1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass moves instructions into successor blocks when possible, so that 11 // they aren't executed on paths where their results aren't needed. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/SparseBitVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachinePostDominators.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/TargetInstrInfo.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/BranchProbability.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstdint> 50 #include <map> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "machine-sink" 57 58 static cl::opt<bool> 59 SplitEdges("machine-sink-split", 60 cl::desc("Split critical edges during machine sinking"), 61 cl::init(true), cl::Hidden); 62 63 static cl::opt<bool> 64 UseBlockFreqInfo("machine-sink-bfi", 65 cl::desc("Use block frequency info to find successors to sink"), 66 cl::init(true), cl::Hidden); 67 68 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 69 "machine-sink-split-probability-threshold", 70 cl::desc( 71 "Percentage threshold for splitting single-instruction critical edge. " 72 "If the branch threshold is higher than this threshold, we allow " 73 "speculative execution of up to 1 instruction to avoid branching to " 74 "splitted critical edge"), 75 cl::init(40), cl::Hidden); 76 77 STATISTIC(NumSunk, "Number of machine instructions sunk"); 78 STATISTIC(NumSplit, "Number of critical edges split"); 79 STATISTIC(NumCoalesces, "Number of copies coalesced"); 80 81 namespace { 82 83 class MachineSinking : public MachineFunctionPass { 84 const TargetInstrInfo *TII; 85 const TargetRegisterInfo *TRI; 86 MachineRegisterInfo *MRI; // Machine register information 87 MachineDominatorTree *DT; // Machine dominator tree 88 MachinePostDominatorTree *PDT; // Machine post dominator tree 89 MachineLoopInfo *LI; 90 const MachineBlockFrequencyInfo *MBFI; 91 const MachineBranchProbabilityInfo *MBPI; 92 AliasAnalysis *AA; 93 94 // Remember which edges have been considered for breaking. 95 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 96 CEBCandidates; 97 // Remember which edges we are about to split. 98 // This is different from CEBCandidates since those edges 99 // will be split. 100 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 101 102 SparseBitVector<> RegsToClearKillFlags; 103 104 using AllSuccsCache = 105 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 106 107 public: 108 static char ID; // Pass identification 109 110 MachineSinking() : MachineFunctionPass(ID) { 111 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 112 } 113 114 bool runOnMachineFunction(MachineFunction &MF) override; 115 116 void getAnalysisUsage(AnalysisUsage &AU) const override { 117 AU.setPreservesCFG(); 118 MachineFunctionPass::getAnalysisUsage(AU); 119 AU.addRequired<AAResultsWrapperPass>(); 120 AU.addRequired<MachineDominatorTree>(); 121 AU.addRequired<MachinePostDominatorTree>(); 122 AU.addRequired<MachineLoopInfo>(); 123 AU.addRequired<MachineBranchProbabilityInfo>(); 124 AU.addPreserved<MachineDominatorTree>(); 125 AU.addPreserved<MachinePostDominatorTree>(); 126 AU.addPreserved<MachineLoopInfo>(); 127 if (UseBlockFreqInfo) 128 AU.addRequired<MachineBlockFrequencyInfo>(); 129 } 130 131 void releaseMemory() override { 132 CEBCandidates.clear(); 133 } 134 135 private: 136 bool ProcessBlock(MachineBasicBlock &MBB); 137 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 138 MachineBasicBlock *From, 139 MachineBasicBlock *To); 140 141 /// \brief Postpone the splitting of the given critical 142 /// edge (\p From, \p To). 143 /// 144 /// We do not split the edges on the fly. Indeed, this invalidates 145 /// the dominance information and thus triggers a lot of updates 146 /// of that information underneath. 147 /// Instead, we postpone all the splits after each iteration of 148 /// the main loop. That way, the information is at least valid 149 /// for the lifetime of an iteration. 150 /// 151 /// \return True if the edge is marked as toSplit, false otherwise. 152 /// False can be returned if, for instance, this is not profitable. 153 bool PostponeSplitCriticalEdge(MachineInstr &MI, 154 MachineBasicBlock *From, 155 MachineBasicBlock *To, 156 bool BreakPHIEdge); 157 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 158 159 AllSuccsCache &AllSuccessors); 160 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 161 MachineBasicBlock *DefMBB, 162 bool &BreakPHIEdge, bool &LocalUse) const; 163 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 164 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 165 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 166 MachineBasicBlock *MBB, 167 MachineBasicBlock *SuccToSinkTo, 168 AllSuccsCache &AllSuccessors); 169 170 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 171 MachineBasicBlock *MBB); 172 173 SmallVector<MachineBasicBlock *, 4> & 174 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 175 AllSuccsCache &AllSuccessors) const; 176 }; 177 178 } // end anonymous namespace 179 180 char MachineSinking::ID = 0; 181 182 char &llvm::MachineSinkingID = MachineSinking::ID; 183 184 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 185 "Machine code sinking", false, false) 186 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 187 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 188 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 189 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 190 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 191 "Machine code sinking", false, false) 192 193 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 194 MachineBasicBlock *MBB) { 195 if (!MI.isCopy()) 196 return false; 197 198 unsigned SrcReg = MI.getOperand(1).getReg(); 199 unsigned DstReg = MI.getOperand(0).getReg(); 200 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || 201 !TargetRegisterInfo::isVirtualRegister(DstReg) || 202 !MRI->hasOneNonDBGUse(SrcReg)) 203 return false; 204 205 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 206 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 207 if (SRC != DRC) 208 return false; 209 210 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 211 if (DefMI->isCopyLike()) 212 return false; 213 DEBUG(dbgs() << "Coalescing: " << *DefMI); 214 DEBUG(dbgs() << "*** to: " << MI); 215 MRI->replaceRegWith(DstReg, SrcReg); 216 MI.eraseFromParent(); 217 218 // Conservatively, clear any kill flags, since it's possible that they are no 219 // longer correct. 220 MRI->clearKillFlags(SrcReg); 221 222 ++NumCoalesces; 223 return true; 224 } 225 226 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 227 /// occur in blocks dominated by the specified block. If any use is in the 228 /// definition block, then return false since it is never legal to move def 229 /// after uses. 230 bool 231 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 232 MachineBasicBlock *MBB, 233 MachineBasicBlock *DefMBB, 234 bool &BreakPHIEdge, 235 bool &LocalUse) const { 236 assert(TargetRegisterInfo::isVirtualRegister(Reg) && 237 "Only makes sense for vregs"); 238 239 // Ignore debug uses because debug info doesn't affect the code. 240 if (MRI->use_nodbg_empty(Reg)) 241 return true; 242 243 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 244 // into and they are all PHI nodes. In this case, machine-sink must break 245 // the critical edge first. e.g. 246 // 247 // %bb.1: derived from LLVM BB %bb4.preheader 248 // Predecessors according to CFG: %bb.0 249 // ... 250 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags 251 // ... 252 // JE_4 <%bb.37>, implicit %eflags 253 // Successors according to CFG: %bb.37 %bb.2 254 // 255 // %bb.2: derived from LLVM BB %bb.nph 256 // Predecessors according to CFG: %bb.0 %bb.1 257 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1 258 BreakPHIEdge = true; 259 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 260 MachineInstr *UseInst = MO.getParent(); 261 unsigned OpNo = &MO - &UseInst->getOperand(0); 262 MachineBasicBlock *UseBlock = UseInst->getParent(); 263 if (!(UseBlock == MBB && UseInst->isPHI() && 264 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 265 BreakPHIEdge = false; 266 break; 267 } 268 } 269 if (BreakPHIEdge) 270 return true; 271 272 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 273 // Determine the block of the use. 274 MachineInstr *UseInst = MO.getParent(); 275 unsigned OpNo = &MO - &UseInst->getOperand(0); 276 MachineBasicBlock *UseBlock = UseInst->getParent(); 277 if (UseInst->isPHI()) { 278 // PHI nodes use the operand in the predecessor block, not the block with 279 // the PHI. 280 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 281 } else if (UseBlock == DefMBB) { 282 LocalUse = true; 283 return false; 284 } 285 286 // Check that it dominates. 287 if (!DT->dominates(MBB, UseBlock)) 288 return false; 289 } 290 291 return true; 292 } 293 294 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 295 if (skipFunction(MF.getFunction())) 296 return false; 297 298 DEBUG(dbgs() << "******** Machine Sinking ********\n"); 299 300 TII = MF.getSubtarget().getInstrInfo(); 301 TRI = MF.getSubtarget().getRegisterInfo(); 302 MRI = &MF.getRegInfo(); 303 DT = &getAnalysis<MachineDominatorTree>(); 304 PDT = &getAnalysis<MachinePostDominatorTree>(); 305 LI = &getAnalysis<MachineLoopInfo>(); 306 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 307 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 308 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 309 310 bool EverMadeChange = false; 311 312 while (true) { 313 bool MadeChange = false; 314 315 // Process all basic blocks. 316 CEBCandidates.clear(); 317 ToSplit.clear(); 318 for (auto &MBB: MF) 319 MadeChange |= ProcessBlock(MBB); 320 321 // If we have anything we marked as toSplit, split it now. 322 for (auto &Pair : ToSplit) { 323 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 324 if (NewSucc != nullptr) { 325 DEBUG(dbgs() << " *** Splitting critical edge: " 326 << printMBBReference(*Pair.first) << " -- " 327 << printMBBReference(*NewSucc) << " -- " 328 << printMBBReference(*Pair.second) << '\n'); 329 MadeChange = true; 330 ++NumSplit; 331 } else 332 DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 333 } 334 // If this iteration over the code changed anything, keep iterating. 335 if (!MadeChange) break; 336 EverMadeChange = true; 337 } 338 339 // Now clear any kill flags for recorded registers. 340 for (auto I : RegsToClearKillFlags) 341 MRI->clearKillFlags(I); 342 RegsToClearKillFlags.clear(); 343 344 return EverMadeChange; 345 } 346 347 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 348 // Can't sink anything out of a block that has less than two successors. 349 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 350 351 // Don't bother sinking code out of unreachable blocks. In addition to being 352 // unprofitable, it can also lead to infinite looping, because in an 353 // unreachable loop there may be nowhere to stop. 354 if (!DT->isReachableFromEntry(&MBB)) return false; 355 356 bool MadeChange = false; 357 358 // Cache all successors, sorted by frequency info and loop depth. 359 AllSuccsCache AllSuccessors; 360 361 // Walk the basic block bottom-up. Remember if we saw a store. 362 MachineBasicBlock::iterator I = MBB.end(); 363 --I; 364 bool ProcessedBegin, SawStore = false; 365 do { 366 MachineInstr &MI = *I; // The instruction to sink. 367 368 // Predecrement I (if it's not begin) so that it isn't invalidated by 369 // sinking. 370 ProcessedBegin = I == MBB.begin(); 371 if (!ProcessedBegin) 372 --I; 373 374 if (MI.isDebugValue()) 375 continue; 376 377 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 378 if (Joined) { 379 MadeChange = true; 380 continue; 381 } 382 383 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 384 ++NumSunk; 385 MadeChange = true; 386 } 387 388 // If we just processed the first instruction in the block, we're done. 389 } while (!ProcessedBegin); 390 391 return MadeChange; 392 } 393 394 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 395 MachineBasicBlock *From, 396 MachineBasicBlock *To) { 397 // FIXME: Need much better heuristics. 398 399 // If the pass has already considered breaking this edge (during this pass 400 // through the function), then let's go ahead and break it. This means 401 // sinking multiple "cheap" instructions into the same block. 402 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 403 return true; 404 405 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 406 return true; 407 408 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 409 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 410 return true; 411 412 // MI is cheap, we probably don't want to break the critical edge for it. 413 // However, if this would allow some definitions of its source operands 414 // to be sunk then it's probably worth it. 415 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 416 const MachineOperand &MO = MI.getOperand(i); 417 if (!MO.isReg() || !MO.isUse()) 418 continue; 419 unsigned Reg = MO.getReg(); 420 if (Reg == 0) 421 continue; 422 423 // We don't move live definitions of physical registers, 424 // so sinking their uses won't enable any opportunities. 425 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 426 continue; 427 428 // If this instruction is the only user of a virtual register, 429 // check if breaking the edge will enable sinking 430 // both this instruction and the defining instruction. 431 if (MRI->hasOneNonDBGUse(Reg)) { 432 // If the definition resides in same MBB, 433 // claim it's likely we can sink these together. 434 // If definition resides elsewhere, we aren't 435 // blocking it from being sunk so don't break the edge. 436 MachineInstr *DefMI = MRI->getVRegDef(Reg); 437 if (DefMI->getParent() == MI.getParent()) 438 return true; 439 } 440 } 441 442 return false; 443 } 444 445 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 446 MachineBasicBlock *FromBB, 447 MachineBasicBlock *ToBB, 448 bool BreakPHIEdge) { 449 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 450 return false; 451 452 // Avoid breaking back edge. From == To means backedge for single BB loop. 453 if (!SplitEdges || FromBB == ToBB) 454 return false; 455 456 // Check for backedges of more "complex" loops. 457 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 458 LI->isLoopHeader(ToBB)) 459 return false; 460 461 // It's not always legal to break critical edges and sink the computation 462 // to the edge. 463 // 464 // %bb.1: 465 // v1024 466 // Beq %bb.3 467 // <fallthrough> 468 // %bb.2: 469 // ... no uses of v1024 470 // <fallthrough> 471 // %bb.3: 472 // ... 473 // = v1024 474 // 475 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 476 // 477 // %bb.1: 478 // ... 479 // Bne %bb.2 480 // %bb.4: 481 // v1024 = 482 // B %bb.3 483 // %bb.2: 484 // ... no uses of v1024 485 // <fallthrough> 486 // %bb.3: 487 // ... 488 // = v1024 489 // 490 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 491 // flow. We need to ensure the new basic block where the computation is 492 // sunk to dominates all the uses. 493 // It's only legal to break critical edge and sink the computation to the 494 // new block if all the predecessors of "To", except for "From", are 495 // not dominated by "From". Given SSA property, this means these 496 // predecessors are dominated by "To". 497 // 498 // There is no need to do this check if all the uses are PHI nodes. PHI 499 // sources are only defined on the specific predecessor edges. 500 if (!BreakPHIEdge) { 501 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 502 E = ToBB->pred_end(); PI != E; ++PI) { 503 if (*PI == FromBB) 504 continue; 505 if (!DT->dominates(ToBB, *PI)) 506 return false; 507 } 508 } 509 510 ToSplit.insert(std::make_pair(FromBB, ToBB)); 511 512 return true; 513 } 514 515 /// collectDebgValues - Scan instructions following MI and collect any 516 /// matching DBG_VALUEs. 517 static void collectDebugValues(MachineInstr &MI, 518 SmallVectorImpl<MachineInstr *> &DbgValues) { 519 DbgValues.clear(); 520 if (!MI.getOperand(0).isReg()) 521 return; 522 523 MachineBasicBlock::iterator DI = MI; ++DI; 524 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 525 DI != DE; ++DI) { 526 if (!DI->isDebugValue()) 527 return; 528 if (DI->getOperand(0).isReg() && 529 DI->getOperand(0).getReg() == MI.getOperand(0).getReg()) 530 DbgValues.push_back(&*DI); 531 } 532 } 533 534 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 535 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 536 MachineBasicBlock *MBB, 537 MachineBasicBlock *SuccToSinkTo, 538 AllSuccsCache &AllSuccessors) { 539 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 540 541 if (MBB == SuccToSinkTo) 542 return false; 543 544 // It is profitable if SuccToSinkTo does not post dominate current block. 545 if (!PDT->dominates(SuccToSinkTo, MBB)) 546 return true; 547 548 // It is profitable to sink an instruction from a deeper loop to a shallower 549 // loop, even if the latter post-dominates the former (PR21115). 550 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 551 return true; 552 553 // Check if only use in post dominated block is PHI instruction. 554 bool NonPHIUse = false; 555 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 556 MachineBasicBlock *UseBlock = UseInst.getParent(); 557 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 558 NonPHIUse = true; 559 } 560 if (!NonPHIUse) 561 return true; 562 563 // If SuccToSinkTo post dominates then also it may be profitable if MI 564 // can further profitably sinked into another block in next round. 565 bool BreakPHIEdge = false; 566 // FIXME - If finding successor is compile time expensive then cache results. 567 if (MachineBasicBlock *MBB2 = 568 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 569 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 570 571 // If SuccToSinkTo is final destination and it is a post dominator of current 572 // block then it is not profitable to sink MI into SuccToSinkTo block. 573 return false; 574 } 575 576 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 577 /// computing it if it was not already cached. 578 SmallVector<MachineBasicBlock *, 4> & 579 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 580 AllSuccsCache &AllSuccessors) const { 581 // Do we have the sorted successors in cache ? 582 auto Succs = AllSuccessors.find(MBB); 583 if (Succs != AllSuccessors.end()) 584 return Succs->second; 585 586 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 587 MBB->succ_end()); 588 589 // Handle cases where sinking can happen but where the sink point isn't a 590 // successor. For example: 591 // 592 // x = computation 593 // if () {} else {} 594 // use x 595 // 596 const std::vector<MachineDomTreeNode *> &Children = 597 DT->getNode(MBB)->getChildren(); 598 for (const auto &DTChild : Children) 599 // DomTree children of MBB that have MBB as immediate dominator are added. 600 if (DTChild->getIDom()->getBlock() == MI.getParent() && 601 // Skip MBBs already added to the AllSuccs vector above. 602 !MBB->isSuccessor(DTChild->getBlock())) 603 AllSuccs.push_back(DTChild->getBlock()); 604 605 // Sort Successors according to their loop depth or block frequency info. 606 std::stable_sort( 607 AllSuccs.begin(), AllSuccs.end(), 608 [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 609 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 610 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 611 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 612 return HasBlockFreq ? LHSFreq < RHSFreq 613 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 614 }); 615 616 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 617 618 return it.first->second; 619 } 620 621 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 622 MachineBasicBlock * 623 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 624 bool &BreakPHIEdge, 625 AllSuccsCache &AllSuccessors) { 626 assert (MBB && "Invalid MachineBasicBlock!"); 627 628 // Loop over all the operands of the specified instruction. If there is 629 // anything we can't handle, bail out. 630 631 // SuccToSinkTo - This is the successor to sink this instruction to, once we 632 // decide. 633 MachineBasicBlock *SuccToSinkTo = nullptr; 634 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 635 const MachineOperand &MO = MI.getOperand(i); 636 if (!MO.isReg()) continue; // Ignore non-register operands. 637 638 unsigned Reg = MO.getReg(); 639 if (Reg == 0) continue; 640 641 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 642 if (MO.isUse()) { 643 // If the physreg has no defs anywhere, it's just an ambient register 644 // and we can freely move its uses. Alternatively, if it's allocatable, 645 // it could get allocated to something with a def during allocation. 646 if (!MRI->isConstantPhysReg(Reg)) 647 return nullptr; 648 } else if (!MO.isDead()) { 649 // A def that isn't dead. We can't move it. 650 return nullptr; 651 } 652 } else { 653 // Virtual register uses are always safe to sink. 654 if (MO.isUse()) continue; 655 656 // If it's not safe to move defs of the register class, then abort. 657 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 658 return nullptr; 659 660 // Virtual register defs can only be sunk if all their uses are in blocks 661 // dominated by one of the successors. 662 if (SuccToSinkTo) { 663 // If a previous operand picked a block to sink to, then this operand 664 // must be sinkable to the same block. 665 bool LocalUse = false; 666 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 667 BreakPHIEdge, LocalUse)) 668 return nullptr; 669 670 continue; 671 } 672 673 // Otherwise, we should look at all the successors and decide which one 674 // we should sink to. If we have reliable block frequency information 675 // (frequency != 0) available, give successors with smaller frequencies 676 // higher priority, otherwise prioritize smaller loop depths. 677 for (MachineBasicBlock *SuccBlock : 678 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 679 bool LocalUse = false; 680 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 681 BreakPHIEdge, LocalUse)) { 682 SuccToSinkTo = SuccBlock; 683 break; 684 } 685 if (LocalUse) 686 // Def is used locally, it's never safe to move this def. 687 return nullptr; 688 } 689 690 // If we couldn't find a block to sink to, ignore this instruction. 691 if (!SuccToSinkTo) 692 return nullptr; 693 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 694 return nullptr; 695 } 696 } 697 698 // It is not possible to sink an instruction into its own block. This can 699 // happen with loops. 700 if (MBB == SuccToSinkTo) 701 return nullptr; 702 703 // It's not safe to sink instructions to EH landing pad. Control flow into 704 // landing pad is implicitly defined. 705 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 706 return nullptr; 707 708 return SuccToSinkTo; 709 } 710 711 /// \brief Return true if MI is likely to be usable as a memory operation by the 712 /// implicit null check optimization. 713 /// 714 /// This is a "best effort" heuristic, and should not be relied upon for 715 /// correctness. This returning true does not guarantee that the implicit null 716 /// check optimization is legal over MI, and this returning false does not 717 /// guarantee MI cannot possibly be used to do a null check. 718 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 719 const TargetInstrInfo *TII, 720 const TargetRegisterInfo *TRI) { 721 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 722 723 auto *MBB = MI.getParent(); 724 if (MBB->pred_size() != 1) 725 return false; 726 727 auto *PredMBB = *MBB->pred_begin(); 728 auto *PredBB = PredMBB->getBasicBlock(); 729 730 // Frontends that don't use implicit null checks have no reason to emit 731 // branches with make.implicit metadata, and this function should always 732 // return false for them. 733 if (!PredBB || 734 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 735 return false; 736 737 unsigned BaseReg; 738 int64_t Offset; 739 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 740 return false; 741 742 if (!(MI.mayLoad() && !MI.isPredicable())) 743 return false; 744 745 MachineBranchPredicate MBP; 746 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 747 return false; 748 749 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 750 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 751 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 752 MBP.LHS.getReg() == BaseReg; 753 } 754 755 /// SinkInstruction - Determine whether it is safe to sink the specified machine 756 /// instruction out of its current block into a successor. 757 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 758 AllSuccsCache &AllSuccessors) { 759 // Don't sink instructions that the target prefers not to sink. 760 if (!TII->shouldSink(MI)) 761 return false; 762 763 // Check if it's safe to move the instruction. 764 if (!MI.isSafeToMove(AA, SawStore)) 765 return false; 766 767 // Convergent operations may not be made control-dependent on additional 768 // values. 769 if (MI.isConvergent()) 770 return false; 771 772 // Don't break implicit null checks. This is a performance heuristic, and not 773 // required for correctness. 774 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 775 return false; 776 777 // FIXME: This should include support for sinking instructions within the 778 // block they are currently in to shorten the live ranges. We often get 779 // instructions sunk into the top of a large block, but it would be better to 780 // also sink them down before their first use in the block. This xform has to 781 // be careful not to *increase* register pressure though, e.g. sinking 782 // "x = y + z" down if it kills y and z would increase the live ranges of y 783 // and z and only shrink the live range of x. 784 785 bool BreakPHIEdge = false; 786 MachineBasicBlock *ParentBlock = MI.getParent(); 787 MachineBasicBlock *SuccToSinkTo = 788 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 789 790 // If there are no outputs, it must have side-effects. 791 if (!SuccToSinkTo) 792 return false; 793 794 // If the instruction to move defines a dead physical register which is live 795 // when leaving the basic block, don't move it because it could turn into a 796 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 797 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 798 const MachineOperand &MO = MI.getOperand(I); 799 if (!MO.isReg()) continue; 800 unsigned Reg = MO.getReg(); 801 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 802 if (SuccToSinkTo->isLiveIn(Reg)) 803 return false; 804 } 805 806 DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 807 808 // If the block has multiple predecessors, this is a critical edge. 809 // Decide if we can sink along it or need to break the edge. 810 if (SuccToSinkTo->pred_size() > 1) { 811 // We cannot sink a load across a critical edge - there may be stores in 812 // other code paths. 813 bool TryBreak = false; 814 bool store = true; 815 if (!MI.isSafeToMove(AA, store)) { 816 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 817 TryBreak = true; 818 } 819 820 // We don't want to sink across a critical edge if we don't dominate the 821 // successor. We could be introducing calculations to new code paths. 822 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 823 DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 824 TryBreak = true; 825 } 826 827 // Don't sink instructions into a loop. 828 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 829 DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 830 TryBreak = true; 831 } 832 833 // Otherwise we are OK with sinking along a critical edge. 834 if (!TryBreak) 835 DEBUG(dbgs() << "Sinking along critical edge.\n"); 836 else { 837 // Mark this edge as to be split. 838 // If the edge can actually be split, the next iteration of the main loop 839 // will sink MI in the newly created block. 840 bool Status = 841 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 842 if (!Status) 843 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 844 "break critical edge\n"); 845 // The instruction will not be sunk this time. 846 return false; 847 } 848 } 849 850 if (BreakPHIEdge) { 851 // BreakPHIEdge is true if all the uses are in the successor MBB being 852 // sunken into and they are all PHI nodes. In this case, machine-sink must 853 // break the critical edge first. 854 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 855 SuccToSinkTo, BreakPHIEdge); 856 if (!Status) 857 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 858 "break critical edge\n"); 859 // The instruction will not be sunk this time. 860 return false; 861 } 862 863 // Determine where to insert into. Skip phi nodes. 864 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 865 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 866 ++InsertPos; 867 868 // collect matching debug values. 869 SmallVector<MachineInstr *, 2> DbgValuesToSink; 870 collectDebugValues(MI, DbgValuesToSink); 871 872 // Merge or erase debug location to ensure consistent stepping in profilers 873 // and debuggers. 874 if (!SuccToSinkTo->empty() && InsertPos != SuccToSinkTo->end()) 875 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 876 InsertPos->getDebugLoc())); 877 else 878 MI.setDebugLoc(DebugLoc()); 879 880 881 // Move the instruction. 882 SuccToSinkTo->splice(InsertPos, ParentBlock, MI, 883 ++MachineBasicBlock::iterator(MI)); 884 885 // Move previously adjacent debug value instructions to the insert position. 886 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 887 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { 888 MachineInstr *DbgMI = *DBI; 889 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI, 890 ++MachineBasicBlock::iterator(DbgMI)); 891 } 892 893 // Conservatively, clear any kill flags, since it's possible that they are no 894 // longer correct. 895 // Note that we have to clear the kill flags for any register this instruction 896 // uses as we may sink over another instruction which currently kills the 897 // used registers. 898 for (MachineOperand &MO : MI.operands()) { 899 if (MO.isReg() && MO.isUse()) 900 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 901 } 902 903 return true; 904 } 905