a PHI-def in the current block?
2258     bool IsPHI = VNI->isPHIDef() &&
2259       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2260 
2261     // Check that VNI is live-out of all predecessors.
2262     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2263          PE = MFI->pred_end(); PI != PE; ++PI) {
2264       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2265       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2266 
2267       // All predecessors must have a live-out value. However for a phi
2268       // instruction with subregister intervals
2269       // only one of the subregisters (not necessarily the current one) needs to
2270       // be defined.
2271       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2272         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2273           continue;
2274         report("Register not marked live out of predecessor", *PI);
2275         report_context(LR, Reg, LaneMask);
2276         report_context(*VNI);
2277         errs() << " live into " << printMBBReference(*MFI) << '@'
2278                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2279                << PEnd << '\n';
2280         continue;
2281       }
2282 
2283       // Only PHI-defs can take different predecessor values.
2284       if (!IsPHI && PVNI != VNI) {
2285         report("Different value live out of predecessor", *PI);
2286         report_context(LR, Reg, LaneMask);
2287         errs() << "Valno #" << PVNI->id << " live out of "
2288                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2289                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2290                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2291       }
2292     }
2293     if (&*MFI == EndMBB)
2294       break;
2295     ++MFI;
2296   }
2297 }
2298 
2299 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2300                                       LaneBitmask LaneMask) {
2301   for (const VNInfo *VNI : LR.valnos)
2302     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2303 
2304   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2305     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2306 }
2307 
2308 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2309   unsigned Reg = LI.reg;
2310   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2311   verifyLiveRange(LI, Reg);
2312 
2313   LaneBitmask Mask;
2314   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2315   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2316     if ((Mask & SR.LaneMask).any()) {
2317       report("Lane masks of sub ranges overlap in live interval", MF);
2318       report_context(LI);
2319     }
2320     if ((SR.LaneMask & ~MaxMask).any()) {
2321       report("Subrange lanemask is invalid", MF);
2322       report_context(LI);
2323     }
2324     if (SR.empty()) {
2325       report("Subrange must not be empty", MF);
2326       report_context(SR, LI.reg, SR.LaneMask);
2327     }
2328     Mask |= SR.LaneMask;
2329     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2330     if (!LI.covers(SR)) {
2331       report("A Subrange is not covered by the main range", MF);
2332       report_context(LI);
2333     }
2334   }
2335 
2336   // Check the LI only has one connected component.
2337   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2338   unsigned NumComp = ConEQ.Classify(LI);
2339   if (NumComp > 1) {
2340     report("Multiple connected components in live interval", MF);
2341     report_context(LI);
2342     for (unsigned comp = 0; comp != NumComp; ++comp) {
2343       errs() << comp << ": valnos";
2344       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2345            E = LI.vni_end(); I!=E; ++I)
2346         if (comp == ConEQ.getEqClass(*I))
2347           errs() << ' ' << (*I)->id;
2348       errs() << '\n';
2349     }
2350   }
2351 }
2352 
2353 namespace {
2354 
2355   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2356   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2357   // value is zero.
2358   // We use a bool plus an integer to capture the stack state.
2359   struct StackStateOfBB {
2360     StackStateOfBB() = default;
2361     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2362       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2363       ExitIsSetup(ExitSetup) {}
2364 
2365     // Can be negative, which means we are setting up a frame.
2366     int EntryValue = 0;
2367     int ExitValue = 0;
2368     bool EntryIsSetup = false;
2369     bool ExitIsSetup = false;
2370   };
2371 
2372 } // end anonymous namespace
2373 
2374 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2375 /// by a FrameDestroy <n>, stack adjustments are identical on all
2376 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2377 void MachineVerifier::verifyStackFrame() {
2378   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2379   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2380   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2381     return;
2382 
2383   SmallVector<StackStateOfBB, 8> SPState;
2384   SPState.resize(MF->getNumBlockIDs());
2385   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2386 
2387   // Visit the MBBs in DFS order.
2388   for (df_ext_iterator<const MachineFunction *,
2389                        df_iterator_default_set<const MachineBasicBlock *>>
2390        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2391        DFI != DFE; ++DFI) {
2392     const MachineBasicBlock *MBB = *DFI;
2393 
2394     StackStateOfBB BBState;
2395     // Check the exit state of the DFS stack predecessor.
2396     if (DFI.getPathLength() >= 2) {
2397       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2398       assert(Reachable.count(StackPred) &&
2399              "DFS stack predecessor is already visited.\n");
2400       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2401       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2402       BBState.ExitValue = BBState.EntryValue;
2403       BBState.ExitIsSetup = BBState.EntryIsSetup;
2404     }
2405 
2406     // Update stack state by checking contents of MBB.
2407     for (const auto &I : *MBB) {
2408       if (I.getOpcode() == FrameSetupOpcode) {
2409         if (BBState.ExitIsSetup)
2410           report("FrameSetup is after another FrameSetup", &I);
2411         BBState.ExitValue -= TII->getFrameTotalSize(I);
2412         BBState.ExitIsSetup = true;
2413       }
2414 
2415       if (I.getOpcode() == FrameDestroyOpcode) {
2416         int Size = TII->getFrameTotalSize(I);
2417         if (!BBState.ExitIsSetup)
2418           report("FrameDestroy is not after a FrameSetup", &I);
2419         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2420                                                BBState.ExitValue;
2421         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2422           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2423           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2424               << AbsSPAdj << ">.\n";
2425         }
2426         BBState.ExitValue += Size;
2427         BBState.ExitIsSetup = false;
2428       }
2429     }
2430     SPState[MBB->getNumber()] = BBState;
2431 
2432     // Make sure the exit state of any predecessor is consistent with the entry
2433     // state.
2434     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2435          E = MBB->pred_end(); I != E; ++I) {
2436       if (Reachable.count(*I) &&
2437           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2438            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2439         report("The exit stack state of a predecessor is inconsistent.", MBB);
2440         errs() << "Predecessor " << printMBBReference(*(*I))
2441                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2442                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2443                << printMBBReference(*MBB) << " has entry state ("
2444                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2445       }
2446     }
2447 
2448     // Make sure the entry state of any successor is consistent with the exit
2449     // state.
2450     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2451          E = MBB->succ_end(); I != E; ++I) {
2452       if (Reachable.count(*I) &&
2453           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2454            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2455         report("The entry stack state of a successor is inconsistent.", MBB);
2456         errs() << "Successor " << printMBBReference(*(*I))
2457                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2458                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2459                << printMBBReference(*MBB) << " has exit state ("
2460                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2461       }
2462     }
2463 
2464     // Make sure a basic block with return ends with zero stack adjustment.
2465     if (!MBB->empty() && MBB->back().isReturn()) {
2466       if (BBState.ExitIsSetup)
2467         report("A return block ends with a FrameSetup.", MBB);
2468       if (BBState.ExitValue)
2469         report("A return block ends with a nonzero stack adjustment.", MBB);
2470     }
2471   }
2472 }
2473