xref: /llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision 215c4f68f6a9930e76ad9051e640255757f2aacb)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25 
26 #include "LiveRangeCalc.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/DepthFirstIterator.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SetOperations.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Twine.h"
37 #include "llvm/Analysis/EHPersonalities.h"
38 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
39 #include "llvm/CodeGen/LiveInterval.h"
40 #include "llvm/CodeGen/LiveIntervals.h"
41 #include "llvm/CodeGen/LiveStacks.h"
42 #include "llvm/CodeGen/LiveVariables.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/PseudoSourceValue.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/StackMaps.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetOpcodes.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/InlineAsm.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/MC/LaneBitmask.h"
64 #include "llvm/MC/MCAsmInfo.h"
65 #include "llvm/MC/MCInstrDesc.h"
66 #include "llvm/MC/MCRegisterInfo.h"
67 #include "llvm/MC/MCTargetOptions.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/LowLevelTypeImpl.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 
83 using namespace llvm;
84 
85 namespace {
86 
87   struct MachineVerifier {
88     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
89 
90     unsigned verify(MachineFunction &MF);
91 
92     Pass *const PASS;
93     const char *Banner;
94     const MachineFunction *MF;
95     const TargetMachine *TM;
96     const TargetInstrInfo *TII;
97     const TargetRegisterInfo *TRI;
98     const MachineRegisterInfo *MRI;
99 
100     unsigned foundErrors;
101 
102     // Avoid querying the MachineFunctionProperties for each operand.
103     bool isFunctionRegBankSelected;
104     bool isFunctionSelected;
105 
106     using RegVector = SmallVector<unsigned, 16>;
107     using RegMaskVector = SmallVector<const uint32_t *, 4>;
108     using RegSet = DenseSet<unsigned>;
109     using RegMap = DenseMap<unsigned, const MachineInstr *>;
110     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
111 
112     const MachineInstr *FirstNonPHI;
113     const MachineInstr *FirstTerminator;
114     BlockSet FunctionBlocks;
115 
116     BitVector regsReserved;
117     RegSet regsLive;
118     RegVector regsDefined, regsDead, regsKilled;
119     RegMaskVector regMasks;
120 
121     SlotIndex lastIndex;
122 
123     // Add Reg and any sub-registers to RV
124     void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
125       RV.push_back(Reg);
126       if (TargetRegisterInfo::isPhysicalRegister(Reg))
127         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
128           RV.push_back(*SubRegs);
129     }
130 
131     struct BBInfo {
132       // Is this MBB reachable from the MF entry point?
133       bool reachable = false;
134 
135       // Vregs that must be live in because they are used without being
136       // defined. Map value is the user.
137       RegMap vregsLiveIn;
138 
139       // Regs killed in MBB. They may be defined again, and will then be in both
140       // regsKilled and regsLiveOut.
141       RegSet regsKilled;
142 
143       // Regs defined in MBB and live out. Note that vregs passing through may
144       // be live out without being mentioned here.
145       RegSet regsLiveOut;
146 
147       // Vregs that pass through MBB untouched. This set is disjoint from
148       // regsKilled and regsLiveOut.
149       RegSet vregsPassed;
150 
151       // Vregs that must pass through MBB because they are needed by a successor
152       // block. This set is disjoint from regsLiveOut.
153       RegSet vregsRequired;
154 
155       // Set versions of block's predecessor and successor lists.
156       BlockSet Preds, Succs;
157 
158       BBInfo() = default;
159 
160       // Add register to vregsPassed if it belongs there. Return true if
161       // anything changed.
162       bool addPassed(unsigned Reg) {
163         if (!TargetRegisterInfo::isVirtualRegister(Reg))
164           return false;
165         if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
166           return false;
167         return vregsPassed.insert(Reg).second;
168       }
169 
170       // Same for a full set.
171       bool addPassed(const RegSet &RS) {
172         bool changed = false;
173         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
174           if (addPassed(*I))
175             changed = true;
176         return changed;
177       }
178 
179       // Add register to vregsRequired if it belongs there. Return true if
180       // anything changed.
181       bool addRequired(unsigned Reg) {
182         if (!TargetRegisterInfo::isVirtualRegister(Reg))
183           return false;
184         if (regsLiveOut.count(Reg))
185           return false;
186         return vregsRequired.insert(Reg).second;
187       }
188 
189       // Same for a full set.
190       bool addRequired(const RegSet &RS) {
191         bool changed = false;
192         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
193           if (addRequired(*I))
194             changed = true;
195         return changed;
196       }
197 
198       // Same for a full map.
199       bool addRequired(const RegMap &RM) {
200         bool changed = false;
201         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
202           if (addRequired(I->first))
203             changed = true;
204         return changed;
205       }
206 
207       // Live-out registers are either in regsLiveOut or vregsPassed.
208       bool isLiveOut(unsigned Reg) const {
209         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
210       }
211     };
212 
213     // Extra register info per MBB.
214     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
215 
216     bool isReserved(unsigned Reg) {
217       return Reg < regsReserved.size() && regsReserved.test(Reg);
218     }
219 
220     bool isAllocatable(unsigned Reg) const {
221       return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
222         !regsReserved.test(Reg);
223     }
224 
225     // Analysis information if available
226     LiveVariables *LiveVars;
227     LiveIntervals *LiveInts;
228     LiveStacks *LiveStks;
229     SlotIndexes *Indexes;
230 
231     void visitMachineFunctionBefore();
232     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
233     void visitMachineBundleBefore(const MachineInstr *MI);
234     void visitMachineInstrBefore(const MachineInstr *MI);
235     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
236     void visitMachineInstrAfter(const MachineInstr *MI);
237     void visitMachineBundleAfter(const MachineInstr *MI);
238     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
239     void visitMachineFunctionAfter();
240 
241     void report(const char *msg, const MachineFunction *MF);
242     void report(const char *msg, const MachineBasicBlock *MBB);
243     void report(const char *msg, const MachineInstr *MI);
244     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
245                 LLT MOVRegType = LLT{});
246 
247     void report_context(const LiveInterval &LI) const;
248     void report_context(const LiveRange &LR, unsigned VRegUnit,
249                         LaneBitmask LaneMask) const;
250     void report_context(const LiveRange::Segment &S) const;
251     void report_context(const VNInfo &VNI) const;
252     void report_context(SlotIndex Pos) const;
253     void report_context(MCPhysReg PhysReg) const;
254     void report_context_liverange(const LiveRange &LR) const;
255     void report_context_lanemask(LaneBitmask LaneMask) const;
256     void report_context_vreg(unsigned VReg) const;
257     void report_context_vreg_regunit(unsigned VRegOrUnit) const;
258 
259     void verifyInlineAsm(const MachineInstr *MI);
260 
261     void checkLiveness(const MachineOperand *MO, unsigned MONum);
262     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
263                             SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
264                             LaneBitmask LaneMask = LaneBitmask::getNone());
265     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
266                             SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
267                             bool SubRangeCheck = false,
268                             LaneBitmask LaneMask = LaneBitmask::getNone());
269 
270     void markReachable(const MachineBasicBlock *MBB);
271     void calcRegsPassed();
272     void checkPHIOps(const MachineBasicBlock &MBB);
273 
274     void calcRegsRequired();
275     void verifyLiveVariables();
276     void verifyLiveIntervals();
277     void verifyLiveInterval(const LiveInterval&);
278     void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
279                               LaneBitmask);
280     void verifyLiveRangeSegment(const LiveRange&,
281                                 const LiveRange::const_iterator I, unsigned,
282                                 LaneBitmask);
283     void verifyLiveRange(const LiveRange&, unsigned,
284                          LaneBitmask LaneMask = LaneBitmask::getNone());
285 
286     void verifyStackFrame();
287 
288     void verifySlotIndexes() const;
289     void verifyProperties(const MachineFunction &MF);
290   };
291 
292   struct MachineVerifierPass : public MachineFunctionPass {
293     static char ID; // Pass ID, replacement for typeid
294 
295     const std::string Banner;
296 
297     MachineVerifierPass(std::string banner = std::string())
298       : MachineFunctionPass(ID), Banner(std::move(banner)) {
299         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
300       }
301 
302     void getAnalysisUsage(AnalysisUsage &AU) const override {
303       AU.setPreservesAll();
304       MachineFunctionPass::getAnalysisUsage(AU);
305     }
306 
307     bool runOnMachineFunction(MachineFunction &MF) override {
308       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
309       if (FoundErrors)
310         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
311       return false;
312     }
313   };
314 
315 } // end anonymous namespace
316 
317 char MachineVerifierPass::ID = 0;
318 
319 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
320                 "Verify generated machine code", false, false)
321 
322 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
323   return new MachineVerifierPass(Banner);
324 }
325 
326 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
327     const {
328   MachineFunction &MF = const_cast<MachineFunction&>(*this);
329   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
330   if (AbortOnErrors && FoundErrors)
331     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
332   return FoundErrors == 0;
333 }
334 
335 void MachineVerifier::verifySlotIndexes() const {
336   if (Indexes == nullptr)
337     return;
338 
339   // Ensure the IdxMBB list is sorted by slot indexes.
340   SlotIndex Last;
341   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
342        E = Indexes->MBBIndexEnd(); I != E; ++I) {
343     assert(!Last.isValid() || I->first > Last);
344     Last = I->first;
345   }
346 }
347 
348 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
349   // If a pass has introduced virtual registers without clearing the
350   // NoVRegs property (or set it without allocating the vregs)
351   // then report an error.
352   if (MF.getProperties().hasProperty(
353           MachineFunctionProperties::Property::NoVRegs) &&
354       MRI->getNumVirtRegs())
355     report("Function has NoVRegs property but there are VReg operands", &MF);
356 }
357 
358 unsigned MachineVerifier::verify(MachineFunction &MF) {
359   foundErrors = 0;
360 
361   this->MF = &MF;
362   TM = &MF.getTarget();
363   TII = MF.getSubtarget().getInstrInfo();
364   TRI = MF.getSubtarget().getRegisterInfo();
365   MRI = &MF.getRegInfo();
366 
367   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
368       MachineFunctionProperties::Property::FailedISel);
369 
370   // If we're mid-GlobalISel and we already triggered the fallback path then
371   // it's expected that the MIR is somewhat broken but that's ok since we'll
372   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
373   if (isFunctionFailedISel)
374     return foundErrors;
375 
376   isFunctionRegBankSelected =
377       !isFunctionFailedISel &&
378       MF.getProperties().hasProperty(
379           MachineFunctionProperties::Property::RegBankSelected);
380   isFunctionSelected = !isFunctionFailedISel &&
381                        MF.getProperties().hasProperty(
382                            MachineFunctionProperties::Property::Selected);
383   LiveVars = nullptr;
384   LiveInts = nullptr;
385   LiveStks = nullptr;
386   Indexes = nullptr;
387   if (PASS) {
388     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
389     // We don't want to verify LiveVariables if LiveIntervals is available.
390     if (!LiveInts)
391       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
392     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
393     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
394   }
395 
396   verifySlotIndexes();
397 
398   verifyProperties(MF);
399 
400   visitMachineFunctionBefore();
401   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
402        MFI!=MFE; ++MFI) {
403     visitMachineBasicBlockBefore(&*MFI);
404     // Keep track of the current bundle header.
405     const MachineInstr *CurBundle = nullptr;
406     // Do we expect the next instruction to be part of the same bundle?
407     bool InBundle = false;
408 
409     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
410            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
411       if (MBBI->getParent() != &*MFI) {
412         report("Bad instruction parent pointer", &*MFI);
413         errs() << "Instruction: " << *MBBI;
414         continue;
415       }
416 
417       // Check for consistent bundle flags.
418       if (InBundle && !MBBI->isBundledWithPred())
419         report("Missing BundledPred flag, "
420                "BundledSucc was set on predecessor",
421                &*MBBI);
422       if (!InBundle && MBBI->isBundledWithPred())
423         report("BundledPred flag is set, "
424                "but BundledSucc not set on predecessor",
425                &*MBBI);
426 
427       // Is this a bundle header?
428       if (!MBBI->isInsideBundle()) {
429         if (CurBundle)
430           visitMachineBundleAfter(CurBundle);
431         CurBundle = &*MBBI;
432         visitMachineBundleBefore(CurBundle);
433       } else if (!CurBundle)
434         report("No bundle header", &*MBBI);
435       visitMachineInstrBefore(&*MBBI);
436       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
437         const MachineInstr &MI = *MBBI;
438         const MachineOperand &Op = MI.getOperand(I);
439         if (Op.getParent() != &MI) {
440           // Make sure to use correct addOperand / RemoveOperand / ChangeTo
441           // functions when replacing operands of a MachineInstr.
442           report("Instruction has operand with wrong parent set", &MI);
443         }
444 
445         visitMachineOperand(&Op, I);
446       }
447 
448       visitMachineInstrAfter(&*MBBI);
449 
450       // Was this the last bundled instruction?
451       InBundle = MBBI->isBundledWithSucc();
452     }
453     if (CurBundle)
454       visitMachineBundleAfter(CurBundle);
455     if (InBundle)
456       report("BundledSucc flag set on last instruction in block", &MFI->back());
457     visitMachineBasicBlockAfter(&*MFI);
458   }
459   visitMachineFunctionAfter();
460 
461   // Clean up.
462   regsLive.clear();
463   regsDefined.clear();
464   regsDead.clear();
465   regsKilled.clear();
466   regMasks.clear();
467   MBBInfoMap.clear();
468 
469   return foundErrors;
470 }
471 
472 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
473   assert(MF);
474   errs() << '\n';
475   if (!foundErrors++) {
476     if (Banner)
477       errs() << "# " << Banner << '\n';
478     if (LiveInts != nullptr)
479       LiveInts->print(errs());
480     else
481       MF->print(errs(), Indexes);
482   }
483   errs() << "*** Bad machine code: " << msg << " ***\n"
484       << "- function:    " << MF->getName() << "\n";
485 }
486 
487 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
488   assert(MBB);
489   report(msg, MBB->getParent());
490   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
491          << MBB->getName() << " (" << (const void *)MBB << ')';
492   if (Indexes)
493     errs() << " [" << Indexes->getMBBStartIdx(MBB)
494         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
495   errs() << '\n';
496 }
497 
498 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
499   assert(MI);
500   report(msg, MI->getParent());
501   errs() << "- instruction: ";
502   if (Indexes && Indexes->hasIndex(*MI))
503     errs() << Indexes->getInstructionIndex(*MI) << '\t';
504   MI->print(errs(), /*SkipOpers=*/true);
505 }
506 
507 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
508                              unsigned MONum, LLT MOVRegType) {
509   assert(MO);
510   report(msg, MO->getParent());
511   errs() << "- operand " << MONum << ":   ";
512   MO->print(errs(), MOVRegType, TRI);
513   errs() << "\n";
514 }
515 
516 void MachineVerifier::report_context(SlotIndex Pos) const {
517   errs() << "- at:          " << Pos << '\n';
518 }
519 
520 void MachineVerifier::report_context(const LiveInterval &LI) const {
521   errs() << "- interval:    " << LI << '\n';
522 }
523 
524 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
525                                      LaneBitmask LaneMask) const {
526   report_context_liverange(LR);
527   report_context_vreg_regunit(VRegUnit);
528   if (LaneMask.any())
529     report_context_lanemask(LaneMask);
530 }
531 
532 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
533   errs() << "- segment:     " << S << '\n';
534 }
535 
536 void MachineVerifier::report_context(const VNInfo &VNI) const {
537   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
538 }
539 
540 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
541   errs() << "- liverange:   " << LR << '\n';
542 }
543 
544 void MachineVerifier::report_context(MCPhysReg PReg) const {
545   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
546 }
547 
548 void MachineVerifier::report_context_vreg(unsigned VReg) const {
549   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
550 }
551 
552 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
553   if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
554     report_context_vreg(VRegOrUnit);
555   } else {
556     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
557   }
558 }
559 
560 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
561   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
562 }
563 
564 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
565   BBInfo &MInfo = MBBInfoMap[MBB];
566   if (!MInfo.reachable) {
567     MInfo.reachable = true;
568     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
569            SuE = MBB->succ_end(); SuI != SuE; ++SuI)
570       markReachable(*SuI);
571   }
572 }
573 
574 void MachineVerifier::visitMachineFunctionBefore() {
575   lastIndex = SlotIndex();
576   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
577                                            : TRI->getReservedRegs(*MF);
578 
579   if (!MF->empty())
580     markReachable(&MF->front());
581 
582   // Build a set of the basic blocks in the function.
583   FunctionBlocks.clear();
584   for (const auto &MBB : *MF) {
585     FunctionBlocks.insert(&MBB);
586     BBInfo &MInfo = MBBInfoMap[&MBB];
587 
588     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
589     if (MInfo.Preds.size() != MBB.pred_size())
590       report("MBB has duplicate entries in its predecessor list.", &MBB);
591 
592     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
593     if (MInfo.Succs.size() != MBB.succ_size())
594       report("MBB has duplicate entries in its successor list.", &MBB);
595   }
596 
597   // Check that the register use lists are sane.
598   MRI->verifyUseLists();
599 
600   if (!MF->empty())
601     verifyStackFrame();
602 }
603 
604 // Does iterator point to a and b as the first two elements?
605 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
606                       const MachineBasicBlock *a, const MachineBasicBlock *b) {
607   if (*i == a)
608     return *++i == b;
609   if (*i == b)
610     return *++i == a;
611   return false;
612 }
613 
614 void
615 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
616   FirstTerminator = nullptr;
617   FirstNonPHI = nullptr;
618 
619   if (!MF->getProperties().hasProperty(
620       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
621     // If this block has allocatable physical registers live-in, check that
622     // it is an entry block or landing pad.
623     for (const auto &LI : MBB->liveins()) {
624       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
625           MBB->getIterator() != MBB->getParent()->begin()) {
626         report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
627         report_context(LI.PhysReg);
628       }
629     }
630   }
631 
632   // Count the number of landing pad successors.
633   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
634   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
635        E = MBB->succ_end(); I != E; ++I) {
636     if ((*I)->isEHPad())
637       LandingPadSuccs.insert(*I);
638     if (!FunctionBlocks.count(*I))
639       report("MBB has successor that isn't part of the function.", MBB);
640     if (!MBBInfoMap[*I].Preds.count(MBB)) {
641       report("Inconsistent CFG", MBB);
642       errs() << "MBB is not in the predecessor list of the successor "
643              << printMBBReference(*(*I)) << ".\n";
644     }
645   }
646 
647   // Check the predecessor list.
648   for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
649        E = MBB->pred_end(); I != E; ++I) {
650     if (!FunctionBlocks.count(*I))
651       report("MBB has predecessor that isn't part of the function.", MBB);
652     if (!MBBInfoMap[*I].Succs.count(MBB)) {
653       report("Inconsistent CFG", MBB);
654       errs() << "MBB is not in the successor list of the predecessor "
655              << printMBBReference(*(*I)) << ".\n";
656     }
657   }
658 
659   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
660   const BasicBlock *BB = MBB->getBasicBlock();
661   const Function &F = MF->getFunction();
662   if (LandingPadSuccs.size() > 1 &&
663       !(AsmInfo &&
664         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
665         BB && isa<SwitchInst>(BB->getTerminator())) &&
666       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
667     report("MBB has more than one landing pad successor", MBB);
668 
669   // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
670   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
671   SmallVector<MachineOperand, 4> Cond;
672   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
673                           Cond)) {
674     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
675     // check whether its answers match up with reality.
676     if (!TBB && !FBB) {
677       // Block falls through to its successor.
678       MachineFunction::const_iterator MBBI = MBB->getIterator();
679       ++MBBI;
680       if (MBBI == MF->end()) {
681         // It's possible that the block legitimately ends with a noreturn
682         // call or an unreachable, in which case it won't actually fall
683         // out the bottom of the function.
684       } else if (MBB->succ_size() == LandingPadSuccs.size()) {
685         // It's possible that the block legitimately ends with a noreturn
686         // call or an unreachable, in which case it won't actually fall
687         // out of the block.
688       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
689         report("MBB exits via unconditional fall-through but doesn't have "
690                "exactly one CFG successor!", MBB);
691       } else if (!MBB->isSuccessor(&*MBBI)) {
692         report("MBB exits via unconditional fall-through but its successor "
693                "differs from its CFG successor!", MBB);
694       }
695       if (!MBB->empty() && MBB->back().isBarrier() &&
696           !TII->isPredicated(MBB->back())) {
697         report("MBB exits via unconditional fall-through but ends with a "
698                "barrier instruction!", MBB);
699       }
700       if (!Cond.empty()) {
701         report("MBB exits via unconditional fall-through but has a condition!",
702                MBB);
703       }
704     } else if (TBB && !FBB && Cond.empty()) {
705       // Block unconditionally branches somewhere.
706       // If the block has exactly one successor, that happens to be a
707       // landingpad, accept it as valid control flow.
708       if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
709           (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
710            *MBB->succ_begin() != *LandingPadSuccs.begin())) {
711         report("MBB exits via unconditional branch but doesn't have "
712                "exactly one CFG successor!", MBB);
713       } else if (!MBB->isSuccessor(TBB)) {
714         report("MBB exits via unconditional branch but the CFG "
715                "successor doesn't match the actual successor!", MBB);
716       }
717       if (MBB->empty()) {
718         report("MBB exits via unconditional branch but doesn't contain "
719                "any instructions!", MBB);
720       } else if (!MBB->back().isBarrier()) {
721         report("MBB exits via unconditional branch but doesn't end with a "
722                "barrier instruction!", MBB);
723       } else if (!MBB->back().isTerminator()) {
724         report("MBB exits via unconditional branch but the branch isn't a "
725                "terminator instruction!", MBB);
726       }
727     } else if (TBB && !FBB && !Cond.empty()) {
728       // Block conditionally branches somewhere, otherwise falls through.
729       MachineFunction::const_iterator MBBI = MBB->getIterator();
730       ++MBBI;
731       if (MBBI == MF->end()) {
732         report("MBB conditionally falls through out of function!", MBB);
733       } else if (MBB->succ_size() == 1) {
734         // A conditional branch with only one successor is weird, but allowed.
735         if (&*MBBI != TBB)
736           report("MBB exits via conditional branch/fall-through but only has "
737                  "one CFG successor!", MBB);
738         else if (TBB != *MBB->succ_begin())
739           report("MBB exits via conditional branch/fall-through but the CFG "
740                  "successor don't match the actual successor!", MBB);
741       } else if (MBB->succ_size() != 2) {
742         report("MBB exits via conditional branch/fall-through but doesn't have "
743                "exactly two CFG successors!", MBB);
744       } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
745         report("MBB exits via conditional branch/fall-through but the CFG "
746                "successors don't match the actual successors!", MBB);
747       }
748       if (MBB->empty()) {
749         report("MBB exits via conditional branch/fall-through but doesn't "
750                "contain any instructions!", MBB);
751       } else if (MBB->back().isBarrier()) {
752         report("MBB exits via conditional branch/fall-through but ends with a "
753                "barrier instruction!", MBB);
754       } else if (!MBB->back().isTerminator()) {
755         report("MBB exits via conditional branch/fall-through but the branch "
756                "isn't a terminator instruction!", MBB);
757       }
758     } else if (TBB && FBB) {
759       // Block conditionally branches somewhere, otherwise branches
760       // somewhere else.
761       if (MBB->succ_size() == 1) {
762         // A conditional branch with only one successor is weird, but allowed.
763         if (FBB != TBB)
764           report("MBB exits via conditional branch/branch through but only has "
765                  "one CFG successor!", MBB);
766         else if (TBB != *MBB->succ_begin())
767           report("MBB exits via conditional branch/branch through but the CFG "
768                  "successor don't match the actual successor!", MBB);
769       } else if (MBB->succ_size() != 2) {
770         report("MBB exits via conditional branch/branch but doesn't have "
771                "exactly two CFG successors!", MBB);
772       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
773         report("MBB exits via conditional branch/branch but the CFG "
774                "successors don't match the actual successors!", MBB);
775       }
776       if (MBB->empty()) {
777         report("MBB exits via conditional branch/branch but doesn't "
778                "contain any instructions!", MBB);
779       } else if (!MBB->back().isBarrier()) {
780         report("MBB exits via conditional branch/branch but doesn't end with a "
781                "barrier instruction!", MBB);
782       } else if (!MBB->back().isTerminator()) {
783         report("MBB exits via conditional branch/branch but the branch "
784                "isn't a terminator instruction!", MBB);
785       }
786       if (Cond.empty()) {
787         report("MBB exits via conditional branch/branch but there's no "
788                "condition!", MBB);
789       }
790     } else {
791       report("AnalyzeBranch returned invalid data!", MBB);
792     }
793   }
794 
795   regsLive.clear();
796   if (MRI->tracksLiveness()) {
797     for (const auto &LI : MBB->liveins()) {
798       if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
799         report("MBB live-in list contains non-physical register", MBB);
800         continue;
801       }
802       for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
803            SubRegs.isValid(); ++SubRegs)
804         regsLive.insert(*SubRegs);
805     }
806   }
807 
808   const MachineFrameInfo &MFI = MF->getFrameInfo();
809   BitVector PR = MFI.getPristineRegs(*MF);
810   for (unsigned I : PR.set_bits()) {
811     for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
812          SubRegs.isValid(); ++SubRegs)
813       regsLive.insert(*SubRegs);
814   }
815 
816   regsKilled.clear();
817   regsDefined.clear();
818 
819   if (Indexes)
820     lastIndex = Indexes->getMBBStartIdx(MBB);
821 }
822 
823 // This function gets called for all bundle headers, including normal
824 // stand-alone unbundled instructions.
825 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
826   if (Indexes && Indexes->hasIndex(*MI)) {
827     SlotIndex idx = Indexes->getInstructionIndex(*MI);
828     if (!(idx > lastIndex)) {
829       report("Instruction index out of order", MI);
830       errs() << "Last instruction was at " << lastIndex << '\n';
831     }
832     lastIndex = idx;
833   }
834 
835   // Ensure non-terminators don't follow terminators.
836   // Ignore predicated terminators formed by if conversion.
837   // FIXME: If conversion shouldn't need to violate this rule.
838   if (MI->isTerminator() && !TII->isPredicated(*MI)) {
839     if (!FirstTerminator)
840       FirstTerminator = MI;
841   } else if (FirstTerminator) {
842     report("Non-terminator instruction after the first terminator", MI);
843     errs() << "First terminator was:\t" << *FirstTerminator;
844   }
845 }
846 
847 // The operands on an INLINEASM instruction must follow a template.
848 // Verify that the flag operands make sense.
849 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
850   // The first two operands on INLINEASM are the asm string and global flags.
851   if (MI->getNumOperands() < 2) {
852     report("Too few operands on inline asm", MI);
853     return;
854   }
855   if (!MI->getOperand(0).isSymbol())
856     report("Asm string must be an external symbol", MI);
857   if (!MI->getOperand(1).isImm())
858     report("Asm flags must be an immediate", MI);
859   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
860   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
861   // and Extra_IsConvergent = 32.
862   if (!isUInt<6>(MI->getOperand(1).getImm()))
863     report("Unknown asm flags", &MI->getOperand(1), 1);
864 
865   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
866 
867   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
868   unsigned NumOps;
869   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
870     const MachineOperand &MO = MI->getOperand(OpNo);
871     // There may be implicit ops after the fixed operands.
872     if (!MO.isImm())
873       break;
874     NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
875   }
876 
877   if (OpNo > MI->getNumOperands())
878     report("Missing operands in last group", MI);
879 
880   // An optional MDNode follows the groups.
881   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
882     ++OpNo;
883 
884   // All trailing operands must be implicit registers.
885   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
886     const MachineOperand &MO = MI->getOperand(OpNo);
887     if (!MO.isReg() || !MO.isImplicit())
888       report("Expected implicit register after groups", &MO, OpNo);
889   }
890 }
891 
892 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
893   const MCInstrDesc &MCID = MI->getDesc();
894   if (MI->getNumOperands() < MCID.getNumOperands()) {
895     report("Too few operands", MI);
896     errs() << MCID.getNumOperands() << " operands expected, but "
897            << MI->getNumOperands() << " given.\n";
898   }
899 
900   if (MI->isPHI()) {
901     if (MF->getProperties().hasProperty(
902             MachineFunctionProperties::Property::NoPHIs))
903       report("Found PHI instruction with NoPHIs property set", MI);
904 
905     if (FirstNonPHI)
906       report("Found PHI instruction after non-PHI", MI);
907   } else if (FirstNonPHI == nullptr)
908     FirstNonPHI = MI;
909 
910   // Check the tied operands.
911   if (MI->isInlineAsm())
912     verifyInlineAsm(MI);
913 
914   // Check the MachineMemOperands for basic consistency.
915   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
916                                   E = MI->memoperands_end();
917        I != E; ++I) {
918     if ((*I)->isLoad() && !MI->mayLoad())
919       report("Missing mayLoad flag", MI);
920     if ((*I)->isStore() && !MI->mayStore())
921       report("Missing mayStore flag", MI);
922   }
923 
924   // Debug values must not have a slot index.
925   // Other instructions must have one, unless they are inside a bundle.
926   if (LiveInts) {
927     bool mapped = !LiveInts->isNotInMIMap(*MI);
928     if (MI->isDebugInstr()) {
929       if (mapped)
930         report("Debug instruction has a slot index", MI);
931     } else if (MI->isInsideBundle()) {
932       if (mapped)
933         report("Instruction inside bundle has a slot index", MI);
934     } else {
935       if (!mapped)
936         report("Missing slot index", MI);
937     }
938   }
939 
940   if (isPreISelGenericOpcode(MCID.getOpcode())) {
941     if (isFunctionSelected)
942       report("Unexpected generic instruction in a Selected function", MI);
943 
944     // Check types.
945     SmallVector<LLT, 4> Types;
946     for (unsigned I = 0; I < MCID.getNumOperands(); ++I) {
947       if (!MCID.OpInfo[I].isGenericType())
948         continue;
949       // Generic instructions specify type equality constraints between some of
950       // their operands. Make sure these are consistent.
951       size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
952       Types.resize(std::max(TypeIdx + 1, Types.size()));
953 
954       const MachineOperand *MO = &MI->getOperand(I);
955       LLT OpTy = MRI->getType(MO->getReg());
956       // Don't report a type mismatch if there is no actual mismatch, only a
957       // type missing, to reduce noise:
958       if (OpTy.isValid()) {
959         // Only the first valid type for a type index will be printed: don't
960         // overwrite it later so it's always clear which type was expected:
961         if (!Types[TypeIdx].isValid())
962           Types[TypeIdx] = OpTy;
963         else if (Types[TypeIdx] != OpTy)
964           report("Type mismatch in generic instruction", MO, I, OpTy);
965       } else {
966         // Generic instructions must have types attached to their operands.
967         report("Generic instruction is missing a virtual register type", MO, I);
968       }
969     }
970 
971     // Generic opcodes must not have physical register operands.
972     for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
973       const MachineOperand *MO = &MI->getOperand(I);
974       if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
975         report("Generic instruction cannot have physical register", MO, I);
976     }
977   }
978 
979   StringRef ErrorInfo;
980   if (!TII->verifyInstruction(*MI, ErrorInfo))
981     report(ErrorInfo.data(), MI);
982 
983   // Verify properties of various specific instruction types
984   switch(MI->getOpcode()) {
985   default:
986     break;
987   case TargetOpcode::G_LOAD:
988   case TargetOpcode::G_STORE:
989   case TargetOpcode::G_ZEXTLOAD:
990   case TargetOpcode::G_SEXTLOAD:
991     // Generic loads and stores must have a single MachineMemOperand
992     // describing that access.
993     if (!MI->hasOneMemOperand()) {
994       report("Generic instruction accessing memory must have one mem operand",
995              MI);
996     } else {
997       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
998           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
999         const MachineMemOperand &MMO = **MI->memoperands_begin();
1000         LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1001         if (MMO.getSize() * 8 >= DstTy.getSizeInBits()) {
1002           report("Generic extload must have a narrower memory type", MI);
1003         }
1004       }
1005     }
1006 
1007     break;
1008   case TargetOpcode::G_PHI: {
1009     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1010     if (!DstTy.isValid() ||
1011         !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
1012                      [this, &DstTy](const MachineOperand &MO) {
1013                        if (!MO.isReg())
1014                          return true;
1015                        LLT Ty = MRI->getType(MO.getReg());
1016                        if (!Ty.isValid() || (Ty != DstTy))
1017                          return false;
1018                        return true;
1019                      }))
1020       report("Generic Instruction G_PHI has operands with incompatible/missing "
1021              "types",
1022              MI);
1023     break;
1024   }
1025   case TargetOpcode::G_SEXT:
1026   case TargetOpcode::G_ZEXT:
1027   case TargetOpcode::G_ANYEXT:
1028   case TargetOpcode::G_TRUNC:
1029   case TargetOpcode::G_FPEXT:
1030   case TargetOpcode::G_FPTRUNC: {
1031     // Number of operands and presense of types is already checked (and
1032     // reported in case of any issues), so no need to report them again. As
1033     // we're trying to report as many issues as possible at once, however, the
1034     // instructions aren't guaranteed to have the right number of operands or
1035     // types attached to them at this point
1036     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1037     if (MI->getNumOperands() < MCID.getNumOperands())
1038       break;
1039     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1040     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1041     if (!DstTy.isValid() || !SrcTy.isValid())
1042       break;
1043 
1044     LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy;
1045     LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
1046     if (DstElTy.isPointer() || SrcElTy.isPointer())
1047       report("Generic extend/truncate can not operate on pointers", MI);
1048 
1049     if (DstTy.isVector() != SrcTy.isVector()) {
1050       report("Generic extend/truncate must be all-vector or all-scalar", MI);
1051       // Generally we try to report as many issues as possible at once, but in
1052       // this case it's not clear what should we be comparing the size of the
1053       // scalar with: the size of the whole vector or its lane. Instead of
1054       // making an arbitrary choice and emitting not so helpful message, let's
1055       // avoid the extra noise and stop here.
1056       break;
1057     }
1058     if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())
1059       report("Generic vector extend/truncate must preserve number of lanes",
1060              MI);
1061     unsigned DstSize = DstElTy.getSizeInBits();
1062     unsigned SrcSize = SrcElTy.getSizeInBits();
1063     switch (MI->getOpcode()) {
1064     default:
1065       if (DstSize <= SrcSize)
1066         report("Generic extend has destination type no larger than source", MI);
1067       break;
1068     case TargetOpcode::G_TRUNC:
1069     case TargetOpcode::G_FPTRUNC:
1070       if (DstSize >= SrcSize)
1071         report("Generic truncate has destination type no smaller than source",
1072                MI);
1073       break;
1074     }
1075     break;
1076   }
1077   case TargetOpcode::G_MERGE_VALUES: {
1078     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1079     // e.g. s2N = MERGE sN, sN
1080     // Merging multiple scalars into a vector is not allowed, should use
1081     // G_BUILD_VECTOR for that.
1082     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1083     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1084     if (DstTy.isVector() || SrcTy.isVector())
1085       report("G_MERGE_VALUES cannot operate on vectors", MI);
1086     break;
1087   }
1088   case TargetOpcode::G_UNMERGE_VALUES: {
1089     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1090     LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1091     // For now G_UNMERGE can split vectors.
1092     for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1093       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1094         report("G_UNMERGE_VALUES destination types do not match", MI);
1095     }
1096     if (SrcTy.getSizeInBits() !=
1097         (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1098       report("G_UNMERGE_VALUES source operand does not cover dest operands",
1099              MI);
1100     }
1101     break;
1102   }
1103   case TargetOpcode::G_BUILD_VECTOR: {
1104     // Source types must be scalars, dest type a vector. Total size of scalars
1105     // must match the dest vector size.
1106     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1107     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1108     if (!DstTy.isVector() || SrcEltTy.isVector())
1109       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1110     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1111       if (MRI->getType(MI->getOperand(1).getReg()) !=
1112           MRI->getType(MI->getOperand(i).getReg()))
1113         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1114     }
1115     if (DstTy.getSizeInBits() !=
1116         SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1))
1117       report("G_BUILD_VECTOR src operands total size don't match dest "
1118              "size.",
1119              MI);
1120     break;
1121   }
1122   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1123     // Source types must be scalars, dest type a vector. Scalar types must be
1124     // larger than the dest vector elt type, as this is a truncating operation.
1125     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1126     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1127     if (!DstTy.isVector() || SrcEltTy.isVector())
1128       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1129              MI);
1130     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1131       if (MRI->getType(MI->getOperand(1).getReg()) !=
1132           MRI->getType(MI->getOperand(i).getReg()))
1133         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1134                MI);
1135     }
1136     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1137       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1138              "dest elt type",
1139              MI);
1140     break;
1141   }
1142   case TargetOpcode::G_CONCAT_VECTORS: {
1143     // Source types should be vectors, and total size should match the dest
1144     // vector size.
1145     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1146     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1147     if (!DstTy.isVector() || !SrcTy.isVector())
1148       report("G_CONCAT_VECTOR requires vector source and destination operands",
1149              MI);
1150     for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1151       if (MRI->getType(MI->getOperand(1).getReg()) !=
1152           MRI->getType(MI->getOperand(i).getReg()))
1153         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1154     }
1155     if (DstTy.getNumElements() !=
1156         SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1157       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1158     break;
1159   }
1160   case TargetOpcode::COPY: {
1161     if (foundErrors)
1162       break;
1163     const MachineOperand &DstOp = MI->getOperand(0);
1164     const MachineOperand &SrcOp = MI->getOperand(1);
1165     LLT DstTy = MRI->getType(DstOp.getReg());
1166     LLT SrcTy = MRI->getType(SrcOp.getReg());
1167     if (SrcTy.isValid() && DstTy.isValid()) {
1168       // If both types are valid, check that the types are the same.
1169       if (SrcTy != DstTy) {
1170         report("Copy Instruction is illegal with mismatching types", MI);
1171         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1172       }
1173     }
1174     if (SrcTy.isValid() || DstTy.isValid()) {
1175       // If one of them have valid types, let's just check they have the same
1176       // size.
1177       unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1178       unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1179       assert(SrcSize && "Expecting size here");
1180       assert(DstSize && "Expecting size here");
1181       if (SrcSize != DstSize)
1182         if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1183           report("Copy Instruction is illegal with mismatching sizes", MI);
1184           errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1185                  << "\n";
1186         }
1187     }
1188     break;
1189   }
1190   case TargetOpcode::G_ICMP:
1191   case TargetOpcode::G_FCMP: {
1192     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1193     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1194 
1195     if ((DstTy.isVector() != SrcTy.isVector()) ||
1196         (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1197       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1198 
1199     break;
1200   }
1201   case TargetOpcode::STATEPOINT:
1202     if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1203         !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1204         !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1205       report("meta operands to STATEPOINT not constant!", MI);
1206     break;
1207 
1208     auto VerifyStackMapConstant = [&](unsigned Offset) {
1209       if (!MI->getOperand(Offset).isImm() ||
1210           MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1211           !MI->getOperand(Offset + 1).isImm())
1212         report("stack map constant to STATEPOINT not well formed!", MI);
1213     };
1214     const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1215     VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1216     VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1217     VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1218 
1219     // TODO: verify we have properly encoded deopt arguments
1220   };
1221 }
1222 
1223 void
1224 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1225   const MachineInstr *MI = MO->getParent();
1226   const MCInstrDesc &MCID = MI->getDesc();
1227   unsigned NumDefs = MCID.getNumDefs();
1228   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1229     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1230 
1231   // The first MCID.NumDefs operands must be explicit register defines
1232   if (MONum < NumDefs) {
1233     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1234     if (!MO->isReg())
1235       report("Explicit definition must be a register", MO, MONum);
1236     else if (!MO->isDef() && !MCOI.isOptionalDef())
1237       report("Explicit definition marked as use", MO, MONum);
1238     else if (MO->isImplicit())
1239       report("Explicit definition marked as implicit", MO, MONum);
1240   } else if (MONum < MCID.getNumOperands()) {
1241     const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1242     // Don't check if it's the last operand in a variadic instruction. See,
1243     // e.g., LDM_RET in the arm back end.
1244     if (MO->isReg() &&
1245         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1246       if (MO->isDef() && !MCOI.isOptionalDef())
1247         report("Explicit operand marked as def", MO, MONum);
1248       if (MO->isImplicit())
1249         report("Explicit operand marked as implicit", MO, MONum);
1250     }
1251 
1252     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1253     if (TiedTo != -1) {
1254       if (!MO->isReg())
1255         report("Tied use must be a register", MO, MONum);
1256       else if (!MO->isTied())
1257         report("Operand should be tied", MO, MONum);
1258       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1259         report("Tied def doesn't match MCInstrDesc", MO, MONum);
1260       else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1261         const MachineOperand &MOTied = MI->getOperand(TiedTo);
1262         if (!MOTied.isReg())
1263           report("Tied counterpart must be a register", &MOTied, TiedTo);
1264         else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1265                  MO->getReg() != MOTied.getReg())
1266           report("Tied physical registers must match.", &MOTied, TiedTo);
1267       }
1268     } else if (MO->isReg() && MO->isTied())
1269       report("Explicit operand should not be tied", MO, MONum);
1270   } else {
1271     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1272     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1273       report("Extra explicit operand on non-variadic instruction", MO, MONum);
1274   }
1275 
1276   switch (MO->getType()) {
1277   case MachineOperand::MO_Register: {
1278     const unsigned Reg = MO->getReg();
1279     if (!Reg)
1280       return;
1281     if (MRI->tracksLiveness() && !MI->isDebugValue())
1282       checkLiveness(MO, MONum);
1283 
1284     // Verify the consistency of tied operands.
1285     if (MO->isTied()) {
1286       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1287       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1288       if (!OtherMO.isReg())
1289         report("Must be tied to a register", MO, MONum);
1290       if (!OtherMO.isTied())
1291         report("Missing tie flags on tied operand", MO, MONum);
1292       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1293         report("Inconsistent tie links", MO, MONum);
1294       if (MONum < MCID.getNumDefs()) {
1295         if (OtherIdx < MCID.getNumOperands()) {
1296           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1297             report("Explicit def tied to explicit use without tie constraint",
1298                    MO, MONum);
1299         } else {
1300           if (!OtherMO.isImplicit())
1301             report("Explicit def should be tied to implicit use", MO, MONum);
1302         }
1303       }
1304     }
1305 
1306     // Verify two-address constraints after leaving SSA form.
1307     unsigned DefIdx;
1308     if (!MRI->isSSA() && MO->isUse() &&
1309         MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1310         Reg != MI->getOperand(DefIdx).getReg())
1311       report("Two-address instruction operands must be identical", MO, MONum);
1312 
1313     // Check register classes.
1314     unsigned SubIdx = MO->getSubReg();
1315 
1316     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1317       if (SubIdx) {
1318         report("Illegal subregister index for physical register", MO, MONum);
1319         return;
1320       }
1321       if (MONum < MCID.getNumOperands()) {
1322         if (const TargetRegisterClass *DRC =
1323               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1324           if (!DRC->contains(Reg)) {
1325             report("Illegal physical register for instruction", MO, MONum);
1326             errs() << printReg(Reg, TRI) << " is not a "
1327                    << TRI->getRegClassName(DRC) << " register.\n";
1328           }
1329         }
1330       }
1331       if (MO->isRenamable()) {
1332         if (MRI->isReserved(Reg)) {
1333           report("isRenamable set on reserved register", MO, MONum);
1334           return;
1335         }
1336       }
1337       if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1338         report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1339         return;
1340       }
1341     } else {
1342       // Virtual register.
1343       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1344       if (!RC) {
1345         // This is a generic virtual register.
1346 
1347         // If we're post-Select, we can't have gvregs anymore.
1348         if (isFunctionSelected) {
1349           report("Generic virtual register invalid in a Selected function",
1350                  MO, MONum);
1351           return;
1352         }
1353 
1354         // The gvreg must have a type and it must not have a SubIdx.
1355         LLT Ty = MRI->getType(Reg);
1356         if (!Ty.isValid()) {
1357           report("Generic virtual register must have a valid type", MO,
1358                  MONum);
1359           return;
1360         }
1361 
1362         const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1363 
1364         // If we're post-RegBankSelect, the gvreg must have a bank.
1365         if (!RegBank && isFunctionRegBankSelected) {
1366           report("Generic virtual register must have a bank in a "
1367                  "RegBankSelected function",
1368                  MO, MONum);
1369           return;
1370         }
1371 
1372         // Make sure the register fits into its register bank if any.
1373         if (RegBank && Ty.isValid() &&
1374             RegBank->getSize() < Ty.getSizeInBits()) {
1375           report("Register bank is too small for virtual register", MO,
1376                  MONum);
1377           errs() << "Register bank " << RegBank->getName() << " too small("
1378                  << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1379                  << "-bits\n";
1380           return;
1381         }
1382         if (SubIdx)  {
1383           report("Generic virtual register does not subregister index", MO,
1384                  MONum);
1385           return;
1386         }
1387 
1388         // If this is a target specific instruction and this operand
1389         // has register class constraint, the virtual register must
1390         // comply to it.
1391         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1392             MONum < MCID.getNumOperands() &&
1393             TII->getRegClass(MCID, MONum, TRI, *MF)) {
1394           report("Virtual register does not match instruction constraint", MO,
1395                  MONum);
1396           errs() << "Expect register class "
1397                  << TRI->getRegClassName(
1398                         TII->getRegClass(MCID, MONum, TRI, *MF))
1399                  << " but got nothing\n";
1400           return;
1401         }
1402 
1403         break;
1404       }
1405       if (SubIdx) {
1406         const TargetRegisterClass *SRC =
1407           TRI->getSubClassWithSubReg(RC, SubIdx);
1408         if (!SRC) {
1409           report("Invalid subregister index for virtual register", MO, MONum);
1410           errs() << "Register class " << TRI->getRegClassName(RC)
1411               << " does not support subreg index " << SubIdx << "\n";
1412           return;
1413         }
1414         if (RC != SRC) {
1415           report("Invalid register class for subregister index", MO, MONum);
1416           errs() << "Register class " << TRI->getRegClassName(RC)
1417               << " does not fully support subreg index " << SubIdx << "\n";
1418           return;
1419         }
1420       }
1421       if (MONum < MCID.getNumOperands()) {
1422         if (const TargetRegisterClass *DRC =
1423               TII->getRegClass(MCID, MONum, TRI, *MF)) {
1424           if (SubIdx) {
1425             const TargetRegisterClass *SuperRC =
1426                 TRI->getLargestLegalSuperClass(RC, *MF);
1427             if (!SuperRC) {
1428               report("No largest legal super class exists.", MO, MONum);
1429               return;
1430             }
1431             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1432             if (!DRC) {
1433               report("No matching super-reg register class.", MO, MONum);
1434               return;
1435             }
1436           }
1437           if (!RC->hasSuperClassEq(DRC)) {
1438             report("Illegal virtual register for instruction", MO, MONum);
1439             errs() << "Expected a " << TRI->getRegClassName(DRC)
1440                 << " register, but got a " << TRI->getRegClassName(RC)
1441                 << " register\n";
1442           }
1443         }
1444       }
1445     }
1446     break;
1447   }
1448 
1449   case MachineOperand::MO_RegisterMask:
1450     regMasks.push_back(MO->getRegMask());
1451     break;
1452 
1453   case MachineOperand::MO_MachineBasicBlock:
1454     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1455       report("PHI operand is not in the CFG", MO, MONum);
1456     break;
1457 
1458   case MachineOperand::MO_FrameIndex:
1459     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1460         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1461       int FI = MO->getIndex();
1462       LiveInterval &LI = LiveStks->getInterval(FI);
1463       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1464 
1465       bool stores = MI->mayStore();
1466       bool loads = MI->mayLoad();
1467       // For a memory-to-memory move, we need to check if the frame
1468       // index is used for storing or loading, by inspecting the
1469       // memory operands.
1470       if (stores && loads) {
1471         for (auto *MMO : MI->memoperands()) {
1472           const PseudoSourceValue *PSV = MMO->getPseudoValue();
1473           if (PSV == nullptr) continue;
1474           const FixedStackPseudoSourceValue *Value =
1475             dyn_cast<FixedStackPseudoSourceValue>(PSV);
1476           if (Value == nullptr) continue;
1477           if (Value->getFrameIndex() != FI) continue;
1478 
1479           if (MMO->isStore())
1480             loads = false;
1481           else
1482             stores = false;
1483           break;
1484         }
1485         if (loads == stores)
1486           report("Missing fixed stack memoperand.", MI);
1487       }
1488       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1489         report("Instruction loads from dead spill slot", MO, MONum);
1490         errs() << "Live stack: " << LI << '\n';
1491       }
1492       if (stores && !LI.liveAt(Idx.getRegSlot())) {
1493         report("Instruction stores to dead spill slot", MO, MONum);
1494         errs() << "Live stack: " << LI << '\n';
1495       }
1496     }
1497     break;
1498 
1499   default:
1500     break;
1501   }
1502 }
1503 
1504 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1505     unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1506     LaneBitmask LaneMask) {
1507   LiveQueryResult LRQ = LR.Query(UseIdx);
1508   // Check if we have a segment at the use, note however that we only need one
1509   // live subregister range, the others may be dead.
1510   if (!LRQ.valueIn() && LaneMask.none()) {
1511     report("No live segment at use", MO, MONum);
1512     report_context_liverange(LR);
1513     report_context_vreg_regunit(VRegOrUnit);
1514     report_context(UseIdx);
1515   }
1516   if (MO->isKill() && !LRQ.isKill()) {
1517     report("Live range continues after kill flag", MO, MONum);
1518     report_context_liverange(LR);
1519     report_context_vreg_regunit(VRegOrUnit);
1520     if (LaneMask.any())
1521       report_context_lanemask(LaneMask);
1522     report_context(UseIdx);
1523   }
1524 }
1525 
1526 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1527     unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1528     bool SubRangeCheck, LaneBitmask LaneMask) {
1529   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1530     assert(VNI && "NULL valno is not allowed");
1531     if (VNI->def != DefIdx) {
1532       report("Inconsistent valno->def", MO, MONum);
1533       report_context_liverange(LR);
1534       report_context_vreg_regunit(VRegOrUnit);
1535       if (LaneMask.any())
1536         report_context_lanemask(LaneMask);
1537       report_context(*VNI);
1538       report_context(DefIdx);
1539     }
1540   } else {
1541     report("No live segment at def", MO, MONum);
1542     report_context_liverange(LR);
1543     report_context_vreg_regunit(VRegOrUnit);
1544     if (LaneMask.any())
1545       report_context_lanemask(LaneMask);
1546     report_context(DefIdx);
1547   }
1548   // Check that, if the dead def flag is present, LiveInts agree.
1549   if (MO->isDead()) {
1550     LiveQueryResult LRQ = LR.Query(DefIdx);
1551     if (!LRQ.isDeadDef()) {
1552       assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1553              "Expecting a virtual register.");
1554       // A dead subreg def only tells us that the specific subreg is dead. There
1555       // could be other non-dead defs of other subregs, or we could have other
1556       // parts of the register being live through the instruction. So unless we
1557       // are checking liveness for a subrange it is ok for the live range to
1558       // continue, given that we have a dead def of a subregister.
1559       if (SubRangeCheck || MO->getSubReg() == 0) {
1560         report("Live range continues after dead def flag", MO, MONum);
1561         report_context_liverange(LR);
1562         report_context_vreg_regunit(VRegOrUnit);
1563         if (LaneMask.any())
1564           report_context_lanemask(LaneMask);
1565       }
1566     }
1567   }
1568 }
1569 
1570 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1571   const MachineInstr *MI = MO->getParent();
1572   const unsigned Reg = MO->getReg();
1573 
1574   // Both use and def operands can read a register.
1575   if (MO->readsReg()) {
1576     if (MO->isKill())
1577       addRegWithSubRegs(regsKilled, Reg);
1578 
1579     // Check that LiveVars knows this kill.
1580     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1581         MO->isKill()) {
1582       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1583       if (!is_contained(VI.Kills, MI))
1584         report("Kill missing from LiveVariables", MO, MONum);
1585     }
1586 
1587     // Check LiveInts liveness and kill.
1588     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1589       SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1590       // Check the cached regunit intervals.
1591       if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1592         for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1593           if (MRI->isReservedRegUnit(*Units))
1594             continue;
1595           if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1596             checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1597         }
1598       }
1599 
1600       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1601         if (LiveInts->hasInterval(Reg)) {
1602           // This is a virtual register interval.
1603           const LiveInterval &LI = LiveInts->getInterval(Reg);
1604           checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1605 
1606           if (LI.hasSubRanges() && !MO->isDef()) {
1607             unsigned SubRegIdx = MO->getSubReg();
1608             LaneBitmask MOMask = SubRegIdx != 0
1609                                ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1610                                : MRI->getMaxLaneMaskForVReg(Reg);
1611             LaneBitmask LiveInMask;
1612             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1613               if ((MOMask & SR.LaneMask).none())
1614                 continue;
1615               checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1616               LiveQueryResult LRQ = SR.Query(UseIdx);
1617               if (LRQ.valueIn())
1618                 LiveInMask |= SR.LaneMask;
1619             }
1620             // At least parts of the register has to be live at the use.
1621             if ((LiveInMask & MOMask).none()) {
1622               report("No live subrange at use", MO, MONum);
1623               report_context(LI);
1624               report_context(UseIdx);
1625             }
1626           }
1627         } else {
1628           report("Virtual register has no live interval", MO, MONum);
1629         }
1630       }
1631     }
1632 
1633     // Use of a dead register.
1634     if (!regsLive.count(Reg)) {
1635       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1636         // Reserved registers may be used even when 'dead'.
1637         bool Bad = !isReserved(Reg);
1638         // We are fine if just any subregister has a defined value.
1639         if (Bad) {
1640           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1641                ++SubRegs) {
1642             if (regsLive.count(*SubRegs)) {
1643               Bad = false;
1644               break;
1645             }
1646           }
1647         }
1648         // If there is an additional implicit-use of a super register we stop
1649         // here. By definition we are fine if the super register is not
1650         // (completely) dead, if the complete super register is dead we will
1651         // get a report for its operand.
1652         if (Bad) {
1653           for (const MachineOperand &MOP : MI->uses()) {
1654             if (!MOP.isReg() || !MOP.isImplicit())
1655               continue;
1656 
1657             if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1658               continue;
1659 
1660             for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1661                  ++SubRegs) {
1662               if (*SubRegs == Reg) {
1663                 Bad = false;
1664                 break;
1665               }
1666             }
1667           }
1668         }
1669         if (Bad)
1670           report("Using an undefined physical register", MO, MONum);
1671       } else if (MRI->def_empty(Reg)) {
1672         report("Reading virtual register without a def", MO, MONum);
1673       } else {
1674         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1675         // We don't know which virtual registers are live in, so only complain
1676         // if vreg was killed in this MBB. Otherwise keep track of vregs that
1677         // must be live in. PHI instructions are handled separately.
1678         if (MInfo.regsKilled.count(Reg))
1679           report("Using a killed virtual register", MO, MONum);
1680         else if (!MI->isPHI())
1681           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1682       }
1683     }
1684   }
1685 
1686   if (MO->isDef()) {
1687     // Register defined.
1688     // TODO: verify that earlyclobber ops are not used.
1689     if (MO->isDead())
1690       addRegWithSubRegs(regsDead, Reg);
1691     else
1692       addRegWithSubRegs(regsDefined, Reg);
1693 
1694     // Verify SSA form.
1695     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1696         std::next(MRI->def_begin(Reg)) != MRI->def_end())
1697       report("Multiple virtual register defs in SSA form", MO, MONum);
1698 
1699     // Check LiveInts for a live segment, but only for virtual registers.
1700     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1701       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1702       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1703 
1704       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1705         if (LiveInts->hasInterval(Reg)) {
1706           const LiveInterval &LI = LiveInts->getInterval(Reg);
1707           checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1708 
1709           if (LI.hasSubRanges()) {
1710             unsigned SubRegIdx = MO->getSubReg();
1711             LaneBitmask MOMask = SubRegIdx != 0
1712               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1713               : MRI->getMaxLaneMaskForVReg(Reg);
1714             for (const LiveInterval::SubRange &SR : LI.subranges()) {
1715               if ((SR.LaneMask & MOMask).none())
1716                 continue;
1717               checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1718             }
1719           }
1720         } else {
1721           report("Virtual register has no Live interval", MO, MONum);
1722         }
1723       }
1724     }
1725   }
1726 }
1727 
1728 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1729 
1730 // This function gets called after visiting all instructions in a bundle. The
1731 // argument points to the bundle header.
1732 // Normal stand-alone instructions are also considered 'bundles', and this
1733 // function is called for all of them.
1734 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1735   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1736   set_union(MInfo.regsKilled, regsKilled);
1737   set_subtract(regsLive, regsKilled); regsKilled.clear();
1738   // Kill any masked registers.
1739   while (!regMasks.empty()) {
1740     const uint32_t *Mask = regMasks.pop_back_val();
1741     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1742       if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1743           MachineOperand::clobbersPhysReg(Mask, *I))
1744         regsDead.push_back(*I);
1745   }
1746   set_subtract(regsLive, regsDead);   regsDead.clear();
1747   set_union(regsLive, regsDefined);   regsDefined.clear();
1748 }
1749 
1750 void
1751 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1752   MBBInfoMap[MBB].regsLiveOut = regsLive;
1753   regsLive.clear();
1754 
1755   if (Indexes) {
1756     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1757     if (!(stop > lastIndex)) {
1758       report("Block ends before last instruction index", MBB);
1759       errs() << "Block ends at " << stop
1760           << " last instruction was at " << lastIndex << '\n';
1761     }
1762     lastIndex = stop;
1763   }
1764 }
1765 
1766 // Calculate the largest possible vregsPassed sets. These are the registers that
1767 // can pass through an MBB live, but may not be live every time. It is assumed
1768 // that all vregsPassed sets are empty before the call.
1769 void MachineVerifier::calcRegsPassed() {
1770   // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1771   // have any vregsPassed.
1772   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1773   for (const auto &MBB : *MF) {
1774     BBInfo &MInfo = MBBInfoMap[&MBB];
1775     if (!MInfo.reachable)
1776       continue;
1777     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1778            SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1779       BBInfo &SInfo = MBBInfoMap[*SuI];
1780       if (SInfo.addPassed(MInfo.regsLiveOut))
1781         todo.insert(*SuI);
1782     }
1783   }
1784 
1785   // Iteratively push vregsPassed to successors. This will converge to the same
1786   // final state regardless of DenseSet iteration order.
1787   while (!todo.empty()) {
1788     const MachineBasicBlock *MBB = *todo.begin();
1789     todo.erase(MBB);
1790     BBInfo &MInfo = MBBInfoMap[MBB];
1791     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1792            SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1793       if (*SuI == MBB)
1794         continue;
1795       BBInfo &SInfo = MBBInfoMap[*SuI];
1796       if (SInfo.addPassed(MInfo.vregsPassed))
1797         todo.insert(*SuI);
1798     }
1799   }
1800 }
1801 
1802 // Calculate the set of virtual registers that must be passed through each basic
1803 // block in order to satisfy the requirements of successor blocks. This is very
1804 // similar to calcRegsPassed, only backwards.
1805 void MachineVerifier::calcRegsRequired() {
1806   // First push live-in regs to predecessors' vregsRequired.
1807   SmallPtrSet<const MachineBasicBlock*, 8> todo;
1808   for (const auto &MBB : *MF) {
1809     BBInfo &MInfo = MBBInfoMap[&MBB];
1810     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1811            PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1812       BBInfo &PInfo = MBBInfoMap[*PrI];
1813       if (PInfo.addRequired(MInfo.vregsLiveIn))
1814         todo.insert(*PrI);
1815     }
1816   }
1817 
1818   // Iteratively push vregsRequired to predecessors. This will converge to the
1819   // same final state regardless of DenseSet iteration order.
1820   while (!todo.empty()) {
1821     const MachineBasicBlock *MBB = *todo.begin();
1822     todo.erase(MBB);
1823     BBInfo &MInfo = MBBInfoMap[MBB];
1824     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1825            PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1826       if (*PrI == MBB)
1827         continue;
1828       BBInfo &SInfo = MBBInfoMap[*PrI];
1829       if (SInfo.addRequired(MInfo.vregsRequired))
1830         todo.insert(*PrI);
1831     }
1832   }
1833 }
1834 
1835 // Check PHI instructions at the beginning of MBB. It is assumed that
1836 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1837 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1838   BBInfo &MInfo = MBBInfoMap[&MBB];
1839 
1840   SmallPtrSet<const MachineBasicBlock*, 8> seen;
1841   for (const MachineInstr &Phi : MBB) {
1842     if (!Phi.isPHI())
1843       break;
1844     seen.clear();
1845 
1846     const MachineOperand &MODef = Phi.getOperand(0);
1847     if (!MODef.isReg() || !MODef.isDef()) {
1848       report("Expected first PHI operand to be a register def", &MODef, 0);
1849       continue;
1850     }
1851     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1852         MODef.isEarlyClobber() || MODef.isDebug())
1853       report("Unexpected flag on PHI operand", &MODef, 0);
1854     unsigned DefReg = MODef.getReg();
1855     if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1856       report("Expected first PHI operand to be a virtual register", &MODef, 0);
1857 
1858     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1859       const MachineOperand &MO0 = Phi.getOperand(I);
1860       if (!MO0.isReg()) {
1861         report("Expected PHI operand to be a register", &MO0, I);
1862         continue;
1863       }
1864       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1865           MO0.isDebug() || MO0.isTied())
1866         report("Unexpected flag on PHI operand", &MO0, I);
1867 
1868       const MachineOperand &MO1 = Phi.getOperand(I + 1);
1869       if (!MO1.isMBB()) {
1870         report("Expected PHI operand to be a basic block", &MO1, I + 1);
1871         continue;
1872       }
1873 
1874       const MachineBasicBlock &Pre = *MO1.getMBB();
1875       if (!Pre.isSuccessor(&MBB)) {
1876         report("PHI input is not a predecessor block", &MO1, I + 1);
1877         continue;
1878       }
1879 
1880       if (MInfo.reachable) {
1881         seen.insert(&Pre);
1882         BBInfo &PrInfo = MBBInfoMap[&Pre];
1883         if (!MO0.isUndef() && PrInfo.reachable &&
1884             !PrInfo.isLiveOut(MO0.getReg()))
1885           report("PHI operand is not live-out from predecessor", &MO0, I);
1886       }
1887     }
1888 
1889     // Did we see all predecessors?
1890     if (MInfo.reachable) {
1891       for (MachineBasicBlock *Pred : MBB.predecessors()) {
1892         if (!seen.count(Pred)) {
1893           report("Missing PHI operand", &Phi);
1894           errs() << printMBBReference(*Pred)
1895                  << " is a predecessor according to the CFG.\n";
1896         }
1897       }
1898     }
1899   }
1900 }
1901 
1902 void MachineVerifier::visitMachineFunctionAfter() {
1903   calcRegsPassed();
1904 
1905   for (const MachineBasicBlock &MBB : *MF)
1906     checkPHIOps(MBB);
1907 
1908   // Now check liveness info if available
1909   calcRegsRequired();
1910 
1911   // Check for killed virtual registers that should be live out.
1912   for (const auto &MBB : *MF) {
1913     BBInfo &MInfo = MBBInfoMap[&MBB];
1914     for (RegSet::iterator
1915          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1916          ++I)
1917       if (MInfo.regsKilled.count(*I)) {
1918         report("Virtual register killed in block, but needed live out.", &MBB);
1919         errs() << "Virtual register " << printReg(*I)
1920                << " is used after the block.\n";
1921       }
1922   }
1923 
1924   if (!MF->empty()) {
1925     BBInfo &MInfo = MBBInfoMap[&MF->front()];
1926     for (RegSet::iterator
1927          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1928          ++I) {
1929       report("Virtual register defs don't dominate all uses.", MF);
1930       report_context_vreg(*I);
1931     }
1932   }
1933 
1934   if (LiveVars)
1935     verifyLiveVariables();
1936   if (LiveInts)
1937     verifyLiveIntervals();
1938 }
1939 
1940 void MachineVerifier::verifyLiveVariables() {
1941   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1942   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1943     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1944     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1945     for (const auto &MBB : *MF) {
1946       BBInfo &MInfo = MBBInfoMap[&MBB];
1947 
1948       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1949       if (MInfo.vregsRequired.count(Reg)) {
1950         if (!VI.AliveBlocks.test(MBB.getNumber())) {
1951           report("LiveVariables: Block missing from AliveBlocks", &MBB);
1952           errs() << "Virtual register " << printReg(Reg)
1953                  << " must be live through the block.\n";
1954         }
1955       } else {
1956         if (VI.AliveBlocks.test(MBB.getNumber())) {
1957           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1958           errs() << "Virtual register " << printReg(Reg)
1959                  << " is not needed live through the block.\n";
1960         }
1961       }
1962     }
1963   }
1964 }
1965 
1966 void MachineVerifier::verifyLiveIntervals() {
1967   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1968   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1969     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1970 
1971     // Spilling and splitting may leave unused registers around. Skip them.
1972     if (MRI->reg_nodbg_empty(Reg))
1973       continue;
1974 
1975     if (!LiveInts->hasInterval(Reg)) {
1976       report("Missing live interval for virtual register", MF);
1977       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
1978       continue;
1979     }
1980 
1981     const LiveInterval &LI = LiveInts->getInterval(Reg);
1982     assert(Reg == LI.reg && "Invalid reg to interval mapping");
1983     verifyLiveInterval(LI);
1984   }
1985 
1986   // Verify all the cached regunit intervals.
1987   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1988     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1989       verifyLiveRange(*LR, i);
1990 }
1991 
1992 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1993                                            const VNInfo *VNI, unsigned Reg,
1994                                            LaneBitmask LaneMask) {
1995   if (VNI->isUnused())
1996     return;
1997 
1998   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1999 
2000   if (!DefVNI) {
2001     report("Value not live at VNInfo def and not marked unused", MF);
2002     report_context(LR, Reg, LaneMask);
2003     report_context(*VNI);
2004     return;
2005   }
2006 
2007   if (DefVNI != VNI) {
2008     report("Live segment at def has different VNInfo", MF);
2009     report_context(LR, Reg, LaneMask);
2010     report_context(*VNI);
2011     return;
2012   }
2013 
2014   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2015   if (!MBB) {
2016     report("Invalid VNInfo definition index", MF);
2017     report_context(LR, Reg, LaneMask);
2018     report_context(*VNI);
2019     return;
2020   }
2021 
2022   if (VNI->isPHIDef()) {
2023     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2024       report("PHIDef VNInfo is not defined at MBB start", MBB);
2025       report_context(LR, Reg, LaneMask);
2026       report_context(*VNI);
2027     }
2028     return;
2029   }
2030 
2031   // Non-PHI def.
2032   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2033   if (!MI) {
2034     report("No instruction at VNInfo def index", MBB);
2035     report_context(LR, Reg, LaneMask);
2036     report_context(*VNI);
2037     return;
2038   }
2039 
2040   if (Reg != 0) {
2041     bool hasDef = false;
2042     bool isEarlyClobber = false;
2043     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2044       if (!MOI->isReg() || !MOI->isDef())
2045         continue;
2046       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2047         if (MOI->getReg() != Reg)
2048           continue;
2049       } else {
2050         if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2051             !TRI->hasRegUnit(MOI->getReg(), Reg))
2052           continue;
2053       }
2054       if (LaneMask.any() &&
2055           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2056         continue;
2057       hasDef = true;
2058       if (MOI->isEarlyClobber())
2059         isEarlyClobber = true;
2060     }
2061 
2062     if (!hasDef) {
2063       report("Defining instruction does not modify register", MI);
2064       report_context(LR, Reg, LaneMask);
2065       report_context(*VNI);
2066     }
2067 
2068     // Early clobber defs begin at USE slots, but other defs must begin at
2069     // DEF slots.
2070     if (isEarlyClobber) {
2071       if (!VNI->def.isEarlyClobber()) {
2072         report("Early clobber def must be at an early-clobber slot", MBB);
2073         report_context(LR, Reg, LaneMask);
2074         report_context(*VNI);
2075       }
2076     } else if (!VNI->def.isRegister()) {
2077       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2078       report_context(LR, Reg, LaneMask);
2079       report_context(*VNI);
2080     }
2081   }
2082 }
2083 
2084 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2085                                              const LiveRange::const_iterator I,
2086                                              unsigned Reg, LaneBitmask LaneMask)
2087 {
2088   const LiveRange::Segment &S = *I;
2089   const VNInfo *VNI = S.valno;
2090   assert(VNI && "Live segment has no valno");
2091 
2092   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2093     report("Foreign valno in live segment", MF);
2094     report_context(LR, Reg, LaneMask);
2095     report_context(S);
2096     report_context(*VNI);
2097   }
2098 
2099   if (VNI->isUnused()) {
2100     report("Live segment valno is marked unused", MF);
2101     report_context(LR, Reg, LaneMask);
2102     report_context(S);
2103   }
2104 
2105   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2106   if (!MBB) {
2107     report("Bad start of live segment, no basic block", MF);
2108     report_context(LR, Reg, LaneMask);
2109     report_context(S);
2110     return;
2111   }
2112   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2113   if (S.start != MBBStartIdx && S.start != VNI->def) {
2114     report("Live segment must begin at MBB entry or valno def", MBB);
2115     report_context(LR, Reg, LaneMask);
2116     report_context(S);
2117   }
2118 
2119   const MachineBasicBlock *EndMBB =
2120     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2121   if (!EndMBB) {
2122     report("Bad end of live segment, no basic block", MF);
2123     report_context(LR, Reg, LaneMask);
2124     report_context(S);
2125     return;
2126   }
2127 
2128   // No more checks for live-out segments.
2129   if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2130     return;
2131 
2132   // RegUnit intervals are allowed dead phis.
2133   if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2134       S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2135     return;
2136 
2137   // The live segment is ending inside EndMBB
2138   const MachineInstr *MI =
2139     LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2140   if (!MI) {
2141     report("Live segment doesn't end at a valid instruction", EndMBB);
2142     report_context(LR, Reg, LaneMask);
2143     report_context(S);
2144     return;
2145   }
2146 
2147   // The block slot must refer to a basic block boundary.
2148   if (S.end.isBlock()) {
2149     report("Live segment ends at B slot of an instruction", EndMBB);
2150     report_context(LR, Reg, LaneMask);
2151     report_context(S);
2152   }
2153 
2154   if (S.end.isDead()) {
2155     // Segment ends on the dead slot.
2156     // That means there must be a dead def.
2157     if (!SlotIndex::isSameInstr(S.start, S.end)) {
2158       report("Live segment ending at dead slot spans instructions", EndMBB);
2159       report_context(LR, Reg, LaneMask);
2160       report_context(S);
2161     }
2162   }
2163 
2164   // A live segment can only end at an early-clobber slot if it is being
2165   // redefined by an early-clobber def.
2166   if (S.end.isEarlyClobber()) {
2167     if (I+1 == LR.end() || (I+1)->start != S.end) {
2168       report("Live segment ending at early clobber slot must be "
2169              "redefined by an EC def in the same instruction", EndMBB);
2170       report_context(LR, Reg, LaneMask);
2171       report_context(S);
2172     }
2173   }
2174 
2175   // The following checks only apply to virtual registers. Physreg liveness
2176   // is too weird to check.
2177   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2178     // A live segment can end with either a redefinition, a kill flag on a
2179     // use, or a dead flag on a def.
2180     bool hasRead = false;
2181     bool hasSubRegDef = false;
2182     bool hasDeadDef = false;
2183     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2184       if (!MOI->isReg() || MOI->getReg() != Reg)
2185         continue;
2186       unsigned Sub = MOI->getSubReg();
2187       LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2188                                  : LaneBitmask::getAll();
2189       if (MOI->isDef()) {
2190         if (Sub != 0) {
2191           hasSubRegDef = true;
2192           // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2193           // mask for subregister defs. Read-undef defs will be handled by
2194           // readsReg below.
2195           SLM = ~SLM;
2196         }
2197         if (MOI->isDead())
2198           hasDeadDef = true;
2199       }
2200       if (LaneMask.any() && (LaneMask & SLM).none())
2201         continue;
2202       if (MOI->readsReg())
2203         hasRead = true;
2204     }
2205     if (S.end.isDead()) {
2206       // Make sure that the corresponding machine operand for a "dead" live
2207       // range has the dead flag. We cannot perform this check for subregister
2208       // liveranges as partially dead values are allowed.
2209       if (LaneMask.none() && !hasDeadDef) {
2210         report("Instruction ending live segment on dead slot has no dead flag",
2211                MI);
2212         report_context(LR, Reg, LaneMask);
2213         report_context(S);
2214       }
2215     } else {
2216       if (!hasRead) {
2217         // When tracking subregister liveness, the main range must start new
2218         // values on partial register writes, even if there is no read.
2219         if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2220             !hasSubRegDef) {
2221           report("Instruction ending live segment doesn't read the register",
2222                  MI);
2223           report_context(LR, Reg, LaneMask);
2224           report_context(S);
2225         }
2226       }
2227     }
2228   }
2229 
2230   // Now check all the basic blocks in this live segment.
2231   MachineFunction::const_iterator MFI = MBB->getIterator();
2232   // Is this live segment the beginning of a non-PHIDef VN?
2233   if (S.start == VNI->def && !VNI->isPHIDef()) {
2234     // Not live-in to any blocks.
2235     if (MBB == EndMBB)
2236       return;
2237     // Skip this block.
2238     ++MFI;
2239   }
2240 
2241   SmallVector<SlotIndex, 4> Undefs;
2242   if (LaneMask.any()) {
2243     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2244     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2245   }
2246 
2247   while (true) {
2248     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2249     // We don't know how to track physregs into a landing pad.
2250     if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2251         MFI->isEHPad()) {
2252       if (&*MFI == EndMBB)
2253         break;
2254       ++MFI;
2255       continue;
2256     }
2257 
2258     // Is VNI a PHI-def in the current block?
2259     bool IsPHI = VNI->isPHIDef() &&
2260       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2261 
2262     // Check that VNI is live-out of all predecessors.
2263     for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2264          PE = MFI->pred_end(); PI != PE; ++PI) {
2265       SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2266       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2267 
2268       // All predecessors must have a live-out value. However for a phi
2269       // instruction with subregister intervals
2270       // only one of the subregisters (not necessarily the current one) needs to
2271       // be defined.
2272       if (!PVNI && (LaneMask.none() || !IsPHI)) {
2273         if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2274           continue;
2275         report("Register not marked live out of predecessor", *PI);
2276         report_context(LR, Reg, LaneMask);
2277         report_context(*VNI);
2278         errs() << " live into " << printMBBReference(*MFI) << '@'
2279                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2280                << PEnd << '\n';
2281         continue;
2282       }
2283 
2284       // Only PHI-defs can take different predecessor values.
2285       if (!IsPHI && PVNI != VNI) {
2286         report("Different value live out of predecessor", *PI);
2287         report_context(LR, Reg, LaneMask);
2288         errs() << "Valno #" << PVNI->id << " live out of "
2289                << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2290                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2291                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2292       }
2293     }
2294     if (&*MFI == EndMBB)
2295       break;
2296     ++MFI;
2297   }
2298 }
2299 
2300 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2301                                       LaneBitmask LaneMask) {
2302   for (const VNInfo *VNI : LR.valnos)
2303     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2304 
2305   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2306     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2307 }
2308 
2309 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2310   unsigned Reg = LI.reg;
2311   assert(TargetRegisterInfo::isVirtualRegister(Reg));
2312   verifyLiveRange(LI, Reg);
2313 
2314   LaneBitmask Mask;
2315   LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2316   for (const LiveInterval::SubRange &SR : LI.subranges()) {
2317     if ((Mask & SR.LaneMask).any()) {
2318       report("Lane masks of sub ranges overlap in live interval", MF);
2319       report_context(LI);
2320     }
2321     if ((SR.LaneMask & ~MaxMask).any()) {
2322       report("Subrange lanemask is invalid", MF);
2323       report_context(LI);
2324     }
2325     if (SR.empty()) {
2326       report("Subrange must not be empty", MF);
2327       report_context(SR, LI.reg, SR.LaneMask);
2328     }
2329     Mask |= SR.LaneMask;
2330     verifyLiveRange(SR, LI.reg, SR.LaneMask);
2331     if (!LI.covers(SR)) {
2332       report("A Subrange is not covered by the main range", MF);
2333       report_context(LI);
2334     }
2335   }
2336 
2337   // Check the LI only has one connected component.
2338   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2339   unsigned NumComp = ConEQ.Classify(LI);
2340   if (NumComp > 1) {
2341     report("Multiple connected components in live interval", MF);
2342     report_context(LI);
2343     for (unsigned comp = 0; comp != NumComp; ++comp) {
2344       errs() << comp << ": valnos";
2345       for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2346            E = LI.vni_end(); I!=E; ++I)
2347         if (comp == ConEQ.getEqClass(*I))
2348           errs() << ' ' << (*I)->id;
2349       errs() << '\n';
2350     }
2351   }
2352 }
2353 
2354 namespace {
2355 
2356   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2357   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2358   // value is zero.
2359   // We use a bool plus an integer to capture the stack state.
2360   struct StackStateOfBB {
2361     StackStateOfBB() = default;
2362     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2363       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2364       ExitIsSetup(ExitSetup) {}
2365 
2366     // Can be negative, which means we are setting up a frame.
2367     int EntryValue = 0;
2368     int ExitValue = 0;
2369     bool EntryIsSetup = false;
2370     bool ExitIsSetup = false;
2371   };
2372 
2373 } // end anonymous namespace
2374 
2375 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2376 /// by a FrameDestroy <n>, stack adjustments are identical on all
2377 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
2378 void MachineVerifier::verifyStackFrame() {
2379   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
2380   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2381   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2382     return;
2383 
2384   SmallVector<StackStateOfBB, 8> SPState;
2385   SPState.resize(MF->getNumBlockIDs());
2386   df_iterator_default_set<const MachineBasicBlock*> Reachable;
2387 
2388   // Visit the MBBs in DFS order.
2389   for (df_ext_iterator<const MachineFunction *,
2390                        df_iterator_default_set<const MachineBasicBlock *>>
2391        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2392        DFI != DFE; ++DFI) {
2393     const MachineBasicBlock *MBB = *DFI;
2394 
2395     StackStateOfBB BBState;
2396     // Check the exit state of the DFS stack predecessor.
2397     if (DFI.getPathLength() >= 2) {
2398       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2399       assert(Reachable.count(StackPred) &&
2400              "DFS stack predecessor is already visited.\n");
2401       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2402       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2403       BBState.ExitValue = BBState.EntryValue;
2404       BBState.ExitIsSetup = BBState.EntryIsSetup;
2405     }
2406 
2407     // Update stack state by checking contents of MBB.
2408     for (const auto &I : *MBB) {
2409       if (I.getOpcode() == FrameSetupOpcode) {
2410         if (BBState.ExitIsSetup)
2411           report("FrameSetup is after another FrameSetup", &I);
2412         BBState.ExitValue -= TII->getFrameTotalSize(I);
2413         BBState.ExitIsSetup = true;
2414       }
2415 
2416       if (I.getOpcode() == FrameDestroyOpcode) {
2417         int Size = TII->getFrameTotalSize(I);
2418         if (!BBState.ExitIsSetup)
2419           report("FrameDestroy is not after a FrameSetup", &I);
2420         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2421                                                BBState.ExitValue;
2422         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2423           report("FrameDestroy <n> is after FrameSetup <m>", &I);
2424           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2425               << AbsSPAdj << ">.\n";
2426         }
2427         BBState.ExitValue += Size;
2428         BBState.ExitIsSetup = false;
2429       }
2430     }
2431     SPState[MBB->getNumber()] = BBState;
2432 
2433     // Make sure the exit state of any predecessor is consistent with the entry
2434     // state.
2435     for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2436          E = MBB->pred_end(); I != E; ++I) {
2437       if (Reachable.count(*I) &&
2438           (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2439            SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2440         report("The exit stack state of a predecessor is inconsistent.", MBB);
2441         errs() << "Predecessor " << printMBBReference(*(*I))
2442                << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2443                << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2444                << printMBBReference(*MBB) << " has entry state ("
2445                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2446       }
2447     }
2448 
2449     // Make sure the entry state of any successor is consistent with the exit
2450     // state.
2451     for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2452          E = MBB->succ_end(); I != E; ++I) {
2453       if (Reachable.count(*I) &&
2454           (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2455            SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2456         report("The entry stack state of a successor is inconsistent.", MBB);
2457         errs() << "Successor " << printMBBReference(*(*I))
2458                << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2459                << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2460                << printMBBReference(*MBB) << " has exit state ("
2461                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2462       }
2463     }
2464 
2465     // Make sure a basic block with return ends with zero stack adjustment.
2466     if (!MBB->empty() && MBB->back().isReturn()) {
2467       if (BBState.ExitIsSetup)
2468         report("A return block ends with a FrameSetup.", MBB);
2469       if (BBState.ExitValue)
2470         report("A return block ends with a nonzero stack adjustment.", MBB);
2471     }
2472   }
2473 }
2474